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Using an effective Dirac model, we study the orbital Hall effect (OHE) in bilayers of transition
metal dichalcogenides with 2H stacking (2H-TMD). We use first-order perturbation theory in the
interlayer coupling of the bilayer system to obtain analytical expressions for the orbital Hall con-
ductivity in the linear response regime. We use two distinct descriptions of the orbital angular
momentum (OAM) operator: The first one is the intra-atomic approximation that considers only
the intrasite contribution to the OAM [Cysne et al. Phys. Rev. Lett. 126, 056601 (2021)]. The
second one uses the Berry-phase formula of the orbital (valley) magnetic moment to describe the
OAM operator [Bhowal and Vignale, Phys. Rev. B 103, 195309 (2021)]. This approach includes
both intersite and intrasite contributions to the OAM. Our results suggest that the two approaches
agree qualitatively in describing the OHE in bilayers of 2H-TMDs, although they present some quan-
titative differences. We also show that interlayer coupling plays an essential role in understanding
the OHE in the unbiased bilayer of 2H-TMD. This coupling causes the Bloch states to become
bonding (antibonding) combinations of states of individual layers, demanding the consideration of
the non-Abelian structure of the orbital magnetic moment to the occurrence of OHE. As we discuss
throughout the work, the emerging picture of transport of OAM in the unbiased bilayer of 2H-TMDs
based on OHE is very different from the usual picture based on the valley Hall effect, shedding new
lights on previous experimental results. We also discuss the effect of the inclusion of a gate-voltage
bias in the bilayer system. Our work gives support to recent theoretical predictions on OHE in
two-dimensional materials.

I. INTRODUCTION

The orbital Hall effect (OHE) consists of the transverse
flow of orbital angular momentum (OAM) as a response
to the application of a longitudinal electric field. It is a
phenomenon analogous to the spin Hall effect but, con-
trary to the latter, the OHE does not require the exis-
tence of strong spin-orbit coupling in the material. De-
spite being predicted more than a decade ago [1], only
recently the OHE has gained significant attention by the
condensed-matter community, which contrasts with the
spin Hall effect that has been the focus of intense research
in the last twenty years. The first theoretical studies on
the OHE had focused on three-dimensional metallic sys-
tems [2–4], where a mechanism based on the electrical
response of orbital texture in the materials were intro-
duced [5–7]. Experiments on orbital-torque had found
signatures of the existence of the OHE [8–12]. In addi-
tion, a recent experiment reported the direct measure-
ment of OHE [13], opening the way for the development
of the field of orbitronics [14–17].

The interest in physical phenomena related to OAM,
particularly the OHE, has gained substantial push in the
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community of two-dimensional (2D) materials [18–29].
Theoretical calculations predict the existence of the or-
bital textures that give origin to the OHE in many 2D
multiorbital materials [30–33]. In addition, recent ex-
periments confirmed the existence of these textures for
some of these 2D materials [34–36]. Among many 2D
materials, the family of transition metal dichalcogenides
(TMDs) has attracted prominent interest. When crystal-
lized in H structural phase, the TMDs are semiconductors
with a large gap. The OAM physics, in these materials,
is well described by the electronic states near valleys of
the Brillouin zone (BZ). Previous works have shown that
TMDs exhibit a strong OHE [18, 37, 38], even inside its
insulating gap [31, 32], in which it is possible to attribute
an orbital-Chern number [39]. The zigzag nanoribbons
of TMDs have orbitally-polarized edge-states that may
transport the orbital Hall currents [40, 41]. Added to
this, the OHE allows the flux of OAM in centrosymmet-
ric bilayers of TMDs with 2H stacking (bilayer of 2H-
TMDs) [39]. Previous studies often neglected this fact,
interpreting the transport of OAM in terms of the valley
Hall effect [42–45].

Most of the literature on OHE uses of the atomic rep-
resentation of the OAM operator, also known as intra-
atomic approximation. Due to its low computational cost
and easy implementation, this approximation is widely
used to describe the orbital properties of materials. The
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intra-atomic approximation to OAM frequently gives sat-
isfactory results but neglects contributions generated by
the movement of electrons in the intersite region of the
solid [46–50]. The relevance of intersite contributions and
the validity of the intra-atomic approximation strongly
depend on the specificities of the material [51–54]. In
systems formed by atoms with well-localized outer shells,
the approximation can be conceptually justified [50]. Re-
cently, Bhowal and Vignale [55] introduced a scheme to
take into account, on equal footing, the intra-atomic (in-
trasite) and the correction due to the extended nature of
electronic wave functions (intersite) using a description of
the OAM operator based on the Berry-phase formula for
orbital (valley) magnetic moment. They used the method
to express the valley Hall effect on the gapped graphene
model [56] in a more transparent picture of OHE. In this
work, we use the method introduced in Ref. [55] to study
the OHE in bilayers of 2H-TMDs and compare it with
results obtained within intra-atomic approximation [39].
As we show through the work, both approaches agree
qualitatively, giving robustness to the recent predictions
regarding the transport of OAM in 2D materials. For
clarity and transparency, we use an effective Dirac model
to describe the low-energy physics of bilayer of 2H-TMD
[57, 58], allowing us to obtain analytical expressions for
orbital Hall conductivity in the two schemes.

Our work contains two important physical messages
for the field of the OHE in 2D materials. The first mes-
sage is the qualitative agreement between intra-atomic
approximation and the Bloch states orbital magnetic mo-
ment approach in predicting an orbital Hall insulating
plateau in centrosymmetric bilayers of 2H-TMDs with
the height expressed in Eqs. (23, 34). Despite the quan-
titative difference in the results from the two methods,
the orbital Hall conductivity agrees qualitatively, as is
shown in Figs. 2 and 3. To obtain the finite orbital Hall
plateau in Eq. (34) becomes necessary to consider the
non-Abelian nature of the orbital magnetic moment oper-
ator [see appendix A]. This necessity comes from finite in-
terlayer hopping (t⊥) in bilayer 2H-TMDs that connects
the Hilbert spaces of each layer. The second important
message of the work is the reinforcement of the OHE as
a better description of the transport of OAM. The con-
ventional view based on the valley Hall effect presents
many conceptual problems which forbid the possibility
of transport of OAM in centrosymmetric non-magnetic
systems.

We organize the paper as follows: In sec II, we describe
the effective Dirac model used in this work to explore the
OHE in the bilayer of 2H-TMDs. We also perform first-
order perturbation theory in the interlayer coupling, ob-
taining the eigenvectors and energies of the bilayer with
no applied gate voltage (unbiased bilayer). In Sec III,
we consider these perturbed eigenvectors and energies to
study the OHE for unbiased bilayer of 2H-TMD in linear-
response regime. We consider both the intra-atomic ap-
proximation [39] and the Bloch state orbital magnetic
moment description of OAM [55] and compare the two

results. In Sec. IV, we introduce an asymmetry between
layers of the bilayer 2H-TMD by adding a gate potential
(bias) in the system and performing a similar analysis of
Secs. II and III. In Sec V, we present the final remarks
and conclusions of the work. We also include an ap-
pendix A where we review the construction of the orbital
magnetic moment matrix associated with Bloch states
used in Ref. [55] to study the OHE in gapped graphene.
In addition, in the appendix B, we show some technical
details on the computation of orbital-current in the two
approaches.

II. EFFECTIVE MODEL FOR UNBIASED
BILAYER TMDS: PERTURBATION THEORY

Figure 1. (a) Side view of a bilayer of TMD with 2H stack-
ing. Each monolayer of TMD in the H structural phase
is composed of an atomic plane of transition metal (black
spheres) sandwiched by two atomic planes of chalcogens (yel-
low spheres). The top and the bottom layers have a relative
rotation angle of 180 degrees, making the bilayer system cen-
trosymmetric. I represents a point of inversion symmetry of
the bilayer. (b) Schematic representation of OHE, i.e., the
transverse flux of orbital-current induced by a longitudinal
(x̂ direction) electric field. In the picture, the orbital-current
flows in the −ŷ direction and has OAM polarized in the ẑ
direction. (c) The energy spectrum of the bilayer of 2H-TMD
near valleys K (left) and K′ (right) of BZ. The solid black
curve shows the spectrum obtained by numerical diagonal-
ization of the Hamiltonian of Eq.(1) without considering the
spin-orbit coupling (λ→ 0). The dashed orange curve shows
the energy spectra obtained by first-order perturbation theory
expansion in interlayer hopping t⊥ [Eqs. (10, 11, 12)].

The OAM physics of the TMDs is dominated by the
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points K and K ′ of BZ. At these points, the wave func-
tion at the top of the valence band and the bottom of
the conduction band is formed by the orbitals dz2 , dx2−y2
and dxy of the transition metal atoms [58–63]. We follow
Refs. [57, 58] to build a simplified tight-binding (TB)
model Hamiltonian in reciprocal space, which we expand
up to first order in the electronic momentum around the
valleys located at ~K = (4π/3a)x̂ and ~K ′ = − ~K. This
procedure leads to the following Hamiltonian:

H(~q) =

∆ γ+ 0 0
γ− −τszλ 0 t⊥
0 0 ∆ γ−
0 t⊥ γ+ τszλ

 , (1)

where γ± = at(τqx ± iqy), τ = ±1 is the valley quan-
tum number associated with valleys K and K ′, respec-
tively. The TB basis of the Hamiltonian of Eq. (1) is
βtb = {

∣∣d1
z2

〉
,
(∣∣d1

x2−y2
〉
− iτ

∣∣d1
xy

〉)
/
√

2,
∣∣d2
z2

〉
,
(∣∣d2

x2−y2
〉

+

iτ
∣∣d2
xy

〉)
/
√

2}, where the superscripts 1 and 2 specify the
two layers of the bilayer, respectively [see Fig. 1 (a)].
Here, ~k = ~q + τ ~K where ~q represents the wavevector rel-
ative to valleys and sz denotes the usual Pauli matrix
associated with the spin degree of freedom. This model
can be easily applied to describe bilayers of compounds
of the TMD family in the trigonal prismatic phase (H),
with 2H stacking, as represented in Fig. 1 (a). In this
paper, we will consider the case of bilayers of MoS2, an
archetypical member of the family of TMDs. The pa-
rameters of effective Hamiltonian can be obtained by ad-
justing results given by density functional theory calcu-
lations. For 2H-MoS2 bilayers, we obtain the band-gap
∆ = 1.766eV, the lattice constant a = 3.160Å, the in-
tralayer nearest-neighbor hopping t = 1.137 eV, and the
interlayer hopping t⊥ = 0.043 eV [58]. We also obtain a
spin-orbit coupling λ = 0.073 eV [58]. Here we are inter-
ested in describing the OHE in bilayers of TMDs, that is
not significantly affected by spin-orbit coupling. For this
reason, we set λ → 0 and introduced a spin-degeneracy
factor gs = 2 in all results presented in this work.

To perform the perturbation theory expansion, we sep-
arate the Hamiltonian into two terms, H0(~q), of decou-
pled layers of bilayer 2H-TMD,

H0(~q) =

∆ γ+ 0 0
γ− 0 0 0
0 0 ∆ γ−
0 0 γ+ 0

 , (2)

and the interlayer coupling term (H1), treated as a per-
turbation:

H1 =

0 0 0 0
0 0 0 t⊥
0 0 0 0
0 t⊥ 0 0

 . (3)

It is straightforward to obtain the eigenvectors and ener-
gies of the unperturbed HamiltonianH0. The conduction

and valence bands of H0 are doubly degenerate, having
the energy-dispersion

ε0v(c)(q) =
1

2

(
∆∓

√
∆2 + 4a2t2q2

)
, (4)

where q =
√
q2
x + q2

y. The unperturbed eigenvectors of
the valence (v) band are

∣∣ψ1,τ,v〉 = Nv(q)
(
ε0v(q)

γ−
, 1, 0, 0

)T
, (5)

∣∣ψ2,τ,v〉 = Nv(q)
(

0, 0,
ε0v(q)

γ+
, 1

)T
, (6)

while the conduction (c) band eigenvectors are

∣∣ψ1,τ,c〉 = Nc(q)
(
ε0c(q)

γ−
, 1, 0, 0

)T
, (7)

∣∣ψ2,τ,c〉 = Nc(q)
(

0, 0,
ε0c(q)

γ+
, 1

)T
. (8)

The normalization factors are Nv(c)(q) =[
1 + (ε0v(c)(q))

2/(atq)2
]−1/2

and the superscript T

means the application of transpose operation to obtain
column vectors. Note that the wavefunction of states on
Eqs. (5, 7) are localized on layer 1 and the wavefunctions
of states on Eqs. (6, 8) are localized on layer 2. The
factors γ± defined above contain the dependence on
valley quantum number τ . To include the effect of
interlayer hopping t⊥, we apply standard degenerate
perturbation theory by constructing the matrix 〈χ

∣∣H1

∣∣φ〉
with states of valence [Eqs. (5, 6)] and conduction [Eqs.
(7, 8)] bands subspace and calculating its eigenvectors
to obtain a linear combination of these states. With this
procedure, the effect of interlayer coupling translates
into the formation of bonding (+) and antibonding
(−) linear combinations of the eigenstates of individual
layers on valence and conduction bands subspace:∣∣Φ±,τ,v(c)〉 =

1√
2

(∣∣ψ1,τ,v(c)〉 ±
∣∣ψ2,τ,v(c)〉

)
. (9)

With these states, we compute the first-order correc-
tion of interlayer hopping t⊥ to energies δεv(c),±(q) =

〈Φ±,τ,v(c)

∣∣H1

∣∣Φ±,τ,v(c)〉, obtaining

ε̄v(c),±(q) = ε0v(c)(q) + δεv(c),±(q), (10)

where

δεv,±(q) = ± t⊥
2

(
1 +

∆√
∆2 + 4a2t2q2

)
, (11)

δεc,±(q) = ± t⊥
2

(
1− ∆√

∆2 + 4a2t2q2

)
. (12)

Note that energies of Eqs. (10, 11, 12) are the same for
different valleys due to time-reversal symmetry and the



4

absence of spin-orbit coupling. In Fig. 1 (c), we show
the comparison between the exact energy spectrum ob-
tained by numerical diagonalization of the Hamiltonian
of Eq. (1) with λ → 0 and the one obtained via per-
turbation theory [Eqs. (10, 11, 12)]. They agree very
well within the regime of small wavevectors. It is inter-
esting to note from Fig. 1 and Eqs. (11, 12) that at
the Dirac points (q → 0), the energy-splitting induced
by interlayer hopping t⊥ occurs at the valence band but
not on the conduction band. In realistic bilayers, the
finite spin-orbit coupling causes a small energy-splitting
in the conduction band at the Dirac point [57, 58]. This
energy-splitting of the conduction band does not occur
in the spectra obtained with λ→ 0 in Fig. 1 (c). As we
mentioned before, the spin-orbit interaction is not rel-
evant to the description of the OAM transport in this
system being neglected in this work.

III. ORBITAL HALL EFFECT OF UNBIASED
BILAYER TMDS

A. Linear response theory for orbital Hall current

To study the OHE, we use the formalism of linear-
response theory where the orbital Hall current, that flow
in the y-direction with OAM polarized in the z-direction
(out-of-plane), generated by a longitudinal (x-direction)
electric field is proportional to the orbital Hall conductiv-
ity (OHC), JXz

y = σXz

OHEx [see Fig. 1 (b)], where OHC
is given by [1–4, 21–24],

σXz

OH = e
∑
n

∫
d2k

(2π)2
fn,~kΩXz

n,~k
, (13)

where fn,~k = Θ(Ef − En,~k) is the Fermi-Dirac distribu-
tion at zero temperature and Fermi energy Ef , and the
orbital-weighted Berry curvature is given by

ΩXz

n,~k

2~
=
∑
m 6=n

Im

 〈un,~k∣∣v̂x(~k)
∣∣um,~k〉〈um,~k∣∣ĴXz

y (~k)
∣∣un,~k〉(

En,~k − Em,~k
)2

 .
(14)

In the above equations, En(m),~k are the energies of
the eigenstates

∣∣un(m),~k〉 of the electronic Hamilto-

nian evaluated in wavevector space Ĥ(~k). The ve-
locity operator in the x(y)-direction is defined by
v̂x(y)(~k) = ~−1∂Ĥ(~k)/∂kx(y). We follow Refs. [3,
14] and define the OAM current operator ĴXz

y (~k) =(
Xz v̂y(~k) + v̂y(~k)Xz

)
/2. Here we apply this formalism

to study the OHE in the bilayer TMD. As we mentioned
in the introduction, we use two distinct descriptions of
the OAM operator Xz in this work. The first description,
called intra-atomic approximation (Xz = L̂Intra

z ), treats
the OAM of electrons in a solid as an extension of atomic

OAM. This approximation is widely used, especially in
studies of OHE, due to its simple implementation [50],
often giving satisfactory results. The second description,
recently introduced in the context of the OHE [55], treats
the OAM of electrons in the framework of the Berry phase
formula of intrinsic orbital magnetic moment of Bloch
states (Xz = L̂Tot

z ). While the intra-atomic approxima-
tion takes into account only the intrasite contribution of
electronic wave functions, the approach based on orbital
magnetic moment includes both intrasite and intersite
contributions to OAM [64, 65]. This justifies the use
of superscript “Tot” used here in quantities described in
the Bloch state orbital magnetic moment approach. We
briefly mention that the orbital magnetic moment is also
known as valley magnetic moment in the literature of
2D materials. Here, we adopt orbital magnetic moment
following the nomenclature of Ref. [55]. In the remain-
der of this section, we compute the OHC for the bilayer
TMD using the two descriptions of the OAM operator
and compare the results.

B. OHE in the intra-atomic approximation

In the tight-binding basis βtb of the Hamiltonian of Eq.
(1), defined in sec. II, the OAM operator in intra-atomic
approximation for bilayer TMDs assumes the form

L̂Intra
z = (2~τ)diag (0,−1, 0, 1) . (15)

It is straightforward to compute the velocity operators
v̂x(y)(~q) from Eq. (1). Using vy(~q) and Eq. (15) to com-
pute the operator Jz,Intra

y , we obtain the orbital-current
operator in TB basis βtb:

Jz,Intra
y = atτ

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 . (16)

We use this operator together with the corrected ener-
gies [Eqs. (10, 11, 12)] and states [Eq. (9)] given by the
first-order perturbation theory to compute the orbital-
weighted Berry-curvature in the intra-atomic approxi-
mation ΩIntra

c(v),±(~q). The analytical expressions for these
curvatures are slightly cumbersome but they assume a
simple form after performing the integral over azimuthal
angle θ (where, qx = q cos(θ) and, qy = q sin(θ)) and ex-
panding in linear order on t⊥/∆. This procedure leads
us to the integral∫ 2π

0

dθ

(2π)
ΩIntra
v,± (~q) ≈ − 2a2t2∆

(4a2t2q2 + ∆2)
3/2

∓t⊥
2a2t2∆

(
4a2t2q2 + ∆2 + ∆

√
4a2t2q2 + ∆2

)
(4a2t2q2 + ∆2)

3

(17)
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for the valence band and∫ 2π

0

dθ

(2π)
ΩIntra
c,± (~q) ≈ 2a2t2∆

(4a2t2q2 + ∆2)
3/2

∓t⊥
2a2t2∆

(
4a2t2q2 + ∆2 −∆

√
4a2t2q2 + ∆2

)
(4a2t2q2 + ∆2)

3

(18)

for the conduction band. Note that the right-hand side of
these equations does not depend on the valley quantum
number τ . As a result, these curvatures add up when
summed over the valleys, resulting in a finite OHC in-
side the insulating gap of the bilayer TMD [31, 32, 39].
We substitute Eqs. (17, 18) in Eq. (13) and evaluate
the radial integral, assuming the extrapolation q → ∞
in the lower limit of integral. This corresponds to ex-
trapolating the model of Eq. (1) to small wavelengths.
The highly peaked profile of the orbital-weighted Berry-
curvature near the valleys of the BZ gives ground for this
assumption. As a result we obtain the OHC in intra-
atomic approximation:

σIntra
OH (Ef ) =

∑
ν=±

[
σIntra
v,ν (Ef ) + σIntra

c,ν (Ef )
]
, (19)

where the valence band contribution σIntra
v,± (Ef ) is given

by

σIntra
v,± (Ef )= gs

e

2π

[
∆√

4a2t2q2
v,± + ∆2

±t⊥
∆
(

2∆ + 3
√

4a2t2q2
v,± + ∆2

)
6
(
4a2t2q2

v,± + ∆2
)3/2

]
, (20)

and, the contribution of conduction band σIntra
c,± (Ef ) is

σIntra
c,± (Ef ) = −gs

e

2π

[
1− ∆√

4a2t2q2
c,± + ∆2

∓t⊥

(
∆3 +

(
2a2t2q2

c,± −∆2
)√

4a2t2q2
c,± + ∆2

)
3∆
(
4a2t2q2

c,± + ∆2
)3/2

]
.(21)

Note that we reinserted the spin-degeneracy factor gs = 2
in these equations. qv(c),± are Fermi moments of the
bonding (+) and antibonding (-) states for valence (con-
duction) band. To compute the Fermi moments as a
function of Fermi energy we invert Eq. (10) and solve
ε̄v(c),±(qv(c),±) = Ef . We then obtain

qv(c),±(Ef ) = Re


√
α±(Ef ) + βv(c),±(Ef )

√
δ±(Ef )

at2
√

2

 ,
(22)

where, α±(Ef ) =
(

4E2
f + t2⊥ −∆2 − 4Ef∆

)
±

4t⊥ (∆− Ef ), δ±(Ef ) =
(

4E2
f + t2⊥ − 4Ef∆ + ∆2

)
±

t⊥ (6∆− 4Ef ), and βv,± = (∆± t⊥ − 2Ef ),
βc,± = − (∆± t⊥ − 2Ef ). Fig. 2 (b) shows the
Fermi moments of Eq. (22) as a function of Fermi energy
for the typical parameters of bilayer MoS2 introduced in
Sec. II.

In Fig. 2 (a), we also show the orbital Hall conduc-
tivities given by Equations (19), (20), and (21) for the
unbiased bilayer MoS2. The most striking feature of this
curve is the quantization of the OHC in intra-atomic ap-
proximation when the Fermi-energy lies in the insulating
gap:

σIntra
OH = 4

( e

2π

)
= 2C2l

L

( e

2π

)
. (23)

This quantization occurs in first-order perturbation the-
ory in interlayer hopping t⊥. If one includes higher or-
ders of interlayer hopping in the perturbative expansion,
the height of the orbital Hall insulating plateau deviates
slightly from this quantized value [39]. A modification in
this quantized value may also occur by including high-
order terms in ~q, such as trigonal warping [66, 67], in the
effective Dirac theory of Eq.(1). As denoted by the sec-
ond equality of Eq.(23), we can write the height of the
quantized orbital Hall insulating plateau obtained here
as 2× C2l

L , where factor 2 comes from the d-shell charac-
ter of transition metals [Eq. (15)], and C2l

L is the orbital
Chern-number introduced in Ref. [39]. We can define
this orbital Chern-number even in nonperturbative cal-
culations [39] using the method formalized in Refs. [68–
70]. For the present case of the bilayer of 2H-TMD, the
orbital Chern number is C2l

L = 2. The same calculation
presented above could be performed for the monolayer of
TMD in the H structural phase (monolayer of H-TMD),
giving an orbital Chern number C1l

L = 1. The result
of Eq. (23) unveils a topological nature in the insulat-
ing gap of H-TMDs, despite being trivial in Z2-invariant.
Zigzag nanoribbons of H-TMDs have orbitally-polarized
edge states that cross the bulk gap [40, 41] and may be
responsible for the transport of orbital Hall current.

C. OHE in the Bloch state orbital magnetic
moment description

To contrast with the results of the previous subsection,
we evaluate the OHC with the OAM described by the
Berry phase formula of the Bloch state orbital magnetic
moment. It was first shown by W. Kohn that Bloch elec-
trons possess an intrinsic magnetic moment [71]. Later,
this intrinsic magnetic moment was connected with Berry
phase theory and interpreted in a more transparent pic-
ture of the self-rotation of semiclassical wave-packet [72].
The description of OAM operator in terms of the or-
bital magnetic moment of Bloch states was extensively
explored [19, 20, 73–78], also appearing in the context of
the modern theory of orbital magnetization [46–50]. Re-
cently, it was proposed in Ref. [55] that the long-debated
valley Hall effect [79] could be viewed as an OHE, us-
ing the description of the OAM operator in terms of the



6

Figure 2. (a) OHC as a function of the Fermi energy for unbi-
ased bilayer of 2H-MoS2. The two curves show the orbital con-
ductivities calculated using intra-atomic approximation [Eqs.
(19), (20), and (21)] and Bloch state orbital magnetic mo-
ment approach [Eqs. (31), (32), and (33)] for the OAM oper-
ator. (b) Fermi-momentum [Eq. (22)], as a function of Fermi-
energy, for the valence and conduction band states in the un-
biased bilayer of 2H-MoS2. The vertical continuous black lines
in both panels delimit the insulating gap of the unbiased bi-
layer 2H-MoS2 [Fig. 1 (c)]. The horizontal dashed black line
in panel (a) signals the quantized orbital Hall conductivity
in the intra-atomic approximation when Fermi-energy lies in
the insulating gap [σIntra

OH = 4(e/2π), Eq. (23)]. In panel (b),
a = 3.160Å and t = 1.137eV [see Sec. II].

orbital magnetic moment. Here, we use the scheme in-
troduced in this reference to study the OHE in bilayer
TMDs. In appendix A, we review the general theory of
orbital magnetic moment of Bloch states based on Refs.
[71–75] and also obtain the operator used in this subsec-
tion. As detailed in the appendix A2, the correct de-
scription of the orbital magnetic moment in the unbiased
bilayer system must consider its non-Abelian (matricial)
nature. On a TB basis βtb, the orbital magnetic moment
operator for the unbiased bilayer of 2H-TMD assumes
the form of a diagonal matrix:

m̂tb(q) = τm0(q)diag (1, 1,−1,−1) , (24)

where

m0(q) =
( e
~

) a2t2∆

4a2t2q2 + ∆2
= µ∗Bf

(
2atq

∆

)
(25)

is the orbital magnetic moment of a massive Dirac
fermion [56]. In the second equality of Eq. (25), we de-
fined the dimensionless function f(x) = (1 + x2)−1 and

the renormalized Bohr magneton µ∗B = (e~)/(2m∗e) with
the effective mass m∗e = (~2∆)/(2a2t2). At the Dirac
point K, m0 reduces to the renormalized Bohr magne-
ton, so that m0(q = 0) = µ∗B .

In the case of the orbital magnetic moment descrip-
tion, to calculate the OAM current operator, we need to
multiply the magnetic moment by a constant to convert
the magnetic moment to units of angular momentum.
This constant depends on the Landé g-factor gL, which
can give rise to quantitative ambiguities in the case of
materials with strong spin-orbit coupling. On the other
hand, experiments observe magnetic moment accumula-
tion. So, in principle, gL is not necessary for the predic-
tion of magnetic moment accumulation or non-local re-
sistances. To avoid introducing this constant, one could
alternatively describe the OHE in terms of a current of
orbital magnetic moments Jz,my (q). We can use the defi-
nition of the current operator in Eqs. (13, 14) whereXz is
the orbital magnetic moment operator. In this case the
current follows directly from the orbital magnetic mo-
ment matrix Xz = m̂tb(q) [Eq. (24)],

Jz,my (q) = −τatm0(q)

~

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 . (26)

In the case of the intra-atomic approximation, there is
a trivial conversion of the OAM operator of Eq. (15)
to the units of the orbital magnetic moment: m̂Intra

z =

(−µB/~) L̂Intra
z . Nevertheless, both descriptions of the

OHE using orbital magnetic moment current or OAM
current have the same physical information in Eqs. (15,
24).

Here, we follow the literature of OHE to connect with
previous results and consider the OAM current. To con-
vert the orbital magnetic moment operator of equation
24 to units of angular momentum, we multiply it by the
constant [55] Cam = −~g−1

L µ−1
B = −2meg

−1
L e−1, where

gL = 1, µB = (e~)/(2me) is the atomic Bohr magneton
and, me is the electron rest mass. In TB basis βtb, the
OAM operator reads

L̂Tot
z (q) =

(
τ~m0(q)

µB

)
diag (−1,−1, 1, 1) , (27)

that can be used to obtain the OAM current operator
flowing in the y-direction

Jz,Tot
y (q) =

τatm0(q)

µB

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 . (28)

At the Dirac point the OAM operator can be written in
function of the ratio between the two Bohr magnetons:
L̂Tot
z (Kτ ) = ~τ(µ∗B/µB)diag(−1,−1, 1, 1). It is worth

mentioning that the orbital-current operator within the
Bloch state orbital magnetic moment approach [Eq. (28)]
has the same matrix structure as the operator obtained
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in the intra-atomic approximation [Eq. (16)]. This oc-
curs despite the difference in the matrix structure of the
OAM operators in both approaches [Eq. (15, 27)]. It
is easy to see how this occurs by representing the OAM
operators in terms of a tensorial product of Pauli ma-
trices related to orbital (σi) and layer (Σi) degrees of
freedom [diag(0,−1, 0, 1) = (1/2)(σz − σ0) ⊗ Σz and,
diag(−1,−1, 1, 1) = −σ0 ⊗ Σz] and then using its anti-
commuting ({σi, σj} = 2δi,j and {Σi,Σj} = 2δi,j) prop-
erties in the calculation of orbital-current [See details in
appendix B]. It is important to notice that, the similari-
ties between orbital-current operators of Eqs. (16, 28) are
an artifact of the low-energy description of TMD. This
similarity is not expected in calculations that include all
Bloch bands of material [80].

As done before, we use this operator together with the
corrected energies [Eqs. (10, 11, 12)] and eigenstates [Eq.
(9)] to compute the orbital-weighted Berry curvatures,
ΩTot
c(v),±(~q). After performing the integral over azimuthal

angle and doing the expansion in linear order on t⊥/∆,

the integrals are given by∫ 2π

0

dθ

(2π)
ΩTot
v,±(~q) ≈ − e

~µB

[
2a4t4∆2

(4a2t2q2 + ∆2)5/2

±t⊥
2a4t4∆2

(
4a2t2q2 + ∆2 + ∆

√
4a2t2q2 + ∆2

)
(4a2t2q2 + ∆2)

4

]
(29)

for the valence band and∫ 2π

0

dθ

(2π)
ΩTot
c,±(~q) ≈ − e

~µB

[
− 2a4t4∆2

(4a2t2q2 + ∆2)5/2

±t⊥
2a4t4∆2

(
4a2t2q2 + ∆2 −∆

√
4a2t2q2 + ∆2

)
(4a2t2q2 + ∆2)

4

]
(30)

for the conduction band. Again, we evaluate the radial
integration assuming q →∞ in the lower limit of integral
and find the OHC,

σTot
OH(Ef ) =

∑
ν=±

[
σTot
v,ν (Ef ) + σTot

c,ν (Ef )
]
. (31)

The contribution of valence band σTot
v,± is then

σTot
v,±(Ef ) = gs

(
e2

2π~µB

)[
a2t2∆2

6
(
4a2t2q2

v,± + ∆2
)3/2 ± t⊥∆2a2t2

(
4∆ + 5

√
4a2t2q2

v,± + ∆2
)

40
(
4a2t2q2

v,± + ∆2
)5/2

]
, (32)

and the contribution of conduction band, given by σTot
c,±(Ef ), is

σTot
c,±(Ef ) = gs

(
e2

2π~µB

)[
− a2t2

6∆
+

a2t2∆2

6
(
4a2t2q2

c,± + ∆2
)3/2

∓t⊥
a2t2

(
∆5 +

(
4a4t4q4

c,± + 2a2t2q2
c,±∆2 −∆4

)√
4a2t2q2

c,± + ∆2
)

10∆2
(
4a2t2q2

c,± + ∆2
)5/2

]
. (33)

The Fermi momenta qv(c),± are given by Eq. (22). Again, we have included the spin-degeneracy gs = 2.

In Fig. 2, we show the orbital Hall conductivities of
Eqs. (31, 32, 33) as a function of Fermi energy, using the
parameters of the bilayer MoS2. Similar to calculations
using the intra-atomic approximation for the OAM oper-
ator here, we also obtain an OHC plateau when the Fermi
energy lies inside the insulating gap. Nevertheless, in the
case of an OAM operator described by orbital magnetic
moments of Bloch states, the height of the OHC plateau
is not quantized and assumes the value

σTot
OH =

2a2t2

3∆

(
2e2

2π~µB

)
=

4

3

µ∗B
µB

( e

2π

)
. (34)

As obtained in Ref. [55] for the gapped graphene mono-

layer, the height of OHC of 2H-TMDs within this method
scales with 1/∆. Generically speaking, we can under-
stand this behavior of OHE with the inverse of bandgap
as a reminiscent effect of the geometry of Bloch bands
encoded in the orbital magnetic moment description of
the OAM operator. It is easy to note that, for small
bandgaps, m0(q) in the Eq. (25) is a representation of
the Dirac-delta function, limε→0 = ε/(x2 + ε2) = πδ(x).
This diverging behavior propagates after q-integration
up to the result of the Eq. (34). It is worth mention-
ing that limit of vanishing bandgap makes sense only for
graphene, which is a gapless material in a pristine sit-
uation. It is possible to induce controllable bandgaps
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in graphene by proximity to distinct materials [81–83].
In the case of the bilayer of 2H-TMD, the bandgap is
intrinsic to the band structure of the material [Fig. 1
(c)]. For this reason, ∆ cannot be seen as a free param-
eter in the context of the present work, assuming a fixed
value obtained by fitting density functional calculations.
In the second equality of Eq. (34), we used the atomic
and renormalized Bohr magnetons defined previously to
write the height of the OHC plateau in a more trans-
parent expression. The atomic Bohr magneton (µB) de-
pends on fundamental constants while the renormalized
Bohr magneton (µ∗B) depends on the specific band struc-
ture of a given material. In the case of massive Dirac
fermions, µ∗B has the dependence with 1/∆. Substitut-
ing in Eq. (34) the parameters a = 3.160Å, t = 1.137eV
and ∆ = 1.766eV of the bilayer of 2H-MoS2 presented in
Sec. II, we obtain the result σTot

OH ≈ 2.52 (e/2π).

D. Discussion

Here, we discuss some of the physical consequences of
the results derived in the previous two subsections, giv-
ing special attention to Eqs. (23) and (34). Despite the
quantitative difference in height of the OHC plateaus,
both formalisms for OAM discussed above predict the
existence of finite OHE inside the insulating gap of un-
biased bilayers of 2H-TMDs. This qualitative agreement
between the OHC obtained via usual intra-atomic ap-
proximation [Eq. (23)] and the OHC computed via or-
bital magnetic moment description of OAM [Eq. (34)]
should be considered one of the main messages of this
work. Previous works interpreted the transport of OAM
in TMDs in terms of the valley Hall effect, assuming that
it also generates transport of magnetic moment, once we
can associate a magnetic moment with inverted signals
to the inequivalent valleys [56]. This picture may explain
the experimental results in noncentrosymmetric systems
such as monolayer TMDs and gapped graphene. On the
other hand, this interpretation led previous works to as-
sume that centrosymmetric systems, such as unbiased
bilayer TMDs, should not exhibit transport of OAM [42–
44]. This assumption follows from the absence of orbital
magnetic moment in Bloch-states of materials that pre-
serve both time-reversal and spatial inversion symmetries
[see the discussion in Appendix A]. Experimental works
attributed the observed signal of OAM transport in unbi-
ased bilayer TMDs to a break of spatial inversion symme-
try induced by the substrate [42–44]. This argument was
used even in situations where the material of substrate
(h-BN) should not interact significantly with the bilayer
of 2H-TMD [45]. In addition, the valley Hall effect has
some inherent conceptual problems, such as the need of
an artificial separation of the BZ [55]. The results of Eqs.
(23) and (34) above show that the transport OAM can
occur in centrosymmetric bilayers of 2H-TMDs, as antic-
ipated in Ref. [39] by using intra-atomic approximation.

It is worth mentioning that we cannot understand the

transport of OAM in the bilayer of 2H-TMD in terms of
the valley Hall effect of individual layers [84]. For any
infinitesimally small but finite interlayer hopping t⊥, the
states of individual layers combine to form the bonding
and antibonding superpositions , as seen in Eq. (9) [85].
These states have no intrinsic magnetic moment, a con-
sequence of the inversion symmetry of bilayer 2H-TMD
[see Fig. 1 (a)]. Nevertheless, the OHE is possible if one
uses the non-Abelian structure of the orbital magnetic
moment to describe the OAM operator, as we detail in
appendix A, leading to the results presented in Sec. III C.
The non-Abelian structure of the magnetic moment op-
erator emerges for nearly degenerate bands [73] [Fig. 1
(c)] and it is essential for the understanding of the OHE
in unbiased bilayer TMDs.

IV. EFFECT OF THE
POTENTIAL-ASYMMETRY BETWEEN LAYERS

To go further in the comparison between qualitative
predictions of OHE using intra-atomic approximation
and orbital magnetic moment description of OAM op-
erator, we include a spatial-inversion symmetry breaking
term in the Hamiltonian. This is achieved by including a
term that mimics the effect of the gate voltage (bias) used
in experiments. Non-perturbative numerical calculations
in intra-atomic approximation show that the inclusion of
a gate bias does not affect the height of the OHC plateau
[39]. Here, we use perturbation theory to test the effect
of gate voltage in OHE using both descriptions of the
OAM operator studied in this work. The calculations
are analogous to those described in the previous section,
so we only present the main results.

A. Perturbation theory for biased bilayer of
2H-TMD

We include the gate voltage term in the unperturbed
Hamiltonian,

HU
0 (~q) =

∆ + U γ+ 0 0
γ− +U 0 0
0 0 ∆− U γ−
0 0 γ+ −U

 . (35)

The finite gate voltage (U 6= 0) breaks the inversion sym-
metry [Fig. 1 (a)] of the bilayer system, generating a bias
between the individual layers. We still consider the inter-
layer hopping term [Eq. (3)] as a perturbation. But, con-
trary to the case of unbiased bilayer of 2H-TMD where
the interlayer hopping plays an essential role, for the case
of the biased bilayer, the interlayer hopping does not gen-
erate corrections in the first order on t⊥. Diagonalizing
the Hamiltonian of Eq. (35), we obtain the energy dis-
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persions

ε0,Uv,1(2)(q) =
1

2

(
∆± 2U −

√
∆2 + 4a2t2q2

)
, (36)

ε0,Uc,1(2)(q) =
1

2

(
∆± 2U +

√
∆2 + 4a2t2q2

)
. (37)

These solutions correspond to a hard shift +U (−U) in
the energy of layer 1(2) of the unbiased bilayer [Eqs.
(4)]. The unperturbed eigenstates are not affected by
the gate potential and we obtain the same eigenvectors
of Eqs. (5, 6, 7, 8), i.e.,

∣∣ψU1(2),τ,v(c)〉 =
∣∣ψ1(2),τ,v(c)〉.

The energy spectrum of Eqs. (36, 37) is non-degenerate
for finite U . So, to include the effects of the inter-
layer hopping term [Eq. (3)], we can apply the non-
degenerate perturbation theory. Computing the correc-
tion on energy, we found that the interlayer hopping does
not affect the spectra in first-order perturbation theory,
〈ψU1(2),τ,v(c)

∣∣H1

∣∣ψU1(2),τ,v(c)〉 = 0.

B. OHE in biased bilayer TMD

Following the same steps of Sec. III, we can obtain
analytical expressions for the OHC in terms of the Fermi
momenta. The Fermi momenta for biased bilayer are
given by

qUv,1(2) = −
√
Ef ± U

√
Ef ± U −∆

at
, (forEf ∈ VB) ,

(38)

qUc,1(2) = +

√
Ef ± U

√
Ef ± U −∆

at
. (forEf ∈ CB) ,

(39)

Ef ∈ VB(CB) means that the equation holds for Ef
crossing the respective state of the valence (conduction)
band and is zero otherwise. Fig. 3 (c) shows the Fermi
momenta of Eqs. (38, 39) as a function of the Fermi
energy for a finite value of the gate voltage. The OAM
operator in the intra-atomic approximation for biased bi-
layer of 2H-TMDs remains the same as the unbiased case
[Eq. (15)]. Repeating the steps of Sec. III B, we obtain
the orbital Hall conductivity given by

σU,Intra
OH (Ef ) =

∑
l=1,2

[
σU,Intra
v,l (Ef ) + σU,Intra

c,l (Ef )
]
,(40)

where,

σU,Intra
v,1(2) (Ef ) = gs

e

2π

 ∆√
4
(
atqUv,1(2)

)2
+ ∆2

 , (41)

σU,Intra
c,1(2) (Ef ) = −gs

e

2π

1− ∆√
4
(
atqUc,1(2)

)2
+ ∆2

 .
(42)

Figure 3. The effect of inversion symmetry-breaking gate po-
tential in OHC computed using intra-atomic approximation
[Eqs. (40), (41), and (42)] (a) and Bloch state orbital mag-
netic moment description of OAM [Eqs. (43), (44), and (45)]
(b). (c) Fermi-momentum [Eqs. (38, 39)], as a function of
Fermi-energy, for the valence and conduction band states in
bilayer of 2H-MoS2 with an gate voltage bias U = 0.2eV. In
panel (c), a = 3.160 Å and t = 1.137 eV [see Sec. II].

In Fig. 3 (a), we show these orbital Hall conductivi-
ties as a function of the Fermi energy for different gate
voltages. For biased bilayers, contrary to the unbiased
case, we can apply the usual formula for nondegener-
ate bands [Eq. (A1)] described in the appendix A1 to
compute the orbital magnetic moment operator. We
obtain the orbital magnetic moment on TB basis βtb,
m̂U
tb(q) = τm0(q)diag (1, 1,−1,−1). The OAM operator

reads, LU,Totz (q) = (−~/µB)m̂U
tb(q), having the same form

as the one obtained in the unbiased case. After following
similar steps described in Sec. III C, we obtain the OHC
in the orbital magnetic moment description,

σU,Tot
OH (Ef ) =

∑
l=1,2

[
σU,Tot
v,l (Ef ) + σU,Tot

c,l (Ef )
]
, (43)
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where,

σU,Tot
v,1(2)(Ef ) = gs

(
e2

2π~µB

)
 a2t2∆2

6
(

4
(
atqUv,1(2)

)2
+ ∆2

)3/2

 , (44)

σU,Tot
c,1(2)(Ef ) = gs

(
e2

2π~µB

)
−a2t2

6∆
+

a2t2∆2

6
(

4
(
atqUc,1(2)

)2
+ ∆2

)3/2

 . (45)

Fig. 3 (b) shows the orbital Hall conductivities with the
orbital magnetic moment description for three values of
gate voltage. Comparing the plots of panels (a) and (b)
of Fig. 3, we conclude that the effects of a finite gate
bias on OHC predicted by intra-atomic approximation
and by Bloch state orbital magnetic moment description
of OAM qualitatively agree. Particularly the height of
the OHC plateau is not affected by the intensity of the
gate potential [39].

Generically speaking, the spatial inversion asymmetry
caused by gate bias can induce an orbital-Rashba cou-
pling in bilayer systems [16, 54]. This effect can lead
to the appearance of orbital textures that can be ob-
served with photoemission spectroscopy techniques [34–
36, 86, 87] and may affect the transport of OAM [31, 32].
The intensity of the orbital-Rashba effect depends on
the inter-orbital hybridization between nearest neighbors
atoms. In the supplementary material of Ref. [39], the
effect of gate bias in the intra-atomic approximation is
considered using a tight-binding model that includes the
complete orbital structure of chalcogen and the transition
metal of the MoS2. The results obtained using this model
agrees with the one obtained using the Mo (d)-orbital
low-energy model used here, suggesting that, for MoS2,
the orbital-Rashba effect induced by gate voltage is weak.
For other compounds of TMD family, the orbital-Rashba
effect may be relevant and modifies the height of the or-
bital Hall plateau. Unless the energy scale of the orbital-
Rashba effect reaches the energy scale of the insulating
gap of the compound, we would not expect the vanishing
of the orbital Hall plateau discussed here [88]. This point
is beyond the scope of the present paper. Nonetheless,
this is an interesting possibility to be explored in future
works.

V. FINAL REMARKS AND CONCLUSIONS

To summarize, we presented a detailed study of the or-
bital Hall effect in bilayer TMDs with 2H stacking. We
took into account the effect of interlayer hopping t⊥ us-
ing first-order perturbation theory. This allowed us to
obtain analytical expressions for the orbital Hall conduc-

tivity as a function of Fermi energy, corrected up to lin-
ear order in t⊥/∆. We then compared the results of the
orbital Hall conductivity given by two different descrip-
tions of the orbital angular momentum operator. The
first one is the well known intra-atomic approximation
that takes into account only the intrasite contribution of
the wave function. The second approach describes the
orbital angular momentum operator in terms of the in-
trinsic orbital magnetic moment of the Bloch states. This
approach includes the contributions coming from inter-
site and intrasite parts of the electronic wave function
[64, 65]. We found that, despite a natural quantitative
discrepancy, both methods agree on their qualitative pre-
dictions. Particularly, they agree in predicting a plateau
of orbital Hall conductivity inside the insulating gap of
the bilayer TMD that is robust against a gate voltage
that breaks inversion symmetry. As we detailed in the
main text, taking into account the interlayer hopping t⊥
on the bilayer Hamiltonian is essential to understand the
orbital Hall effect in the unbiased bilayer TMD. If one
makes t⊥ = 0 in Eq. (1), the Hilbert spaces of the in-
dividual layers become decoupled and the orbital Hall
conductivity of the bilayer is exactly twice of monolay-
ers. When t⊥ 6= 0, no matter how small it is, the wave
functions of bilayer change dramatically, becoming su-
perpositions of wave functions in the two layers. The
form of the orbital magnetic moment also changes dra-
matically, going from diagonal to the off-diagonal matrix
elements in the non-Abelian description [see Appendix
A 2]. Numerically, the corrections of terms proportional
to t⊥ in the final expressions of orbital Hall conductivity
[Eqs. (19,20, 21) and Eqs. (31, 32, 33)] are indeed small.
The importance of interlayer hopping in the description
of the orbital Hall effect in bilayers of 2H-TMDs is from
the conceptual perspective. Once it is finite and can-
not be turned off in the bilayer, the Hilbert space of the
layers becomes connected (see Ref. [42]). In this situa-
tion, due to the spatial-inversion symmetry of the bilayer,
the non-Abelian nature of the orbital magnetic moment
operator turns out to be essential to the appearance of
finite orbital Hall conductivity. If one does not consider
the non-Abelian structure of the orbital magnetic mo-
ment operator, the orbital Hall effect [for t⊥ 6= 0 in Eq.
(1)] within this approach is enforced to vanish by sym-
metry constraints in its diagonal elements [Eq. (A3)].
The non-Abelian description of orbital angular momen-
tum in bilayers of 2H-TMDs was neglected in previous
experimental works that assumed the absence of orbital
angular moment transport in unbiased system [42–45].
In intra-atomic approximation, this issue does not oc-
cur and a finite orbital Hall effect naturally appears, as
shown in Ref. [39].

The orbital magnetic moment of Bloch states we used
to define the orbital angular momentum current can be
related with self-rotation of electronic wave-packet or
Wannier function [47, 48, 65]. The accumulation of this
self-rotation contribution generated by the orbital Hall
effect could, in principle, be measured by magnetic cir-
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cular dichroism [65]. Once the approach based on Bloch
states orbital magnetic moment contains contributions
coming from both intrasite and intersite parts of wave
functions, it should be directly compared with intra-
atomic approximation. It is well known that the accu-
racy of the intra-atomic approximation is highly depen-
dent on the specificities of the material [51–53]. In our
work, we use the low-energy model for bilayers of 2H-
TMDs elaborated in Refs. [58, 60]. These references con-
struct this low-energy Hamiltonian from a tight-binding
model with parameters adjusted to fit density functional
calculations. One can construct this low-energy Hamil-
tonian of TMDs from calculations using maximally lo-
calized Wannier functions which present an accurate de-
scription of the orbital angular momentum of material
[63]. With this construction, the information on orbital
angular momentum is encoded in the band structure and
the wave function and reflected in the low-energy Hamil-
tonian when expanded near valleys of the Brillouin zone.
Without this, the compatibility between methods is not
guaranteed.

The key results of our work are the Eqs. (23) and (34)
and the insulating orbital Hall conductivity plateaus of
the Figs. 2 and 3. The analytical expressions derived
here for orbital conductivity in metallic regimes (Fermi
energy crossing electronic bands) may help to understand
some experimental results in clean samples but are, in
general, subject to the effects of the disorder [89–91]. On
the other hand, the effect of disorder should not affect the
transport of orbital angular momentum when the Fermi
energy lies inside the insulating gap [31]. Finally, we men-
tion that the theoretical analysis exposed in this work
suggests the orbital Hall effect as a more appropriate de-
scription of the transport of orbital angular momentum
in bilayers TMDs [39, 55], in contrast to previous liter-
ature based on the valley Hall effect. Our results also
show that the orbital Hall effect cannot be seen as a hid-
den valley Hall effect, as done in Ref. [84], due to the
finite interlayer hopping in the bilayer system [85]. Our
results may also give new insights on previous experimen-
tal results on valley Hall effect on TMDs and motivate
new experiments focused on the characterization of the
orbital Hall effect in these systems.
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Appendix A: The orbital magnetic moment of
Bloch-states

1. General theory

As we mentioned in the main text, Bloch electrons may
carry an intrinsic orbital magnetic moment. It is also
known as valley magnetic moment in the literature of 2D
materials. Here, we review the theory of intrinsic orbital
magnetic moment of Bloch bands developed on Refs. [71–
75]. More recently, this theory found connection with the
so-called modern theory of orbital magnetization based
on the framework of the Berry phase formalism [46–50].
Here we focus on 2D systems but, the extension to higher
dimensions follows straightforwardly. We treat the cases
of nondegenerate [71, 72] and nearly-degenerate [73–75]
Bloch bands separately.

a. Nondegenerate band

First, we consider the case of a nondegenerate band n
with dispersion relation En,~k and, periodic part of Bloch
function

∣∣un,~k〉. The intrinsic orbital magnetic moment
of this Bloch band is given by,

mz(~k) = −i e
2~
〈∇~kun,~k

∣∣× (Ĥ(~k)− En,~k1̂
) ∣∣∇~kun,~k〉,

(A1)

where, ∇~k = ∂kx x̂ + ∂ky ŷ. This orbital magnetic mo-
ment transforms under time-reversal symmetry like, T :

mz(~k) → −mz(−~k). The transformation over spatial-
inversion symmetry is, I : mz(~k) → +mz(−~k). There-
fore, in systems that preserve, simultaneously, the time-
reversal and the spatial inversion symmetries, Eq. (A1)
gives mz(~k)→ 0. To obtain a finite orbital magnetic mo-
ment from Eq. (A1) is necessary to break spatial inver-
sion or time-reversal symmetry. This occurs in monolay-
ers of H-TMDs in which the spatial-inversion symmetry
is absent, and Eq. (A1) result in τm0(q), where m0(q)
was defined in sec. III C. In the case of the bilayer of
2H-TMD, the spatial-inversion symmetry is restored [see
Fig. 1 (a)] and, Eq. (A1) gives mz(~k)→ 0 for any finite
value of interlayer hopping t⊥. In this case, due to the
nearly degenerate band structure of the bilayer, the use
of the matrix form of orbital magnetic moment operator
discussed below become necessary.

b. Nearly degenerate bands

Now, we follow Refs. [73–75] and consider the case of
a set of N Bloch states

∣∣un,~k〉 with very close energies
En,~k, where n = 1, 2, ..., N . The matrix-element of the
magnetic-moment operator between two states

∣∣un,~k〉 and
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mz
n,m(~k) =

−i e
2~
〈∇~kun,~k

∣∣× [Ĥ(~k)−
(
En,~k + Em,~k

2

)
1̂

] ∣∣∇~kum,~k〉
(A2)

The diagonal elements (m = n) reduce to Eq. (A1),
obeying the same constraints imposed by spatial in-
version and time-reversal symmetries. For nearly de-
generate bands, the orbital magnetic moment acquires
a non-Abelian structure [73], being described by a N -
dimensional matrix,

m̂z(~k) =


mz

1,1(~k) mz
1,2(~k) . . . mz

1,N (~k)

mz
2,1(~k) mz

2,2(~k) . . . mz
2,N (~k)

...
...

. . .
...

mz
N,1(~k) mz

N,2(~k) . . . mz
N,N (~k)

 , (A3)
where the matrix is written on the basis of Bloch eigen-
states βu = {u1;u2; ...;uN}. In contrast to the diago-
nal matrix elements, the non-diagonal elements of Eq.
(A3) are not constrained by symmetries discussed ear-
lier. They can be nonzero even in systems that preserve
both spatial-inversion and time-reversal symmetry. The
condition of validity of the formalism used to derive Eq.
(A3) is the absence of transitions, induced by perturbing
fields, out of the N -dimensional manifold under consid-
eration [73]. This translates into the necessity for the
nearly-degenerate manifold

∣∣u1..N,~k〉 to be energetically
isolated from other bands. In what follows, we apply
this formalism to the specific case of bilayer of 2H-TMD.
The huge bandgap of the bilayer [see Fig. 1] forbids the
transitions between conduction and valence bands. This
allows the application of the Eq. (A3) separately to the
valence and conduction subspaces.

2. Application to unbiased bilayer of 2H-TMD

We now apply the theory of orbital magnetic moment
of Bloch states for nearly degenerate bands [Eqs. (A2,
A3)] to the unbiased bilayer of 2H-TMD discussed in
Sec. III C of the main text. For this purpose, we use
the states of Eq.(9) and corrected energies of Eqs.(10,
11, 12) given by perturbation theory and the Hamilto-
nian of Eq. (1) with λ → 0. Due to the large band-gap
separating the valence and conduction bands in the un-
biased bilayers of 2H-TMDs, we can apply Eqs. (A2,
A3) for these subspaces independently. on the basis
βΦ = {Φ−,v; Φ+,v; Φ−,c; Φ+,c} of states given by pertur-
bation theory [Eq. (9)], the magnetic moment matrix
assumes a block-diagonal form,

m̂z
Φ(q) =

[
m̂zv(q) 0̂2×2

0̂2×2 m̂zc(q)

]
, (A4)

where, 0̂2×2 is a 2× 2 null matrix, and m̂zv(q), m̂zc(q) are
the matrices computed in the subspace of valence and

conduction states, respectively. Applying Eq. (A2), we
obtain,

m̂zv(q) = m̂zc(q) = τ

[
0 m0(q)

m0(q) 0

]
, (A5)

where m0(q) is given by Eq. (25). Contrary to the mono-
layer case, the bilayer of 2H-TMD possesses an inversion
symmetry point I in interlayer space [See Fig. 1 (a)].
It also preserves the time-reversal symmetry T . There-
fore, for any small amount of interlayer hopping t⊥, the
states of individual layers combine in the bonding and
antibonding superpositions of Eq. (9), making the di-
agonal elements of the magnetic-moment matrix go to
zero. It is possible to use a pictorial view, making use of
projection operators, to interpret the vanishing of diago-
nal elements of the matrix of Eqs. (A4, A5) in terms of
the magnetic moment of monolayers with inverted signs.
But, we cannot attribute a finite magnetic moment to
eigenstates of the unbiased bilayer of 2H-TMD. The zero
diagonal matrix elements of Eqs. (A4, A5) made previ-
ous works conclude that no magnetic moment flows in
unbiased bilayers of 2H-TMDs [42–45]. As is discussed
in the main text, one of the conclusions of this work is
that the flow of magnetic moments is possible [39] and,
in this formalism, has its origins in off-diagonal matrix
elements in Eqs. (A4, A5). In addition, as anticipated
in Ref. [85], the transport of magnetic moment in un-
biased bilayer 2H-TMD cannot be understood in terms
of the individual layers [84], being necessary to employ
the scheme based on OHE introduced in Ref. [55] to-
gether with the non-Abelian structure of the magnetic
moment matrix [Eqs. (A3, A4, A5)]. Finally, to use this
operator in the formula of Eqs. (13, 14) for OHC, it is
necessary to perform a unitary transformation to change
the magnetic moment matrix from basis βΦ [Eq. (A4)]
to tight-binding basis βtb. After this, we obtain equation
(24) of the main text. Introducing a constant to convert
the magnetic-moment to the unity of OAM, we obtain
the OAM operator in the orbital magnetic moment de-
scription Eq. (27). To close this appendix, we make
a brief technical comment. If one insists on calculating
the matrix elements that connect valence and conduction
bands, substituting them on off-diagonal blocks 0̂2×2 of
the matrix of Eq. (A4), the results for OHC [Eqs. (31,
32, 33)] would not change. All the terms that emerge
from these contributions vanish after integral over az-
imuthal angle [Eqs.(29, 30)]. Nevertheless, we reinforce
that the non-Abelian structure of the magnetic moment
should consider only states inside the nearly degenerate
subspace [73].

Appendix B: Details on the calculation of orbital
currents

As we mentioned in the main text, one striking feature
of our work is the similarity of the matrix form of orbital
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currents [Eqs. (16, 28)] within the two approaches, de-
spite the difference in its OAM operators [Eqs. (15, 27)].
To clarify this point, we derive here the orbital current
operators of Eqs. (16, 28). To this end, we define the
Pauli-matrices σx,y,z associated with the d-orbital char-
acter of the wave function and the corresponding identity
matrix σ0. We also define the Pauli-matrices Σx,y,z re-
lated to the layer degree of freedom and its corresponding
identity Σ0. With this, we write the OAM operators as

L̂Intra
z = 2~τ

(
σz − σ0

2

)
⊗ Σz, (B1)

and

L̂Tot
z =

(
m0(q)

µB

)
~τ
(
−σ0

)
⊗ Σz. (B2)

We obtain the velocity operator in the y-direction di-
rectly from the Hamiltonian of Eq. (1): v̂y =
−(at)/(~)σy ⊗ Σz. The Pauli-matrices have anticom-
muting properties {σi, σj} = 2δi,j , and {Σi,Σj} = 2δi,j ,
where δi,j is the Kronecker delta. The orbital current in

Bloch state orbital magnetic moment approach is

Jz,Tot
y =

at

2

(
m0(q)

µB

)[ LTot
z ∝︷ ︸︸ ︷

τ
(
−σ0

)
⊗ Σz

vy ∝︷ ︸︸ ︷
.(−σy)⊗ Σz

+

vy ∝︷ ︸︸ ︷
(−σy)⊗ Σz

LTot
z ∝︷ ︸︸ ︷

.τ
(
−σ0

)
⊗ Σz

]

= at

(
m0(q)

µB

)
τΣ0 ⊗ σy, (B3)

and, in the intra-atomic approximation

Jz,Intra
y = at

[
LIntra
z ∝︷ ︸︸ ︷

τ
(
σz − σ0

)
/2⊗ Σz

vy ∝︷ ︸︸ ︷
.(−σy)⊗ Σz

+

vy ∝︷ ︸︸ ︷
(−σy)⊗ Σz

LIntra
z ∝︷ ︸︸ ︷

.τ
(
σz − σ0

)
/2⊗ Σz

]
= atτΣ0 ⊗ [−σzσy/2− σyσz/2 + σy]

= atτΣ0 ⊗ σy, (B4)

where, in the second line, we used {σz, σy} = 0. In ma-
trix representation, Eq. (B3) correspond to Eq. (28) and,
Eq. (B4) correspond to Eq. (16). The matrix structure
of orbital currents within the two approaches is propor-
tional to τΣ0 ⊗ σy. The difference between the two ex-
pressions for the OAM [Eqs. (B1, B2)] is proportional to
Σz⊗σz, which does not contribute to the orbital current
operator because it anticommutes with the y-component
of velocity.
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