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Abstract
Pump-probe experiments have suggested the possibility to control electronic correlations by driv-

ing infrared-active phonons with resonant midinfrared laser pulses. In this work we study two possi-

ble microscopic nonlinear electron-phonon interactions behind these observations, namely coupling

of the squared lattice displacement either to the electronic density or to the double occupancy. We

investigate whether photon-phonon coupling to quantized light in an optical cavity enables similar

control over electronic correlations. We first show that inside a dark cavity electronic interactions

increase, ruling out the possibility that Tc in superconductors can be enhanced via effectively de-

creased electron-electron repulsion through nonlinear electron-phonon coupling in a cavity. We

further find that upon driving the cavity, electronic interactions decrease. Two different regimes

emerge: (i) a strong coupling regime where the phonons show a delayed response at a time propor-

tional to the inverse coupling strength, and (ii) an ultra-strong coupling regime where the response

is immediate when driving the phonon polaritons resonantly. We further identify a distinctive fea-

ture in the electronic spectral function when electrons couple to phonon polaritons involving an

infrared-active phonon mode, namely the splitting of the shake-off band into three bands. This

could potentially be observed by angle-resolved photoemission spectroscopy.

I. INTRODUCTION

The ultrafast optical control of nonthermal phases of matter in quantum materials is

a blossoming research field.1,2 Among the most intriguing experimental results are reports

that suggest the possibility to induce transient superconducting-like states through laser

driving.3–15 This effect was observed in several classes of materials that share the common

feature of a superconducting ground state (GS), implying the interpretation that the laser

driving effectively raises the material’s critical temperature. In order to explain the observed

behaviour a number of different microscopic mechanisms were subsequently proposed.16–51

However, to date no final and unifying conclusion could be drawn, neither on the nature of

the transient states nor on the mechanism behind them.

From a practical point of view, a drawback of the transient superconducting-like states
∗ These authors contributed equally.
† michael.sentef@mpsd.mpg.de

2

mailto:michael.sentef@mpsd.mpg.de


is their relatively short life time, typically in the picosecond range, with a recent exten-

sion to the nanosecond regime in K3C60.52 As an alternative route to control over material

properties, light-matter coupling in cavities has been suggested.53–57 In these setups, in-

stead of achieving strong modifications of material properties by strong driving, one focuses

on realizing strong coupling between light and matter, supported by recent experimental

advances.58–66 This might enable the engineering of material properties already with few

photons67,68 or even inside a dark cavity, utilizing only the vacuum fluctuations of the light

field.69 Since in this case the material stays in its ground state or energetically close to it,

effects from detrimental heating are expected to be reduced and life times to be longer.

In general, photons couple to charged particles or excitations. Hence there are two main

pathways to manipulate electronic properties of a material: either by employing the direct

coupling of the light to the electrons; or by utilizing the coupling to other degrees of freedom

of the system – for example lattice vibrations – that in turn couple to the electrons. Along

the former path several studies have investigated cavity-induced phenomena both from a

theoretical and experimental point of view, including superconductivity in which the pho-

tons of a cavity provide the pairing glue for the electrons similar to a BCS description,70–73

suppression of the Drude peak,68,74 superradiance75–84 for which it remains an open question

whether it can be realized in equilibrium,85–90 coupling to magnetism91–98 and in particular

magnons,99–104 excitons105–111 forming exciton polaritons112,113 and the modification of topo-

logical states of matter.114–117 Taking a complementary approach, the photons in a cavity also

couple to lattice vibrations forming hybrid light-matter excitations – namely phonon polari-

tons. Their potential for steering chemical reactions,118,119 inducing superconductivity,120

influencing the ferroelectric phase-transition,77,121, achieving the redistribution of energy

between otherwise non-resonant phonon modes122, or influencing the electron-electron inter-

action mediated by phonons123 has recently been investigated.

In this work we explore the possibility of replacing the laser drive for inducing transient

superconducting-like states by coupling a material to an optical cavity. Among the proposals

considered to explain the transient states is the suggestion that the laser effectively drives

infrared-active (IR-active) phonons in the system that in turn lead to an effective attractive

interaction between the electrons through one of two mechanisms put forward.9,16,19,21 These

mechanisms involve either a coupling of the phonon coordinate X to the electronic density

of the form X2n, or to the double occupation of the form X2n↑n↓. Such couplings are
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distinct from the paradigmatic BCS mechanism since the phonons involved are IR-active.

Therefore, a coupling to the electrons proportional to an odd power of the lattice displace-

ment, including a linear coupling as in the BCS mechanism, is in general forbidden by

symmetry19,124,125 in inversion-symmetric crystals. In particular in Ref. 9 a superconducting

response of the system was only observed when driving specific phonon modes in the charge-

transfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br, abbreviated as κ-salt from here on out. Our

modelling therefore focuses on this κ-salt but is kept sufficiently general to be applicable in a

broader sense. Since the considered mechanisms stem from an electron-phonon interaction,

we neglect a direct coupling of the electrons to the photons of the cavity. The remaining

coupling between the cavity and the phonons will naturally lead to the formation of phonon

polaritons.

After introducing our model we investigate the effect of coupling the phonons in the

system to the vacuum fluctuations of a cavity. For both considered electron-phonon coupling

mechanisms this yields an increase of electronic interactions. This rules out the possibility

to enhance Tc in superconductors by reducing the electron-electron repulsion via vacuum

fluctuations through both proposed phonon mechanisms. Next we consider a weak drive of

the cavity, populating the cavity with few, O(1) photons. Similar to the case of classical

driving of the phonons, this decreases electronic interactions. We find that in the strong

coupling (SC) but not ultra-strong coupling (USC) regime an increase of the light-matter

coupling (LMC) does not necessarily lead to a more pronounced effect. Instead a LMC

that exceeds cavity losses is needed since it determines the time scale on which the photons

transfer their energy to the phonons. Complementary to this, when increasing the LMC to

become comparable to the bare cavity frequency hence entering the USC regime, we find

that driving the emerging phonon polaritons resonantly at their respective eigenfrequency

induces an immediate response in the electronic system. Thus in this USC regime a LMC

that outweighs cavity losses is not strictly required anymore. Finally, we consider the effects

of polariton formation on the electronic spectral function that is in principle observable in an

angle-resolved photoemission spectroscopy (ARPES) measurement. To this end we derive

an effective model which we show to capture the dynamics of the system well. We show a

distinctive feature of electrons coupling to polaritons that stem from an IR-active phonon.

The shake-off band126 that is predicted to appear at a distance from the main spectral peak

that equals twice the phonon frequency127 splits into three bands. We discuss the feasibility
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b.) c.)a.)

Figure 1. Model and effect of dark cavity on electron-electron interactions. a.) A

Hubbard dimer with electrons (blue arrows) coupled to infrared-active phonons (red springs), that

are in turn coupled to an optical cavity (black mirror plates). Parameters that appear in the

definition of the model in Eq. (1), Eq. (2), Eq. (3) and Eq. (4) are indicated. The frequencies of

the phonon-photon hybridized polariton modes ω+ and ω− are indicated. b.) Polariton frequencies

ω+ (green curve) and ω− (brown curve) for equal bare phonon and photon frequencies. c.) Double

occupancy Eq. (10) for different values of the light-matter coupling parametrized by ωP inside a dark

cavity. For both coupling mechanisms g1 = 0, g2 = −0.2J (X2n↑n↓, green curve) and g1 = 0.5J ,

g2 = 0 (X2n, brown curve) an increase of the light-matter coupling leads to a decrease in double

occupancy that is associated with an increase in the effective electron-electron interaction. The

black line (g = 0) marks the value for the uncoupled Hubbard dimer for these parameters. We used

as a cutoff of the bosonic part of the Hilbert space NB = 16. Other parameters are the same as in

the main text, Sec. II.

of experimentally measuring this feature.

II. MODEL

We orient our modelling on the κ-salts discussed in Ref. 9 where they were described using

a Hubbard model. Other molecular compounds, such as ET-F2TCNQ studied in Refs. 19

and 21, were also found to be described well by a Hubbard model.128,129 We therefore also

consider a Hubbard model for the matter degrees of freedom, focusing on the two-site version
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of this model – the Hubbard dimer. The Hamiltonian reads

Ĥe− = −J
∑

σ∈{↑,↓}

(ĉ†1,σ ĉ2,σ + h.c.) + U
∑

j∈{1,2}

(
n̂el
j,↑ −

1

2

)(
n̂el
j,↓ −

1

2

)
. (1)

Here, ĉj,σ annihilates -; ĉ†j,σ creates an electron at one of the two sites j ∈ {1, 2} with spin

σ ∈ {↑, ↓}. J denotes the hopping integral, U the onsite repulsion of the electrons and we

used n̂el
j,σ = ĉ†j,σ ĉj,σ.

We couple each site to an optically active phonon for which the bare Hamiltonian is

expressed as

Ĥphon =
∑
j

ωphon b̂
†
j b̂j. (2)

In this expression b̂j annihilates -; b̂†j creates a phonon with frequency ωphon at site j. Since

the molecules forming the studied solids are centrosymmetric, a coupling between elec-

trons and phonons that is linear in the phonon displacement X̂phon,j = 1√
2ωphon

(
b̂j + b̂†j

)
is forbidden.19,124,125 The most general term for the electron-phonon interaction where the

electrons couple to the quadratic displacement of the phonons reads

Ĥphon−e− =
∑
j

g1

(
b̂j + b̂†j

)2 (
n̂el
j,↑ + n̂el

j,↓
)

+ g2

(
b̂j + b̂†j

)2

n̂el
j,↑n̂

el
j,↓. (3)

Here g1 parametrizes the coupling of the phonons to the linear electronic density and g2 that

of the phonons to the double occupancy. In previous works both a coupling that involves a

term proportional to the double occupancy19,21 as well as one that only incorporates a cou-

pling to the linear electronic density16 have been considered to understand the optical control

of electronic correlations. In this work we will investigate both mechanisms separately, hence

either setting g1 6= 0 and g2 = 0 or vice versa.

We model the light degrees of freedom of the optical resonator by a single bosonic mode.

The photon of the cavity is coupled to the optically active phonon whereas its coupling to

the electrons is neglected. Thus we write the total Hamiltonian of the system, including

the photon-phonon interaction130 and the bare photon energy and collecting the previously
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defined terms in Eq. (1), Eq. (2) and Eq. (3)

Ĥ =Ĥe− + Ĥphon + Ĥphon−e− +

Ĥphot︷ ︸︸ ︷
ωphot â

†â

+
∑
j

[
i

(
ωP
√
ωphon

2
√

2
√
ωphot

)(
â+ â†

) (
b̂j − b̂†j

)]
+

(
ω2

P

4ωphot

)(
â+ â†

)2

︸ ︷︷ ︸
Ĥphon−phot

.
(4)

Here, â annihilates -; â† creates a photon in the effective single cavity mode. ωphot denotes

the bare cavity frequency, ωP the polariton frequency that parametrizes the phonon-photon

or light-matter coupling. The model is illustrated in Fig. 1 a.).

The coupling between phonons and photons will lead to the formation of hybrid light-

matter states, phonon polaritons. Their effective frequencies are calculated as123 (see Ap-

pendix F)

ω2
± =

1

2

(
ω2

phot + ω2
P + ω2

phon ±
√(

ω2
phot + ω2

P + ω2
phon

)2 − 4ω2
photω

2
phon

)
. (5)

For identical phonon and photon frequency, the polariton frequencies are plotted as a func-

tion of the coupling ωP in Fig. 1 b.). We call the polariton with the effectively higher

frequency ω+ the upper polariton and that with the effective lower frequency ω− the lower

polariton.

In what follows the hopping J defines the unit of energy. For the onsite repulsion U we

take an intermediate value of U = 5J that was found in first principles calculations for the

κ-salts.9 The C − C breathing mode of the κ-salts has an effective frequency of ωeff
phon ≈ 2J

that is composed the bare phonon-frequency and contributions stemming from the coupling

to the electrons. In Ref. 19 it was shown for the molecular compound ET-F2TCNQ that

the contribution from the coupling to the electrons can be comparable to or even dominate

that from the bare phonon frequency. We therefore choose parameters such that the two

contributions are close to equal in the case of the coupling to the linear electronic density,

where we set

g1 = 0.5J ; g2 = 0. (6)

We determine the bare phonon frequency ωphon such that the effective phonon frequency is

equal to the value previously determined for the κ-salts ωeff
phon = 2J . We find

ωphon =
(√

5− 1
)
J ≈ 1.24J (7)
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to fulfill this condition. The exact procedure how to obtain the bare phonon frequency is

outlined in Appendix A. In the case of coupling exclusively to the double occupancy, the

coupling constant g2 is expected to be negative21 for the considered solids. We anticipate a

somewhat smaller absolute value |g2| < |g1| compared to the coupling to the linear electronic

density (see Eq. (6)) and thus choose

g1 = 0 ; g2 = −0.2J. (8)

We note that the detailed values of these couplings do not fundamentally alter our conclu-

sions. Choosing the bare phonon frequency as

ωphon ≈ 2.02J (9)

creates a resonance of the phonons at frequency 2J (also see Appendix A). We couple the

phonons resonantly to the cavity and therefore set ωphot = ωeff
phon = 2J .

III. ELECTRON-ELECTRON INTERACTIONS INCREASE IN THE DARK CAV-

ITY

A classical drive of the phonons effectively decreases electron-electron interactions for

both electron-phonon coupling mechanisms.16,19,21 Here, we investigate the effect that the

coupling of vacuum fluctuations of an optical cavity to an optical phonon have on the effective

electron-electron repulsion. As a measure for the repulsion we compute the electronic double

occupancy

D = 〈D̂〉 = 〈D̂1 + D̂2〉 = 〈n̂el
1,↑n̂

el
1,↓ + n̂el

2,↑n̂
el
2,↓〉. (10)

An increase in the double occupancy corresponds to a decrease in electronic interactions

according to the notion that electrons repel each other less and vice versa. We set the

temperature to T = 0 such that the expectation value in Eq. (10) is evaluated with respect

to the GS. We obtain the GS via exact diagonalization (ED) introducing a cutoff NB in the

bosonic part of the Hilbert space. This is chosen as NB = 16, and we have checked that all

results are converged with respect to this cutoff. A more detailed analysis of the convergence

in this parameter can be found in Appendix B.

The results for different values of ωP are shown in Fig. 1 c.). Without a cavity (ωP = 0)

the coupling to the phonons leads to a slight increase of the double occupancy for both
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Figure 2. Temperature dependence of cavity renormalized double occupancy. Thermal

average of the double occupancy according to Eq. (11) calculated for different temperatures. We

used J = 80meV and otherwise the same parameters as in Fig. 1c.). The upper curves are calculated

with the phonons coupled to the double occupancy of the electrons, while for the lower curves a

coupling to the linear electronic density was used, as indicated by the labels.

coupling types – even without a coherent driving. The coupling of the cavity, however,

reverses this effect and leads to a decrease of the double occupancy. From this observation

one can deduce that the presence of the vacuum fluctuations of the cavity increases electronic

interactions for both considered electron-phonon coupling mechanisms.

We also consider the effect of finite temperature on the cavity-induced increase in effective

electron-electron interactions discussed above. For this we calculate the thermal expectation

value of the double-occupancy in the canonical ensemble according to

〈D̂〉therm =
1

Z

∑
n

〈ψn|D̂|ψn〉e−βEn , (11)

where Z =
∑

n e
−βEn is the partition function, En is the nth eigenenergy of the system, |ψn〉

the corresponding eigenstate, and β = 1
kBT

the inverse temperature. To obtain concrete

temperature values we take J = 80meV, which is the value found in ab initio simulations for

the κ-salts performed in Ref. 9. Since these were performed for a triangular-lattice Hubbard

model, this can only give a rough order-of-magnitude scale for the temperatures.

The result are presented in Fig. 2. Overall, higher temperatures result in a reduction of

the double-occupancy but the effect from the coupling to the cavity remains present.
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Figure 3. Driven cavity with coupling of squared phonon displacement to linear elec-

tronic density. Time evolution starting from the GS under a coherent drive of the cavity with

driving function F (t) (Eq. (13) shown at the bottom) for a coupling of the phonons to the linear

electronic density (g1 = 0.5J , g2 = 0 – see Eq. (3)). Plotted are the double occupancy of the

electrons according to Eq. (10), the total number of phonons in the system Nphon =
∑

j b̂
†
j b̂j and

the number of photons Nphot = â†â. a.) Strong coupling regime with ωP =
ωphot

40 (blue line) and

ωP =
ωphot

20 (yellow line). The photons of the cavity are driven resonantly at ωDrive = ωphot. We

observe the beginning of a beating motion between photons and phonons such that it takes the

photons a time of π
ωP

= τbeat
4 to transfer their energy to the phonons. b.) Ultra-strong coupling

regime ωP = 0.5ωphot. The system is driven at three different frequencies: the bare cavity resonance

ωDrive = ωphot (blue line) and the upper and lower polariton frequency ωDrive = ω+ (yellow line)

and ωDrive = ω− (green line), respectively. When driving the polaritons resonantly both photon

number Nphot = â†â and the phonon number Nphon =
∑

j b̂
†
j b̂j increase instantaneously. The cutoff

of the bosonic Hilbert space is set to NB = 10, and Nt = 80 time points per driving period were

used.

IV. WEAK DRIVING OF THE CAVITY

In this part we apply a weak coherent drive to the cavity and investigate the dynamical

change of electronic interactions. Adding a coherent drive, the time-dependent Hamiltonian
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Figure 4. Driven cavity with coupling of squared phonon displacement to double occu-

pancy. The same setup and identical parameters as in Fig. 3 but with the phonons coupling to

the double occupancy of the electrons (g1 = 0, g2 = −0.2J – also see Eq. (3)) and the bare phonon

frequency adjusted such that the effective phonon frequency remains resonant with the cavity as

discussed in Sec. II. The displayed behaviour is qualitatively similar to the case of the phonons

coupling to the local electronic density shown in Fig. 3.

reads

Ĥ(t) = Ĥ + F (t)Âphot. (12)

Here, Ĥ is the Hamiltonian of the undriven system Eq.(4), Âphot = 1√
2ωphot

(
â† + â

)
is the

quantized cavity field and F (t) is a pump pulse for which we choose a Gaussian envelope

F (t) = F0
1√
2πσ

exp

(
−(t− t0)2

2σ2

)
sin(ωDrivet). (13)

We use t0 = 16π
ωphot

, σ = 4π
ωphot

and F0√
2ωphot

= 3J
2

as parameters for the driving envelope. At

t = 0 the system is prepared in its GS and then evolved forward in time via a commutator-free

scheme according to Ref. 131. Details about the numerical scheme including a convergence

study in the finite time-step used as well as the cutoff of the bosonic part of the Hilbert

space can be found in Appendix C.

The coupling strength between light and matter inside a cavity is typically classified by

comparing it to two distinct quantities: once to the losses of the cavity, where strong coupling

(SC) refers to a situation in which the coupling exceeds the losses; and once by comparing the
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coupling to the bare cavity resonance. When the coupling reaches one tenth of the resonance

frequency one speaks of ultra-strong coupling (USC).54 We do not consider any losses of the

cavity, and since we modelled the solid within the cavity with the Hubbard dimer there are

no true heating effects either. We are therefore automatically in the SC regime since all

time scales are shorter than the (infinite) decay time of the cavity excitation. Effects from

including a finite cavity life time are discussed later in this section. Comparing the strength

of the LMC parametrized in our case by ωP to the bare cavity resonance we consider two

different regimes: two values below USC of ωP =
ωphot

40
and ωP =

ωphot

20
; and one value within

the USC regime of ωP =
ωphot

2
.

The time evolution of the GS of the full coupled system for a coupling of the phonons to

the linear electronic density (g1 = 0.5J and g2 = 0 – also see Eq. (3)) is shown in Fig. 3 and

that for the coupling of the phonons to the double occupancy (g1 = 0 and g2 = −0.2J –

also see Eq. (3)) of the electrons in Fig. 4. Both coupling mechanisms display qualitatively

similar behaviour. In the case of strong, but not ultra-strong coupling, the pump drives the

cavity into an excited state with an increased photon number Nphot = â†â within the time

duration of the pump. The strength of the drive is such that only few photons Nphot = O(1)

are created. The energy of the photon excitation is subsequently completely transferred

to the phonons on a time scale that is approximately π
ωP

, as marked in the plot. When

considering even longer times the excitation of the cavity mode and the phonons oscillates

back and forth with a period τbeat ≈ 4π
ωP

.

In the USC case ωP =
ωphot

2
, driving the cavity at its bare resonance frequency ωDrive =

ωphot only yields a weak response. However, when driving at an increased frequency of

ωDrive = 2.56J = ω+ that coincides with the upper polariton frequency ω+ or a decreased

frequency of ωDrive = 1.56J = ω− coinciding with the lower polariton frequency ω− again a

sizeable response is obtained. In contrast to the SC regime, the phonon system reacts im-

mediately in the USC regime. No periodic oscillations between light and matter excitations

are observed in this case. Instead both the phonon number Nphon =
∑

j b̂
†
j b̂j and the photon

number Nphot reach a plateau after the drive, with some oscillations on top.

The dynamics of the cavity mode and the phonons can be understood as that of two

coupled harmonic oscillators with coupling constant ωP. To see this we first note that the

12



cavity only couples to the even superposition of the phonon modes on the two sites,

Ĥphon−phot = iωP

√
ωphon

2
√

2
√
ωphot

(
â† + â

)∑
j

(
b̂j − b̂†j

)
+

ω2
P

4ωphot

(
â† + â

)2

= iωP

√
ωphon

2
√

2
√
ωphot

(
â† + â

)√
2
(
b̂0 − b̂†0

)
+

ω2
P

4ωphot

(
â† + â

)2
,

(14)

where we have introduced the even combination of bosonic operators

b̂
(†)
0 =

1√
2

(
b̂

(†)
1 + b̂

(†)
2

)
, (15)

to which a complementary odd combination exists,

b̂(†)
π =

1√
2

(
b̂

(†)
1 − b̂

(†)
2

)
. (16)

In the strong, but not ultra-strong, coupling regime the two oscillators are weakly coupled

when comparing with their bare frequency ωP � ωphot and ωP � ωphon. The drive of the

cavity displaces one of the oscillators (the photons) such that in the subsequent coupled

motion one observes beats – a phenomenon well known from classical physics. The period

of these beats is classically expected to be τbeat = 4π
ωP

, since ωP equals the splitting of the

two eigenmodes of the system, such that one expects the first maximum in the phonon

occupation after a quarter period τbeat
4

= π
ωP

. This matches well with the observations in

Fig. 3 and Fig. 4.

In the USC regime light and matter excitations are completely hybridized forming phonon

polaritons: One upper polariton with an increased effective frequency of ω+ ≈ 2.56J ; and one

lower polariton with a decreased effective frequency of ω− ≈ 1.56J according to Eq. (5). This

explains why only a small response is observed when driving the system at its bare resonance

frequency ωphot = 2J – one simply drives the effective oscillators off-resonantly. When the

polaritons are driven at their true resonances instead, with ωDrive = ω+ or ωDrive = ω−,

both phonon and photon degrees of freedom show an immediate response which is a direct

consequence of the hybridization of light and matter degrees of freedom.

In a more realistic setup the cavity-matter system experiences losses, either through

imperfect mirrors or heating of the material, that might be parametrized by an energy

constant γloss. In the case of smaller LMC ωP =
ωphot

20
and ωP =

ωphot

40
the response of the

system is only triggered with a certain time delay π
ωP

. In a realistic setup, in order to get a

sizeable effect, one thus need a LMC of

ωP > γloss. (17)
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This is precisely the definition of the SC regime.54,132 Only increasing the LMC compared

to the bare cavity frequency does not necessarily yield a larger effect as becomes apparent

both from Fig. 3 and Fig. 4. The comparison of the LMC to the cavity losses is therefore

the more relevant one in this regime.

In the USC regime the response is immediate. One therefore does not need ωP > γloss but

the challenge lies in reaching a LMC that is of comparable size to the bare cavity frequency

ωP ≈ ωphot. This is, in turn, precisely the definition of USC54,132, which is in particular not

a subset of SC.

Both electron-phonon coupling mechanisms display qualitatively similar dynamics. In

Appendix D we compare again both mechanisms also for classically driven phonons, finding

essentially similar behaviour.

V. SIGNATURES OF ELECTRON-POLARITON COUPLING IN SINGLE-PARTICLE

SPECTRA

To further understand the effects of the cavity on electronic properties, we investigate

the spectral function for single-particle excitations of the system. To this end, we focus

on the coupling to the quadratic density (g1 = 0, g2 6= 0) since both coupling mechanisms

yield similar GS as well as dynamical properties (see Sec. III and Sec. IV). The model

including only the coupling to the quadratic density allows for a further simplification when

investigating changes induced through the presence of the cavity. The cavity only couples

to the even superposition of the two phonon modes, as already noted in Eq. (14). We thus

neglect the complementary bosonic mode that is given by the odd combination of phonon

excitations. In Appendix E we show that this leads to an effective model in which a single

boson couples to the total double occupancy of the electrons D̂ Eq. (10) with decreased

strength g̃2 = 1/2 g2 and the same coupling to the cavity mode ω̃P = ωP. The dynamics

induced through the cavity in this model is qualitatively the same as that in the full model

Eq. (4). Additionally, we restore the particle-hole symmetry of the system by writing the

electron-phonon coupling as

Ĥphon−e− = g̃2

(
b̂†+ + b̂+

)2∑
j

(
n̂el
j↑ −

1

2

)(
n̂el
j↓ −

1

2

)
. (18)
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Figure 5. Effects of polariton formation on spectral functions. Different spectra according

to Eq. (19). Only ω < 0 is shown due to particle-hole symmetry. a.) The J = 0 limit without

cavity ωP = 0. The spectrum of the bare Hubbard dimer is shown in gray. Two side peaks at

2ωphon and 4ωphon distance from the main peak are visible. b.) Same as a.) for intermediate

coupling U = 5J displaying the same phenomenology of 2ωphon side peaks. c.) Spectral function

in the strong coupling limit J = 0 for different values of the light-matter coupling ωP. The red

lines indicate distances from the lower Hubbard band, 2ω+, 2ω− and ω+ + ω−. At ωP = 0 the

spectrum coincides with that shown in a.) whereas upon turning on the light-matter coupling

ωP > 0 the shake-off peak splits into three. The intensity scale is indicated on the right. d.) Same

as c.) just for intermediate coupling U = 5J and the case ωP = 0 coinciding with b.). We mark

distances from both peaks according to the same combinations of polariton frequencies, 2ω+, 2ω−

and ω+ +ω−, from both bands – solid lines for distances to the higher lying main band and dashed

lines for distances to the lower lying main band. Otherwise the same phenomenology as in the

strong coupling case, namely the splitting of the shake-off states, is observed. NB = 20 was used.
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The operator added in the coupling to the electrons in this way only acts like the identity on

the electronic part of the Hilbert space and is therefore expected to not change the dynamics.

We calculate the spectral function from the time-evolved states according to the general

formalism of time-resolved photoemission spectroscopy,133

A(ω, t0) = Re

∫
dt1dt2 eiω(t1−t2) st1,t2,τ (t0)[

〈Ψ(t2)| ĉ†1,↑T e
−iĤ(t2−t1) ĉ1,↑ |Ψ(t1)〉+ 〈Ψ(t1)| ĉ1,↑T e−iĤ(t1−t2) ĉ†1,↑ |Ψ(t2)〉

]
,

(19)

with T the time ordering operator.

The choice of a particular site or spin orientation does not matter due to symmetry. As

we strictly work at zero temperature the expectation value is calculated with the GS of the

system |ψGS〉, which is determined via ED. Here st1,t2,τ (t0) denotes a Gaussian probe pulse

defined as

st1,t2,σ(t0) = (2π3/2σ)−1 exp(−(t1 − t0)2/(2σ2)) exp(−(t2 − t0)2/2σ2). (20)

In the following we take σ = 1.6/J and t0 = 5/J . As parameters for the model we set

J = 1 and U = 5J , take ωphot = 2J and an electron-phonon coupling of g̃2 = −0.2J , unless

explicitly denoted otherwise.

The spectral functions for the Hubbard dimer coupled to the phonon mode without

cavity,127 ωP = 0, are shown in Fig. 5 a.) and b.). We first focus on the case without

hopping, J = 0, Fig. 5 a.). By construction the spectrum is particle-hole symmetric which

is why we only show the lower part. The spectrum of the uncoupled Hubbard dimer is

shown in gray exhibiting the well-known lower Hubbard band. When coupling the electrons

to the phonons two shake-off bands at distances 2ωphon and 4ωphon from the main peak

emerge. No side peaks at uneven multiples of the frequency ωphon are observed, which is a

result of the non-linear coupling proportional to the squared phonon displacementX2
phonon.127

This coupling essentially squeezes the phonon which leads to the response of the system at

twice the bare phonon frequency – a phenomenon that has previously been predicted and

measured.134,135 Additionally the bare value of U is slightly modified - the effect is however

quite small and can hardly be seen. The small wiggles in the spectrum are an artefact of

the Gaussian probe pulse.

The spectrum in the intermediate coupling case U = 5J , Fig. 5 b.) similarly exhibits

side bands at distances that are compatible with multiples of 2ωphon from the main bands.
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In fact, one would expect the shake-off peaks to appear at a slightly different distance due

to the effective frequency of the phonons changing upon coupling to the electrons. This

change, however, lies within 1% of the bare frequency (also see Sec. II) and can therefore

not be discerned in the plot.

Now allowing for a LMC larger that zero ωP > 0 the spectral function for the case of

vanishing hopping J = 0 is shown in Fig. 5 c.). For ωP = 0 the spectrum coincides with that

shown in Fig. 5 a.) exhibiting the previously discussed 2ωphon replica band. Upon turning

on the coupling ωP > 0 we observe a split of this shake-off band into three separate peaks.

We mark in the plot distances from the lower Hubbard band that equal combinations of the

polariton frequencies ω+ and ω− namely 2ω+, 2ω− and ω+ +ω−. These match the positions

of all observed peaks well for all considered coupling strengths.

Essentially the same phenomenology is observed in the intermediate coupling U = 5J

case, Fig, 5 d.). Here the situations complicated by the natural appearance of two peaks in

the lower part of the spectrum of the uncoupled Hubbard dimer. Still one can observe the

2ωphon replica from both peaks and also track their subsequent split-up into three separate

peaks. We again mark distances to the two main peaks consistent with the same combi-

nations of polariton frequencies 2ω+, 2ω− and ω+ + ω− that match the appearing peaks

well.

Now we explain the split-up with the formation of polaritons. The displacement of the

phonon X̂phon can be expressed in terms of a linear combination of the displacement of

the upper and lower polariton mode, X̂phon = c+X̂+ + c−X̂− where c+ and c− are two

real numbers. Accordingly the quadratic displacement of the phonons that couples to the

electrons Eq. (3) transforms under a polariton transformation according to

X̂2
phon = c2

+X̂
2
+ + c2

−X̂
2
− + 2c+c−X̂+X̂−. (21)

We show the details of the transformation of the coupling between electrons and phonons

to a coupling between electrons and polaritons in Appendix F. The term in the resulting

electron-polariton coupling proportional to X̂2
+ generates a replica peak at distance 2ω+,

while the term proportional to X̂2
− the one at distance 2ω−. Additionally a mixed term

proportional to X̂+X̂− appears that generates the peak at ω+ + ω− distance. Together this

explains the splitting of the electronic shake-off peaks as a unique feature of the electrons

coupling to the quadratic displacement of an IR-active phonon.
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VI. DISCUSSION AND OUTLOOK

In this work we have investigated the effect of phonon polaritons on electronic interac-

tions. We have considered two distinct coupling mechanisms between electrons of a strongly

correlated material and IR-active phonons, which are in turn coupled to an optical resonator.

Our first finding is that the vacuum fluctuations of the cavity increase the effective electron-

electron repulsion. This might open the path to control electronic interactions in a way

that is to date only possible in cold-atom systems.136 One possible application would be the

triggering of a metal-to-insulator transition by increased rather than decreased electronic

correlations. To date there are several examples of inducing an insulator-to-metal transi-

tion by driving.128,137–141 In particular a photo-induced insulator-to-metal transition was ob-

served in in the one-dimensional Mott-insulator ET-F2TCNQ128,141 for which the possibility

of controlling electronic interactions through driving of an IR-active phonon with a laser has

previously been demonstrated.19,21 Similarly, effectively reduced correlations by electronic

screening through laser-induced electronic excitations have been proposed theoretically142,143

and reported experimentally144,145.

By contrast, we predict that coupling an IR-active phonon to the vacuum fluctuations

of an optical cavity will increase electronic correlations, with the possibility of inducing a

metal-to-insulator transition. However, more sophisticated calculations are needed to put

our prediction on firmer ground. The effect of taking the thermodynamic limit should be

investigated,68,74 and a more detailed description of both the material as well as the cavity is

needed – possibly by building on first principles methods that have recently been extended

to cavity QED settings.146–148

The range of realistically achievable changes of effective interactions depends on whether

one considers a dark or a driven cavity. In a dark cavity, the relevant quantity is the achiev-

able light-matter coupling strength. Provided that light-matter couplings in the ultrastrong-

coupling regime can be attained with quantum materials, modifications of effective interac-

tions in the few-percent range appear realistic. The situation is different in driven cavities.

For classically driven systems, changes in effective U of up to 10 percent or even more

have been estimated.9,21 Similarly large changes are found in our model simulations of a

driven cavity. Therefore, we expect that significant light-induced changes (e.g., potentially

cavity-induced superconductivity) might be possible in a driven cavity, presumably at laser
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intensities below the ones required without a cavity.

One question that has motivated our work is whether a cavity and phonon polaritons

can be used to decrease electronic interactions to enable light-induced superconductivity in

a similar manner as discussed in Ref. 9. Despite having practically ruled out this possibility

using a dark cavity, a decrease of interactions is being achieved when driving the cavity.

We have investigated the behaviour in two distinct regimes: Once in the strong-coupling

case where we have found a delayed response of the matter part with a time delay given by
π
ωP

, where ωP is the splitting of the two polaritons frequencies; and once in the ultrastrong-

coupling regime where we have found a prompt response of the matter system, Sec. IV. For

further investigation one might promote the model for the matter degrees of freedom to a

more sophisticated one. In a first step possibly, one could investigate a one-dimensional

chain that would give access to studying the thermodynamic limit.68,74 In order to research

such a model for a sufficiently large system, full diagonalization is not feasible in general

anymore due to the exponential growth of the computational cost in the system size. Instead

one might revert to dynamical mean-field theory for correlated electron-boson systems149,150,

tensor-network based methods151,152, or the more recently developed methods based on neu-

ral network quantum states.153,154 For the model where the IR-active phonon is coupled to

the local electronic density introduced in Ref. 16 a calculation using a 1D chain to model

the electronic system as well as a classical drive of the phonons was performed152 using the

infinite time-evolving block decimation (iTEBD)155 method. The authors found quick de-

coherence of the phonon motion and phonon-induced disorder in the electronic system. No

superconductivity was observed. It would be interesting to investigate whether similar effects

can be found when coupling the phonons to an optical cavity. In a more sophisticated model

it would also be interesting to study the effects of heating of the material or a finite cavity

life time. In our work we have found that large light-matter coupling might not be strictly

necessary to achieve sizeable effects, but a light-matter coupling that exceeds losses might be

sufficient. Such a strong-coupling regime has already been reached several decades ago156,157

and can nowadays be realized in different platforms including array defect cavities59 and

semiconductor heterostructure cavities.62 Recently also another interesting route to enhance

superconducting fluctuations through a parametric drive of IR-active phonons – possibly

with the use of an optical cavity – has been explored.158

Another possible direction is to make a prediction that helps determine which of the two
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electron-phonon coupling mechanisms investigated in this work is dominant. In Ref. 19,21

the observed drop in reflectivity upon laser driving was explained by a coupling that involved

the double occupancy of the electrons. It was, however, later realized in Ref. 16 and also

becomes apparent from the findings in this work, see Appendix D, that the observations

might also be explained by a coupling to the linear electronic density. Within our model

we have not found qualitative differences between the two coupling mechanisms, neither for

ground-state properties nor for their dynamical behavior. It might be necessary to explore

larger system sizes and study the effect of the cavity on longer-range correlation functions and

instabilities towards ordered phases in order to identify potential clear distinctions between

the two coupling mechanisms.

Finally, we have investigated the electronic spectral function. For this we have focused

on the coupling of the phonons to the double occupancy of the electrons and have derived a

simplified model displaying qualitatively and quantitatively similar dynamics upon driving

the cavity. We have identified a distinctive feature of the coupling between electrons and

phonon polaritons stemming from IR-active phonons, namely the split-up of the observed

shake-off bands into three bands. Such replica bands due to the coupling between electrons

and phonons are well-known in the literature.126 We note that while we have focussed here on

a local, on-site photoemission spectrum without momentum resolution, the corresponding

shake-off peaks are expected to appear in a similar fashion in a momentum-resolved ARPES

spectrum. This is due to the fact that the long-wavelength photons carry zero momentum

transfer compared to the size of the electronic Brillouin zone, thus leading to shake-off peaks

separately for each electronic momentum (also see Ref. 68). To observe the split-up of the

replica band due to the coupling to an optical resonator proposed here, the linewidth needs

to be smaller than the splitting. For broadening stemming from losses intrinsic to the cavity

setup this should be well within reach since the necessary condition is simply the strong-

coupling condition. The question is therefore whether it is possible to achieve a sufficiently

strong light-matter coupling to induce spectral weight in the polaritonic shake-off bands that

can be detected by an ARPES experiment.
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Appendix A: Phonon frequency

In this part we explain how we obtain the bare phonon-frequency that is a parameter in

the Hamiltonian in order to obtain an effective phonon-frequency that is resonant with the

cavity photon at ωphot = 2J . We start by considering the coupling of the phonons to the

linear electronic density and write the corresponding electron-phonon Hamiltonian as well

as the bare phonon Hamiltonian (compare to Eq. (2) and Eq. (3) of the main part)

Ĥphon + Ĥphon−e− =
∑
j

ωphonb̂
†
j b̂j +

∑
j

g1

(
b̂j + b̂†j

)2 (
n̂el
j,↑ + n̂el

j,↓
)
. (A1)

Next we introduce canonical coordinates and momenta

X̂j =
1√

2ωphon

(
b̂j + b̂†j

)
P̂j = i

√
ωphon√

2

(
b̂†j − b̂j

) (A2)

and by inserting get

Ĥphon + Ĥphon−e− =
∑
j

1

2
P̂ 2
j +

1

2

(
ω2

phon + 4g1ωphon

(
n̂el
j,↑ + n̂el

j,↓
))
X̂2
j . (A3)

We now define the effective phonon frequency ωeff
phon as the term multiplying the canonical

coordinate of the phonons X̂j without the one-half. This contains an operator acting on

the purely electronic part of the Hilbertspace of which we take the average to obtain a

meaningful frequency. We set this equal to the anticipated value of ωeff
phon = 2J and solve for

the bare parameter ωphon in the Hamiltonian

(
ωeff

phon

)2
:= 〈ω2

phon + 4g1ωphon

(
n̂el
j,↑ + n̂el

j,↓
)
〉electronic = ω2

phon + 4g1ωphon
!

= 4J2

g1=0.5J⇒ ωphon = (
√

5− 1)J ≈ 1.24J.
(A4)

In the same way we determine the bare phonon frequency when coupling to the double

occupancy of the electrons where we write for the part of the Hamiltonian only containing

phonon and electron degrees of freedom

Ĥphon + Ĥphon−e− =
∑
j

1

2
P̂ 2
j +

1

2

(
ω2

phon + 4g2ωphonD̂j

)
X̂2
j . (A5)

Hence we can obtain the effective phonon frequency as(
ωeff

phon

)2
:= 〈ω2

phon + 4g2ωphonD̂j〉electronic = ω2
phon + 4g2ωphon〈D̂j〉electronic

!
= 4J2

g2=−0.2J⇒ ωphon = 0.4J〈D̂j〉electronic + 2J

√
0.04〈D̂j〉2electronic + 1.

(A6)
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Figure 6. Convergence study of ground-state properties in the cutoff of the bosonic

Hilbert space. a.) Double occupancy as a function of the light-matter coupling ωP calculated

with a linear coupling to the electronic density (g1 = 0.5 and g2 = 0 – see Eq. (3) of main part)

for different values of the cutoff of the bosonic Hilbert space NB. The bosonic cutoff of NB = 16

chosen in the paper is sufficient to converge the double occupancy. This is further underlined by

the boson numbers shown in the lower panel – once Nphon =
∑

j b̂
†
j b̂j and once Nphot = â†â. b.)

Same convergence study but with a coupling to the quadratic density of the electrons (g1 = 0 and

g2 = −0.2 – see Eq. (3) of main part). Again, NB = 16 is sufficient to converge all data shown in

the main part of the paper. Other parameters of this convergence study are as in the main text,

Sec. II.

We calculate the expectation value of the double occupancy 〈D̂j〉 for the uncoupled Hubbard

dimer with which we obtain for the bare phonon frequency

ωphon ≈ 2.02J. (A7)

Appendix B: Convergence of ground state properties in boson cutoff

In this part we check the convergence of the GS properties, in particular the double

occupancy, in the chosen cutoff of the bosonic Hilbert space NB. We take the same model

parameters as in Sec. III and consider both coupling mechanisms between phonons and

electrons discussed in the main part. The LMC is, however, considered up to ωP = 6ωphot,
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to show how convergence depends on the coupling strength. The results are shown in Fig. 6.

The double occupancy of the electrons is well converged with a bosonic cutoff of NB = 16

as used in the main part for LMC of ωP ≤ 3ωphot. Further beyond that point, around

ωP ≈ 4ωphot one starts to see deviations between a cutoff of NB = 16 and smaller values –

indicating the incomplete convergence at this point. This result is also further underlined

by the number of bosons in the system that remains below 1 for the values of the LMC used

in the main part of the paper.

Appendix C: Forward Time Propagation of GS

In Sec. IV of the main part we propagate the GS of the full coupled system forward in

time with the time-dependent Hamiltonian containing an additional coherent drive Eq. (12)

according to

|ψ(t)〉 = T e−i
∫ t
0 Ĥ(t′)dt′ |ψGS〉 (C1)

where |ψGS〉 is the GS of the system. We approximate the exact time evolution Eq. (C1)

using finite time-steps δt choosing Nt steps within one driving period leading to δt = 2π
ωDriveNt

.

The time evolution is then computed via the commutator-free scheme introduced in Ref. 131

for a single time-step according to

|ψ(t+ δt)〉 = T e−i
∫ t+δt
t Ĥ(t′)dt′|ψGS〉 ≈ e−i(c1Ĥ1+c2Ĥ2)δte−i(c2Ĥ1+c1Ĥ2)δt|ψGS〉 (C2)

where

c1/2 =
3∓ 2

√
3

12
; Ĥ1/2 = Ĥ

(
t+

(
1

2
∓
√

3

6

)
δt

)
. (C3)

We investigate the convergence of this scheme both in the cutoff used for the bosonic part

of the Hilbert space NB and the length of the time-step δt - or the equivalently the number

of time-points within one driving period Nt. We consider the double occupancy Eq. (10)

since this is the quantity we are mainly interested in. Additionally, we found that bosonic

quantities like Nphot or Nphon also considered in the main part usually converge much better

with respect to the chosen bosonic cutoff or finite time-step. We focus on later times at the

end of the pump pulse, since an occurring error might build up over time and choose the

same parameters as considered in Sec. IV in the main text. As for the light-matter coupling

we take ωP = 0.2J = 0.1ωphot which is on the verge of the USC regime. Overall, we checked

that the convergence is similar for different values of the LMC.
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Figure 7. Convergence study of the time-evolved GS under coherent driving of the

cavity. a.) Coupling of the squared displacement of the phonons to the linear density of the

electrons (g1 = 0.5J and g2 = 0.) Shown is the double occupancy according to Eq. (10) for

different values of the cutoff of the bosonic Hilbert space NB focusing on later times during the

pump. NB = 10 and NB = 12 yields almost identical results such that we chose NB = 10 for

the time-evolution shown in the main part of the paper Sec. IV. Nt = 40 and ωP = 0.2J was

used and otherwise the same parameters as in Sec. IV for this convergence study. Additionally the

convergence of the double occupancy in the number of time points within one driving period Nt is

considered. At Nt = 80 the time-evolution is converged with respect to this parameter. NB = 8

and ωP = 0.2J was used and otherwise the same parameters as in Sec. IV. The bottom shows the

pump pulse Eq. (13) as a reference. b.) Same convergence analysis for the coupling of the phonons

to the double occupancy (g1 = 0, g2 = −0.2J). Otherwise the same parameters were used as in

a.). The convergence in the bosonic cutoff is better than for the coupling to the linear density.

The convergence in the number of time-points per driving period is comparable. For the results

presented in the main text we use the same value for NB and Nt for both coupling mechanisms.

The results of our analysis are shown in Fig. 7. For the convergence in the bosonic cutoff

NB, results obtained with the coupling to the double occupancy (g1 = 0, g2 = −0.2) are

completely converged taking NB = 6. For the coupling to the linear density convergence is

significantly slower, however beyond NB = 8 changes are relatively small and only quanti-
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tative; the qualitative behaviour remains unchanged. We conclude that a bosonic cutoff of

NB = 10 is sufficient for our means.

Both coupling mechanisms converge similarly fast in the length of the finite time-step δt

where we find that Nt = 80 steps during a single driving cycle suffice to obtain converged

results.

Appendix D: Comparison Cavity Driving vs. Classical Phonon Driving

In this part we compare the time evolution of the system for the two different coupling

mechanisms between electrons and phonons: once under a classical drive of the phonons

and no coupling to the cavity (ωP = 0) and once when coupling to a driven cavity. This

serves the purpose of comparing our results for the driven Cavity to earlier works where a

classical drive of the phonons has been considered16,21 but also illustrates that both coupling

mechanism in fact behave similarly under a classical drive of the phonons.

For the cavity driven system we set the LMC to ωP = 0.2J . Otherwise the used parame-

ters are the same as those in Sec. IV and the time-evolution is calculated in the same way as

in that section. For the classical phonon driving we consider the system uncoupled from the

cavity thus setting ωP = 0. As initial state we take the the GS of the system - in this case

that without the cavity coupled. The coherent drive is realized by adding a time-dependent

term to the Hamiltonian that reads

ĤDrive = F (t)
1√
2

(
X̂1,phon + X̂2,phon

)
(D1)

where we have used X̂j,phon = 1√
2ωphon

(
b̂†j + b̂j

)
. We drive the system resonantly at the

effective phonon frequency ωD = 2J . F (t) is a Gaussian pulse defined in the main part

in Eq. (13). The bare strength of the pump F0 cannot be compared directly between the

classical and cavity drive since very different matrix elements enter in it: Once the coupling

of a drive to the cavity; and once the coupling of the phonons to an external laser. Since

we are interested in a qualitative comparison we simply take the same value for both cases

namely 1√
2ωphot

F0 = 3J
2
. Otherwise the parameters for the classically driven system are

identical to those of the cavity coupled system. The results for the time-evolution are shown

in Fig. 8.

In case of coupling to the double occupancy (shown on the right) the classical drive simply
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Figure 8. Comparison of classical vs. cavity driving. a.) Comparison of the time evolution

of the GS once driving the cavity and once coherently driving the phonons directly for the linear

coupling to the electronic density (g1 = 0.5, g2 = 0 – see Eq. (3)). Shown are the double occupancy

Eq. (10) at the top, the number of phonons in the system Nphon =
∑

j b̂
†
j b̂j , the number of photons

Nphot = â†â and the drive-function F (t) according to Eq. (13). Both cases behave similarly with

the important difference of oscillations between the excitations of the light field and the phonon

mode in the case of driving the cavity. We used ωP = 0.2J and otherwise the same parameters

as in Sec. IV. For the classical drive we set ωP = 0. Otherwise, parameters are the same as for

the driven cavity. b.) Same comparison between a classical coherent drive of the phonons and the

driven cavity for the case of g1 = 0 and g2 = −0.2J (See Eq. (3)). We monitor the same quantities

as in the left plot. Again the classical drive of the phonons simply drives them into a coherent state

while with a coupled cavity oscillations between excitations of light and matter degrees of freedom

are visible. Except for the coupling between electrons and phonons we use the same parameters as

in the left plot.

promotes the phonons into a coherent state that oscillates without any damping. The double

occupancy of the electrons also starts oscillating, however, around an average value that is

increased from its GS value indicating that the drive effectively decreases the electron-

electron repulsion. The here shown plot can be directly compared to that obtained in Ref.9

and Ref.21 displaying essentially the same phenomenology, albeit without any damping.
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In the case of the coupling to the linear density (shown on the left), the coherent state that

the phonons are driven into is not as clean as for the quadratic coupling which we attribute

to the fact that we here use a larger electron-phonon coupling. This shows in oscillations

in the phonon number, that are larger than in the case of the coupling to the quadratic

density. There also seem to be some overlaying oscillations in the evolution of the double

occupancy that are however not reflected in the phonon number. Whether this is an intrinsic

property of this coupling type or some artefact from the model remains unclear at this point.

Qualitatively, the phenomenology between the two couplings is, nevertheless, the same - the

driving induces an increased phonon population that in turn leads to an oscillating double-

occupancy that is, on average, increased. A linear coupling of the phonons to the local

electronic density might therefore not be ruled out to explain the observations in Ref. 21

and Ref. 19 as was previously noted in Ref. 16.

Comparing these results to the cavity driven system, the most prominent difference is an

overlaying oscillation between excitations of the phonons and consequently oscillations in

the double occupancy; and excitations of the cavity. This is simply a beating motion of two

coupled oscillators after initial displacement of one of the two (the photons in this case).

Otherwise the phenomenology is qualitatively similar.

Appendix E: Approximate One-Phonon model

In this part we discuss a simplification of the model in the case of the phonons coupling

to the double occupancies of the electrons, i.e., the case of g1 = 0 and g2 6= 0. We start by

noting that the cavity only couples to the sum of the phonon displacements as already shown

in Sec. IV where we already introduced the even combination of phonons that are annihilated

(created) by b̂(†)
0 Eq. (15) and odd combinations correspondingly being annihilated (created)

by b̂(†)
π Eq. (16). We here reconsider the coupling between electrons and phonons Eq. (3)

and also write it in terms of the even and odd phonon modes, yielding

Ĥe−phon =1
2
g2

(
b̂†0 + b̂0

)2 (
D̂1 + D̂2

)
+ 1

2
g2

(
b̂†π + b̂π

)2 (
D̂1 + D̂2

)
(E1)

+ g2

(
b̂†0 + b̂0

)(
b̂†π + b̂π

)(
D̂1 − D̂2

)
. (E2)

Since Eq. (14) shows that only the even mode b̂(†)
0 couples to the cavity and we are mainly

interested in dynamics induced through the cavity we neglect the coupling to the odd mode
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Figure 9. Comparison of One-Phonon to Two-Phonon model. Comparison of the dynamics

of the GS where phonons couple to the double occupancy (g1 = 0, g2 = −0.2J - see Eq. (3)) defined

by Eq. (4) and the effective one-phonon model defined through Eq. (E3). Shown are the double

occupancy Eq. (10) at the top, the number of phonons in the system Nphon =
∑

j b̂
†
j b̂j , the number

of photons Nphot = â†â and the drive-function F (t) according to Eq. (13). Under a coherent drive

of the cavity both systems undergo similar dynamics. The other parameters are as stated in the

main text.

b̂
(†)
π and thus approximate the electron-phonon coupling as

Ĥe−phon → ˜̂
He−phon =

1

2
g2

(
b̂†0 + b̂0

)2

D̂. (E3)

This leaves us with a model hosting only a single phonon mode coupling to the cavity with

the same strength as before ω̃P = ωP since the additional factor of
√

2 cancels the previously

present 1√
2
term in Eq. (4). This phonon couples to the entire double occupancy of the

electrons D̂ = D̂1 + D̂2 with a coupling constant of g̃2 = 1
2
g2.

To show that the approximate model has similar dynamical properties as the original one

we again forward propagate the GS of each system in time under a coherent driving of the

cavity mode. As parameters we use g2 = −0.2J , ωP = 0.2J and correspondingly g̃2 = −0.1J .

We set the frequency of the effective model again such that we expect an effective phonon

frequency of ωeff
phon = 2J by choosing

ωphon ≈ 2.01J (E4)
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(also see Appendix A). Otherwise the parameters are as in Sec. IV. The result are shown in

Fig. 9.

Here, one can see that the dynamics for both models is comparable with two differences.

The effective frequency of the model hosting only a single phonon seems to be slightly

higher than in the model hosting two phonons. This can be observed in the oscillations

of the double occupancy but also in the less complete energy transfer of the cavity to the

phonons that indicates that photons and phonons are not quite resonant. Additionally the

beating frequency for the one-phonon model is slightly higher since the frequencies of the

effective oscillators lie further apart. No attempt to correct this slight frequency mismatch

was made. The second difference is the lower double occupancy of the one-phonon model

in the GS seen at times preceding the pump. We attribute this to the fact that we dropped

some terms in the electron-phonon coupling.

Overall our findings justify the approximation of neglecting the odd mode b̂(†)
π when

investigating dynamics induced through the coupling to the cavity with an effective one-

mode model.

Appendix F: Polaritonic transformation

We show in this section a basic polaritonic transformation for two coupled oscillators

modelling phonon and photon degrees of freedom of a system. We define canonical position

and momentum operators for the photons and phonons

X̂phot ≡

√
1

2ωphot

(
â+ â†

)
, P̂phot ≡ −i

√
ωphot

2

(
â− â†

)
(F1)

X̂phon ≡

√
1

2ωphon

(
b̂+ b̂†

)
, P̂phon ≡ −i

√
ωphon

2

(
b̂− b̂†

)
. (F2)

The total Hamiltonian of the coupled system can then be rewritten as (also compare with

Eq. (4)):

Ĥ =
1

2

(
P̂ 2

phot + P̂ 2
phon + (ω2

phot + ω2
P)X̂2

phot + ω2
phonX̂

2
phon − 2ωPX̂photP̂phon

)
(F3)

It is now possible to diagonalize this Hamiltonian defining123:

ˆ̃Pphon ≡ ωphon X̂phon ,
ˆ̃Xphon ≡ −ωphon

−1 P̂phon. (F4)
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Next we define the angle θ as

cos(θ) =
Σ√

1 + Σ2
(F5)

Σ =
ω2
phot + ω2

P − ω2
phon +

√
(ω2

phot + ω2
P + ω2

phon)2 − 4ω2
photω

2
phon

2ωphonωP

. (F6)

To diagonalize the Hamiltonian taking into account the last equations (Eq. (F4), Eq. (F5)),

a rotation of −θ is applied on X̂phot and
ˆ̃Xphon giving respectively X̂+ and X̂− - the canonical

coordinate operators of the upper and lower polariton respectively. The same transformation

is applied to P̂phot and ˆ̃Pphon to give P̂+ and P̂−. Performing these transformations, the

Hamiltonian can be expressed as:

Ĥ =
1

2

(
P̂+ P̂−

)1 0

0 1

P̂+

P̂−

+
1

2

(
X̂+ X̂−

)ω2
+ 0

0 ω2
−

X̂+

X̂−

 (F7)

The polariton frequencies ω+ and ω− have already been reported in the main text Eq. (5).

Defining raising and lowering operators for the upper (λ = +) and lower (λ = −) in the

usual way we can write the diagonalized polariton Hamiltonian as

Ĥ =
∑
λ=±

ωλα̂
†
λα̂λ (F8)

Using the polariton transformation we can write the coupling term between electrons and

phonons Eq. (3) with the new α†± and α± operators:

g2

(
b̂+ b̂†

)2 ∑
i=1,2

(
n̂el
i,↑ −

1

2

)(
n̂el
i,↓ −

1

2

)
=

− g2

(
u+

(
α̂+ − α̂†+

)2

+ u−

(
α̂− − α̂†−

)2

+ 2
√
u+ u−

(
α̂+ − α̂†+

)(
α̂− − α̂†−

))
∑
i=1,2

(
n̂el
i,↑ −

1

2

)(
n̂el
i,↓ −

1

2

)
.

(F9)

with u+ (u−) the phononic contribution of the upper (lower) polariton:

u+ = sin2(θ)
ω+

ωphon

(F10)

u− = cos2(θ)
ω−
ωphon

(F11)

Due to the transformation made in Eq. (F4) the canonical momenta of the polaritons now

couple to the electrons instead of their displacement which is at this point just a matter
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of definition. Nevertheless, the bosonic operators appearing here show that both polaritons

effectively couple to the electrons explaining the immediate response of the whole system to

a drive in the USC regime discussed in Sec. IV. The presence of three coupling terms with

different combinations of bosonic operators also explain the split of the shake-off peak in the

electronic spectra into three peaks discussed in Sec. V.
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