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DFT+U provides a convenient, cost-effective correction for the self-interaction error (SIE) that
arises when describing correlated electronic states using conventional approximate density functional
theory (DFT). The success of a DFT+U(+J) calculation hinges on the accurate determination of
its Hubbard U and Hund’s J parameters, and the linear response (LR) methodology has proven
to be computationally effective and accurate for calculating these parameters. This study provides
a high-throughput computational analysis of the U and J values for transition metal d-electron
states in a representative set of over 2000 magnetic transition metal oxides (TMOs), providing a
frame of reference for researchers who use DFT+U to study transition metal oxides. In order to
perform this high-throughput study, an atomate workflow is developed for calculating U and J values
automatically on massively parallel supercomputing architectures. To demonstrate an application
of this workflow, the spin-canting magnetic structure and unit cell parameters of the multiferroic
olivine LiNiPO4 are calculated using the computed Hubbard U and Hund J values for Ni-d and O-p
states, and are compared with experiment. Both the Ni-d U and J corrections have a strong effect
on the Ni-moment canting angle. Additionally, including a O-p U value results in a significantly
improved agreement between the computed lattice parameters and experiment.

I. INTRODUCTION

Density functional theory (DFT) is a workhorse of
computational materials science. However, the proper
treatment of electronic exchange and correlation within
the framework of DFT is a long-standing challenge
[1]. Local density approximation (LDA) and general-
ized gradient (GGA) [2] functionals were developed to
add exchange-correlation (XC) contributions to the en-
ergy functional within the Kohn–Sham (KS) formalism
[3]. However, numerous studies have shown that these
XC functionals have an associated self-interaction error
(SIE) [1, 4, 5]. This shortcoming ultimately derives from
the difficulty in quantifying exact exchange and correla-
tion effects, without solving the many-body Schrödinger
equation, using only density-based approximations.

Over the past couple of decades, DFT+U has found
favor as a method that strikes a reasonable balance be-
tween accuracy and computational cost, making it par-
ticularly suitable for high-throughput computation [6–
10]. DFT+U functionals add a correction to the con-
ventional XC functional to account for the Coulombic
interaction between localized electrons [4, 11]. In more
recent studies, various researchers have explored exten-
sions of DFT+U with the goal of further correcting for
static correlation effects and delocalization errors [12–14].

One drawback to DFT+U type functionals is that one
must first determine its associated parameters, the Hub-
bard U and Hund J , and possibly also inter-site elec-
tronic interactions denoted as “+V ” [15–17]. The results
of a DFT+U calculation can quantitatively and even
qualitatively change depending on these parameters, and
so obtaining reliable values is of paramount importance.

This is as true for the Hund J as it is for the Hubbard
U , as we now explain. In this work, we primarily focus on
the simplified rotationally invariant DFT+U functional
that has become very prominent since its introduction in
Ref. 18. In this functional, the Hubbard U and Hund
J are grouped in single effective Hubbard U parameter,
Ueff, defined as Ueff = U − J . This formalism assumes a
spherical symmetry that results in the exclusion from the
correction of the on-site exchange between opposite-spin
electrons [10, 18, 19]. Notwithstanding, the reduction in
the effective parameter by J can be significant.

While the aforementioned approximation may seem
more justifiable for systems with no magnetic order, in
the case of magnetic systems it results in a lost opportu-
nity to use the Hund J to beneficially enhance the spin
moments in simulated broken-symmetry ground states.
Moreover, when we move to non-collinear magnetism,
the spin texture of materials is particularly sensitive to
screening interactions between spin channels [19–21]. In
fact, magnetic exchange constants can be derived from
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the extended Hubbard model and estimated as ratios
between U and J values [22]. The famous Hubbard
model provides a simplified framework on which to ex-
plain the rich physics of correlated transition metal com-
pounds [22]. Additionally, it has been shown that the
Hund J term is important for describing important phys-
ical phenomena, such as Jahn-Teller distortions [22, 23],
emergent intra-atomic exchange, and the Kondo effect
[24, 25]. Therefore, the introduction of explicit unlike-
spin exchange corrections beyond simplified rotationally
invariant DFT+U is clearly of interest, and this requires
the treatment of the Hund J on the same footing as the
Hubbard U .

A. Strategies for determining Hubbard parameters

A common approach for determining Hubbard U val-
ues is to tune them such that some desired result — for
example, the DFT+U band gap, or a formation energy —
matches its experimental value, or a value obtained via
more accurate and computationally expensive beyond-
DFT methods [26, 27]. There are several problems with
this strategy. Firstly, it is not systematic: just because
one result (e.g., the band gap) now matches experiment,
this does not guarantee the same will be true for other ob-
servables (e.g., local magnetic moments). Indeed, there
a multitude of reasons why DFT may not match experi-
ment, and it is wrong to rely on Hubbard corrections to
correct for errors that do not arise from self-interaction
[28]. Secondly, this strategy is not predictive: it relies on
the existence of experimental/beyond-DFT data. This
makes it particularly ill-suited to the prediction of novel
materials and high-throughput studies.

Yet another difficulty that arises is the lack of transfer-
ability of Hubbard and Hund’s parameters. The conven-
tional wisdom surrounding on-site corrections tends to
reinforce the notion that localization equals correlation.
Therefore, +U corrections are applied to states deter-
mined by the orbital geometry (e.g., d and f orbitals).
It is possible, using spectroscopy, to estimate Slater inte-
grals over the Coulomb operator [18, 29] which, in turn,
can be expressed in terms of U and J values [10, 30].
While this connection is physically motivated, localized
states do not encompass all of the levels of correlation
effects that are neglected by the specific DFT functional
[13]. This perspective of U and J values as functional-
specific, and not universal quantities, expands the def-
inition of U and J from their initial inspiration from
the Hubbard model, which treats U and J as intrinsic
atomic properties. Indeed, it has been repeatedly shown
that these parameters U and J are in fact very sensi-
tive to the local chemical environment [31]. Even the
specific pseudopotentials (PPs) [5] or the specific site oc-
cupation projection scheme [32] have a significant effect
on the computed Hubbard U values. The end result is
that U values (and by extension the albeit normally less
environment-sensitive Hund’s J values) are not transfer-

able: they cannot be tabulated, and must always be de-
termined on a case-by-case basis.

Having explored the numerous on-site corrections, and
the drawbacks of fitting these parameters to experiment
or beyond-DFT results, we will motivate the importance
of computing Hubbard U and Hund J values within the
DFT framework. Two primary methods for calculating
Hubbard U values in a self-contained fashion within DFT
are the constrained random phase approximation (cRPA)
[33, 34], and the linear response (LR) analysis of the con-
strained XC functional [4, 10]. In this study, we focus
on the LR method due to its lower computational cost
compared to existing cRPA methods, which are not yet
appropriate for high-throughput applications. We also
explore the effects on magnetic materials that exhibit a
rich variety of noncollinear spin configurations, exempli-
fied through the spin canting structure that was experi-
mentally observed in olivine LiNiPO4 [35].

The linear response method, as introduced for practi-
cal use by Coccocioni and coworkers [4], is founded on
the idea that SIE can be related to the behaviour of
the total energy as a function of the total occupation
[36]. The energy ought to be piece-wise linear with re-
spect to total site occupation numbers, but in fact for
semi-local DFT XC functionals, the energy derivatives
are erroneously continuous. Cococcioni and co-workers
illustrated that the +U correction can be interpreted as
something that counteracts this erroneous curvature, lo-
cally for sub-spaces (where the interpretation becomes
approximate). Crucially, the magnitude of the curvature
can be directly measured from a DFT linear response
calculation, allowing the value of U to be determined ac-
cordingly. Unlike empirical fitting, this approach is (a)
systematic, because the value of U is derived directly as
a measure of the underlying SIE present in the DFT cal-
culation, and (b) it is predictive, because it only requires
DFT calculations to extract the Hubbard parameters,
and not experimental or beyond-DFT results.

B. Paper outline

The Materials Project is a web-based database that
contains computed information on a vast range of ma-
terials, both known and predicted [37]. Among the var-
ious computational results it presents are Hubbard pa-
rameters Ueff . However, these current default Ueff val-
ues were obtained by fitting DFT+U energies to exper-
imental formation energies for a selected number of re-
dox reactions [31, 38]. This paper aims to replace these
values with ones computed using linear response. In or-
der to achieve this, we present a unified framework for
computing on-site Hubbard and Hund’s corrections in
a fully parallelized and automated computational work-
flow (which will be introduced in Section II). Using this
workflow, we performed a high-throughput calculation of
U and J values for a set of over two thousand transition-
metal-containing compounds. This provides us with a
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novel, big-picture point-of-reference for the sensitivity
of U and J across a wide range of systems of vary-
ing chemistries and local chemical environments (Sec-
tions III A and III B). We then explore the effects of
these Hubbard corrections on magnetic materials that
exhibit a rich variety of noncollinear spin configurations,
exemplified through the spin canting structure of olivine
LiNiPO4 (Section III C).

II. METHODS

A. The Hubbard functional

The Hubbard functional is a corrective functional, in
the sense that it involves adding a corrective term EHub−
Edc on top of some base functional EDFT (typically a
local or semi-local functional), resulting in a total energy
functional

EDFT+U+J

[
ρ,
{
nσγ

}]
= EDFT [ρ]

+ EHub

[{
nσγ

}]
− Edc

[{
nσγ

}]
= EDFT [ρ] + EU/J

[{
nσγ

}]
(1)

The (nσγ )mm′ = 〈ϕγm|ρ̂σ|ϕγm′〉 are matrices that repre-
sent the projection of the (spin-dependent) density op-
erator onto Hubbard subspaces (indexed γ) defined by
some set of orbitals |ϕγm〉. These orbitals are typically
atom-centred, fixed, spin-independent, localised, and or-
thonormal, often corresponding to the 3d or 4f subshell
of a transition metal or lanthanide. The nσγ occupation
numbers are the corresponding traces of nσγ matrices.
The DFT+U correction of Equation 1 adds a convex en-
ergy penalty to fractional occupations of these orbitals
that in principle can counterbalance the SIE present in
these Hubbard subspaces.

In the following paragraphs, we will provide a sum-
mary of some of the most well known formulations of
DFT+U(+J). We note that that because we are inter-
ested in the fully localized limit (FLL), we will not discuss
extensions of DFT+U+J to metallic systems, which em-
ploys an “around mean field” (AFM) methodology [10].

Starting from DFT+U+J implementations of the
highest complexity, and moving forward through increas-
ing levels of simplification, we introduce the rotationally
invariant implementation proposed by Liechtenstein et
al. [30]. Within this flavor of DFT+U+J , EHub and Edc

take the following form

EHub =
1

2

∑
{m},γ,σ

U(m,m′,m′′,m′′′)(nσγ )mm′(nσγ )m′′m′′′

− 1

2

∑
{m},γ,σ

U(m,m′′,m′′′,m′)(nσγ )mm′(nσγ )m′′m′′′

(2)

Edc =
∑
γ

Uγ
2
nγ
(
nγ − 1

)
+
∑
γ,σ

Jγ
2
nσγ

(
nσγ − 1

)
, (3)

where U contains the Coulomb integrals projected on
the orbital basis, indicated by the associated {m} quan-
tum numbers [10, 12]. This correction is parameterized
by both Hubbard Uγ and Hund Jγ coupling constants
through the double-counting energy contribution, Edc.

Simplified versions of Equations 2 & 3 were proposed
by Dudarev et al. [18], and later by Himmetoglu and
coworkers [39], which approximate U using Slater inte-
grals, which can be parameterized through U and J val-
ues. There are many helpful explanations for this ap-
proximation, such as those summarized in Refs. 10 and
12.

In the spirit of following increasing levels of simplifica-
tion, we will start with the Himmetoglu implementation
[39], inspired by the work of Solovyev et al. [40]. Using
the Slater integral parameterization of U and J , it is pos-
sible to approximate and simplify EU/J from Equations
2 & 3 into the following

EU/J = EHub − Edc =∑
γσ

Uγ − Jγ
2

Tr
[
nσγ (1− nσγ )

]
+
∑
γσ

Jγ
2

Tr
[
nσγn

−σ
γ

]
.

(4)

A well known further simplification of Equation 4,
notwithstanding that it substantially pre-dated the lat-
ter, is the formulation of DFT+U put forth by Dudarev
et al. [18] and given by

EU = EHub − Edc =
∑
γσ

U eff
γ

2
Tr
[
nσγ (1− nσγ )

]
. (5)

As discussed in the Introduction, this approximation
arises by assuming spherical symmetry of the Coulomb
interactions, U [10, 12, 39]. Within the simplified Du-
darev DFT+U , Equation 5, it has been demonstrated
that the effective Hubbard U becomes U eff

γ = Uγ − Jγ
[10, 12, 18].

B. Hubbard U and Hund’s J spin polarized linear
response

In the linear-response approach, one measures the sup-
posedly erroneous curvature in the total energy as a func-
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tion of the subspace occupancy, and then chooses a value
U that counterbalances the observed curvature. Comput-
ing the energy curvature as a function of the subspace oc-
cupancy is usually impractical, so instead one transforms
the curvature of the energy-versus-site occupancies nγ
into a curvature with respect to the magnitude vγ of an
on-site potential v̂γ =

∑
mm′ vγ |ϕγm〉〈ϕγm′ |. The energy

functional is then given by

E[{vγ}] = minρ(r)

E[ρ(r)] +
∑
γ

vγnγ

 (6)

from which one computes the response matrices

χγγ′ =
∂nγ
∂v′γ

. (7)

Thus far we have used a general index “γ” to represent
each site. Conventionally, this index refers purely to the
atom γ on which the Hubbard site is centered. In this
case, the Hubbard parameter for that subspace is given
by

Uγ =
(
χ−1

0 − χ−1
)
γγ

(8)

where χ and χ0 are the interacting, (or self-consistent)
and non-interacting (or non-self consistent) response ma-
trices [4, 10].

The above strategy does not delineate between spin
channels: during the linear-response calculations the
spin-up and spin-down channels are perturbed simulta-
neously by the same amount, i.e., v↑γ = v↓γ and we only

observe the change in total occupancy nγ = n↑γ + n↓γ . If
we want to calculate J , one must instead consider the
spin-dependent perturbation

v̂σγ =

{
+
∑
mm′ vγ |ϕγm〉〈ϕγm′ | σ =↑

−
∑
mm′ vγ |ϕγm〉〈ϕγm′ | σ =↓

(9)

and then construct a second set of response matrices
which then relate to J in a completely parallel approach
to the calculation of U in 8.

A separate but ultimately equivalent strategy is to
treat the spin channels separately [5, 41]. In this case
a general index runs over both the atom index γ =
{1, ..., N} and also the two spin channels σ = {↑, ↓}. In
this case the response matrices of Equation 7 become
rank-four tensors, i.e.,

χσσ
′

γγ′ =
∂nσγ
∂vσ

′
γ′
. (10)

and now the equivalent of Equation 8 is

fσσ
′

γγ =
(
χ−1

0 − χ−1
)σσ′

γγ
(11)

where now we must now prescribe how to map the 2× 2
matrix fσσ

′

γγ to the scalar parameters Uγ = GU (fσσ
′

γγ )

and Jγ = GJ(fσσ
′

γγ ). Possible definitions for these map-
pings GU and GJ are motivated and explored in detail in
Ref. 5, but the end result is the following: there are two
possible approaches. In the first approach one can de-
fine this mapping in order to recover the Uγ and Jγ that
one would obtain using the conventional spin-agnostic
approach of Equations 8 and 9. We will hereafter refer
to this as the “conventional” strategy (in the language of
Ref. 5 this is the “scaled” approach). In the second ap-
proach one can define the mapping to impose the condi-
tion that the local magnetic moment (local occupation)
is held fixed during the perturbation while calculating
the Hubbard (Hund’s) parameter, specifically by means
of the the equations rather than in the explicit sense of
fixing these quantities using constrained DFT. We will
refer to this as the “constrained” approach (the “sim-
ple” approach in Ref. 5). Throughout this work, unless
otherwise stated, we will use the conventional strategy.

C. Implementation of linear response within a
high-throughput workflow

The linear response method was implemented as a
workflow within the high-throughput atomate framework
[42]. The workflow allows the user to compute Hubbard
U and Hund J values using either a spin-polarized or
a non-spin-polarized response. In addition to screening
between spin channels, the implementation provides the
straightforward extension to multiple levels of screening,
including inter-site and inter-spin-channel responses [5].
A more detailed explanation of how these screening ma-
trices are computed is provided in Appendix A.

All of the individual calculations within this workflow
were performed with VASP (Vienna ab initio Simula-
tion Package) [43], a plane-wave DFT code. The PBE
exchange-correlation functional was used throughout as
the base functional [44]. Unless otherwise stated we use
PAW PBE pseudopotentials (PPs), which are the default
PPs for the pymatgen input sets for VASP [45]. In this
regard, our work supplements the high-throughput work
of Bennett et al. [46] where ultrasoft pseudopotentials
(USPPs) were used to reduce computational cost in high-
throughput computations [46], mirroring early founda-
tional studies on the linear response method [4, 15].

We have used an automatic k-point generation scheme
that uses 50 k-points per reciprocal angstrom, and a cut-
off energy of 520 eV. The full set of input parameters can
be found in the HubbardHundLinRespSet in the atomate
repository [47], and the derived VASP input sets in the
pymatgen repository [45]. For the linear response analy-
sis, the on-site applied potential vIσ range was from −0.2
eV to +0.2 eV (−0.05 eV to +0.05 eV for the periodic
table data set) sampled at nine points at uniform inter-
vals.
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TABLE I: Comparison of computed Ueff in the present
work with values used by the Materials Project [31, 38].

element mean Ueff (eV) UMP
eff (eV) diff. (eV)

Co 4.430 ± 1.474 3.32 1.110
Cr 2.425 ± 0.472 3.7 -1.275
Fe 4.108 ± 1.322 5.3 -1.192
Mn 4.135 ± 0.724 3.9 0.235
Mo 1.911 ± 0.318 4.38 -2.469
Ni 5.258 ± 0.773 6.2 -0.942
V 3.060 ± 0.673 3.25 -0.190
W 1.461 ± 0.218 6.2 -4.739

III. RESULTS

Hubbard U and Hund J values were calculated for over
two thousand transition metal oxides using the linear re-
sponse workflow implemented in atomate. The majority
of the calculations corresponded to materials containing
Mn-d, Fe-d, and/or Ni-d species. All the systems studied
were previously predicted by Ref. 48 to have a collinear
magnetic ground-state using a separate high-throughput
workflow. That work used the empirical Hubbard U val-
ues reported on the Materials Project.

In addition, a representative set of O-p responses were
calculated and analyzed. It is less common to include
Hubbard corrections to oxygen 2p states. However, an
appreciable number of studies have shown how O-p on-
site corrections have improved the agreement with exper-
imentally measured bond lengths between oxygen and
transition metal species [5, 49–52]. It is perhaps less
intuitive to apply spin-polarized Hund J parameters to
oxygen sites, because O-p states are conventionally not
included in effective models for magnetism. However,
while oxygen atoms do not develop magnetic moments,
early studies have demonstrated theoretically and com-
putationally that O-p states mediate the antiferromag-
netic superexchange interaction in transition metal ox-
ides, such as MnO [22, 53, 54].

A. Periodic table sample set

Figure 1 displays two periodic tables containing the
distributions of computed Hubbard U and Hund’s J val-
ues for each transition metal element (and oxygen) com-
puted for different structures within the database. In
Table I, values obtained in this study are listed alongside
the standard U values employed by the Materials Project
[31, 38]. Those values were determined using the proce-
dure outlined by Wang et al. [56] which finds a U value
that minimizes the error in formation energy for several
representative redox couples. Due to the limited amount
of experimental data available, these U values are deter-
mined with only experimental data from a single redox
couple (Co, Cr, Mo, Ni, and W) or two redox couples

(Fe, Mn, and V). Therefore, it is possible or likely that
these U values are not appropriate for a more general
system containing these elements. Nevertheless, the MP
U values are found to be the same as the U values in the
present work within the standard deviation for most ele-
ments (Co, Fe, Mn, and V) or slightly outside the value
in the present work (Ni). Exceptions are Cr, Mo, and W,
with the largest, notable discrepancy of 4.739 eV for W.

To evaluate the impact of these discrepancies, com-
pounds containing W from a dataset of experimental for-
mation energies [57] used by the Materials Project were
taken and relaxed using the new Ueff value for W from
the present work but with all other calculation settings
kept consistent with standard Materials Project settings,
to obtain a new set of computed energies. These energies
substantially lowered the correction introduced in Ref. 57
for W from -4.437 eV/atom to 0.12 eV/atom, suggesting
that the newer Ueff is indeed more appropriate for the
calculation of formation energies.

We stress that these values are not transferable to
other studies, which use DFT implementations in other
codes. Quantum ESPRESSO and Abinit use local-
ized projections that are different from the projector aug-
mented wave (PAW) method implemented in VASP [32].

B. Focused study on Mn-d, Fe-d, Ni-d, and O-p,
including the reason for large O-p Hubbard U values

We now present a more detailed study on materials
containing Mn-d, Fe-d, Ni-d, and O-p Hubbard sites. For
these systems, the distributions of the computed Hub-
bard U and Hund J values are provided in Figure 2.
The variations in U and J values calculated for these
three species is immediately apparent, with a range on
the order of approximately 1 to 2 eV. These distributions
reflect the intrinsic screening environment dependence of
the calculated value for a given element. At this point, we
note only their apparently universal unimodality (single
peak) and the near-general decrease in U with chemi-
cal period within a given group, however we will return
presently to a more physically and chemically motivated
observation. In Table II we list for comparison the U
values currently used in Materials project (fitted empir-
ically) as well as a range of U values found for a set of
spinels and olivines by Zhou and co-workers (calculated
via self-consistent linear response) [31].

We find that O-p exhibits the largest associated Hub-
bard U value of approximately 10 eV, which agrees with
the linear response results from a previous study using
a different code and somewhat different linear-response
formalism [5]. While large oxygen Hubbard U values
may seem surprising within a strongly correlated materi-
als context, it has become more accepted in recent years
within first-principles solid-state chemistry that oxygen
2p orbitals can warrant, both by direct calculation and by
necessity (when resorting to fitting), a remarkably high
U value in DFT+U .



6

(a) Hubbard U Periodic Table

(b) Hund J Periodic Table

FIG. 1: Periodic table of Hubbard U and Hund J values computed for representative set of transition metal oxides.
The color map indicates the mean value computed for each element over each material. The materials used in the

creation of these periodic tabled were selectively chosen: noting that many databases, including the ICSD, contain a
growing number of hypothetical materials which may or may not be realizable, we selected materials that are

well-studied and exhibit more than two ICSD IDs each. Furthermore, to remove cross-correlations between magnetic
elements, we also require that these compounds only contain a single d-block element (occupying a single

symmetrically-equivalent site) with no f -block species. Ultimately this data corresponds to the U and J values for
over 800 materials, and are distributed over the transition metal species. A more detailed table containing data on
the distribution of values is included in Appendix C. The plotted distributions of U/J values are generated using a

Gaussian kernel-density estimator implemented in scipy [55].
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TABLE II: Computed range of U , J , and Ueff values compared with reported Ueff on the Materials Project (MP)
[38], as well as the MP literature [31]. Each mean value has an associated standard deviation indicated after the “±.”

mean mean mean reported reported
computed computed computed MP [38] range [31]

Species U (eV) J (eV) Ueff = U − J (eV) Ueff (eV) Ueff (eV)
Mn-d 4.953 ± 0.635 0.520 ± 0.156 4.433 ± 0.654 3.9 3.60 – 5.09
Fe-d 4.936 ± 0.700 0.177 ± 0.367 4.759 ± 0.790 5.3 3.71 – 4.90
Ni-d 5.622 ± 1.221 0.399 ± 0.434 5.223 ± 1.296 6.2 5.10 – 6.93
O-p 10.241 ± 0.910 1.447 ± 0.171 8.794 ± 0.926 N/A N/A

We will now attempt to motivate and explain this phe-
nomenon. We note from the outset that the element pro-
jector orbital profile plays a complicating role in the fol-
lowing analysis. In general, we observe that the diagonal
elements of the χ0 non-interacting response matrix are
of roughly the same magnitude for both TM-d and O-p
sites. The non-self-consistent response can be interpreted
as the response due to non-interacting response effects at
a site due to its surroundings [10], and thus it can be un-
derstood as a property primarily of the environment of
the atom under scrutiny. Then, unless screening is very
short ranged as it may be in a very wide-gap insulator,
this quantity may be said to be somewhat similar, on av-
erage, for metal and oxygen ions in an oxide. Thereby,
the chemical trends in the Hubbard U arise mostly in the
interacting response.

Next, we note that the O-p interacting response χ
tends to be less than half of that of the interacting TM-
d response. This indicates that −χ−1 = d2E/dn2

I , the
curvature of the total energy versus occupation, nI , is
greater for O-p states. This greater curvature versus oc-
cupation can be explained, we propose, in terms of known
trends in the chemical hardness, i.e., the second chemi-
cal potential, i.e, the derivative of the chemical potential
with respect to total charge at fixed external potential.
We note, in passing, that some authors choose define the
chemical hardness as half of that for historical reasons,
but we suppress that here. Specifically, we can focus on
the discretized (three-point) approximation to the global
chemical hardness [58], namely

ν ≡ d2E/dN2 ≈ E (N − 1)− 2E (N) + E (N + 1)

=
[
E (N + 1)− E (N)

]
−
[
E (N)− E (N − 1)

]
≡ Ei − Ea ≡ Eg, (12)

which is nothing but the fundamental band-gap. This is
a quantity that has been tabulated many times, and us-
ing the results of Ref. 59 we find that for atomic oxygen
its value is 11.2 eV, compared to that of the transition
metal atoms, where it ranges from 5.8 eV (Ti & Zr) to
8.0 eV (Mn) if we exclude the often problematic zinc
group, where it reaches 11.6 eV. This mirrors and ex-
plains the observed relatively large first-principles Hub-
bard U value for oxygen 2p states predicted in this and
several previous studies.

Ultimately, we conclude that the Hubbard U may
be interpreted as the subspace-projected, environment
screened chemical hardness, and more precisely as only
the interaction (e.g., Hartree, exchange, correlation, and
perhaps other terms like implicit solvent and PAW poten-
tial) part of that. It is in the interaction part that most
of the chemical trends appear to arise in practice. For
subspaces projecting heavily at both band-edges, as in
normal DFT+U practice, the U clearly inherits chemical
trends from the chemical hardness (fundamental gap) of
the atom that it resides upon. This is higher for a higher
atomic ionization energy Ei (that of oxygen is generally
around twice that of transition metals) and higher also
for a more negative electron affinity Ea (that of oxygen
is more negative than that of most but not all transition
metals). By and large, both quantities are well known to
increase in magnitude as we move ‘up and right’ in the
periodic table, and this same broad trend is reflected in
our periodic table of Hubbard U values.

When a DFT+U subspace projects only onto one or
other band edge, as seems more commonly the case for
charge-tranfer insulators, then then the trend in only one
of the ionization energy and electron affinity will be very
relevant to the trends in U . In the case of oxygen 2p
orbitals projectors, due to the electronegativity of oxy-
gen typically there will be little weight at the conduction
band edge, and so it is the (particularly clear) trend in
ionization energy that drives the relatively large U value
for oxygen. Indeed, if this argument holds then one would
guess that the oxygen 2p U value is roughly twice that of
an average transition-metal d subspace, which turns out
to be the case from first principles linear response.

The Hund’s J , within the present formalism, may be
interpreted as an analogue for the spin degree of freedom,
and specifically as minus (by a convention thought to
originate with Ising) the interaction part of the subspace-
projected, environment screened spin-hardness, even the
global atomic version of which [60] has been a much
less thoroughly studied quantity. The effect of choosing
whether these subspace charge (spin) hardness quanti-
ties, the U and J , are calculated in a fully relaxed man-
ner, or with with a simulated fixed spin (charge), is ex-
plored in our comparison between conventional (scaled)
and constrained (simple) spin-polarized linear response,
respectively, below.
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FIG. 2: Distributions of Hubbard U and Hund J values computed using the linear response method; For the
sub-figures (a), (b), and (c) that correspond to d-electron TM site corrections, the U and J values are plotted

against the DFT (no +U+J correction) computed site magnetic ml, where m2 and m-d are equivalent because d
occupations have a corresponding l = 2 angular momentum quantum number. The O-p U and J values in sub-figure
(d) are plotted against nl (n1 or n-p) total site occupations. The number of samples for on-site correction values for

Mn-d, Fe-d, Ni-d, and O-p are 285, 248, 149, and 206, respectively.

In order to explore trends in the distribution of U and
J values, we have plotted these on-site corrections in scat-
ter plots within Figure 2. These plots illustrate the re-
lationship between U and J values with respect to site
occupations. For transition metal species, we plot U and
J versus ml=2, the “d” component of the projected mo-
ment, m, denoted as “ml=2.” These moment values are
those output by VASP as the difference of up and down
spin site occupancy numbers computed using PAW site-
projection operators. Because the oxygen atoms do not
have an associated magnetic moment, we plot O-p Hub-
bard U and Hund J versus nl=1 occupations on oxygen

sites.

We should stress that the values of “ml” and “nl” are
only computed from the calculation without the +U cor-
rection. One reason for using the bare PBE computed ml

and nl is that these occupations should be independent
from the applied Hubbard U or Hund J values. This
would offer the “bare” m, as well as n, as a possible
predictors of U and J values. However, it is important
to note that these occupations could change significantly
with applied U and J values [5, 61, 62].

There is an apparent clustering of data points at dif-
ferent on-site ml magnetizations in Figures 2a, 2b, and
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2c. This grouping at different on-site magnetization val-
ues is most likely due to different spin and charge states
dependent on the underlying chemistry. We also observe
a larger range of U and J values for higher values of
ml, which is due to the coupling between highly spin-
polarized states to on-site Coulomb screening for TM
species. As would be expected, we see similar trends
for J , a measure of the screened interaction between spin
channels.

For the Mn-d and Ni-d distributions in Figures 2a and
2c, a stark clustering of data-points is evident at partic-
ular intervals of ml=2. In both cases, the clusters that lie
at the associated maximum computed ml fall off and ex-
hibit a negative slope trend with the magnitude of the site
moment. This is likely due to the fact that ml is highly
dependent on the local chemical environment, which will
govern the energy curvature over spin occupations, which
is directly related to U and J within linear response [4].
The clear trend for the manganese may be due to the
strong tri-modal distribution of Mn magnetic moments
seen in Figure 1 of Ref. 48. The “stable” magnetic con-
figurations from this study were used in the LR analysis,
therefore a similar statistical distribution should hold for
the subset of structures used in this LR analysis.

The trends of the data points for Hubbard U and Hund
J values in Figure 2d appear to show a downward trend
for U versus p-occupation numbers, nl=1, and a slower,
upward trend for J values versus nl=1. We expect that
the nl=1 occupations will be strongly dependent on the
oxidation/reduction state of oxygen atoms. Due to the
nature of TM-O bonding in these oxides, and their gener-
ally greater electronegativity, the oxygen atoms will tend
to maximize their valence. Therefore, building on the
previous explanation of the magnitude of O-p U values
based on chemical hardness and specifically the more rel-
evant ionization potential component of that, the higher
electron count for oxygen corresponds to a lower ioniza-
tion potential, and therefore to a reduced Hubbard U , as
observed.

In an attempt to more robustly tease apart these ob-
served trends, we performed a rudimentary random for-
est regression test on the data set, ultimately in an at-
tempt to predict the on-site corrections U and J from
the input crystal structures and site properties. We used
the random forest regression algorithm as implemented
in scikit-learn. The input quantities supplied to the
random forest regressor consisted of the corresponding
PBE-computed ml and nl - without on-site corrections,
as well as the oxidation state estimated using the bond-
valence method [63], and finally a selection of relevant
site featurizers provided by the matminer Python pack-
age [64]. Unsurprisingly the U and J values appeared
to be the most sensitive to the magnetic moment mag-
nitude, m = n↑ − n↓, and site occupation, n = n↑ + n↓.
This is in accordance with what would be expected from
the dependence on the Hubbard U values on spin and
charge state [61, 62]. However, these features proved to
be insufficient to accurately predict U and J .

Most of the matminer site featurizers were tested as
input to the random forest regression model. Ewald en-
ergy and Voronoi site featurizers had the greatest asso-
ciated importance metric [64], second to ml. However,
the associated importance values of these featurizers were
still less then the on-site magnetization, ml. Addition-
ally, the oxidation states calculated using the bond va-
lence method (BVM) [63] were also included as input
to the model. These guessed oxidation states are also
used as input for the Ewald site featurizer. For learning
trends across different atomic species, the atomic num-
ber of the associated element was also supplied. Addi-
tionally, we tested the orbital field matrix (OFM) fea-
tures as formulated by [65, 66]. The OFM encodes the
orbital character of the surrounding chemical environ-
ment. For more information on this method please refer
to Ref. 65. The OFM functionality is not implemented in
matminer or pymatgen. We were motivated to test the
vectorized OFM by the chemical intuition that on-site
Hubbard U and Hund J values are very sensitive to the
local chemical environment. Additionally, the OFM has
demonstrated success in predicting DFT-computed mag-
netic moments in the past [65]. Furthermore, the OFM
nearest-neighbor contributions are weighted according to
the geometry of the Voronoi cell, which could possibly
provide information beyond the relative importance of
the Voronoi matminer featurizer. However, the on-site
magnetization for Mn, Fe, and Ni, respectively, had an
importance of at least ten percent more than any of the
other local chemical environment descriptors.

The correlation between on-site corrections and pro-
jected site moments is not surprising. After all, previ-
ous studies have explored the connection between charge
states of transition metal species and the integrated net
spin calculated from DFT [67–69]. The integrated atomic
spin moment can be directly linked to the charge state
of transition metal species via magnetochemistry rules.
In fact, recent studies show that the magnetic moment is
often the most convenient and reliable indicator of charge
states [67].

1. Conventional vs. constrained linear response

In introducing the linear response theory in Section
II B, we mentioned that there are two possible schemes
for computing U and J : “conventional” and “con-
strained” linear response, where in the latter case the
linear response is performed in such a way that the mag-
netic moment (occupation) is held fixed while measuring
the curvature with respect to the occupation (magnetic
moment). While arguments can be made as to theoret-
ically which approach is the most valid (a topic which
is the subject of ongoing research), this dataset presents
an opportunity to evaluate how much this choice will
practically affect the resulting Hubbard and Hund’s pa-
rameters.

For the majority of the computed U and J values using
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FIG. 3: Comparison between the conventional and
constrained approaches for calculating Hubbard U

values for Fe-d Hubbard sites.

these two methods, the difference between the two strate-
gies fell within their computed uncertainty. However, we
observed a significant deviation from y = x behavior for
the computed U values for iron Hubbard U values shown
in Figure 3. The width of this distribution is greater
than 1 eV for U in some regions, which is enough to
affect computed physical properties [4, 61].

2. Dependence on structure and magnetic state

For some input magnetic structures, the magnetic con-
figuration changed while applying the on-site potentials
during the linear response analysis. Our hypothesis is
that the input magnetic structure corresponds to a local
minimum configuration, or possibly a metastable state.
Therefore, in our analysis, we screen out these structures
with the intent that these systems will be studied in the
future using a self-consistent approach to calculating on-
site corrections.

In order to test the sensitivity of U and J values to
the input structure, we perform a self-consistent linear
response study of antiferromagnetic NiO, which is pro-
vided in the Supplementary Information. Each iteration
consists geometry optimization of cell shape, followed by
a linear response calculation of U and J values. These
on-site correction values are then used in the next sub-
sequent geometry optimization step. Self-consistency is
achieved once the U and J values fall within their cor-
responding uncertainty values. Starting from the input
structure — which was optimized using the current de-
fault Materials Project U values [38] — convergence was
achieved after only two iterations.

FIG. 4: Olivine crystal structure of LiNiPO4 with
magnetic atoms visible. Taken from [35] via the Bilbao

MAGNDATA database [35, 70]. The purple atoms
correspond to magnetic nickel atoms. The oxygen

octahedra surrounding lithium atoms are indicated in
orange, where the grey oxygen octahedra surround

nickel sites.

It has been well established in previous studies that U
values should be computed self-consistently with geome-
try optimization [61]. As demonstrated from the experi-
ments with antiferromagnetic NiO in the Supplementary
Information section, the Hund J values should be calcu-
lated self-consistently, in addition to Hubbard U values.
In this self-consistency study, J had the largest associ-
ated change over convergence relative to the value itself.
Due to the coupling between Hund J and magnetic ex-
change [22], it is possible that both magnetic and struc-
tural features should be included in the self-consistency
cycle. Within the atomate framework, it would be pos-
sible to incorporate a workflow that wraps the workflow
developed in this study, in order to alternate linear re-
sponse calculations with geometry relaxation until self-
consistency is achieved.

C. Case study: LiNiPO4

We now present a detailed study on the olivine
LiNPO4, designed to test the results produced by
the linear response workflow. Previous GGA+U and
GGA+U+J studies have attempted to reproduce the
experimentally-observed spin-canting structure and unit
cell shape as shown in Figure 4 [19, 31, 35].

We calculated U and J for this system via spin-
polarized linear response. The spin-polarized linear re-
sponse method introduced in Section II B can be general-
ized to noncollinear DFT using the relationship between
spin-density occupations and the magnitude of the mag-
netic moment: n↑ = 1

2

(
n+ |~m|

)
and n↑ = 1

2

(
n− |~m|

)
[21]. For comparison, we also performed a collinear calcu-
lation, where the magnetic configuration for LiNiPO4 was
obtained by projecting the canted noncollinear structure
shown in Figure 4 along the z-direction. In addition to
one unit cell of the the collinear antiferromangetic (AFM)
configuration, a linear response analysis was performed
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TABLE III: Hubbard and Hund results for Ni-d in
LiNiPO4 (Atom-wise screening)

cell magnetism U (eV) J (eV)
1× 1× 1 collinear 5.43 ± 0.16 0.38 ± 0.07
1× 2× 2 collinear 5.44 ± 0.24 0.54 ± 0.07
1× 1× 1 non-collinear 5.09 ± 0.15 0.42 ± 0.05

on a 1×2×2 supercell. Table III summarizes the results
of the computed Hubbard U and Hund J values. From
this table, it is evident that the U value is significantly
smaller in magnitude with the inclusion of spin-orbit cou-
pling. A possible justification for this behavior is the
introduction of orbital contributions to the total local-
ized magnetic moments with the inclusion of spin-orbit
coupling [22, 71].

1. Canting angle exploration

In order to explore the canting angle experimentally
observed for LiNiPO4 [35], we calculated the energy as a
function of constrained canting angle. The noncollinear
magnetic constraints were performed in VASP in accor-
dance with the method developed by Ma and Dudarev
[72]. We used the experimentally derived spin canted
structure as a reference provided by the Bilbao Crystal-
lographic Server, as shown in Figure 4 [35, 70]. The en-
ergy versus canting angle curve is shown in Figure 5a. We
found that the stable canting direction is in the opposite
direction to the experimentally measured canting angle.
However, this discrepancy with experiment was limited
to the canting direction; the computed stable magnetic
structure still obeyed the symmetry of the Pnm’a mag-
netic space group.

Similarly to the work by Bousquet and Spaldin [19], we
observe an increasing canting angle with Hund J value.
Interestingly, adding a U and J correction to O-p results
in a slightly decreased stable canting angle. However, we
find that in all cases, the computed stable canting an-
gle is significantly less than the experimentally measured
canting angle of 7.8 degrees [35].

The constraining effective site magnetic field, ~Heff
i , can

be described as the following

~Heff
i = 2λ

[
~Mi − M̂0

i

(
M̂0
i · ~Mi

)]
(13)

where ~Mi are the integrated magnetic moments at site i,
and M̂0

i are the unit vectors pointing in the individual
site constraining directions [72]. The x component of the
constraining field (in the direction of canting), Heff

i,x, is
plotted versus the constraining angle in Figure 5b. We
see that where Heff

i,x changes sign corresponds to the min-
imum of Figure 5a.

2. Effect of U and J values on geometry optimization

While the addition of Hubbard and Hunds parameters
go some way to addressing the canting angle of LiNiNO4,
introducing these terms can also alter the geometry of the
system. To explore this effect, we performed structural
relaxations of the system with various combinations of
Hubbard and Hund’s corrections. In each of these struc-
tural relaxation calculations, a maximum force tolerance
was used of 10 meV/Å. All runs included spin-orbit cou-
pling, and were constrained to the 7.8 degrees experimen-
tally observed canting angle.

Table IV lists the optimized unit cell parameters and
volume, compared with the experimentally measured ge-
ometry [35]. For both the PBE+Ueff and PBE+U+J
schemes, adding corrections to the Ni-d space worsens the
geometry relative to the uncorrected PBE geometry (as
earlier observed by Zhou and co-workers [31]. However,
the further addition of corrections to the O-p subspace
reduces the errors by three-fold, resulting in geometries
that are closest to experiment. This is similar to obser-
vations in other studies when applying corrections to O-p
subspaces [5]. We note that applying a +J correction to
non-magnetic O-p states is unconventional. However, it
should be stressed that the projected magnetic moments
on LiNiPO4 remain just below 0.01 µB , with and without
on-site corrections to O-2p states. Meanwhile, we can see
that adding a +J parameter does not significantly alter
the cell parameters.

The Hubbard U and Hund J values used in this
study of LiNiPO4 include those calculated using linear
response, which are approximations of the values that
are reported in Table III. Additionally, we tested the Ni-
d U/J values used in Ref. 19, in order to compare with
previous computational studies of the magnetic structure
of LiNiPO4.

3. Discussion on TM-O bond length versus U, J, and V
corrections

Table IV also presents the change in mean Ni-O bond
length between nearest-neighbor pairs for various on-site
corrections. For the Ni-O bond length it is the same
story as for the cell parameters: applying U and J to
the Ni-d sites worsens the results relative to the PBE re-
sult, but by applying corrections to the O-p channels we
obtain bond lengths that are in closer agreement with
experiment. In Ref. 5, some of us attempted to ratio-
nalize this trend in the computed bond length between
transition metal species and oxygen anions and how it
improves with the introduction of corrections to the O-p
subspace [5]. We suggested that when +U is added to
the Ni-d subspace the resulting potential shift disrupts
hybridization between the Ni-d and O-p orbitals, weak-
ening the bonding between these two elements (and thus
leading to bond lengthening). By applying corrections to
the O-p re-aligns these two subspaces and allows them to
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FIG. 5: (a) Computed relative energy and (b) x-component of effective constraining local magnetic field for various
Hubbard and Hund on-site corrections applied to the Ni-d and O-p manifolds.

TABLE IV: Lattice parameters, cell volume, and mean Ni-O bond length (d) of LiNiPO4 canted structure for
different Hubbard U and Hund J corrections

method Ni-d (eV) O-p (eV) a (Å) b (Å) c (Å) volume (Å3) d (Å)

experiment 10.03 5.85 4.68 274.93 2.086 ± 0.044

PBE 10.09 (+0.6%) 5.92 (+1.1%) 4.72 (+0.9%) 282.09 (+2.6%) 2.099 ± 0.037

PBE+Ueff Ueff = 4
Ueff = 0 10.14 (+1.1%) 5.92 (+1.1%) 4.73 (+1.0%) 283.71 (+3.2%)

Ueff = 7.5 10.07 (+0.4%) 5.87 (+0.3%) 4.69 (+0.3%) 277.56 (+1.0%)

PBE+U+J
U = 5 U , J = 0 10.15 (+1.2%) 5.92 (+1.1%) 4.73 (+1.0%) 284.19 (+3.4%) 2.108 ± 0.039

J = 1 U , J = 9, 1.5 10.07 (+0.4%) 5.88 (+0.4%) 4.69 (+0.3%) 277.86 (+1.1%) 2.095 ± 0.043

“re-hybridize”.
In an attempt to more thoroughly explore this reason-

ing, Figure 6 provides a comparison for the projected den-
sity of states (DOS) of LiNiPO4 for PBE and PBE+U+J
(with and without corrections to O-p). It is difficult to
discern re-hybridization from DOS plots alone.

Without an explicit quantification of hybridization ef-
fects, we have added a derivation in the Supplementary
Information that presents a mathematical expression of
the forces acting on ions due to +U+V corrections. This
result is an extension of the theory put forth by Matteo
Cococcioni in Chapter 4, Section 4.1 of Ref. 10. We ar-
gue that in quantifying the forces on TM-O bond lengths
due to on-site corrections, it is possible to show that the
force contributions due to both +Uγ and +V γγ

′
can, and

should, be treated on the same footing, where γ and γ′

correspond to atomic sites. It isn’t possible to definitively
state the comparative magnitude, or sign, of these force
contributions without additional calculations or simplifi-
cations based on physical intuition. However, the result
suggests that the forces on TM-O bond-length due to O-p
U values will have a comparative magnitude to the forces
due to inter-site Coulomb corrections due to +V .

In the Supplementary Information, we further hypoth-
esize the sign of these force contributions, starting from a
DFT geometry-optimized structure without on-site cor-
rections. Using these assumptions, which are based on
computational trends in bulk TMOs, we conclude that
both applying a +U correction to the O-p manifold and
a +V between TM and O states combine to mitigate the
overestimation of TM-O bond length that arises when
only applying +U to localized states around the TM
species.

IV. CONCLUSIONS

This study provides a high-throughput atomate frame-
work for calculating Hubbard U and Hund’s J values.
Using the spin-polarized linear-response methodology [5],
we generated a database of U and J values for over two
thousand transition-metal-containing materials. This en-
abled the creation of a “periodic table” of U and J values,
where for each element we observe a distribution of Hub-
bard U and Hund’s J values. These distributions exhib-
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FIG. 6: Projected electronic density of states for LiNiPO4 (calculated using experimental unit cell [35]) without
Hubbard or Hund corrections applied, as well as +U and +J applied to Ni-d channels, and both Ni-d and O-p

states, respectively.

ited clustering depending on the corresponding ml and nl
values, but these quantities alone do not prove sufficient
to predict the Hubbard and Hund’s parameters.

In addition to +U+J , inter-site +V corrections will
also contribute to electronic properties. In order to in-
vestigate inter-site screening effects on the resulting U/J
values, we performed a small supercell scaling study for
the full screening linear response analysis for NiO, in ad-
dition to the conventional, atom-wise, screening. This
exploration can be found in the Supplementary Informa-
tion, and the details of the full screening matrix inver-
sion can be found in Appendix A. We found that the
full matrix inversion is much more sensitive to the size
of the unit cell compared to the conventional, atom-wise
screening. The theoretical reasons for this phenomenon
will be an interesting pursuit for future studies, in addi-
tion to the effect of the corresponding V γγ

′
values on the

DFT+U(+J)+V ground-state. Currently, VASP does
not have +V corrections implemented.

In order to test the validity of the linear response im-
plementation, we explored the spin-canting noncollinear
magnetic structure and unit cell shape of LiNiPO4, and
compare the results with previous experimental [35] and
computational [19, 31] studies. Similarly to Bousquet
and Spaldin [19], we observed that the computed stable
canting angle was less than 50% of the experimentally
measured canting angle of nickel magnetic moments in
olivine LiNiPO4, for Ni-d Hund J values up to 2 eV. We
also observed a large sensitivity to the canting angle and
Hund J values. This confirms that Hund J values are
crucial for exploring the properties of transition metal
oxides which exhibit a noncollinear magnetic structure.
In addition to the canting structure of LiNiPO4, we also
presented the relaxed unit cell shape for various Hubbard
U and Hund J corrections. While applying a +U+J cor-
rection to Ni-d resulted in increased disagreement with
experimentally measured unit cell parameters [31], ap-
plying an on-site Hubbard/Hund correction to O-p occu-

pancies greatly improved the agreement of unit cell shape
with experiment [35]. This finding reinforces the impor-
tance of including a +U+J correction to oxygen sites in
order to resolve the accurate bonding behavior between
transition metal species and neighboring oxygen atoms.
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Appendix A: Screening matrix inversions

Below are the matrix representations of the response ma-
trices at each level of screening outlined by Linscott and
others for a system with two Hubbard sites [5].

Point-wise 1× 1 screening:

χ−1 =

(
1/χ11 0

0 1/χ22

)
(A1)

Atom-wise (conventional) 2× 2 screening:

χ−1 =

(
χ11 χ12

χ21 χ22

)−1

(A2)

We can extend this formalism to the multiple site (multi-
site) responses by considering the response matrix for two
sites, χij , where i and j are the site indices.
Point-wise screening:

χ−1 =


(

1/χ↑↑11 0

0 1/χ↓↓11

)
0

0
(

1/χ↑↑22 0

0 1/χ↓↓22

)
 (A3)

Atom-wise (conventional) screening:

χ−1 =


(
χ↑↑11 χ↑↓11

χ↓↑11 χ↓↓11

)−1

0

0
(
χ↑↑22 χ↑↓22

χ↓↑22 χ↓↓22

)−1

 (A4)

Full screening:

χ−1 =


χ↑↑11 χ↑↓11 χ↑↑12 χ↑↓12

χ↓↑11 χ↓↓11 χ↓↑12 χ↓↓12

χ↑↑21 χ↑↓21 χ↑↑22 χ↑↓22

χ↓↑21 χ↓↓21 χ↓↑22 χ↓↓22


−1

(A5)

We note that it is important when performing a linear
response calculation to construct a 2N×2N response ma-
trix where N is the number of Hubbard sites (or N×N in
the case of non-spin-polarized linear response). For bulk

systems often several Hubbard sites will be equivalent,
and one can save computational time by performing lin-
ear response calculations for the set of inequivalent sites,
and then populating the response matrix for all equiva-
lent Hubbard-site pairs.

Appendix B: Post-processing & uncertainty
quantification

In order to extract the response matrices from the raw
DFT data, curve fitting was performed using a least-
squares polynomial fit implemented in numpy [73]. The
uncertainty associated with each computed slope was ob-
tained from the covariance matrix produced as a result
of the least-squares fit. These uncertainty values were
then utilized to determine the errors associated with the
Hubbard U and Hund J values. The error quantification
was performed by computing the propagation of uncer-
tainty based on the Jacobian of each scaling formula for
Hubbard U and Hund J . This method for error propa-
gation is general to multiple levels of screening between
spin, site, and orbital responses.

We begin by considering the following screening matrix
introduced in Equation 11, from which Hubbard U and
Hund J values are derived [5]

fij =
(
χ−1

0 − χ−1
)
ij

Derivatives of the χ−1 matrix with respect to individual
χkl can be obtained by the following relation:

∂

∂χkl

(
χ−1

)
= −χ−1

(
∂

∂χkl
χ

)
χ−1

where
∂

∂χkl
{χ}ij =

{
1 if kl = ij

0 otherwise

∂

∂χkl

{
χ−1

}
ij

= −
{
χ−1

}
ik

{
χ−1

}
lj

(B1)

Using this fact, it is possible to obtain the full Jacobian of
f with respect to response χ matrices which can be used
to obtain the covariance uncertainty matrix associated
with the elements of fij , to a first-order expansion of fij
[74]

Σf = Jχ0Σχ0J
T
χ0

+ JχΣχJ
T
χ (B2)

where Σf is a N2 × N2 matrix (f is N × N). Each el-
ement of Σf ,

{
Σf
}
ij,kl

, corresponds to the covariance

between fij and fkl matrix elements. Σχ and Σχ0
are

the covariance matrices for each {χ}kl and {χ0}kl, and
the diagonal elements are populated using the squared
uncertainty values associated with the slopes fit to the
response data. In addition, Jχ and Jχ0

are the symbol-
ically derived Jacobians corresponding to each response
value, as proposed in Equation B1. Assuming that the
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individual elements of χ and χ0 are independent, we can
assume that Σ covariance matrices are diagonal in order
to make the following simplification:

σ2(fij) =
∑
kl

(
∂

∂ {χ0}kl
fij

)2

σ2({χ0}kl)

+
∑
kl

(
∂

∂ {χ}kl
fij

)2

σ2({χ}kl), (B3)

where σ2(fij), σ
2({χ0}ij), and σ2({χ}ij) correspond to

the diagonal elements of Σf , Σχ0 , and Σχ, respectively.
With the established expression for the uncertainty

values of f in Equation B3, we can express the squared
uncertainty of U , for an atomic site γ, in the next level
of uncertainty propagation,

σ2(Uγ) =
∑
σ,σ′

(
∂

∂fσσ′
γγ

GU (fγγ)

)2

σ2(fσσ
′

γγ ). (B4)

Equation B4 can be extended to an expression of the
squared uncertainty of Hund J , where GU and GJ are
functions of 2×2 sub-matrices along the diagonal of f , as
introduced in Equation 11, and depend on the different
scaling schemes introduced in Ref. 5.

Appendix C: Details of the data behind the periodic
tables

TABLE V: The mean and standard deviation (σ) in the U
and J parameters used in the periodic tables of Figure 1,
alongside the number of samples N .

element
U J

mean σ N mean σ N
Mn 4.710 0.707 94 0.575 0.157 97
Fe 4.545 0.674 78 0.437 1.137 122
V 3.909 0.404 68 0.849 0.538 108
Cu 7.590 0.728 51 1.117 1.083 71
Cr 2.982 0.464 51 0.557 0.089 61
Nb 0.529 0.107 47 0.193 0.054 39
Ti 4.737 0.428 45 0.705 0.861 62
Ta 3.688 0.130 34 0.628 0.079 37
W 1.846 0.213 33 0.385 0.045 33
Co 5.237 0.566 33 0.807 1.361 46
Ag 2.830 0.606 26 0.703 0.131 24
Re 0.598 0.172 26 0.255 0.089 27
Ni 5.847 0.704 25 0.589 0.320 33
Zr 4.382 0.269 24 0.740 0.069 23
Mo 2.431 0.230 21 0.520 0.220 28
Hg 0.620 0.226 21 0.288 0.271 22
Cd 0.350 0.327 19 0.609 0.614 5
Sc 2.506 0.210 16 0.543 0.070 16
Y 4.704 0.393 15 0.825 0.179 5
Pt 1.673 0.318 13 0.322 0.201 14
Os 1.855 0.448 10 0.361 0.087 11
Ru 2.972 0.548 10 0.504 0.292 24
Lu 0.449 0.065 9 0.292 0.072 8
Pd 3.608 0.407 8 0.620 0.106 10
Hf 3.733 0.299 8 0.812 0.122 8
Au 1.186 0.256 7 0.484 0.165 8
Zn 0.530 0.795 5 -0.105 0.433 17
Rh 1.616 0.201 5 0.406 0.065 5
Ir 1.868 0.288 5 0.352 0.283 14
Tc 2.956 0.100 3 0.980 1.247 9
Total 810 987
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