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Abstract

An exact formula is derived, as an integral, for the mean square value of the
winding angle ¢ (with -co< ¢ <o) of Brownian motion (that is, diffusion) after
time ¢, around an infinitely long impenetrable cylinder of radius a, having started
at radius R(>a) from the axis. Strikingly, for the simpler problem with a=0, the
mean square winding angle around a straight line, is long known to be instantly
infinite however far away the starting point lies. The fractally small, fast,
random walk steps of mathematical Brownian motion allow unbounded
windings around the zero thickness of the straight line. A remedy, if it is
required, is to accord the line non-zero thickness, an impenetrable cylinder, as
analysed here. The problem straightaway reduces to a 2D one of winding
around a disc in a plane since the axial component of the 3D Brownian motion is
independent of the others. After deriving the exact mean square winding angle,
the integral is evaluated in the limit of a narrow cylinder a?<<R?, highlighting the
limits of short and long diffusion times addressed by previous approximate
treatments.

Introduction

A freely diffusing point in 3 dimensions, that is, one executing mathematical
Brownian motion has mean square displacement Cartesian components

<Ax2> = <Ay2> = <Az2> =2DAt in an infinitesimal time At, where D is the diffusion

constant, leading to an isotropically spreading Gaussian probability density. The
projection of the motion onto, say, the x,y plane, is thus planar diffusion with the
same diffusion coefficient. In polar coordinates, cylindrical or planar, the angle
coordinate diffusion depends on the radius coordinate r through

(A¢*)=2DAt/r (1)

and r is itself changing, so the angular spreading is more complicated than that of
the Cartesian components. This polar angle can be of interest if the central axis
(around which the angle is measured) has topological significance, as in the
examples mentioned below. For this, one allows the polar angle, the winding
angle of the trajectory about the axis (or the point origin in 2D), the freedom to
vary from —oo to oo rather than being restricted to a range of 2. Optionally one
can visualize the 2D diffusion as taking place on Riemann's flattened helicoid
surface, free to wind to its different sheets.



It would be expected that this problem of polar coordinate evolution, being so
easily stated mathematically, might have physical interest. Such winding
problems do indeed arise: in optics (edge diffraction), quantum mechanics (the
Aharonov-Bohm effect), and polymer physics (linking entanglement).
Historically there were several largely independent (though closely related)
mathematical analyses [Spitzer 1958](diffusion),[Aharonov and Bohm
1959](quantum mechanics), [Ito and McKean 1965](diffusion), [Edwards
1967](polymers) in these fields around the middle of the last century, all in
apparent ignorance of the pioneering 'complex plane of unrestricted angle'
method developed for optics by Sommerfeld [Sommerfeld 1896, 1964]. In all
these, the need for polar coordinates arises because there is a point-like (in 2D)
or straight-line-like (in 3D) feature or obstacle around which the winding is of
interest. (The 2D and 3D versions are either equivalent or very closely related in
all these different contexts). Another slightly more recent point-winding work,
notable for its unusual point of view is that by Michael Berry [Berry 1980] based
on a favourite technique of his: using the Poisson summation formula to convert
between an angular momentum sum and a topological windings sum. Recent
generalizations of point or line-like winding problems with exact results are to
be found in [Hannay 2019][Hannay 2019].

There is a long known but particularly striking feature of polar angle evolution in
this free Brownian motion (that is without obstructions); its mean square angle
change after any time ¢t>0, however small, is infinite. This arises from the fractal
nature, the infinitesimal, infinitely frequent, random walk steps of Brownian
motion, and applies whatever the starting radius R is from the origin (or axis).
Formally the infinity comes about because the spreading Gaussian probability
density centred at a point at radius R is non-zero at the origin for any ¢t>0. This

suffices: the rate of increase of the mean square angle <¢2> is, from (1) together

with the fact that (pA¢) =0, the integral over all r >0 of 2D/r?x2nrdr x
probability density, which therefore diverges non-integrably at the origin.

This possibly unphysical feature is remedied, in perhaps the simplest way, by
according a non-zero radius a to the obstacle (point or line), creating an
impenetrable reflective cylinder (or disc in 2D). Mathematically this means that
the probability density obeys the Neumann condition of zero gradient, zero flux
through the boundary. The corresponding problem with Dirichlet boundary
condition of perfect absorption, which therefore loses probability, was studied
somewhat differently [Rudnick and Hu1987]. Some subsequent literature, for
both Neumann and Dirichlet boundary conditions, contains assorted
approximate treatments, including long and short diffusion times [Grosberg and
Frisch 2003], [Smith and Meerson 2019], [Huber and Wilkinson 2019]. The last
of these, which treats the Neumann case, provides precise agreement with the
long time limit (13) of our exact result (8), and is rederived in appendix A under
the title 'truncated free space model'.

In the present paper we supply an exact formula, as an integral, for the mean
square winding angle, starting at a point at radius R, with the Neumann



boundary condition applied on the disc (or cylinder) boundary with radius a
centred on the origin. In the limit of a narrow cylinder a?<<R? the exact formula
integral can be evaluated in terms of special functions, and simplified further in
the two limits of short and long diffusion times. For the narrow cylinder, the
exact result is matched pretty well by the 'truncated free space model'
(specifically, by equation (A2) in appendix A).

Brownian motion, that is, diffusion, has, via the formula (1) for the mean square
change in winding angle, a uniquely simple consequence for the accumulated

total mean square winding angle <¢2> . Itis not shared by other statistics, for

example <¢4> . The Markov property of the motion (independence of the future

on the past) makes the accumulation simply algebraically additive
<(¢ + A¢)2> = <¢2> + <A¢2> . Suppose that after time ¢t the diffused probability

density P(r,t) is known, and the <¢2> is also known. Then the mean square
angle <(¢ + A¢)2> after time t+At instead of ¢, is dictated by P(r,t). It supplies,

via (1), the increment of <A¢2>, re-starting from each point r reached after time

t, weighted by P(r,?).

As a very brief example, one can straightaway extract the leading term in the
long time limit ¢ — o since eventually the P(r,r) approximates a Gaussian
exp[-r’ /4Dt]/(4xDt) that has spread to be so wide that its centre can be taken
as the disc centre. Then from (1),

d(p*)di= [ :’ exp[—r>/4Dt]/ (A4xDt)(2D | r*)2xrdr
=E,(a’/4Dt)/(2t) =~ -log(a’ / 4Dt)/(2¢) for large t. The indefinite integral of this

over tis log’(a’/4Dt)/ 4+ constant . With a suitable choice of constant this

matches the leading term from the exact analysis (13) from (8). The growth of
the mean square winding angle is thus very slow in comparison with the linear
growth of mean square displacement.

So the central ingredient for finding the mean square winding angle will be the
probability density P(r,?)in the plane, spreading by diffusion, having started at
t=0 as delta function at a point at radius R. This diffusion takes place in the
presence of an impenetrable disc of radius a with the consequent Neumann
boundary condition of zero radial derivative of P(r,t) there. Actually, the

circular symmetry of the disc means that the considerably easier probability
distribution P(r,?) from an initial ring 6(r —R)/2mR, of radius R suffices in place

of P(r,t). This azimuthal average P, the zeroth component of the angular

decomposition of P, is the only feature required, because P is to be weighted
and integrated (2) with the isotropic function 1/r? arising from the angular
diffusion (1). The initial ring spreads (both inward and outward) by diffusion,

producing the circularly symmetric probability density P(r,7), given in (6) below
and accessed as described in the next paragraph. Finally, once the weighted



integral of P(r,?) is found, a time integral of the rate of increase of the mean

square winding angle over the duration of the Brownian motion will yield the
desired mean square winding angle (2).

The circularly symmetric spreading probability density P(r,?) is to be accessed
via its Fourier transform W(r,w) with respect to time, which is also circularly

symmetric (the specific relationship is (4) below). This Fourier transform,
incorporating a zero probability density for negative time, is complex like a
wave. In fact it has a direct physical interpretation in terms of a more familiar
problem of wave scattering by an obstacle. The wave here is the one that comes
from a ring source of radius R with a strength that continuously oscillates at a
definite angular frequency w (like a vertically vibrating circular dipper in a
shallow water wave 'ripple tank'). Wave scattering theory prescribes the
desired solution straightforwardly in principle, though with awkwardly long
intermediate formulas like (5) below. An illustrative example of the wave
method in a simpler context (no disc) is provided in appendix B. An alternative,

scattering-free, route to the same result for P is derived in an appendix C, taking
the limit of a large finite domain (an annulus).

The wave W(r,w) obeys the equation V*W +k*W =-5(r - R)/ (27R) where the

right hand side represents a ring source of waves. This equation is the time
Fourier transform of the diffusion equation with a §-ring of probability
introduced at t=0: DV>P =P /8t -8(t)5(r—R)/2xR . The k% term on the left
comes from the Fourier transform of (d/9¢) with a change of variables iw=D k2.
(Although physically k can be interpreted as a wavenumber, with iw=D k? as the
diffusion dispersion relation, it is mathematically just change of variable; the
Fourier transform is in time, not space). The boundary condition on the disc is
the same one for both problems, the zero normal derivative, Neumann condition.
There is an additional condition on W(r,w) arising from the vanishing of
probability for negative time. It has already been incorporated into the
description in terms of a 'source’ rather than a 'sink’ of waves. Since the waves
come from a source (the oscillating ring) they must obviously be outward-

moving outside R (that s, o H(" (kr)exp(=iwt) ~ (1/ Jkr)exp(ikr - iwt) for large r).

Inward moving waves would correspond to zero probability density for positive
time instead.

Exact formula
For Brownian motion in 2D, the diffusing probability density P(r,t), its mean

square winding angle in the presence of an impenetrable disc of radius a, for a
motion of duration ¢ starting at radius R is given, following (1), by

(#)= far2nf, ren) g



This representation was that used in a recent approximate 'truncated free space’
model [Huber and Wilkinson 2019] reproduced in appendix A. It is specific to
the mean square statistic (as mentioned above) and seems more manageable,
analytically, than the more flexible one used by [Rudnick 1987] for the same
problem with an absorbing boundary condition. The latter involves awkward
derivatives of Bessel functions with respect to their order.

As explained in the introduction the probability density can be replaced without
approximation by its azimuthal average, which is that from an initial ring instead
of the initial point

Pa.y=—— [P0 8(¥I-r) d*r (3)
2117 Ir'l>a
This is to be accessed via its Fourier transform, specifically:

- 1 ® . 1 2 2 .
P(r,t))=—— Y(r,w)exp(—iwt)dw = —— Y(r,—ik"D)exp(=k~Dt)(-2iD)kdk
()= [ Wrwexp-iondo = — [, W( )exp(~k*Dr)(=2iD)

=% I _Z‘P(I‘,—ikzl)) exp(-k’Dr) kdk (4)

for t>0, or zero for t<0. Here V denotes a symmetrically bent contour of
integration arising from the change of variables iw=Dk?. It runs from left to right,
with a right angle bend at the origin. It can be straightened to become the real
axis for t>0, and fully folded up vertically for t<0, yielding zero. It is the wave
W(r,—ik’D) that obeys the wave equation V*W +k*W =-5(r - R)/ (27R)
mentioned in the introduction (being the Fourier transform of the diffusion
equation). It has a continuous ring source at radius R, characterized by having a
jump of radial gradient of (-1/2mR) across the circle of radius R. Itis to be
solved with Neumann boundary conditions (zero gradient) on the disc radius a.
The circular symmetry means the solution is everywhere a linear combination of
the two Bessel functions J, andY,. Also required, as explained in the

introduction, is that the waves must be outgoing in nature outside radius R
(~ H{"(kr)=J,(kr)+iY,(kr)) consistent with there being a source of waves and

having zero value of the probability density for t<0. Inside the source ring,
radius R, the wave has to be a (different) linear combination of the Bessel
functions J,(kr) andY,(kr) satisfying the Neumann boundary condition (the

presence of the disc means that there is no need to exclude the Bessel function
Y, (kr) since its infinity at the origin is inside the disc). The result is the rather

formidable looking expressions for ¥ (soon to be simplified):

H"(kR)(d/ da)Y,(ka)
4i(0/da)H " (ka)

H"(kR)(d/da)J ,(ka)
4i(8/da)H " (ka)

W =, (kr) for r<R,

l-Yo(kr)l



J,(kR)(d/ da)Y, (ka) - Y,(kR)(d/ da)J ,(ka)
4i(8/da)H " (ka)

W =H"(kr) for r>R. (5)

The Wronskian relation J,(kR)(d/dR)Y,(kR)-Y,(kR)(d/dR)J,(kR)=2/(mR) has
already been used to simplify the (common) denominator. With its Bessel
functions of kr, (5) satisfies the wave equation VW + kW =0 other than at r=R.
It is constructed to have zero normal derivative at r=q, and is outgoing at infinity.
Also it is straightforward to show, that it has the required jump of gradient
(-1/27mR) at r=R. As a wave it is complex valued, but, as in the disc-free example
in appendix B, some algebra shows that the imaginary part is an even function of
k so that, multiplied by exp(—k”Dt)kdk and integrated over all k, it is eliminated.
The real part has odd and even pieces. Only the odd piece contributes, and it can
be extracted using J,(-z)=J,(z) and Y,(-z) =Y,(z)+2iJ,(z) for z>0. The unit

step functions implicit in (5), distinguishing r<R and r>R disappear, and the
result is a real integral over positive k only

X

P(.1) = 1 fm(JO (kr)Y, (ka) =Y, (kr)J,(ka))(J,(kR)Y,(ka) = Y, (kR)J, (ka))
T oo J,(ka)* +Y,(ka)’
x exp(—k’ Dt )kdk

(6)
As a brief check on this, for a zero radius cylinder (a=0) one has (since Y1

infinitely dominates both numerator and denominator, and cancels) (6) reduces
to

— 1 p= 5 1 1 (r* +R?) (rR)
Px,t)y=—| J,(kr)J,(kR) exp(=k"Dt)kdk = — ——exp| - 1
(r,0) = —— [ Jokr) Jo(kR) exp(=k’Dr) 3 p( by

(7)

[DLMF 2017 formula 10.22.67] which is a long known result e.g.[Kleinert 2006]

for P with no cylinder present, but still with azimuthal averaging. A one-line
derivation of it (A1) is supplied as part of the 'truncated free space model’,
appendix A.

Proceeding to the formula for <¢2>, only the exponential in (6) depends on time

so the time integration from 0 to t in (2) can be implemented straightaway, and
only the single J,(kr) and Y, (kr) depend on r. Therefore, from (2) and (6) we

have our exact result (with sample graphs given as the solid curves in fig 1):



(97)=2 f:% (1-exp(=k*Dr)) x

{f:oJo(kr)alr/i’}Yl(ka)—{ijO(kr)dr/r}Jl (ka)

KR)Y, (ka)— Y, (kR)J, (k
J,(ka)* +Y,(ka)’ x [J,(kR)Y,(ka)~Y,(kR)J, (ka)]

(8)

The two braced functions have no name, but are recognized functions (of ka
here) with documented convergent series [DLMF 2017 formulas 10.22.39 and
10.22.40] and straightforward asymptotic expansions. The three factors in the
integrand separated by the symbols x are of the respective forms: a function of k
and ¢, of k and a (in fact of ka), and of k and a and R. These will play a part in the
evaluation of the k integral in the limit described in the next section. First
though, there follows a brief comment on each of the three factors separated by
the two symbols x.

In front of the first x symbol there is an everywhere positive function of k (>0)
(as well as of time ¢; this is the only appearance of t). Graphed against kit has a
single extremum and infinite area under it due to the long tail. For small and
large k respectively it has the forms kDt and 1/k.

Next the function of the product ka (large bracket) is an everywhere negative
function. Graphed against k it has a single extremum and finite area (—%n /a).

For small and large ka respectively it has the forms %Jrka(y + log(é ka) and

-2 /(ka)* where y is Euler's constant.

Finally, after the second x symbol, the function of the three quantities k, a, R,
(the square bracket) has the small k form (-2 /mwka) coming from the Y1 Bessel
function, and is oscillatory with amplitude decaying proportional to 1/k for large
k. This square bracket factor contains the only R dependence of the integrand.
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Fig 1. Mean square winding angle (radians?) as a function of time (specifically
Dt/a?). The two pictures show different time ranges, and for each there are
three pairs of curves shown, appropriate to values of the ratio R/a = 1,3,9 of start
radius to disc radius. For the left picture each pair of graphs compares the exact
formula (8) with the truncated free space model (A2). Not shown, since they
coincide visually with the exact curves, are numerical simulations of the
Brownian motion. For the right picture each pair of graphs compares the exact
formula (8) with the long time asymptotic formula (13). Not shown are curves
for the truncated free space model (A2), since, over most of the plot, they
coincide visually with the exact curves.

Limit of narrow cylinder a?<<R?, highlighting short and long times

The integrand in (8) for the mean square winding angle simplifies in the limit of
narrow cylinder: a(cylinder radius)<<R (starting radius) allowing analytic (albeit
obscure) evaluation. The limits of small and long diffusion times yield results in
terms of elementary functions. First the scaled integration variable p=kR can be

introduced, then the quantity ka becomes pa/R and the quantity k~/ Dt becomes
o~ Dt/ R. The two Bessel functions Jo(p) and Yo(p) in the square bracket of (8)

have a width scale of order unity, decaying and oscillating for large p. Thus the
functions of ka, namely Jo(ka) and Yo(ka) and the large bracket in (8), are all
explored only for small values of their argument pa/R. Substituting the forms
given in the previous section for this small argument limit:



(v*)-

»1—exp(-p°Dt/R*) (:rpa pa )
2 +log(—
f 5 S +log(C)

(9)

2R dp

pa
- = |-v afud
Jo(p)( ﬂpa) o(p)2R

Further, theYo term can be ignored in the small a limit because of its a? prefactor
(both of the integrals f:YO(p)pdp (=-2/m) and f:YO(p)plog(p)dp are finite

numbers if naturally interpreted). In contrast the Jo term tends to infinity from
the log(a) term.

This integral can then be evaluated exactly, though it is rather long and involves
one somewhat obscure term at the end:

0
= 2(-y-log(a/2R)) E,(R* / 4Dr)

<¢2> ~ zfo“’("y' log(;pa/m) (1-exp(=p>D1 / R*)) J(p) dp (10)

2
- %(—% +(y—1log(4))’ +10og(R* / Dt)(2y +log(R* /16 Dt)) (11)
+ %(y—log(le2 / Dt)) E,(R* /4Dt) + iL”(—Rz / 4Dt)

where the double prime means second derivative of the Laguerre function with
respect to order at order equals zero. The bottom two lines of (11) come from
the piece of (10) with its first bracket replaced by —log(p)/ p. The top line is

simpler and comes from that bracket replaced by (—y —log(a/ 2R)) / p. Perhaps

most interesting are the short and long diffusion time limits of mean square
winding angle.

First the limit of the mean square winding angle around a narrow cylinder (10)
for short diffusion time ¢ is evaluated. Part of it, 2(—y —log(a/2R)) E,(R*/4Dx),

from the top line of (11), exposes and resolves the apparent immediate infinity of
the mean square winding angle around a line (zero radius cylinder) as a clash of
limits. The -log(a) gives infinity, and the exp(-constant/t)/t (from E1) gives
zero. For any finite time their product gets large for small g, but if t is small a
needs to be extremely small, of order exp(-t constant exp(constant/t)).

The remainder, coming from the lower two lines of (11), though not relevant for
the clash of limits, is interesting in that it supplies the expected initial linear
growth of the mean square winding angle that is present even if the cylinder
radius a is zero. Itis most easily accessed from the log part of (10) directly

2f :(#) (1-exp(-p”Dt/ R)) J,(p) dp



~ —(2Dt/R?) f:log(p) J,(p) pdp = 2Dt/ R? (12)

where the exp has been expanded for small ¢, and the resulting integral has been
interpreted in a natural way with a temporary (not shown) Gaussian
convergence factor exp(-¢p?) yielding exp(-1 /45)(—Ei(1 /4e)— 210g(2£)) /4¢.

This has the limiting value -1 as ¢ tends to zero.

Now the large t limit of (11) is considered (that is: the narrow cylinder, long time
limit a2<< R?<<Dt of the exact formula (8)). The obscure term L"(-R*/4Dt) has

alarge t form J(R?/4Dt)’ which vanishes in the limit, so it is ignored like other

such terms. The rest of the terms have standard large t expansions yielding

R’ a R’ a
<¢2> ~ ilog2(4Dt) + (;y+ log(E))log(élDt) +ylog(E) +i7 4w (13)

This result agrees with that from the 'truncated free space' model of [Huber and
Wilkinson 2019] (after the correction of an additive constant in the model
result). It is re-derived in appendix A, leading to (A5) which is identical to (13).

The leading term in (11) is proportional to the square of log(t) as anticipated in
the introduction. A similar leading term was found by [Rudnick and Hu 1987]
for the absorbing cylinder case mentioned earlier. A separate, square of log(t)
dependence, was found early on [Spitzer 1958] for the winding angle probability
distribution (rather than its mean square value here). It was found to be a
Lorentz (or Cauchy) distribution for the long time limit with a zero radius
cylinder. That distribution has infinite mean square, so is not informative for the
present non-zero radius cylinder (except insofar as the exact result (8) diverges

as a tends to zero; from (6), the integral of (P /r*)2zrdr diverges due to small r)

Appendix A. Truncated free space model

Here we present a careful re-derivation of the narrow cylinder, long time limit of
the mean square winding angle around the cylinder in the truncated free space
approximation Huber and Wilkinson 2019]. The model initially considers the
cylinder absent, finding the azimuthally averaged probability density in free
space Brownian motion - an azimuthally smeared Gaussian spreading diffusively

=Jo 420 7P ADt 27 272Dt ADt 2Dt
(A1)

(This formula appears above, in (7), as the a=0 case of the general formula (6)).
Now the cylinder is introduced as a virtual presence. Some of the probability
density is inside it as well as outside it, which is an unphysicality of the model,
though after a long time this inside probability diminishes towards zero. The
model simply treats the inside probability as zero, truncating the free space

_ - 2 2 2 2
o 1 [ rP4+R-2rReosg\dg _ 1 1 (_(r +R))IO(rR)



probability density. The mean square winding angle is then, using (2) with (7)
for P instead of (6):

(9")=fLaranf, 1R LF

11 exp(_(rz +R2))I ( rR ) 2xrdr (A2)

_f dr'2 ' 0 ' 2
« 27 2Dt 4Dt 2Dt r

It is this integral form that is used for the graphical comparison with the exact
formula (8) in fig 1.

The next step rewrites (A2) with a trick of a standard type, adding and
subtracting an easy term (with a view to allowing an integral to be extended to
the whole space).

R e C
ftdtf ( (r’ +R)) !

The second line here is the main contribution to <¢2> requiring the analysis that

(A3)

follows below. It tends to infinity as t tends to infinity or as a tends to zero (the
former being expected for on-going diffusion, and the latter being the striking

infinity for a narrow line-like cylinder highlighted in the main text). The first line
of (A3), on the other hand, is upper bounded by a constant, 72/12, which is the
value obtained in the relevant limit where t=co and a=0. (Then the t'integral,

gives 10g(2C /(C+C* =1 )) where C = %(r / R+ R/r) and the r one yields the
m2/12 in the next equations (A4) and (A5)).

ek

r

(A4)
i odt’ R?
=— + | —exp|- E,
12 02¢ 4Dt 4Dr"




2 2
=ﬂ—+f , eXp(=5) El(a—zs) ds
12 R*/4Dt 2S R

7t e exp(-s) a’
~E+fR2/4Dt2—S }/+10gF+lOg(S) ds

T’ a R’ = exp(=s)
=E+(}/+logF E|— +fR2/4Dt2—s10g(S) ds (A5)

2 2 2
JT a R
=—+|y+log— | E,| —
12 (y ng) 1(4Dt)

+ ([;exp(-s)1c>g2(s)]°° w1 f ;/mexp(-s)logz(s)ds)

R*/ADt

Here, after the top line, there is only one further approximation step: that in the
fourth line, replacing E1 by the first two terms of its series. The other steps are:
introducing a changed variable to get the third line and integrating by parts
(differentiating the exp part) to get the fifth line. Finally in the sixth line, we can
approximate E1 as before, and take the lower limits in the long bracket as zero
with vanishing error as t tends to infinity. The square brackets term then
vanishes, and the final integral has the known result 7> /6 +y>. In all one has

2

2\ 1 o R 1 R’ (a) R’ (Cl) v om
~ _lo +_vlo +log| —[lo +ylog| — |+ —+—
<¢> ) g(4Dt) 24 g(4Dt) \&) %\ apr )T R) T4 T s

(A6)

This reproduces the result eqn (23) of [Huber and Wilkinson 2019] apart from
the additive constant 72/12 (from (A4)) which was missed in that analysis. With
the corrected constant, the result (A6) for the narrow cylinder, long time, limit of
the truncated free space model (A2), equals that, (13), from the exact formula (8)
in the same limit.

Appendix B; Free space with initial ring

This example is of an initial probability density that is a sharp circular ring or
ridge at radius R from the origin 8(r - R)/ (2 R) diffusing unobstructed in the
plane. The example contains, in a less complicated setting, all the manoeuvres
are relevant for the main text problem of diffusion obstructed by the
impenetrable disc (projected cylinder). It makes appearance elsewhere, once as
the zero radius disc limit (8) of the general formula (7) for probability density,
and again as a starting point, (A1), in the analysis in the 'truncated free space' of
appendix A. In the latter case it is generated by superposing an infinity of point
sources, as in (A1), around a circle. But to represent it again in terms of waves
(which we need in the obstructed problem), one seeks the time Fourier

transform W(r,w)= ) P(r,1)exp(iwt)dt , of the spreading probability density
—00 p

(now inwards as well as outwards from the initial ring).



This wave obeys the Helmholtz wave equation with the steady ring of sources on
the right hand side V°W +k°W =—(1/22R) 8(r - R). The solution ¥ is now a
combination of Bessel and Hankel functions of order zero with the following
properties. The ring delta function on the right, coming from the analogous term
in the diffusion equation, means that W, though continuous everywhere, has a
discontinuity of gradient of (-1/27nR) across the ring at r=R. As before, to
correspond to there being a source, it must be outgoing at infinity, indeed
everywhere outside the ring, thus ~ H\" (kr). Inside the ring it must be smooth at
the origin, thus ~ J,,(kr), without any Y, (kr) which is infinite at the origin. This
part of the wave in the inner region r<R, can be interpreted as an equal

superposition of incoming and outgoing waves. The solution with these features
is

Y= i“" (kr)H" (kR)O[R - r]+ H" (kr)J,(kR)O[r - R]) (B1)

with O as the unit (Heaviside) step function. Its gradient change at the ring is
(ik 1 4)(J,(kR)H," (kR) - H"(kR)J, (kR)) , in which the large bracket is a
Wronskian (2i/mkR), so this correctly equals (-1/2mR). The consequent
probability density is obtained, analogously to (4), by multiplying by the
Gaussian and integrating (again the V bending of the contour supplies the time
Fourier transform of the probability density).

P(r,t) = % ) :i(JO (kr)H"(KR)OLR - r1+ H" (kr)J(kRYOLR - r1)exp(-k Dt kdk

(B2)
The long bracket simplifies because its part even in k cancels in the integration.
Using H" (&) = J,(§)+iY, (&) and J(=&) = J,(£), and ¥, (=5) = ¥,(§) +2iJ, (&) (for
(>0 and real), the unit step functions disappear (since O[R-r]+0O[r-R]=1) and
the integral reduces to one over positive k only

2L [70,kr) Jo(kR) exp(~k>Dt)k dk (B3)
T 0

(the evaluation of which is given in (6)). That completes the obstruction-free
preliminary example.

Appendix C: Annulus alternative for the diffused ring probability density P(r,t).

An alternative approach to deriving P(r,) that avoids the complex wave
scattering is noted here. Instead it involves taking the limit of a finite domain: an
annulus with an indefinitely large outer circular boundary of radius L, as well as
the inner disc one of radius a. The diffusion equation then has discrete



eigenvalues, and the limit L — o, when they are dense, is needed. The
probability density is given exactly in terms of the (orthonormal) eigenfunctions
Yy, (r=aJ,(k,r)+ Y, (kr),and eigenvalues k, (with decay eigenfrequencies

Dky?):

Pamas(6,0)= ¥ p, 10,1y (k,r) + B,Y, (k,r)lexp(=k, D) (C1)

with the real coefficients a, and 5, and p» and kj to be found. The Neumann
boundary conditions at r=a and r=L are «,J,(k,a)+ B,Y,(k,a)=0 and

a J (k,L)+ Y (k L)=0. These determine the eigenvalues k, as follows.

Dividing each of these two boundary condition equations by \/a’ + 3. one has
the simultaneous equations cosy J,(kL)+siny Y,(kL)=0 and
cosy J,(ka)+siny Y,(ka)=0, where a 'phase angle' y has been introduced. The

solutions are pairs of numbers ky, v, represented graphically as the intersections
of the zero contours in the k, y plane of each of the two functions on the left hand
sides of the simultaneous equations. Fig 3 shows, for example, the eigenvalues k;,
for an annulus with a=1 and L=5. The intersections come in degenerate
(vertically separated) pairs corresponding to * the same eigenfunction. The
lowest eigenvalue, call it ko, is zero, and its eigenfunction is a constant

/(> =a*).

Higher eigenvalues k, with n>1 (which have eigenfunctions with n concentric
nodal circles in the annulus), become more and more evenly spaced in k as the
contours become straighter forming a uniform lattice. The straightness and
spacing come from the trigonometric form of /o and Yo for large argument

J,(x)=~N2/mxcos(x=3mw/4), and Y, (x) =2/ mwxsin(x-3x/4). The
simultaneous equations thus become cos(kL-y-37x/4)=0 and
cos(ka—y—=3m/4)=0; then the gradients of the two types of contour dy/dk are

respectively equal to L and a. The ultimate spacing 4k is given by setting the
difference of these gradients times Ak equal to m, thus Ak=m/(L-a).

The normalization condition for each eigenstate is

I Lo do )+ BY, (k)P 2rdr =1 (€2)

For n=0 (with its ko=0), f0o=0 and ao=1/+n(L* —=a*). For n=1 the values a1 and S

are complicated since k1L is of order unity, not large or small as L — . The
same holds for all low values of n, indeed any fixed value of n. However as

L — o the eigenvalues k, become dense (the steep set of lines in fig 2 becoming
steeper and more closely packed). In the absence of bad behaviour of the
normalization for the low states, any finite number of them can be ignored. For
any fixed k (not n), in the large L limit the integrals (C2) are (infinitely)
dominated by their slowly decaying large r tails. One has for the three terms in



the integrand of (C2): fL Ji(k,r)2mrdr =~ fL Y, (k,r)2mrdr = 2L/k, and the cross

term is of order unity and therefore negligible. Combining this with the
Neumann condition at r=a, one has for large n

a, = Y,(kanfk, | 2L 1T} (k,a)+ Y} (k,a)

(C3)
B, = —J,(ka)Jk, 2L /T3 (k,a)+Y? (k,a)

The Neumann condition at r=L in principle determines the exact values k; as
illustrated in fig 2, but the only feature that will be needed when they become
dense as L — o is the density. As has already been noted the asymptotic
density (for ka>>1) is 1/Ak=(L-a)/m. The density for smaller k values, ka<<1, is
1/Ak=L/m (since the dashed contours are in their curved zone, nearly
horizontal). As L — » both extremes are L/m to leading order.

Finally to find the p, one uses the initial condition, a delta function ring at radius
r=R. The orthonormality of the eigenfunctions 1, means that the delta function

can be represented by E Y, "W, (r)=0(r-r")/2xr" with r'=R. Then the

coefficients p, are given by

L
po= Y W Ry, 0w, (n2ardr (C4)
The integral yields 6mn so p, =y, (R)=c, J,(k,R)+ B,Y,(k,R) and thus

Pais(6,6)= Y [@,Jy(k,R)+ BY, (k,R)[et, Jo (k) + B,Y, (k,r)lexp(-k;Dr)  (C5)

Replacing the sum with an integral E - f L/ mdk and substituting for a, and S,

ﬁannulus (I‘,t) =
1 fw [/, (kr)Y, (ka) = Y, (kr)J, (ka)][J, (kR)Y, (ka) - Y, (kR)J, (ka)] exp(=k>Di)kdk
2w Y0 J}(ka)+Y; (ka)

(Co)

The L has cancelled out and this reproduces (6) for P(r,r).

|
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Fig 2. Annulus eigenvalues (a=1, L=5) as the horizontal coordinate k of
intersections of contours representing boundary conditions at r=L and r=a
(dashed). The vertical coordinate y (with —-m<y<m) is an abstract 'phase’ as
described in the text.
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