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Abstract
Over the recent years, there has been an extensive adoption
of Machine Learning (ML) in a plethora of real-world ap-
plications, ranging from computer vision to data mining and
drug discovery. In this paper, we utilize ML to facilitate ef-
ficient film fabrication, specifically Atomic Layer Deposition
(ALD). In order to make advances in ALD process develop-
ment, which is utilized to generate thin films, and its sub-
sequent accelerated adoption in industry, it is imperative to
understand the underlying atomistic processes. Towards this
end, in situ techniques for monitoring film growth, such as
Spectroscopic Ellipsometry (SE), have been proposed. How-
ever, in situ SE is associated with complex hardware and,
hence, is resource intensive. To address these challenges, we
propose an ML-based approach to expedite film thickness
estimation. The proposed approach has tremendous implica-
tions of faster data acquisition, reduced hardware complex-
ity and easier integration of spectroscopic ellipsometry for in
situ monitoring of film thickness deposition. Our experimen-
tal results involving SE of TiO2 demonstrate that the proposed
ML-based approach furnishes promising thickness prediction
accuracy results of 88.76% within ± 1.5 nm and 85.14%
within ± 0.5 nm intervals. Furthermore, we furnish accuracy
results up to 98% at lower thicknesses, which is a significant
improvement over existing SE-based analysis, thereby mak-
ing our solution a viable option for thickness estimation of
ultrathin films.

1 Introduction
Atomic Layer Deposition (ALD) is a method of film growth
that makes use of two or more sequential self-limiting sur-
face reactions. With ALD, one has the capability of produc-
ing thin films with a resolution in the order of angstroms. It
is crucial to be able to measure the thickness of these films.
Methods to determine film thickness include Scanning Elec-
tron Microscopy (SEM), Atomic Force Microscopy (AFM),
X-ray Reflectometry (XRR), and Spectroscopic Ellipsome-
try (SE). Of these techniques, SE provides the opportunity
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Figure 1: Overview of the proposed ML film thickness esti-
mation framework.

for in situ tracking of film thickness (Langereis et al. 2006).
SE makes use of an elliptically polarized light source and a
detector to measure the change in polarization of light in-
cident on a sample. By using physics-based optical models
to describe the substrate and film, thickness can be tracked
in real-time. This real-time tracking can also provide insight
into an important parameter in ALD, namely growth rate.

In order to execute the physics-based optical modeling, a
modeling software must be used. This software and associ-
ated model libraries are supplied by the manufacturers of the
SE equipment. The software makes use of a material model
and attempts to fit that model to the raw polarization data ob-
tained by the detector. By fitting this model to the raw data,
properties like refractive index (n), extinction coefficient (k),
and film thickness can be extracted. While this is an invalu-
able tool for ALD processes, it needs to be noted that SE is
a technique in which the raw data must be fit to established
models to obtain film properties.

Another possibility for analysis of SE data is the use of
machine learning. In situ SE produces a large volume of data
—thousands of data points for a single process. If physics-
based models are known a priori, SE data and correspond-
ing film thicknesses may be used to train an ML algorithm.
Once trained, the algorithm could be used to extract thick-
ness directly, without the need for a modeling step. Thus,
the physics-based model serves only as a base on which an
algorithm is trained.

Machine learning is becoming increasingly popular for
identifying key descriptors for a given material (Ramprasad
et al. 2017). ML has been used to assist in analysis of
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Fourier transform infrared spectroscopy (FTIR) (Enders
et al. 2021), Raman (Lussier et al. 2020), and X-ray diffrac-
tion (XRD) (Park et al. 2017) for multi-component films
with complex spectra. Correspondingly, a recent study used
SE data along with transmission and reflection spectra to
train an ML algorithm (Liu et al. 2021). In this paper, we
propose the use of ML algorithms to predict film thickness,
given in situ SE data of ALD TiO2. The physics-based model
furnishes the thickness values at various Ψ and ∆, which
constitutes the data used to train ML models. The trained
models are subsequently utilized to determine thickness of
TiO2 films, as illustrated in Figure 1, which illustrates the
proposed approach. The key contributions of this paper are:

• This paper proposes an approach that incorporates ma-
chine learning to facilitate efficient estimation of film
thickness in ALD. The proposed approach expedites film
thickness estimation, with reliable prediction performance
and consistent accuracy.

• Our extensive experiments on TiO2 substrate demonstrate
that the proposed approach can predict film thicknesses
with an accuracy of 88.76% within ±1.5 nm and 85.14%
within ±0.5 nm.

The rest of the paper is organized as follows. Section 2
outlines the background and principal motivation for this re-
search. The proposed ML framework is explained in detail
in Section 3, while the experimental results are analyzed in
Section 4. Finally, the paper is concluded in Section 5.

2 Background and Motivation
The use of ML to interpret characterization data is an ef-
ficient method to extract film properties —provided large
databases are available for training. Prior research has in-
vestigated thin film characterization data involving SE using
ML (Liu et al. 2021). This approach takes advantage of a
large database of optical constants, namely refractive index
(n) and extinction coefficient (k), and creates an iterative
scheme for error minimization between the measured data
and the one predicted by the ML model. Given the number
of unknowns, the above approach relies on two measurement
modalities – SE and reflectometry (and related transmission
measurement) to define the problem in a complete manner.
The transmission measurements pose a challenge for opaque
substrates and it is not known how well the approach may
work for films with interfaces and mixed compositions.

As an alternate to the above approach, we use ML-based
algorithms to predict thickness solely from SE data. This
data has been collected as part of in situ experiments con-
ducted on an ALD system with an SE attached to its cham-
ber. The data is a priori modeled for its thickness using a
physics-based optical model. The optical modeling of the
SE data provides us with the film thickness as a function of
deposition time and serves as the training set for the ML al-
gorithm. Here, we note that the quasi-continuous nature of
the thickness data is important since it allows the ML algo-
rithm to be trained across a wide range of thickness without
having to resort to individual discrete experiments. In this
context, the use of in situ data is particularly advantageous.

Figure 2: Classes and subclasses constituting TiO2 SE data.

3 Proposed Methodology
3.1 Dataset Creation
In this paper, we consider TiO2 film thickness data, which
as mentioned previously is quasi-continuous in nature, un-
til 43 nm. First, this data is discretized by considering the
integer values of thicknesses, as shown in Figure 2. In ad-
dition to the variation of thickness with time, Figure 2 also
depicts the different classes and subclasses comprising the
classification data. Classification is achieved by defining a
step-size of 0.2 nm and selecting films that range between x
and x+1 nm, where x corresponds to a specific integer value
of thickness. For example, films of thickness values 1 nm,
1.2 nm, 1.4 nm, 1.6 nm, and 1.8 nm are clubbed together
and represented as a class comprising thickness of value 1
nm. Subsequently, these integer film thicknesses are binned
into C classes, which have labels ranging from 0 to C − 1,
by employing a user-defined threshold of k nm. The value
of C depends on the final thickness value of the film, T , as
defined in equation 1.

C = T/k (1)

Hence, each class comprises a maximum of k subclasses (for
k thickness values). Depending on the value of T , the num-
ber of subclasses constituting the final class ranges between
one and k.

Next, we leverage this multi-class dataset to train vari-
ous ML algorithms towards a multi-class classification task.
While binary classification involves two classes, multi-class
classification is associated with a range of classes, thereby
aligning with our objective of classifying Ψ and ∆ into one
of C classes. Modeling such multi-class classification tasks
primarily involves prediction of Multinoulli probability dis-
tribution for all data points; this, in our context, is equivalent
to predicting the probability of a pair of Ψ and ∆ points be-
longing to each class.

3.2 Application of Machine Learning
The ML approach is evaluated on five algorithms, namely
(1) k-Nearest Neighbors (kNN), (2) Random Forest (RF),
(3) Decision Tree (DT), (4) Support Vector Machines
(SVM), and (5) Logistic Regression (LR) using the curated



Figure 3: Illustration of distribution of Ψ (left-axis) and ∆
(right axis) with respect to wavelength. Additionally, the first
N (where Nε{100, 150, 200, 250, 300, 400, 500, 600}) data
points constituting this distribution are also depicted here.

multi-class data. These algorithms have been selected due to
their proficiency and efficiency in multi-class classification
tasks (Sarker et al. 2021). Furthermore, the aforementioned
algorithms are robust, immune to overfitting during training,
and require minimal to no prior knowledge about the distri-
bution of input data.

Since the Ψ, ∆ and thickness correlations have been es-
tablished previously, it is convenient to train ML models.
The training and test data are selected randomly, in a 95:5
split. First, a comparative analysis of the classification per-
formance of all algorithms is performed, where the confi-
dence in predicting a pair of Ψ and ∆ into one ofC classes is
evaluated. For example, in our experiments, the final thick-
ness (T ) of the TiO2 film is 43 nm. By using a threshold (k)
of 3 nm, we obtain C = 15 from Equation 1. The ML model
furnishing best accuracy is selected for subsequent analyses.

Next, this best model is assessed by incorporating a two-
level evaluation, where the accuracy of classifying data
points into different subclasses, in addition to different
classes, is examined. The class- and subclass-level accuracy
scores are labeled as level-1 accuracy and level-2 accuracy,
respectively. The term level-1 accuracy describes the effi-
cacy of classifying data points into one of C classes and
has a granularity of k nm. As mentioned earlier, the val-
ues of C and k associated with our experiments are 15 and
3, respectively. Hence, each class comprises 3 subclasses,
corresponding to 3 thicknesses. On the contrary, level-2 ac-
curacy is associated with an increased granularity of 1 nm,
which represents the effectiveness of predicting film thick-
ness, down to 1 nm. To better comprehend model perfor-
mance, we analyze classification accuracy scores at different
thicknesses, in order to provide an insight into the variation
of accuracy with classes and thicknesses.

3.3 Downsampling
The distribution of Ψ and ∆ values with respect to wave-
length tends to contain a certain degree of redundancy, as
depicted in Figure 3. Hence, we incorporate downsampling
in our approach, which entails removal of Ψ and ∆ values
from our curated dataset. The goal is to understand how lim-
ited spectroscopic data might impact the classification per-
formance of ML algorithms. The results of this analysis have
huge implications of faster data acquisition, reduced hard-
ware complexity (i.e., costs) and, subsequently, easier inte-
gration of SE for in situ monitoring of thin film deposition

processes, in general.
Towards this end, we employ two downsampling tech-

niques, namely random and selective downsampling. Ran-
dom downsampling involves removal of random Ψ and ∆
values from the dataset. Selective downsampling, on the
other hand, involves removal of specific Ψ and ∆ values. As
illustrated in Figure 3, distinct features, such as peaks and
valleys, appear in a specific subset of the ellipsometry spec-
tra, which corresponds to a specific number, N , of Ψ and ∆
samples. Hence, we select these N samples from each class
and subclass, while eliminating the rest. This analysis pro-
vides us an opportunity to explore the connection, if any, be-
tween specific Ψ and ∆ samples and prediction performance
of ML models.

4 Experiments
4.1 Experimental Setup
The substrate used for deposition in our experiments was
silicon with native oxide. The substrate was ultrasonically
cleaned in a mixture of isopropyl alcohol (IPA) and deion-
ized H2O and dried with compressed air. The film was
deposited using a Fiji Gen2 ALD System from Veeco®.
The film grown was TiO2. The process consisted of alter-
nate pulses of titanium tetraisopropoxide (TTIP 97%, Sigma
Aldrich) and deionized water.

The film thickness was tracked using an M-2000 spectro-
scopic ellipsometer from J. A. Woollam®. The light source
and detector were mounted to the Fiji ALD system with
2.75′′ conflat flanges and quartz windows. The windows are
purged, protecting them from deposition, with 50 sscm of
gaseous argon. The angle of incidence of the light on the
sample was 69.5°. The wavelengths used for data acquisi-
tion ranged from 271 - 1688 nm, for a total of 661 different
wavelengths per scan. The change in polarization from in-
cident light to the reflected light was measured for the film.
The quantities Ψ and ∆ are the raw data obtained from the
ellipsometer, and they are representative of the change in
polarization. A model was then used to fit the Ψ and ∆ as
functions of wavelength to obtain film thickness.

The optical model for the film was created using the Com-
pleteEase software from J.A. Woollam®. The model for
the TiO2 was a Cauchy-based model (Woollam 2014). This
model is part of a physics-based approach to estimate film
thickness using SE data. To estimate film thickness via ma-
chine learning, the large amount of data generated by in situ
SE must be used to train an algorithm. The details of this
process are given below.

The TiO2 film thickness data ranges from 1 to 43 nm,
i.e., the final thickness value of the film is T = 43 nm. By
employing a threshold k = 3 nm, a classification dataset is
curated to include 15 classes, as derived from Equation 1.
Hence, each class comprises three subclasses, except for the
final one, which has one subclass. For example, class 0 con-
sists of thickness values 1 nm, 2 nm, and 3 nm, while class
14 encompasses 43 nm. This dataset is used to train and eval-
uate various ML algorithms. Subsequently, a two-level clas-
sification strategy is adopted, as explained in Section 3.2,
where the first level, called level-1 classification, is associ-
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Figure 4: Accuracy results of various ML classifiers.

ated with predicting one class (among the available 15) for a
pair of Ψ and ∆ values, thereby having a granularity of 3 nm.
On the other hand, the second level of classification, called
level-2 classification, is associated with increased granular-
ity of 1 nm, and furnishes the thickness value best describing
a pair of Ψ and ∆ values.

4.2 TiO2 Ellipsometry Results

Comparative Analysis This case study compares the per-
formance of the various ML algorithms, as demonstrated
in Figure 4. The Y-axis (accuracy) illustrates the probabil-
ity of classifying a data point into one of the 15 classes of
the curated dataset to within ±1.5 nm accuracy, i.e., level-
1 classification. kNN furnishes the best accuracy score in
this experiment, where each data point is classified with a
confidence of 85.25% using five neighbors (Fix et al. 1989;
Altman 1992). The accuracy values reported by DT, SVM,
and RF are 81.32%, 83.84%, and 84.1%, respectively. The
hyperparameters associated with SVM are a third-degree ra-
dial basis function and unit-value regularization coefficient.
RF, which is an ensemble of decision trees, requires a min-
imum of two samples to split an internal node, similar to
DT. We do not specify the maximum depth of the tree in ei-
ther algorithm, thereby providing an opportunity for the tree
to grow until all data samples are classified. In this exper-
iment, we consider 40 trees in RF. LR, on the other hand,
uses a regularization coefficient of value 1 and Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs) opti-
mization technique (Fix et al. 1989; Altman 1992) to calcu-
late the parameter weights that minimize the cost function.

LR performs the worst among all the models, producing
an accuracy of 29.24%. This can be attributed to LR be-
ing inept at solving non-linear problems owing to its linear
decision surface, the requirement of having an exhaustive
dataset, and its sensitivity of outliers in the dataset. Due to
its low accuracy score, LR is not considered for future ex-
periments. Additionally, SVM too is excluded from subse-
quent case studies for two reasons, (1) high training time
and (2) sub-par classification performance. kNN, which fur-
nishes the best results among the five algorithms, is incorpo-
rated into all our subsequent analyses on TiO2 SE data.
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Figure 5: Accuracy results of (a) baseline and (b) improved
kNN model.
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Figure 6: Random downsampling results of kNN classifier
for TiO2 SE data.

Multi-level Classification The second case study evalu-
ates the performance of kNN with increasing granularity in
the prediction of film thickness. These results assume im-
portance from a process perspective since it is imperative
to comprehend the uncertainty in accuracy (i.e., delta thick-
ness), which is inherently present in ML algorithms, and the
uncertainty that is propagated as a function of the true phys-
ical thickness of the film.

The accuracy scores of kNN at both level-1 and level-2
are illustrated in Figure 5. We have updated the associated
hyperparameters to bolster its classification performance. By
increasing the number of neighbors from 5 to 21, we furnish
an accuracy of 86.45%, which is an enhancement of 1.2%
over the baseline model (85.25% accuracy).

As illustrated in Figure 5, the baseline level-1 and level-2
accuracy scores of kNN on TiO2 SE data, which are 85.25%
and 71.44%, respectively, using five neighbors. The im-
proved classification performance of the kNN model is also
demonstrated in Figure 5, with level-1 accuracy now being
86.45% and level-2 accuracy being 73.5%, an increase of
1.2% and 2.06%, respectively.

Random Downsampling The third case study describes
the results of random downsampling of data, where random
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Figure 7: Selective downsampling results of kNN classifier.

Ψ and ∆ values are removed from the curated dataset. In
this experiment, we seek to understand the correlation be-
tween spectroscopic data and classification performance of
ML models, specifically the impact of limited SE data on
classification accuracy. The downsampling rate is varied be-
tween 0 and 90% and the performance of the kNN algorithm
is evaluated on this downsampled dataset. Figure 6 depicts
the variation of level-1 and level-2 accuracy values at dif-
ferent downsampling rates for TiO2 data. Level-1 accuracy
varies between 86.45% and 85.62% at 0% and 85% down-
sampling rates, respectively, furnishing a maximum accu-
racy drop of 0.83%. Level-2 accuracy, on the other hand,
varies from 73.5% at 0% downsampling to 67.02% at 90%
downsampling, furnishing an accuracy drop of 6.48%.

From these results, we can infer that kNN is generally
resilient to downsampling. This has major implications as
it indicates that thickness prediction via ML can be effec-
tively accurate at level-1 classification (to within ± 1.5 nm
uncertainty) of a TiO2 film ≤ 43nm, even if 90% of the
spectral data is eliminated. For level-2 classification, how-
ever, negligible performance degradation is furnished until
65% downsampling. Hence, the above results are indicative
of possible redundancy in the Ψ and ∆ samples constitut-
ing SE dataset, which can be eliminated without inducing
significant performance degradation. This subsequently mo-
tivates us to pursue selective downsampling and investigate
the possible correlation between specific Ψ and ∆ samples
and classification performance of ML models.

Selective Downsampling Since the ultimate objec-
tive involves ascertaining film thickness from minimum
wavelength-based SE data samples, the fourth case study
entails selective (non-random) downsampling of Ψ and ∆
values in the curated dataset. Towards this end, we select the
first N samples from each class and subclass, starting from
271 nm, while eliminating the rest, as shown in Figure 3.
The Ψ and ∆ values illustrated here correspond to a single
spectrum, i.e., fixed thickness. Features such as peaks and
valleys appear in the spectra for wavelengths ≤ 750nm.

In this analysis, we consider N ranging from 100 to 300,
in step sizes of 50. This corresponds to a spectral window
from 271 to 427 nm and 271 to 743 nm for the first 100
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Figure 8: Variation of accuracy of kNN classifier with (a)
classes and (b) thickness for selective downsampling.

and 300 samples, respectively, in step sizes of 76 nm. Fig-
ure 7 demonstrates the variation of level-1 and level-2 clas-
sification accuracy scores for TiO2 data. While we obtain the
lowest scores of 82.21% at level-1 and 73.38% at level-2 for
the first 100 samples, improved classification performance
is produced at higher values of N. The best level-1 accu-
racy and level-2 accuracy are 88.76% and 85.14%, which are
furnished when the first 300 samples constitute the dataset.
The baseline accuracy values, which are obtained without
performing downsampling, are 86.45% and 73.5% at level-1
and level-2 classification, respectively, as shown in Figure 5.
This approach of selective downsampling furnishes results
exceeding the baseline accuracy values of kNN, by 2.31% at
level-1 and 11.64% at level-2.

The variation of level-1 accuracy and level-2 accuracy
with thickness for the first 300 samples are illustrated in Fig-
ure 8a and Figure 8b, respectively. While we obtain level-1
prediction accuracy of 98.1% for a thickness in bin [1 - 3
nm], the accuracy degrades to 76.11% for a thickness in bin
[43 nm]. The difference in accuracy at different thicknesses
is clearly illustrated by Figure 8b; accuracy varies from
98.5% at t = 0 to 84.21% at t = 43nm. From these graphs,
it is evident that the classification performance of kNN de-
grades at higher thicknesses, which is attributed to the com-
plex features associated with them. However, these results
of high accuracy at lower thicknesses bode well for ML al-
gorithms to predict thickness of ultrathin films (≤ 10nm),
which is always a challenge for SE data analysis.

Furthermore, the enhanced classification performance
furnished by selective downsampling is accompanied by re-
duced data dimensionality; by selecting the first 300 out of
the entire 661 data samples, we produce a dataset compris-
ing a fraction (45.39%) of the original SE data, thereby fur-
nishing 54.61% compression. Hence, such an approach fa-
cilitates an efficient, simple, and cost-effective thickness es-
timation procedure from SE data.

5 Conclusion
This paper proposes an ML approach to estimate thicknesses
of films, fabricated via ALD, in an efficient manner. Com-
plex hardware required to monitor and estimate film thick-
ness in existing in situ SE techniques renders them resource
intensive. Our proposed approach incorporates ML to ex-
pedite film thickness estimation in a consistent and reliable



manner. The Ψ and ∆ values obtained from physics-based
optical models constitute our training dataset. The trained
ML models are subsequently utilized to predict film thick-
ness for a pair of random Ψ and ∆ values. Our experimental
analyses demonstrate promising results of 88.76% predic-
tion accuracy within ±1.5 nm and 85.14% accuracy within
±0.5 nm. Furthermore, we furnish prediction accuracy re-
sults up to 98% at lower thicknesses, which significantly out-
performs existing SE-based analysis. Hence, the proposed
ML approach is a promising, alternate solution for thick-
ness estimation of ultrathin films. The implications of the
proposed approach are faster data acquisition, reduced hard-
ware complexity associated with film estimation and, subse-
quently, easier integration of spectroscopic ellipsometry for
in situ monitoring of film thickness during deposition.
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