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We analyze a two-body nonhermitian two-site Sachdev-Ye-Kitaev model with the

couplings of one site complex conjugated to the other site. This model, with no

explicit coupling between the sites, shows an infinite number of second order phase

transitions which is a consequence of the factorization of the partition function into

a product over Matsubara frequencies. We calculate the quenched free energy in two

different ways, first in terms of the single-particle energies, and second by solving

the Schwinger-Dyson equations of the two-site model. The first calculation can be

done entirely in terms of a one-site model. The conjugate replica enters due to non-

analyticities when Matsubara frequencies enter the spectral support of the coupling

matrix. The second calculation is based on the replica trick of the two-site partition

function. Both methods give the same result. The free-fermion partition function can

also be rephrased as a matrix model for the coupling matrix. Up to minor details,

this model is the random matrix model that describes the chiral phase transition

of QCD, and the order parameter of the two-body model corresponds to the chiral

condensate of QCD. Comparing to the corresponding four-body model, we are able to

determine which features of the free energy are due to chaotic nature of the four-body

model. The high-temperature phase of both models is entropy dominated, and in both

cases the free energy is determined by the spectral density. The chaotic four-body

SYK model has a low-temperature phase whose free energy is almost temperature-

independent, signaling an effective gap of the theory even though the actual spectrum

does not exhibit a gap. On the other hand the low-temperature free energy of the

two-body SYK model is not flat, in fact it oscillates to arbitrarily low temperature.

This indicates a less desirable feature that the entropy of the two-body model is not

always positive in the low-temperature phase, which most likely is a consequence of

the nonhermiticity.
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I. INTRODUCTION

In 1971 George Uhlenbeck asked Freeman Dyson “Which nucleus has levels distributed

according to the semi-circle law?”1. As answer to his criticism, Dyson published his last

paper on Random Matrix Theory2 in which he introduced a Brownian motion process to

construct an ensemble of random matrices with an arbitrary level density, in particular the

nuclear level density given by the Bethe formula3,

ρ(E) = bec
√
E. (1)

Uhlenbeck could have asked a different question, namely “Is the nuclear force an all–to–all

many-body interaction?” which is the case for the Wigner-Dyson ensembles. This question

led French, Wong, Bohigas, Flores and Mon4–8 around the same time to the introduction

of the two-body (which in the SYK literature is known as a four-body interaction) random

ensemble which reflects the two-body nature of the nuclear interaction. It took until 2015,
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through the seminal work of Kitaev9,10, to realize that Uhlenbeck’s criticism could also have

been addressed by this work. The two-body random ensemble, in particular the version of

the model introduced by Mon and French8, is now known as the complex Sachdev-Ye-Kitaev

(SYK) model11,12.

Since the pioneering work of Wigner, Dyson, Gaudin and Mehta2,13–20 random matrix

theory has been applied to virtually all areas of physics and even outside of physics, see

the comprehensive review by Guhr, Müller Groeling and Weidenmüller21 . In this paper

we study nonhermitian random matrix theories which were first introduced by Ginibre22,

but have also been applied to many areas of physics. For example, the distribution of

poles of S-matrices23–25, the Hatano-Nelson model26–28, dissipative quantum systems29–32,

QCD at nonzero chemical potential33–41 and PT-symmetric systems42, to mention a few.

Nonhermitian random matrices were classified43–47 along the lines of the classification of

Hermitian random matrices2,20,48,49. A recent review of nonhermitian physics was given by

Ashida, Gong and Ueda50.

The possibility of a nonhermitian version of the Sachdev-Ye-Kitaev (SYK) model was

originally suggested by Maldacena and Qi51,52 as a two-site SYK model for Euclidean worm-

holes without explicit coupling between the two SYK models (the only coupling is through

the randomness) and was studied in detail in subsequent papers47,53–55. In this model, the

Left (L) and Right (R) partition functions are complex conjugate to each other, and each

of them has N/2 Majorana fermions so that energy levels of the q-body Hamiltonian

H = HL ⊗ 1 + 1⊗HR, (2)

are given {Ek +E∗l } if the {Ek} are the eigenvalues of HL. Therefore the partition function

factorizes as

Z = ZLZR = ZLZ
∗
L (3)

and is necessarily positive definite.

One of the main conclusions from these studies is that the chaotic model has a first

order phase transition which separates the low-temperature phase from the high-temperature
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phase. In the high-temperature phase, the average of the partition function factorizes

〈Z〉 = 〈ZL〉〈Z∗L〉 (4)

and the free energy follows from the eigenvalue density of the one-site Hamiltonian. Because

of the complex phases of the eigenvalues the average partition function is exponentially

suppressed due to cancellations. In the case of maximum nonhermiticity, when the eigenvalue

density is isotropic in the complex plane, the partition function 〈ZL〉 becomes temperature

independent and the free energy is determined by the total number of states F = −T N
2

log 2.

It is clear that this result cannot be correct at low temperature when F → −|E0| with E0

the ground state energy. The only possibility is that the low-temperature phase receives

contributions from the correlations of the eigenvalues of the L and R Hamiltonians. Indeed,

for the q = 4 SYK model the free energy in the low-temperature phase is entirely determined

by the two-point correlations of the eigenvalues54,55. The reason that this can happen is the

exponential suppression of the single site partition function due to the complex phase of the

eigenvalues. The dynamics of the q = 4 SYK model is chaotic with eigenvalue correlations

in the universality class of the Ginibre model. The universal two-point correlations give

rise to a temperature-independent free energy at low temperatures. This also explains that

results obtained by solving the Schwinger-Dyson equations are very close to the results

for the Ginibre random matrix ensemble. We conclude that the quantum chaotic nature

of the model is responsible for a nearly temperature-independent1 free energy in the low-

temperature phase when an actual spectral gap is absent. As a consequence, the free energy

of the low-temperature phase of the q = 2 SYK model, which is integrable and has no

spectral gap, has to be different. The goal of this paper is to solve the q = 2 nonhermitian

SYK model to study the effects of chaos and integrability on the phase diagram.

As was the case for the q = 4 SYK model54,55, in this paper we evaluate the quenched free

energy in two structurally different ways. First, from the eigenvalues of the SYK Hamiltonian

giving the quenched free energy, and second, from the solution of the Schwinger-Dyson

equations56,57 of the SYK model in ΣG formulation, giving the annealed free energy of

the two-site SYK model. For q = 2 it is possible to perform the spectral calculation both

analytically and numerically, while for q = 4 this could only be done numerically by an

1 There are small deviations from −E0 when the temperature becomes closer to Tc. The nature of these

deviations is not clear.
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explicit diagonalization of the SYK Hamiltonian. Also the Schwinger-Dyson equation can

be solved analytically for q = 258,59 while for q = 4 we had to rely on numerical techniques.

The ΣG formulation of the SYK model is based on the replica trick for the quenched free

energy60

logZ = lim
n→0

Zn − 1

n
, (5)

which is known to fail61–63 in particular for nonhermitian theories64. However, by now

it has been well understood how to refine the replica method so that its results can be

trusted33,65–71. For Hermitian models the naive replica trick usually gives the correct re-

sult for a mean field analysis. This is also the case for the ΣG formulation of the SYK

model72,73. However, as should be clear from the arguments given above, the naive applica-

tion of the replica trick to the one-site nonhermitian SYK model gives an incorrect result for

the quenched free energy of the low-temperature phase. Instead, the quenched free energy

of the one-site Hamiltonian is given by the replica limit of the product of the partition func-

tion and its complex conjugate. In the case of the one-site partition function, the replica

symmetry is broken in the sense that the conjugate replica emerges due to quenching and

couples to the original replica. The emergence of conjugate replicas for quenched replicas is

well-known in nonhermitian RMT27,66,74 and QCD at nonzero chemical potential33,34,70,75.

We start this paper with a short introduction of the SYK model and the replica trick.

Since the q = 2 SYK model is a Fermi liquid, we can calculate the quenched free energy from

a free-fermion formulation of the model, see section III. In section IV we calculate annealed

free energy for the ΣG formulation of the SYK model for one replica and one conjugate

replica. The final result is in complete agreement with the result from the free-fermion

calculation. The ΣG action of the q = 2 SYK model is quadratic in G so that it can be

integrated out exactly. The result resembles a random matrix σ-model. In section V, we

show that this σ-model can also directly obtained from the free-fermion description of the

q = 2 SYK model. Concluding remarks are made in section VI and some technical details

are worked out in two appendices. In Appendix A we show that the occupation number

representation also applies to the nonhermitian SYK model, and in Appendix B, we work

out the free-fermion calculation for the case the nonhermiticity is not maximal.
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II. THE q = 2 NONHERMITIAN SYK MODEL

The Hamiltonian of the q = 2 nonhermitian SYK model is given by

H = i

N/2∑
i<j

(Jij + i kMij)ψ
i
Lψ

j
L − i

N/2∑
i<j

(Jij − i kMij)ψ
i
Rψ

j
R

≡ HL ⊗ 1 + 1⊗HR, (6)

where ψ are Majorana fermions and J,M are random couplings. A general q-body Hamil-

tonian would have products of q Majorana fermions. The tensor product structure on the

second line of equation (6) follows from an explicit Dirac-matrix representation of ψ:

ψiL =
1√
2
γi ⊗ 1,

ψiR =
1√
2
γc ⊗ γi,

(7)

where γi are the Dirac matrices in N/2 dimensions and γc is the corresponding chirality

matrix (assuming N/2 is even). The variances of the couplings are given by

〈J2
ij〉 = 〈M2

ij〉 = v2/(N/2) (8)

where v is a dimensionful parameter that sets the physical scale. In a representation where

the left gamma matrices are real and the right gamma matrices are purely imaginary, the

Hamiltonian of a single SYK is anti-symmetric under transposition. The eigenvalues, which

are representation independent thus occur in pairs ±λk. In this representation we also have

that HL = H∗R (with the minus sign from the sum included in HR). The spectrum of the

Hamiltonian (6) is given by ±λk±λ∗l if the λk are the eigenvalues of HL with a positive real

part. The partition function of this Hamiltonian is necessarily positive

Z = ZLZR = |ZL|2, (9)

where ZL(R) is the partition function of the L(R) Hamiltonian. The average partition func-

tion will be denoted 〈Z〉 with the appropriate subscripts. Contrary to q > 2 the SYK

Hamiltonian for q = 2 is a Fermi liquid with single particle energies ±εk given by the eigen-
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values of the coupling matrix, which is an anti-symmetric nonhermitian random matrix.

Therefore the quenched partition function is given by

〈logZ〉 =

〈
log

[∏
k

(e−βεk + eβεk)
∏
k

(e−βε
∗
k + eβε

∗
k)

]〉
=
∑
k

〈
log(e−βεk + eβεk)

〉
+
∑
k

〈
log(e−βε

∗
k + eβε

∗
k)
〉
, (10)

and

〈logZ〉 = 〈logZL〉+ 〈logZR〉 = 2〈logZL〉. (11)

For the last equality we have used that the average density of the single particle energies

satisfies 〈ρsp
L (z)〉 = 〈ρsp

R (z∗)〉. Therefore, the quenched free energy can be obtained from the

one-site partition function, which is a direct consequence of the Fermi-liquid nature of the

q = 2 SYK model.

When we evaluate the quenched free energy of the SYK partition function in the ΣG

formulation, we will employ the replica trick

−βF = 〈logZ〉 = lim
n→0

〈
Zn − 1

n

〉
. (12)

For large N , the partition function can be evaluated by a saddle point approximation. As

was argued in54,55, since the partition function Z = ZLZ
∗
L is positive definite, the replica

trick is expected to give the correct mean field result with unbroken replica symmetry,

〈Zn〉 = 〈Z〉n. (13)

Therefore, the quenched free energy is equal to the annealed free energy

〈logZ〉 = log〈Z〉, (14)

and it can be calculated by evaluating the partition function for one replica of the two-site

Hamiltonian, in other words one replica and one conjugate replica in terms of the one-site

Hamiltonian. If the (left-right) replica symmetry is broken, we have that

〈(ZLZ∗L)n〉 = 〈ZLZ∗L〉n 6= 〈ZL〉n〈Z∗L〉n (15)
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so that it is not guaranteed that the quenched free energy can be obtained from the one-site

annealed free energy. We will see in section IV that is the case for the low-temperature

phase of the ΣG formulation of the SYK model. In the literature, the coupling between

replicas has been related to the formation of wormholes between black holes76,77.

Before calculating the annealed free energy from the ΣG formulation of the SYK model,

in the next section, we will evaluate the average partition function, using the properties of

the spectra of anti-symmetric nonhermitian random matrices.

III. THE FREE ENERGY OF THE TWO-SITE NON-HERMITIAN SYK

FOR q = 2

Results for the q = 4 nonhermitian SYK model54,55 suggest that quantum chaotic dynam-

ics is responsible for a replica-symmetry-breaking (RSB) phase at low temperatures with a

temperature-independent free energy. Indeed, the free energy of an integrable nonhermitian

model of random uncorrelated energies55 exhibits a distinct low-temperature phase with a

temperature-dependent free energy. However, the random energy model lacks a natural in-

terpretation as a many-body model. In this section, we test this hypothesis by evaluating

quenched free energy of the two-site q = 2 non-Hermitian SYK model which is a Fermi liquid

with energies given by sums of single particle energies. Therefore the many-body eigenvalues

obey Poisson statistics which is consistent with a vanishing Lyapunov exponent78 (obtained

by calculating the Out of Time Order Correlator). We will calculate the quenched free en-

ergy from the single-particle energy density which is constant inside an ellipse in the complex

plane. As argued in previous section, the quenched free energy can be obtained from the

one-site partition function. In section IV we will see that the same result can be obtained

from the SD equation of the two-site model.

After a change of basis (see appendix A for a demonstration), the one-site Hamiltonian

can be expressed as a free Fermi liquid with single-particle energies which are the eigenvalues

of the antisymmetric coupling matrix 2. To be concrete, the Hamiltonian HL in (6) becomes

HL =

N/4∑
k=1

εk(2c̃kck − 1), (16)

2 Since the coupling matrix is anti-symmetric, it eigenvalues occur in pairs as ±εk. This affects the level

correlations close to ε = 0, but they converge rapidly to the level correlations of the Ginibre ensemble

away from ε = 0. These correlations do not enter in the free energy discussed below.
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where εk are the eigenvalues of the coupling matrix i(Jij + ikMij)/2 with positive real parts

and hence the sum runs up to k = N/4 instead of N/2. Just as in the Hermitian case59, we

have

[HL, c̃k] = εkc̃k, [HL, ck] = −εkck. (17)

with

c̃2
k = 0, , c2

k = 0, {ck, c̃l} = δkl. (18)

Hence, we conclude the many-body energies of HL are given by filling N/4 free fermions into

the single particle states of (16). We note that generally ck is not the Hermitian conjugate

of c̃k, and hence the energy eigenstates are not necessarily orthogonal to each other, which

is consistent with the nonhermiticity of the Hamiltonian.

In this free-fermion representation, the quenched free energy of the one-site SYK model,

which we shall see to be identical to half the two-site model, is simply

FL = −T 〈logZL〉 = −T

〈
N/4∑
k=1

log
(
e−εk/T + eεk/T

)〉

= −T
2

∫
d2z〈ρ(z)〉 log

(
2 cosh

z

T

)
,

(19)

where 〈ρ(z)〉 is the averaged spectral density of the coupling matrix i(Jij + ikMij)/2. Notice

that since εk are only half of the levels of i(Jij + ikMij)/2 (those with positive real parts),

the integral in the second equality should have only covered half of the support of ρ(z).

However, since the integrand is invariant under z 7→ −z, we simply integrate over the whole

support and compensate it by a pre-factor of 1/2.

At large N , the averaged spectral density 〈ρ(z)〉 is a constant inside the ellipse29,79–81

ρ(z) =
N/2

πε0υ0

θ

(
1− x2

ε20
− y2

υ2
0

)
, (20)

where

ε0 =
1√

1 + k2
v, υ0 =

k2

√
1 + k2

v (21)

and v is the physical scale introduced in equation (8).
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For k = 0 the eigenvalues are real with spectral density given by

ρ(x) =
N

πε20

√
ε20 − x2. (22)

The free energy was already calculated before10 and is given by

− βF

N/2
=

T

πε20

∫ ε0

−ε0

√
ε20 − x2 log

(
2 cosh

x

T

)
. (23)

Using the Weierstrass product formula for coshx, this can be expressed as

− βF

N/2
=

1

πε20

∫ ε0

−ε0

√
ε20 − x2

(
log 2 +

∞∑
n=0

log

(
1 +

4x2

ω2
n

))
, (24)

where ωn are the Matsubara frequencies

ωn =
2π(n+ 1

2
)

β
. (25)

The integral over x is known analytically resulting in

− βF

N/2
=

1

2
log 2 +

∑
n≥0

{
log

[
1

2
+

1

2

√
1 +

4v2

ω2
n

]
+

√
1 + 4v2/ω2

n − 1− 4v2/ω2
n

4v2/ω2
n

}
. (26)

We recognize the expressions for the Green’s function and the self-energy in the ΣG

formulation59 suggesting that this result can also be obtained from the solution of the

SD equations, see section IV.

Next we discuss the case k = 1 where the ellipse becomes a circle with ε0 = υ0 (for the

general elliptic case see appendix A). The free energy (19) can be expressed as

− FL
(N/4)T

=
1

πυ2
0

∫
Dυ0

d2z log
(

2 cosh
z

T

)
=

∫ 1

0

rI(r)dr,

(27)

where Dυ0 represents a disk of radius υ0 centered at the origin, and in the second equality
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Re(z)

Im(z)

+ ωn
2υ0

− ωn
2υ0

r

FIG. 1. A contour that gives In(r)+branch cut contributions. The integrand of (30) is analytic in

the interior of this contour.

we have scaled the integral to the unit disk where

I(r) =
1

π

∫ 2π

0

dφ log

(
2 cosh

υ0r cosφ+ iυ0r sinφ

T

)
=

1

πi

∮
Sr

dz

z
log
(

2 cosh
υ0z

T

)
,

(28)

where Sr is a circle of radius r. We can directly evaluate I(r) by expressing the cosh as a

product over Matsubara frequencies using the Weierstrass formula,

I(r) = 2 log 2 +
∞∑
n=0

In(r), (29)

where

In(r) =
1

πi

∮
Sr

dz

z
log

(
1 +

4υ2
0z

2

ω2
n

)
. (30)

We note that the integrand of In has two cuts and no pole: the two cuts start at ±iωn/2υ0

and extend horizontally to the negative infinity. If the circle Sr does not touch the cuts

(r < ωn/2υ0), then In = 0; if Sr intersects with the cuts (r > ωn/2υ0), then we choose the

contour to narrowly avoid the cuts (see figure 1), then we have that the sum of In and the

cut contributions vanishes, so that the problem reduces to evaluating the contributions from

the parts that surround the cuts. Hence we conclude

12



In(r) =


−2

∫ 0

−
√
r2−ω2

n/4υ
2
0

dx

(
1

x+ iωn/2υ0

+
1

x− iωn/2υ0

)
= 2 log

(
4υ2

0r
2

ω2
n

)
if ωn < 2υ0r,

0 if ωn > 2υ0r.

(31)

Equation (29) finally truncates to

I(r) = 2 log 2 + 2
∑

0<ωn<2υ0r

log

(
4υ2

0r
2

ω2
n

)
. (32)

The free energy in (27) is then given by

− FL
(N/4)T

=

∫ 1

0

rI(r)dr

= log 2 +

∫ 1

ωn
2υ0

∑
0<ωn<2υ0r

2r log

(
4υ2

0r
2

ω2
n

)
dr

= log 2 +
∑

0<ωn<2υ0

[
−1 +

ω2
n

4υ2
0

− log
ω2
n

4υ2
0

]
.

(33)

In section IV we will show that this result can also be obtained from the solutions of the

Schwinger-Dyson equations.

We observe that a phase transition occurs at temperatures for which an additional Mat-

subara frequency enters in the sum of equation (33). This happens for υ0

πT
− 1

2
= m (m being

non-negative integers) resulting in a series of critical temperatures parameterized by m:

Tc,m =
2υ0/π

2m+ 1
, (34)

where υ0 = v/
√

2 according to equation (21). For T > Tc,0, there are no Matsubara frequency

satisfying 0 < ωn < 2υ0, and no more phase transitions can occur.

We re-iterate that, because of the complex-conjugation invariance of the average single-

particle spectral density, we have

〈logZL〉 = 〈logZ∗L〉, (35)

so that the two-site quenched free energy just doubles that of the one-site and the free energy

density remains the same, that is, F/N = FL/(N/2).
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SYK, q = 2, k = 0.1

N/2 = 256
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SYK, q = 2, k = 0.5

N/2 = 256
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SYK, q = 2, k = 1.0

N/2 = 256

Analytical

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.45

-0.40

-0.35
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T

-
F (T)

N /2

SYK, q = 2, k = 1.0

N/2 = 128
N/2 = 256

Analytical
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-0.304

-0.302

-0.300
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-0.296

T

-
F (T)

N /2

FIG. 2. The free energy of the q = 2 SYK model for k = 0.1 (top), k = 0.5 (middle) and

k = 1 (bottom). The dots denote the results obtained by averaging over an ensemble of 1000

configurations for N/2 = 128 (black) and N/2 = 256 (green) Majorana fermions. The right figure

is magnification of the left figure. The N/2 = 128 data are only shown in the right figure. The red

curve represents the analytical result for the free energy.

To determine the order of the phase transition it is useful to study the first derivative

of the free-energy. Indeed, we observe, see figure 3, that it has kinks that point toward

a family of second-order phase transitions, each time a new pair of Matsubara frequencies

enters in the sum. This can be shown analytically by expanding the free energy around

Tc,m. We find that the contribution at this new critical temperature scales as ∼ (T − Tc,m)2

so, as depicted in figure 2, the free energy (33) is smooth around this critical temperature

and therefore the transition cannot be of first order. However, one can easily show that the
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SYK, q = 2, k = 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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SYK, q = 2, k = 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.6

-0.4

-0.2

0.0

0.2

T

-
dF (T)

N /2 dT

FIG. 3. Derivative of the free energy per particle of the non-Hermitian q = 2 SYK model for

k = 0.5 (left) and k = 1 (right). The kinks, which indicate the existence of second-order phase

transitions, are located at the temperatures (34) where a new Matsubara frequency contributes to

the free energy (36). The last kink appears at a temperature ∼ k2 and would be barely visible for

k = 0.1 which is not shown. The physical scale is set to v = 1.

derivative of the free energy is not smooth at Tc,m as is also clear from figure 3.

Using similar methods, the integrals can also be calculated for 0 < k < 1, see appendix

B,

− FL
(N/2)T

=
1

2
log 2 +

∞∑
ωn≥2υ0

log

[
1

2

(
1 +

√
1 +

ε20 − υ2
0

ω2
n/4

)]
− 1

2

ω2
n/4

ε20 − υ2
0

(
1−

√
1 +

ε20 − υ2
0

ω2
n/4

)2


+
1

2

∑
0<ωn<2υ0

{
log

(ε0 + υ0)2

ω2
n

− 1− ω2
n(1− ε0/υ0)

2(ε20 − υ2
0)

}
. (36)

Each term contributing to the sum in the first line is equal to the corresponding term in the

free energy of the Hermitian SYK model (26) with ε0 →
√
ε20 − υ2

0. In figures 2 and 3 we

show the temperature dependence of the free energy and its derivative for various values of

k. It is disturbing that the entropy becomes negative which cannot be due to the failure of

the replica trick since it is not used in free-fermion method. Most likely it is a consequence

of the nonhermiticity which will become more clear in section V.

The critical temperatures are given by the same expression as for k = 1,

T
(n)
crit =

2v0/π

2n+ 1
, , n = 0, 1, 2, · · · (37)

but with υ0 = k2v/
√

1 + k2 according to equation (21). One can easily show that the

derivative of the free energy is continuous at the critical points while its second derivative

is discontinuous. The appearance of an infinite number of critical points is a direct conse-
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quence of the factorization of the partition function into a product over positive Matsubara

frequencies. For each Matsubara frequency we have exactly one critical temperature.

IV. FREE ENERGY FROM THE SCHWINGER-DYSON EQUATIONS

We now turn to confirm these results by an explicit large N calculation from the solutions

of the Schwinger-Dyson (SD) equations of the SYK model. In this case, the calculation is also

analytical, though very different from the one carried out in the previous section. However,

we shall see that ultimately the expression for the free energy is the same. In the Schwinger-

Dyson approach, replica symmetry breaking between conjugate replicas plays a crucial role.

Indeed, we shall see that for k = 1 the free energy is determined by the Green’s function GLR

(equivalently its self energy ΣLR) related to the effective coupling of the two sites. However,

it is assumed that the replica symmetry of a conjugate pair remains unbroken so that the

quenched free energy can be obtained from just one replica and one conjugate replica.

The Euclidean ΣG action for the q-body SYK model takes the form51

−2SE
N

= log Pf(∂tδab − Σab)−
1

2

∫
dτ1dτ2

∑
a,b

[
Σab(τ1, τ2)Gab(τ1, τ2)− sab

J 2
ab

2q2
[2Gab(τ1, τ2)]q

]
− i

2
ε

∫
dτ(GLR(τ, τ)−GRL(τ, τ)) , (38)

where the indices a, b can be equal to R or L. The integrations over τ variables are on the

interval [0, β]. The factor sab is equal to 1 for a = b and equal to (−1)q/2 = −1 for a 6= b.

The couplings take the value JLL = JRR = J when a = b and JLR = JRL = J̃ when

a 6= b. The term proportional to ε is included to break the symmetry that requires GLR to

vanish (more details are given in the analysis of the q = 4 model55). In terms of the random

coupling couplings of the L and R gamma matrices, JLij and JRij , for q = 2 the constants J

and J̃ are defined by

J 2 :=
N

2
〈(JLij)2〉 =

N

2
〈(JRij )2〉 = (1− k2)v2 ,

J̃ 2 :=
N

2
〈JLijJRij 〉 = (1 + k2)v2 , (39)
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where the left and right couplings are related to the couplings Jij and Mij by

JLij ≡ Jij + i kMij ,

JRij ≡ Jij − i kMij . (40)

For a discussion of the symmetries of Gab ∼ Σab we refer to a study of the q = 4 model55. As

it stands the integrals over Σ and G for the action (38) are not convergent which is required

to perform the integrations over Gab. Convergence can be achieved by rotating

GRR(τ1, τ2)→ iGRR(τ1, τ2), GLL(τ1, τ2)→ iGLL(τ1, τ2)

ΣRL(τ1, τ2)→ iΣRL(τ1, τ2), ΣLR(τ1, τ2)→ iΣLR(τ1, τ2). (41)

The rotations do not affect the saddle-point evaluation of the action integral, but as we shall

see below, explicitly integrating out G for q = 2 simplifies the saddle-point analysis and we

prefer to use a convergent definition for this reason. The action that gives a convergent path

integral is then

−2SE
N

= log Pf(∂τδab − ξabΣab)−
1

2

∫
dτ1dτ2

∑
ab

[
iΣab(τ1, τ2)Gab(τ1, τ2) +

J 2
ab

2
Gab(τ1, τ2)2

]
− i

2
ε

∫
dτ(GLR(τ, τ)−GRL(τ, τ)) , (42)

with ξLL = ξRR = 1 and ξLR = ξRL = i. Contrary to q = 4, the integrals over Gab(τ1, τ2) are

Gaussian and can be carried out exactly. This results in the effective action for Σab

−2SE(Σ)

N
= log Pf(∂τδab − ξabΣab)−

1

4

∫
dτ1dτ2

∑
a,b

(
Σab(τ1, τ2)

Jab

)2

−1

2
ε

∫
dτ(ΣLR(τ, τ)− ΣRL(τ, τ)), . (43)

At the saddle point, Σ should be translation-invariant and hence only a function of τ1−τ2.

For the purpose of saddle-point analysis, we can express the action in terms of Fourier modes

of the Σab which is now a single-variable anti-periodic function:

Σab(τ) =
1

β

∑
ωn

e−iωnτΣab(ωn), (44)
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where ωn = (2n + 1)π/β are Matsubara frequencies defined already in equation (25). This

results in

−2SE(Σ)

N
=
∑
ωn

1

2
log det(−iωnδab − ξabΣab(ωn))− 1

4

∑
ab

Σab(ωn)Σab(−ωn)

J 2
ab

−1

2
ε
∑
ωn

(ΣLR(ωn)− ΣRL(ωn)) . (45)

As already emphasized, contrary to the q = 4 case, in the q = 2 case the SD equation

simplify to second order equations (we took the limit ε→ 0)

iωn + ΣRR(ωn)

(iωn + ΣLL(ωn))(iωn + ΣRR(ωn)) + ΣLR(ωn)ΣRL(ωn)
=

ΣLL(−ωn)

J 2
,

ΣRL(ωn)

(iωn + ΣLL(ωn))(iωn + ΣRR(ωn)) + ΣLR(ωn)ΣRL(ωn)
=

ΣLR(−ωn)

J̃ 2
, (46)

and anther two equations with subscripts L and R interchanged. At the saddle point we

have that ΣRL(ωn) = −ΣLR(ωn) and ΣRR(ωn) = ΣLL(ωn). The saddle point equations

couple positive and negative frequencies, but the solutions are simply related by

ΣLL(−ωn) = −ΣLL(ωn), ΣLR(−ωn) = ΣLR(ωn). (47)

Using these relations the saddle point equations are easily solved with a trivial solution

given by (the symmetries of Gab and Σab are discussed in detail in the analysis of the q = 4

model55),

ΣLR(ωn) = 0,

ΣLL(ωn) = − i
2
ωn ±

i

2
sign(ωn)

√
4J 2 + ω2

n, (48)

and a nontrivial solution that couples the Left and Right SYK models breaking the replica

symmetry between them:

ΣLR(ωn) = ±J̃

√
1− ω2

n

ωcr
2
,

ΣLL(ωn) =
iJ 2ωn

J̃ 2 − J 2
, (49)
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where we have introduced the critical frequency

ωcr =
J̃ 2 − J 2

J̃
. (50)

This frequency will play an important role in the analysis of the partition function.

Pairing the positive and negative Matsubara frequencies allows us to write the free energy

as a sum over only positive Matsubara frequencies:

− 2F

NT
=
∑
ωn>0

{
1

2
log
[
(iωn + ΣLL(ωn))2 − ΣLR(ωn)2

]2
+

ΣLL(ωn)2

J 2
− ΣLR(ωn)2

J̃ 2

}
. (51)

For unbroken saddles we have two solutions, and it turns out one solution gives a larger

−SE hence is the dominant saddle. This is the solution with +sign(ωn) term for ΣLL. The

free energy of this solution is equal to the free energy of two uncoupled SYK models59 (but

with J 2 = (1− k2)v2). For each (positive) Matsubara frequency this gives

−2F 2 SYK(ωn)

NT
= − ω2

n

4J 2

(
1−

√
1 +

4J 2

ω2
n

)2

+ log

1

4

(
1 +

√
1 +

4J 2

ω2
n

)2
+ log(ω2

n),

(52)

while the free energy of the broken solution reduces to

−2FBroken(ωn)

NT
= −1 +

ω2
n

J̃ 2 − J 2
+ log J̃ 2. (53)

The broken solution always gives the dominant action, but as we will see next, it does not

always determine the free energy. The saddle point of ΣLL(ωn) is always purely imaginary,

but the saddle point of ΣLR(ωn) switches from real to imaginary at ωn = ωcr where the free

energy of the trivial and the nontrivial solution coincides. For ωn > ωcr the imaginary part of

the action is zero at the saddle point, but the action becomes complex along the integration

manifold. In order to apply the steepest descent method, the integration manifold must

be directed along the Picard-Lefschetz thimble. Otherwise we will have large cancellations

that may suppress the action of the saddle point minimizes the the free energy. It is a

complicated problem to find the Lefschetz thimbles in a multidimensional space, but we can

analyze the problem along the trajectory where ΣLL(ωn) and ΣRR(ωn) are at the saddle

point while for the off-diagonal Σab(ωn) variables we restrict ourselves to the sub-manifold
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ΣRL(ωn) = −ΣLR(ω)n and ΣRL(−ωn) = −ΣLR(ωn) which intersects with the saddle-point.

Combining positive and negative Matsubara frequencies, the action on this sub-manifold is

given by

−2SE(ωn)

N
= − J 2ω2

n

(J̃ 2 − J 2)2
− Σ2

LR(ωn)

J̃ 2
+ log

(
J̃ 4ω2

n

(J̃ 2 − J 2)2
+ Σ2

LR(ωn)

)
, ωn > 0.

(54)

This action also arises in the study of a zero-dimensional Gross-Neveu-like model, and its

saddle point analysis82,83, which we will apply here. The saddle points of this effective

action are still given by the ΣLR of (48) and (49) of the full action, namely ΣLR = 0 and

ΣLR(ωn) = ±J̃
√

1− ω2
n/ωcr

2. At all the saddle points the action is real and the Lefschetz

thimble of these saddle points are the real axis if the saddle point solution for ΣLR is real,

and along the imaginary axis when this saddle point is imaginary. In the the latter case,

i.e. for ωn > ωcr, the thimble ends are the zeros of the logarithm, and it is not possible

to deform the real axis continuously into the thimble.3 Of course we can deform the initial

integration over the real axis to an integration path in the complex plane that goes over the

saddle point on the imaginary axis. As long as we do not cross any singularities, by Cauchy’s

theorem, the value of the integral along the deformed path will be the same in spite of the

fact that the integrand at the saddle point on the imaginary axis is much larger than that

of the saddle points on the real axis. The phase of the integrand together with the Jacobian

will assure that the contributions to the integral combine to the correct result. However, if

we integrate only over the Gaussian fluctuations about the imaginary saddle point, we do

not get the correct result. In order words, we cannot apply the saddle-point approximation

to the imaginary saddle points. Instead, the integral can be evaluated at the trivial saddle

point which has its thimble on the real axis. For ωn < ωcr the ΣLR(ωn) integral runs over

both real saddle-points but one of them is suppressed by the ε term in the action.

Strictly speaking, the ΣLR = 0 saddle of the effective action (54) does not quite correspond

to the ΣLR = 0 saddle of the full action, because in writing down the effective action we

already assumed a ΣLL of the form in solution (49), but the ΣLR = 0 saddle of the full action

belongs to solution (48) where ΣLL takes a different form. Thus ΣLR = 0 solution for the

3 To be precise, to get well-defined thimbles emanating from the zeros of the logarithm, the small symmetry-

breaking term proportional to ε must be included, and each zero will give a separate thimble. But the

basic conclusion remains the same: these two thimbles do not contribute to the path integral because the

original contour of integration cannot be deformed into either of them82,83.
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effective action should be viewed as a spurious saddle due to the sub-manifold constraint.

Therefore a more definitive analysis should be performed on the full action (the full action

is quite similar, though not exactly the same, as the action of a zero-dimensional Nambu-

Jona-Lasinio-like model82,83). However, our analysis on the sub-manifold is indicative of the

inaccessibility of nonzero imaginary ΣLR solutions. We thus conclude that

ωn < ωcr : ΣLR(ωn) 6= 0 (Broken Replica Symmetry)

ωn > ωcr : ΣLR(ωn) = 0 (Replica Diagonal Solution) (55)

The corresponding partition function is given by

F (ωn < ωcr) = F 2 SYK(ωn),

F (ωn > ωcr) = F Broken(ωn). (56)

The free energy of the replica diagonal solution is just the free energy of two decoupled SYK

models59.

Summing over all Matsubara frequencies we obtain the total free energy

F =
∑

ωcr>ωn>0

F Broken(ωn) +
∑

ωn≥ωcr

F 2 SY K(ωn)

=
∑
ωn>0

logω2
n +

∑
ωcr>ωn>0

(F Broken − logω2
n) +

∑
ωn≥ωcr

(F 2 SY K − logω2
n) (57)

The first term can be evaluated using zeta function regularization:

∑
ωn>0

logω2
n = −2

d

ds

[
1

(2πT )s

∑
n>0

1

(n+ 1/2)s

]∣∣∣∣∣
s=0

= log 2. (58)

This result gives the entropy of noninteracting Majorana particles. Our final expression for

the free energy is given by

− 2F

NT
= log 2 +

∑
ωcr>ωn>0

{
ω2
n

J̃ 2 − J 2
− 1 + log

(
J̃ 2

ω2
n

)}

+
∑

ωn≥ωcr

− ω2
n

4J 2

(
1−

√
1 +

4J 2

ω2
n

)2

+ log

1

4

(
1 +

√
1 +

4J 2

ω2
n

)2
 . (59)
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SYK, q = 2, k = 1

N/2 = 256
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FIG. 4. The order parameter ΣLR versus the temperature in units of the critical temperature

compared to the value of ΣLR calculated from the eigenvalues of the hermiticized coupling matrix

(see section V).

For k = 1 we have that J = 0 and the last term vanishes. We note that the free-fermion

expression (36) agrees with (59) after identifying the parameters by

ε20 − υ2
0 = J 2, (ε0 + υ0)2 = J̃ 2, 1− ε0

υ0

=
2J 2

J 2 − J̃ 2
, υ0 =

J̃ 2 − J 2

2J̃
. (60)

The order parameter of the phase transition is given by ΣLR. In figure 4 we show the

analytical result (49) compared with a numerical calculation for N/2 = 256 that will be

discussed in section V.

The Σ model that is obtained after integration over the G variables resembles the usual

random matrix theory σ-model. In the next section we will derive basically same the σ-model

directly starting from a partition function that is factorized into a product over Matsubara

frequencies.

V. NONLINEAR σ-MODEL FOR q = 2 PARTITION FUNCTION

From equation (16), we can express the partition function of the q = 2 Hamiltonian as

〈Z〉 =

〈
N/4∏
k=1

2 cosh βεk

N/4∏
k=1

2 cosh βε∗k

〉
, (61)

where εk are the eigenvalues of i(Jij+ikMij)/2 with positive real parts. Using the Weierstrass

formula this can rewritten in terms of a product over Matsubara frequencies ωn = 2π(n+1
2
)/β
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:

〈Z〉 = 2N/2

〈∏
ωn>0

ω−Nn
∏
±εk

(ωn − 2iεk)
∏
±εk

(ωn + 2iε∗k)

〉

=

〈∏
ωn>0

det (ωn + h) det
(
ωn + h†

)〉
, (62)

where the product
∏

n ωn has been evaluated to be
√

2 by zeta function regularization (see

equation (58)), and h is the N/2×N/2 skew-symmetric matrix J + ikM . To leading order

in 1/N we have

〈Z〉 =

〈∏
ωn>0

Z(ωn)

〉
=
∏
ωn>0

〈Z(ωn)〉+O(1/N). (63)

Let us first consider a one-site SYK at frequency ωn. The average partition function is

given by

〈Z〉 =

〈∏
ωn>0

det (ωn + h)

〉
. (64)

The determinant can be expressed84 as an integral over Grassmann variables φ and φ∗:

〈Z(ωn)〉 =

〈∫ ∏
i

dφidφ
∗
i e

∑
ij φ
∗
i (ωnδij+hij)φj

〉
(65)

We recall that 〈J2
ij〉 = 〈M2

ij〉 = J 2/(1−k2), so the Gaussian average over h can be performed

by a cumulant expansion resulting in

〈Z(ωn)〉 =

∫ ∏
i

dφidφ
∗
i e
ωn(φ∗·φ)+ 1

N
J 2

∑
i<j(φ

∗
i φj−φ∗jφi)2

=

∫ ∏
i

dφidφ
∗
i e
ωn(φ∗·φ)− 1

N
J 2

∑
ij φ
∗
i φjφ

∗
jφi

=

∫ ∏
i

dφidφ
∗
i e
ωn(φ∗·φ)+ 1

N
J 2(φ∗·φ)2

(66)

where we have used φ2
i = 0 due to their Grassmannian nature. Using the Hubbard-
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Stratonovich transformation

eα
2A2/2 =

1√
2πα2

∫
dΣe−

Σ2

2α2−ΣA (67)

we obtain

〈Z(ωn)〉 =

∫ ∏
i

dφidφ
∗
i dΣeωn(φ∗·φ)−N

4
Σ2

J 2−Σ(φ∗·φ)
.

=

∫
dΣ (ωn − Σ)N/2e−

N
4

Σ2

J 2 . (68)

The saddle point equation is

Σ2 − ωnΣ− J 2 = 0. (69)

The dominant solution is given by (we have ωn > 0 to start with)

Σ =
ωn
2
− 1

2

√
ω2
n + 4J 2. (70)

with leads to the one-site free energy

−F (ωn)

TN/2
= log

(
ωn
2

+
1

2

√
ω2
n + 4J 2

)
− 1

2J 2

(
ωn
2
− 1

2

√
ω2
n + 4J 2

)2

. (71)

This is exactly half of the the Schwinger-Dyson result for the two-site model using only the

replica-symmetric saddles. The total free energy is given by

− F

TN/2
=
∑
ωn>0

−F 2 SY K(ωn)

TN
. (72)

This shows explicitly that the one-site annealed partition function gives the quenched result

for the high-temperature phase of the of the nonhermitian SYK model as is the case for the

q = 4 SYK model. For T < Tc the replica limit of the one-site partition function fails to

give the quenched result. In order to get the correct result we have to take the replica limit

of the partition function and the conjugate partition function, which is well-known from the

σ-model formulation of nonhermitian random matrix theories27,66,74 and QCD at nonzero

chemical potential33,34,70,75.

Next we consider the two-site non-Hermitian model and also assume that the ensemble
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average factorizes in the large N limit so that we can evaluate the partition function for a

single frequency

〈Z(ωn)〉 =
〈
det
(
ωn + h

)
det
(
ωn + h†

)〉
,

=

∫ N/2∏
i

dφiLdφ
i∗
L dφ

i
Rdφ

i∗
R

 eφ
∗
L·(ωn+h)·φL+φ∗R·(ωn+h†)·φR . (73)

We can again average over h by a cumulant expansion using that

〈h2
ij〉 = 〈h2

ij〉 =
J 2

N/2
,

〈hijh∗ij〉 =
J̃ 2

N/2
. (74)

This results in the quartic action

−S4 =
J 2

N

[
(φ∗R · φR)2 + (φ∗L · φL)2

]
+

2J̃ 2

N
[(φ∗L · φ∗R)(φL · φR) + (φ∗L · φR)(φL · φ∗R)] .(75)

This action is invariant under

φL → eiϕφL, φR → eiψφR. (76)

In addition to the Hubbard-Stratonovich transformation (67) we use the identity

eα
2AA∗ ∼ e−

ΣΣ∗
α2 −ΣA∗−Σ∗A (77)

to decouple the quartic terms. This results in

Z(ωn) =

∫
dΣdρe

− N
4J 2 [Σ2

RR+Σ2
LL]− N

2J̃ 2 [Σ∗LRΣLR+ρLRρ
∗
LR]IN/2({Σ, ρ}), (78)

where dΣ = dΣLLdΣRRdΣLRdΣ∗LR and dρ = dρLRdρ
∗
LR and we have used that the integral

over the φia variables factorizes into a product over I. Each of these factors is equal to

I =

∫
dφLdφ

∗
LdφRdφ

∗
R exp[(ωn − ΣLL)φ∗LφL + (ωn − ΣRR)φ∗RφR

−ΣLRφ
∗
LφR − Σ∗LRφLφ

∗
R − ρLRφ∗Lφ∗R − ρ∗LRφLφR], (79)

where the φa no longer carry an index i. This integral can be evaluated by simply expanding
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the exponential in the integrand and collecting the terms that are proportional to φLφ
∗
LφRφ

∗
R.

We get

I = (ωn − ΣLL)(ωn − ΣRR) + Σ∗LRΣLR − ρ∗LRρLR. (80)

The saddle points can be grouped in to the following three classes:

ρLR = 0, ΣLR = 0, ΣLL = ΣRR =
ωn
2
− 1

2
sign(ωn)

√
ω2

n + 4J 2, (81)

ρLR = 0, |ΣLR|2 = J̃ 2

(
1− ω2

n

ω2
cr

)
, ΣLL = ΣRR = − J 2ωn

J̃ 2 − J 2
, (82)

|ρLR|2 = J̃ 2

[
1 +

J̃ 2ω2
n

(J̃ 2 + J 2)2

]
, ΣLR = 0, ΣLL = ΣRR = − J 2ωn

J̃ 2 + J 2
. (83)

Now the first two saddles are simply the ones we found in the SD equations in section

IV, and if the third saddle can be discarded they would reproduce the same saddle-point

analysis, which we recall here: although the second saddle (symmetry-breaking saddle) has

a dominant action (larger −SE) for all values of ωn, thimble analysis requires us to pick the

second saddle only for ωn < ωcr and for ωn > ωcr we must pick the first saddle (unbroken

saddle). Let us now show why the third saddle can be discarded: the third saddle’s action

(−SE) is smaller than that of the second saddle for all ωn, so we do not need to worry about

it for ωn < ωcr; its action is smaller than that of the first saddle for ωn > ωcr (its action

can be larger than that of the first saddle only for ωn < ωcr), hence we do not need to

worry about the third saddle for ωn > ωcr either. Thus, the third saddle drops out of our

consideration for all values of ωn and we reproduce the same free energy found in section

IV.

The order parameter of the phase transition of the coupled SYK model is given by the

expectation value of ΣLR. This is equal to

〈ΣLR〉 = −2J̃ 2

N
〈φL · φ∗R〉 (84)

This is the chiral condensate corresponding to the spectral density of

H =

 0 h+ ωn

h† + ωn 0

 . (85)
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It is given by the Banks-Casher formula85

ΣLR = − lim
ε→0

lim
N→∞

2J̃ 2

N
Tr

1

H + iε
= lim

N→∞

πρH(0)

N
. (86)

The critical temperature is determined by the value of ωn at which a gap opens and the

spectrum becomes gapped for T > Tc. Another interpretation of the critical temperature

is that Tc is the point at which ωn enters the spectral support of h. The spectral density

of H can be obtained analytically and follows from the solution of a cubic equation86,87.

The phase transition is a typical Landau-Ginsberg phase transition with mean field critical

exponents.

The partition function Z(ωn) with h replaced by a complex matrix was first introduced

as a random matrix model for chiral symmetry breaking in QCD86 and further analytical

results were obtained in a subsequent paper87.

VI. OUTLOOK AND CONCLUSIONS

In conclusion, the free energy of the integrable q = 2 SYK model is qualitatively different

from the q > 2 case. Not only is the order of the transition is different, but also there

is an infinite series of transitions while for q > 2 there is only one. This goes back to

the factorization of partition function into a product over Matsubara frequencies. Each of

the factors undergoes a phase transition from a replica symmetric solution to a solution

with broken replica symmetry with a critical temperature that depends on the Matsubara

frequency. For the full partition function this results into an infinite sequence of phase

transitions.

We have calculated the quenched free energy in two structurally different ways. First, a

quenched calculation based on the free-fermion description of the q = 2 SYK model, and

second, an annealed calculation based on the solution of the Schwinger-Dyson equations in

the ΣG formulation of the SYK model using the replica trick. The two methods give the

same result which shows that despite the nonhermiticity of the model, the replica limit gives

the correct result provided that the starting point is the product of the one-site partition

function and its complex conjugate before averaging. On the other hand, in the quenched

free-fermion calculation, we did start from the one-site partition function without having
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to include the conjugate partition function. The reason this gives the correct result is the

factorization of the partition function in a product over single particle energies.

The q = 4 nonhermitian SYK model behaves quite differently. It is not a Fermi liquid and

the usual free-fermion description is invalid which is most notable in the zero temperature

entropy which is extensive88. The nonhermitian two-site q = 4 SYK model has a single first

order phase transition which separates a low-temperature phase from a high-temperature

phase. The high-temperature phase is entropy dominated while the low-temperature phase

is energy dominated. The free energy in the high-temperature phase follows from the many-

body eigenvalue density and is entirely determined by the one-site partition function. This is

also the case for the q = 2 SYK model. In the low-temperature phase, the replica limit of the

one-site partition function breaks down and the quenched one-site partition function is given

by the replica limit of the one-site partition function and its complex conjugate. In terms of

the many-body spectral density, the two-point spectral correlation function determines the

free-energy of the low-temperature phase. For this reason there is large difference between

the q = 4 case and the q = 2 case. The dynamics of the q = 4 partition function is chaotic

with universal eigenvalue correlations given by the Ginibre model, which as a consequence

gives rise to a temperature-independent free energy in the low-temperature phase. On the

other hand, the q = 2 SYK model is integrable with mostly but not entirely uncorrelated

eigenvalues. We can distinguish two contributions from the two-point correlation function.

One contribution is due to self-correlations, and the second one is due to the many-body

correlation resulting from the fact that the 2N/2 many-body eigenvalues are determined

by N/2 single-particle energies. It is simple to evaluate the contribution from the self-

correlations but this only reproduces the free-energy at zero temperature and is smooth as

a function of the temperature. This implies that the infinite series of second-order phase

transitions are due to correlations of the many-body eigenvalues.

The phase transitions of the q = 2 nonhermitian SYK model can also be understood

in terms of the spectral properties of the coupling matrix. Using a random matrix theory

like σ-model calculation we have related the order parameter of the phase transition ΣLR

to the formation of a gap of the hermiticized two-site Hamiltonian. In terms of the one-

site Hamiltonian, this is the point where the Matsubara frequency enters the support of the

spectrum of HL. The starting point of the σ-model calculation is closely related to a random

matrix model for the chiral phase transition in QCD where ΣLR plays the role of the chiral
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condensate.

A natural question is whether the free energy of the q = 2 SYK model can also be under-

stood in terms of the many-body spectral density and the many-body spectral correlations.

The cancellations that are responsible for the high-temperature phase of the q = 4 model are

still at work for q = 2. For example, at high temperatures and for maximum nonhermiticity

the free energy of the q = 2 SYK model and the q = 4 SYK model is the same (−T
2

log 2 per

particle). From the solutions of the SD equations it is clear that the two-point correlation

function determines the low-temperature phase. In particular, the transitions observed in

the low-temperature phase are due to the coupling between left and right sites but not by

the dynamics within each of the sites.

In conclusion, the nature of the quantum dynamics plays a role for the replica symmetry

breaking mechanism which also induces phase transitions for the q = 2 nonhermitian SYK

model. However, while the replica dynamics of quantum chaotic systems is universal, there

is a broad variety of dynamical behavior associated with integrable systems, and we cannot

conclude that the behavior we have observed for the nonhermitian q = 2 SYK model is

generic.
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Appendix A: Free-fermion representation of the q = 2 SYK model

We write the q = 2 one-site Hamiltonian as

HL =
1

2

∑
ij

Wijγiγj =
1

2
~γTW~γ. (A1)

where gamma matrices ~γ = (γ1, γ2, . . . , γM) with even M and W is a random antisymmetric

complex matrix. In the main text we have the convention that M = N/2. By matching

with definitions (6) and (7), we know

W =
1

2
i(Jij + ikMij). (A2)

In the Hermitian SYK model (k = 0), W is an antisymmetric Hermitian matrix, and the

Hamiltonian can be transformed into a fermion-filling form thanks to the fact that an M -

dimensional antisymmetric Hermitian matrix has the normal form

O


iε1σ2 0 · · · 0

0 iε2σ2 · · ·
...

... · · · · · · ...

0 · · · · · · iεM
2
σ2

OT , (A3)

where O is a real orthogonal matrix. Using a new basis for the γ matrices defined by OT~γ,

one can easily write the Hermitian Hamiltonian in a fermion-filling form. Although a generic

complex antisymmetric matrix does not have a normal form of equation (A3), there exists

a parallel of it which allows us to write the non-Hermitian Hamiltonian (A1) in a modified

fermion-filling form. We will demonstrate this now.

We consider a diagonalizable complex antisymmetric matrix W with all eigenvalues being

nonzero, which is almost always the case for our ensemble. The eigenvalues of W come in
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opposite pairs ±ε, so we can diagonalize W as

W = SΛS−1, (A4)

where

Λ =


ε1σ3 0 · · · 0

0 ε2σ3 · · ·
...

... · · · · · · ...

0 · · · · · · εM
2
σ3

 . (A5)

The column vectors of S are the eigenvectors of W , namely

S =



· · ·

· · ·

v1 v2 · · · vM−1 vM

· · ·

· · ·


, (A6)

where

Wv2k−1 = εkv2k−1, Wv2k = −εkv2k. (A7)

To completely fix the sign convention, we choose εk (k = 1, . . . ,M/2) to have a positive real

part. Because W T = −W , we have

0 = vTi
(
W +W T

)
vj = (εi + εj)v

T
i vj (A8)

which implies

vTi vj = 0 unless {i, j} = {2k − 1, 2k}. (A9)
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So if we scale the eigenvectors to redefine S as

S =



· · ·

· · ·
v1√
vT1 v2

v2√
vT1 v2

· · · vD−1√
vTM−1vM

vM√
vTM−1vM

· · ·

· · ·


, (A10)

we can easily see

STS =


σ1 0 · · · 0

0 σ1 · · ·
...

... · · · · · · ...

0 · · · · · · σ1

 ≡ Σ1, (A11)

and hence S−1 = Σ1S
T (note in general STS 6= SST ). Substituting this into equation (A4),

we obtain

W = SΛΣ1S
T = S


iε1σ2 0 · · · 0

0 iε2σ2 · · ·
...

... · · · · · · ...

0 · · · · · · iεM
2
σ2

ST . (A12)

We thus arrive at a normal form for complex antisymmetric matrices rather similar to that

of the Hermitian antisymmetric ones (A3), with the difference that S is not orthogonal but

satisfies STS = Σ1. Now we define new set of operators {c̃k, ck|k = 1, 2 . . .M/2} by

c̃k =
1√
2

(
ST~γ

)
2k−1

, ck =
1√
2

(
ST~γ

)
2k
. (A13)

From the anti-commutation relation of γ matrices we derive

1

2

{(
ST~γ

)
m
,
(
ST~γ

)
n

}
= (Σ1)mn. (A14)

This in particular implies

c̃2
k = 0, , c2

k = 0, {ck, c̃l} = δkl. (A15)
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Note this is just the algebra for the ladder operators of M/2 spinless fermions, except that

ck and c̃k are not related by a Hermitian conjugation. In terms of these ladder operators,

the Hamiltonian (A1) becomes

H =

M/2∑
k=1

εk(2c̃kck − 1). (A16)

Just as the in Hermitian case, we have

[H, c̃k] = εkc̃k, [H, ck] = −εkck. (A17)

Hence we conclude the many-body energies of H are given by the filling of M/2 free fermions

into the particle-hole symmetric levels of W : each fermion either occupies a “particle” level

with energy εk, or occupies a ”hole” level with energy −εk. However since the raising

and lowering operators are not Hermitian conjugate to each other, the eigenstates are not

necessarily orthogonal to each other (at least not with the original inner product 〈x, y〉 ≡

x†y), just as one would expect for a non-Hermitian Hamiltonian.

Appendix B: Free energy from the free-fermion representation for k < 1

Based on the free-fermion representation of the q = 2 SYK model of appendix A, we

proceed to the explicit analytical calculation of the free energy. The simpler spherical case

k = 1 was already discussed in the main text. The free energy for k < 1 can be derived

along the same lines which is the purpose of this appendix.

For k < 1 (υ0 < ε0), the large-N single-particle spectral density becomes a constant inside

an elliptical disk as in equation (20). The elliptical disk can be parameterized by

z = ε0r cosφ+ iυ0r sinφ, r ∈ [0, 1], φ ∈ [0, 2π]. (B1)

We write

− FL
(N/4)T

=

∫ 1

0

rIE(r)dr, (B2)

where

IE(r) =
1

π

∫ 2π

0

log

(
2 cosh

ε0r cosφ+ iυ0r sinφ

T

)
dφ. (B3)
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The subscript E denotes “Ellipse”. On its face, we cannot interpret IE(r) as a complex

contour integral like equation (28), because dz/(iz) 6= dφ with the elliptical parameter-

ization (B1). We can overcome this by considering the following conformal (Joukowski)

transformation :

z = au+
b

u
, (B4)

where

a =
ε0 + υ0

2
r, b =

ε0 − υ0

2
r. (B5)

In terms u, the ellipse in equation (B1) at any given r becomes a unit circle:

u = eiφ (B6)

We stress that the φ here is the same φ as in the parameterization (B1). Now we can write

IE(r) =
1

πi

∮
S1

du

u
log

(
2 cosh

au+ b/u

T

)
=2 log 2 +

∞∑
n=0

1

πi

∮
S1

du

u
log

(
1 +

4(au+ b/u)2

ω2
n

)
≡2 log 2 +

∞∑
n=0

InE(r),

(B7)

where to obtain second equality we applied Weierstrass factorization just as we did in the

circular case and the third equality simply defines InE. Notice S1 denotes the unit circle

and the r-dependence of the integral comes from the r-dependence of a and b.

To analyze the cut and pole structures of the integral InE, we rewrite its integrand as

1

u
log

(
1 +

4(au+ b/u)2

ω2
n

)
=

1

u
log

[
4a2

ω2
nu

2
(u− u1+)(u− u1−)(u− u2+)(u− u2−)

]
, (B8)

where u1±, u2± are the four roots of the equation

1 +
4(au+ b/u)2

ω2
n

= 0, (B9)

namely

u1± = ±i
√
ω2
n/4 + 4ab− ωn/2

2a
, u2± = ±i

√
ω2
n/4 + 4ab+ ωn/2

2a
. (B10)

34



Note that 4ab = (ε20 − υ2
0)r2 > 0, and since a > b, u1± are always inside the unit circle. We

also note that for u = eiφ ∮
S1

du
log u

u
= 0. (B11)

Hence

InE =
1

πi

∮
S1

du

u
log

[
4a2

ω2
n

(u− u1+)(u− u1−)(u− u2+)(u− u2−)

]
. (B12)

The integrand of InE has one pole at the origin with the residue

log

[
4a2

ω2
n

u1+u1−u2+u2−

]
= log

(
4b2

ω2
n

)
. (B13)

The integrand of InE has four branch cuts emanating from u1±, u2± horizontally to negative

infinity. The u1± cuts always intersect with the unit circle, whereas u2± may or may not

intersect with the unit circle depending on the values of a and b. To summarize, the u2±

cuts contribute to InE only if |u2±| < 1 (which is to say r > ωn/2υ0), in much the same way

as the ±iωn/2υ0 cuts contribute to In in the circular case; what is new with the elliptical

case are the u1± cuts and the pole at the origin, which always contribute to InE regardless

the value of r. Recycling the calculation done in the circular case, we obtain

InE(r) = 2 log

1

4

(
1 +

√
1 +

4(ε20 − υ2
0)r2

ω2
n

)2
 (B14)

if r < ωn/2υ0. which is the sum of one pole and two cut contributions. And

InE(r) = 2 log

1

4

(
1 +

√
1 +

4(ε20 − υ2
0)r2

ω2
n

)2
+ 2 log

(
2(ε0 + υ0)r

ωn +
√
ω2
n + 4(ε20 − υ2

0)r2

)
(B15)

if r > ωn/2υ0, which is the sum of one pole and four cut contributions. With these results,
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we arrive at

− FL
(N/4)T

= log 2 +
∑
ωn>0

∫ 1

0

rInE(r)dr

= log 2 +
∞∑
n=0

log

1

4

(
1 +

√
1 +

ε20 − υ2
0

ω2
n/4

)2
− ω2

n/4

ε20 − υ2
0

(
1−

√
1 +

ε20 − υ2
0

ω2
n/4

)2


−
∑

0<ωn<2υ0

 2ω2
n/4

ε20 − υ2
0

√
1 +

ε20 − υ2
0

ω2
n/4

+ log

 ω2
n/4

(ε0 + υ0)2

(
1 +

√
1 +

ε20 − υ2
0

ω2
n/4

)2


+
∑

0<ωn<2υ0

2ω2
nε0/4

(ε20 − υ2
0)υ0

= log 2 +
∑

ωn>2υ0

log

1

4

(
1 +

√
1 +

ε20 − υ2
0

ω2
n/4

)2
− ω2

n/4

ε20 − υ2
0

(
1−

√
1 +

ε20 − υ2
0

ω2
n/4

)2


+
∑

0<ωn<2υ0

{
log

(ε0 + υ0)2

ω2
n

− 1− ω2
n(1− ε0/υ0)

2(ε20 − υ2
0)

}
.

(B16)

The result on the last line exactly matches with the SD calculation provided that

ε20 − υ2
0 = J 2, (ε0 + υ0)2 = J̃ 2, 1− ε0

υ0

=
2J 2

J 2 − J̃ 2
, υ0 =

J̃ 2 − J 2

2J̃
. (B17)
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