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We study the long-time average of the reduced density matrix (RDM) of a central system that
is locally coupled to a large environment, under a Schrödinger evolution of the total system.
We consider a class of interaction Hamiltonian, whose environmental part satisfies the so-called
eigenstate thermalization hypothesis ansatz with a constant diagonal part in the energy region
concerned. Relations among elements of the averaged RDM are derived. When steady states of
the central system exist, these relations imply the existence of a preferred basis, which is given
by the eigenbasis of a renormalized self-Hamiltonian that includes certain averaged impact of the
system-environment interaction. Numerical simulations performed for a qubit coupled to a defect
Ising chain confirm the analytical predictions.

I. INTRODUCTION

Properties of small open quantum systems, which are
coupled to large quantum environments, have attracted
significant attention and been studied extensively in
recent decades in various fields of physics [1–5]. Such
a central system is described by its reduced density
matrix (RDM) and may approach a steady state in
many situations. For example, it is now well known
that the phenomenon of decoherence, due to interactions
with huge quantum environments, may happen in such
a way that a RDM becomes approximately diagonal
on a so-called preferred (pointer) basis of states (PBS)
[6–11]. Under pure-dephasing interactions, decoherence
has been studied well, with PBS given by eigenbases
of self-Hamiltonians [12–14]. However, under strong
interactions and complex environments, with the self-
Hamiltonians negligible, PBS may be given by eigenbases
of the interaction Hamiltonians [6, 12].

The situation is much more complicated with a
generic dissipative interaction, whose Hamiltonian is not
commutable with the central system’s self-Hamiltonian,
due to the interplay of decoherence and relaxation. In
this generic case, knowledge about PBS is still far from
being complete. Under a sufficiently weak interaction
and by a first-order perturbation theory, it was found
that the system’s eigenbasis is approximately a PBS
under a quantum chaotic environment [15]. When
the total system’s eigenfunctions possess certain special
randomness, a PBS (if existing) is given by the eigenbasis
of a renormalized self-Hamiltonian [16]. These results are
in agreement with a generic expectation for Markovian
processes described by Lindblad master equations, as
exemplified in solvable models [2, 3, 13]. While, when
non-Markovian effects due to dynamics of the total
system are taken into account, nonnegligible off-diagonal
elements of RDM have been found at long times in
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various spin-boson models on the spin’s energy basis [17–
21].

In this paper, we go further in the study of properties
of steady states of small open systems, by directly
computing their long-time averaged RDM under overall
Schrödinger evolutions of total systems. A key point of
our approach is to consider those environments, for which
the environmental parts of the interaction Hamiltonians
satisfy the so-called eigenstate thermalization hypothesis
(ETH) ansatz [22–27] and their diagonal elements in the
ansatz may be treated as constants within the energy
regions of relevance. We are to derive 1

2 (m − 1)(m + 2)
relations among elements of such an averaged RDM for a
central system with a number of m levels. When steady
states exist, these relations imply that the central system
should have a PBS, which is given by the eigenbasis
of a renormalized self-Hamiltonian that includes certain
impact of the system-environment interaction.

The paper is organized as follows. In Sec. II, we specify
the systems to be studied. In Sec. III, we derive the
above-mentioned relations. Some further discussions are
given in Sec.IV. Numerical simulations are presented in
Sec. V, to illustrate validity of the analytical predictions
for a qubit as the central system and a defect Ising chain
as the environment. Finally, conclusions and discussions
are given in Sec. VI.

II. SETUP

In this section, we discuss basic properties of the
Hamiltonians of the systems to be studied. We use S to
denote the central system and use E to denote its (large)
environment which consists of N particles (N � 1).
Hilbert spaces of S and E are denoted by HS and HE ,
respectively, with dimensions m and dE . The value of
m is required to be much smaller than the number of
environmental levels that are of relevance effectively to
the time evolution.
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The Hamiltonian of the total system is written as

H = HS +HI +HE , (1)

where HS and HE are self-Hamiltonians of S and E ,
respectively, which are obtained in the weak coupling
limit, and HI represents a local interaction Hamiltonian.
Normalized eigenstates of the total system are denoted
by |n〉 with energies En in the increasing-energy order,

H|n〉 = En|n〉. (2)

Normalized eigenstates of HS and of HE are denoted by
|α〉 and |i〉, respectively, with labels α and i as positive
integers starting from 1. The corresponding eigenenergies
are denoted by eSα and ei, respectively, both in the
increasing-energy order,

HS |α〉 = eSα|α〉, (3a)

HE |i〉 = ei|i〉, (3b)

where for brevity we have omitted a superscript E for
ei. We use ∆S to indicate the energy scope the central
system S:

∆S := eSm − eS1 . (4)

We use H0 to indicate the uncoupled Hamiltonian,

H0 = HS +HE . (5)

Its eigenstates are written as |α〉|i〉, in short, |αi〉,
satisfying H0|αi〉 = Eαi|αi〉, where Eαi = eSα + ei. The
expansion of a state |n〉 on the basis given by |αi〉 is
written as

|n〉 =
∑
αi

Cnαi|αi〉, (6)

with expansion coefficients Cnαi. For the simplicity in
discussion, we consider a product form of HI , 1

HI = λHIS ⊗HIE , (7)

where HIS and HIE are Hermitian operators acting on
the two spaces of HS and HE , respectively, and λ is
a parameter for characterizing the coupling strength.
Elements of HIS and HIE on |α〉 and |i〉 are written
as

HIS
αβ = 〈α|HIS |β〉, (8a)

HIE
ij = 〈i|HIE |j〉. (8b)

To describe locality of the interaction, we further divide
the environment E into a small part denoted by E1 and

1 Generalization to a generic local interaction Hamiltonian will be
briefly discussed in Sec. IVB.

a large part denoted by E2, such that the system S is
coupled to E1 only. Then, HIE is written as

HIE = HIE1 ⊗ IE2 , (9)

where HIE1 is an operator that acts on the Hilbert space
of E1 and IE2 indicates the identity operator on the
Hilbert space of E2. 2

Although the exact condition under which the ETH
ansatz proposed in Ref.[24] is applicable is still unclear,
it is usually expected valid at least for local operators
of many-body quantum chaotic systems [26, 27]. Here,
we assume that this ansatz is applicable to the operator
HIE . According to this hypothesis, (1) diagonal elements
HIE
ii on average vary slowly with the eigenenergy ei;

(2) fluctuations of HIE
ii possess certain random feature

and are very small, scaling as e−S(e)/2, where S(e)
is proportional to the particle number N of E and is
related to the micro-canonical entropy in a semiclassical
treatment; and (3) off-diagonal elements HIE

ij with i 6= j

behave in a way similar to fluctuations ofHIE
ii [22–26, 28].

These predictions are written in the following concise
form, usually referred to as the ETH ansatz,

HIE
ij = h(e)δij + e−S(e)/2g(e, ω)Rij , (10)

where e = (ei+ej)/2, ω = ej−ei, h(e) is a slowly varying
function of e, g(e, ω) is some smooth function, and Rij
indicate random variables with a normal distribution
(zero mean and unit variance). 3

Analytical expressions of the functions h(e) and g(e, ω)
are still lacking. Numerically, three regimes have been
observed for |g(e, ω)| with respect to the order of per-site
energy denoted by ξ, provided that e lies in the central
region of the spectrum [5, 26]. That is, for ω � ξ, it
shows a plateau with a height proportional to N1/2 and
a width proportional to N−2 [25, 30]; for large ω � ξ, it
decays exponentially; and, for ω ∼ ξ, it is proportional
to ω−1/2 in diffusive one-dimensional systems [31–34].

For the simplicity in discussion, we set the initial state
of the total system at a time t = 0 as a pure state with
a product form, 4 that is,

|Ψ(0)〉 = |φS〉 ⊗ |E0〉. (11)

Here, |φS〉 indicates an arbitrary normalized state of the
central system S, written as

|φS〉 =
∑
α

c0α|α〉; (12)

2 As a local operator, HIE1 does not change with the
environmental particle number N .

3 Certain correlations among Rij have been observed numerically
in some chaotic systems [29], but, we do not discuss this
possibility in this paper.

4 Discussions to be given below may be generalized, in a
straightforward way, to a generic initial state written as |Ψ(0)〉 =∑
α c0α|α〉⊗|E0α〉, if all the environmental states |E0α〉 lie in the

same energy shell ΓE0 in Eq.(14).
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and |E0〉 is an arbitrary environmental state that lies
within an energy shell denoted by ΓE0 ,

|E0〉 =
∑
ei∈ΓE

0

c0i|i〉. (13)

The energy shell ΓE0 is centered at an energy e0 and has
a width δe0, 5 namely,

ΓE0 = [e0 − δe0/2, e0 + δe0/2]. (14)

III. MAIN RESULT

In this section, we derive the main result of this paper,
as relations among elements of the long-time averaged
RDM. Specifically, we give some formal discussions in
Sec.IIIA, then, in Sec.III B, derive an upper bound to
the environmental energy region, which is of relevance
effectively to the wave function at all times. The main
result is derived in Sec.III C and properties of a main
condition used in it are discussed in Sec.IIID.

A. Preliminary discussions

The total system undergoes a Schrödinger evolution,

|Ψ(t)〉 = e−iHt/~|Ψ(0)〉. (15)

We write |Ψ(t)〉 in the following expansion with respect
to the central system’s states |α〉,

|Ψ(t)〉 =

m∑
α=1

|α〉|Eα(t)〉, (16)

and call |Eα(t)〉 the environmental branches of |Ψ(t)〉.
These branches, as vectors in the environmental Hilbert
space, are written as

|Eα(t)〉 = 〈α|Ψ(t)〉, (17)

and are usually not normalized. Under the initial
condition in Eq.(11), it is direct to find that

|Eα(t)〉 =
∑
β

c0β〈α|e−iHt/~|β〉|E0〉, (18)

and

i~
d

dt
|Eα(t)〉 = Hαα|Eα(t)〉+

∑
β 6=α

Hαβ |Eβ(t)〉, (19)

where Hαβ indicate operators that act on the Hilbert
space of the environment, as defined below,

Hαβ := 〈α|H|β〉. (20)

5 See Sec.IIID for a discussion about restriction to the width δe0.

By definition, the RDM of the system S, denoted
by ρS(t), is given by ρS(t) = TrEρ(t), where ρ(t) =
|Ψ(t)〉〈Ψ(t)|. It is easy to check that elements of the
RDM on the basis {|α〉}, namely ρSαβ(t) = 〈α|ρS(t)|β〉,
have the following expression,

ρSαβ(t) = 〈Eβ(t)|Eα(t)〉. (21)

Making use of Eq.(19), after some deviation, one finds
that the elements ρSαβ(t) satisfy the following equation
(see Appendix A),

i~
dρSαβ(t)

dt
= W

(1)
αβ + λW

(2)
αβ , (22)

where

W
(1)
αβ = (eSα − eSβ )ρSαβ(t), (23a)

W
(2)
αβ =

m∑
γ=1

HIS
αγFβγ(t)−

m∑
γ=1

HIS
γβFγα(t). (23b)

Here, Fαβ(t) indicate c-number quantities defined below,

Fαβ(t) := 〈Eα(t)|HIE |Eβ(t)〉, (24)

and, from them, we define the following operator,

F (t) :=
∑
αβ

Fαβ(t)|α〉〈β|. (25)

It is easy to check thatW (1)
αβ andW (2)

αβ have the following
concise expressions,

W
(1)
αβ = 〈α|[HS , ρS(t)]|β〉, (26a)

W
(2)
αβ = 〈α|[HIS , FT (t)]|β〉, (26b)

where FT indicates the transposition operator of F ,
which is defined on the eigenbasis of HS .

We use an overline to indicate the long-time average of
a term. For example, the long-time average of the RDM
is written as ρS ,

ρS = lim
t→∞

1

t

∫ t

0

ρS(t′)dt′. (27)

Clearly, in the case that a steady state of the RDM exists,
it is given by ρS . Since the elements ρSαβ(t) have bounded
values, the long-time average of dρSαβ(t)/dt must be zero,
i.e., dρSαβ(t)/dt = 0. Then, Eq.(22) gives that

W
(1)

αβ + λW
(2)

αβ = 0. (28)

Substituting the explicit expressions of W (1)
αβ and W

(2)
αβ

in Eq.(23) into Eq.(28), one finds the following formal
relation for the long-time averaged RDM:

(eSα − eSβ )ρSαβ + λ

m∑
γ=1

[
HIS
αγF βγ −HIS

γβF γα

]
= 0. (29)

It is straightforward to check that a concise form of
Eq.(29) is written as

[HS , ρS ] + λ[HIS , F
T

] = 0. (30)
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B. Effective environmental energy region

In this section, we discuss an environmental energy
region, within which all the branches |Eα(t)〉 effectively lie
for all the times t, and indicate it by ΓE . We do not need
to find the smallest one of this type of region. Instead,
we consider a region that has the following simple form,

ΓE = [e0 − δe/2, e0 + δe/2], (31)

centered at the initial center e0 and with a width δe.
Below, we derive an expression for δe, as an upper

bound to the width of the energy region that effectively
contains all |Eα(t)〉. For this purpose, we need to analyze
the components 〈i|Eα(t)〉,

〈i|Eα(t)〉 =
∑
β,n

∑
ej∈ΓE

0

c0βc0jC
n∗
βjC

n
αie
−iEnt, (32)

which is directly obtained by making use of Eqs.(11)-
(13) and (15)-(17). Initially, with e−iEnt = 1 at t =
0, due to correlations among the terms of (Cn∗βjC

n
αi) of

different indices n, which originate from the completeness
of the states |n〉 as a basis in the total Hilbert space,
nonzero values of the rhs of Eq.(32) are restricted within
the initial energy region ΓE0 . With increase of the time t,
the phases e−iEnt gradually destroy the above-mentioned
correlations and, as a result, the energy region that is
effectively occupied by |Eα(t)〉 expands. Cutting all the
correlations by taking an absolute value for each summed
term on the rhs of Eq.(32), one gets an upper bound to
|〈i|Eα(t)〉|:

|〈i|Eα(t)〉| ≤
∑
ej∈ΓE

0

∑
β,n

∣∣c0βc0jCn∗βjCnαi∣∣ . (33)

When using the rhs of Eq.(33) to get an upper bound to
the environmental energy region that effectively contains
|Eα(t)〉, exact values of the nonzero coefficients c0β and
c0j are not important. Hence, we may focus on the
values of Cn∗βjC

n
αi. In particular, for the eigenfunction

(EF) Cnαi of each state |n〉, what is of relevance is its
main-body region, within which the main population lie
up to a small error indicated by ε. Energetically, such
a main-body region consists of those uncoupled states
|αi〉, whose energies Eαi are around the exact energy En
within a scope which we indicate by wεn. More exactly,
the set of the indices of these uncoupled states, indicated
by Ωεn, is written as

Ωεn =

{
(α, i) : |Eαi − En| ≤

1

2
wεn

}
. (34)

Then, the main-body region of the EF Cnαi satisfies the
following requirement,∑

(α,i)∈Ωεn

|Cnαi|
2 .

= 1− ε (ε� 1), (35)

FIG. 1. A schematic illustration for the energy region ΓE .
Upper panel: the environmental branch that moves to the
farthest left from the initial shell ΓE0 due to the system-
environment interaction. Lower panel: the branch that moves
to the farthest right.

where “ .=” means that the set Ωεn is chosen such that the
left hand side of Eq.(35) is the closest to its right hand
side.

For a product Cn∗βjC
n
αi to give a nonnegligible

contribution to the rhs of Eq.(33), both of the two basis
states |βj〉 and |αi〉 should lie in the main-body region
of |n〉. As as result, the expansion from ΓE0 to ΓE should
be influenced mainly by two factors: widths of main-
body regions of the EFs and the central system’s energy
differences. We use wεmax to indicate the maximum value
of wεn for those states |n〉 that are of relevance to the
time evolution of the initial state. Then, noting that ∆S

in Eq.(4) gives the maximum of |eSα − eSβ |, we find the
following expression of δe,

δe = δe0 + 2∆S + wεmax, (36)

as illustrated in Fig.1.
Two remarks are in order: (1) At λ = 0, the real width

is just δe0, smaller than δe. (2) When the states |αi〉
are sufficiently coupled by the interaction, it is possible
for δe in Eq.(36) to be close to the width of the energy
region that is really occupied.

C. Relations among elements of averaged RDM

In this section, we derive the main result, as relations
that the elements of ρS satisfy. To this end, let us expand
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the environmental branches |Eα(t)〉 as,

|Eα(t)〉 =
∑
i

fαi(t)|i〉 (37)

with expansion coefficients fαi(t). Substituting Eq.(37)
into Eqs.(21) and (24), taking the long-time average,
and making use of the fact that all the environmental
branches effectively lie within the energy region ΓE , one
finds the following expressions of ρSαβ and F βα,

ρSαβ =
∑
i

f∗βifαi '
∑
ei∈ΓE

f∗βifαi, (38)

F βα =
∑
i,j

f∗βjfαiH
IE
ji '

∑
ei,ej∈ΓE

f∗βjfαiH
IE
ji . (39)

Substituting the ETH ansatz (10) into Eq.(39), one gets
that

F βα '
∑
ei∈ΓE

h(ei)f∗βifαi + ∆αβ , (40)

where ∆αβ indicates a fluctuation term, given by

∆αβ =
∑
i,j

f∗βifαje
−S(e)/2g(e, ω)Rij . (41)

Generically, the two operators F and ρS do not have
a simple relationship. One key observation made here
is that they may possess a simple relationship, if the
function h(e) is approximately a nonzero constant within
the energy shell ΓE . More exactly, the condition is that∣∣∣∣ 1

h0
∆h

∣∣∣∣ ≤ εh with εh � 1, (42)

where εh is a parameter much smaller than 1, h0 ≡ h(e0)
with h0 6= 0 (even in the limit of N → ∞), and ∆h
indicates the maximum difference between h0 and h(ei)
within ΓE :

∆h = max
ei∈ΓE

|h(ei)− h0|. (43)

To show the above-mentioned relationship, we note
that, when the condition in Eq.(42) is satisfied, Eqs.(38)
and (40) imply that

F βα ' h0ρ
S
αβ + ∆αβ , (44)

or, equivalently,

F
T ' h0ρ

S + ∆, (45)

where ∆ is a fluctuation operator,

∆ :=
∑
α,β

∆αβ |α〉〈β|. (46)

From the rhs of Eq.(41), one sees three factors that
influence the N -dependence of ∆. The first one is

the exponential decay of e−S(e)/2, with S(e) ∼ N .
The second factor is given by the unknown ETH-ansatz
function g(e, ω), for which numerical simulations show
a polynomial increase of Nγ , with γ = 1/2 in some
(diffusive one-dimensional) systems [26, 35]. The third
factor lies in the summation over the indices i and j
and the long-time average term f∗βifαj . As shown in
Appendix B, due to the randomness of Rij , contribution
from the third factor is negligible compared with the first
factor. (See Eq.(B11) for an upper bound to the norm of
∆.) Therefore, the N -scaling behavior of the fluctuation
operator ∆ is dominated by the exponential decay term
e−S(e)/2. Due to this exponential decay, as well as the
fact that h0 6= 0 in the limit of large N and that each
RDM has a unit trace, one gets that

‖∆‖ � ‖h0ρ
S‖ at sufficiently large N. (47)

Then, Eq.(45) gives the following relation between the
two operators of F and ρ:

F
T ' h0ρ

S at sufficiently large N . (48)

The main result of this paper is obtained by
substituting Eq.(48) into Eq.(30),

[H̃S , ρS ] ' 0, (49)

which holds under the condition of Eq.(42) and at
sufficiently large N . Here, H̃S is a renormalized self-
Hamiltonian of the central system, defined by

H̃S := HS + λh0H
IS , (50)

which includes certain averaged impact of the system-
environment interaction. From Eq.(49), one sees that,
if a PBS exists, it should be given by the eigenbasis of
the renormalized self-Hamiltonian H̃S . Writing Eq.(49)
explicitly, one gets that

(eSα − eSβ )ρSαβ + λh0

∑
γ

[HIS
αγρ

S
γβ − ρSαγHIS

γβ ] ' 0. (51)

This gives m(m − 1)/2 relations among elements of the
averaged RDM for α 6= β and (m−1) relations for α = β.

As an illustration of the above result, let us consider
a nondegenerate two-level system (TLS), with eS2 6= eS1 .
From Eq.(51) with α 6= β, one gets that

ρS12 '
ληrh0

1− ληdh0
(ρS22 − ρS11), (52)

where

ηd =
HIS

11 −HIS
22

eS2 − eS1
, ηr =

HIS
12

eS2 − eS1
. (53)

The quantity ηd gives a relative measure for the strength
of dephasing, while, ηr gives a relative measure for the
strength of relaxation (dissipation). Meanwhile, in the
case of α = β, one gets that

HIS
12 ρ

S
21 − ρS12H

IS
21 ' 0, (54)

which implies approximate realness of the product
HIS

12 ρ
S
21.
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D. N- and λ-relevance to the condition (42)

In this section, we discuss relevance of the particle
number N to Eq.(42), a main prerequisite for the
above-derived main result, as well as relevance of the
interaction strength λ. 6 Basically, Eq.(42) requires
that the environmental energy shell ΓE should be
“sufficiently narrow”, such that the function h(e) may be
approximately taken as a constant within it, compared
with its nonzero central value h0. Below, we give
a detailed discussion of the exact meaning of “being
sufficiently narrow”.

1. Relevance of the particle number N

Relevance of N to Eq.(42) comes mainly from two
aspects: the width δe of ΓE in Eq.(36) and the ETH-
ansatz function h(e). The width δe = δe0 + 2∆S +wεmax

contains three terms. Clearly, ∆S , the central system’s
energy scope, is N -independent. The N -dependence of
δe0 is usually determined according to the problem at
hand, particularly, to quantities of final interest; e.g.,
it may be taken as a constant, or as some polynomial
function of N .

The situation with wεmax, the maximum width of
relevant EFs of the total system on the uncoupled energy
basis, is more complicated. In fact, presently, still not
much is known analytically about widths of the EFs. It
seems reasonable to assume that wεmax ∼ Nµ with some
parameter µ the value of which may be model-dependent.
By a first-order perturbation-theory treatment to long
tails of EFs in certain model, it was found that µ < 0 [36];
while, a study of higher-order contributions is still under
investigation [37] by making use of a semiperturbative
theory [38–41].

The ETH ansatz does not assume any specific form of
the function h(e). According to numerical simulations
with the help of some analytical analysis [26, 33, 42, 43],
h(e) was found approximately a function of per-site
energy,

h(ei) ≈ h̃(ei/N), (55)

where h̃(x) is some smooth function of x, independent of
N . Then, Taylor’s expansion gives that

h(ei)− h(ej) = h̃′(ei/N)
ei − ej
N

+O2(
ei − ej
N

), (56)

where h̃′(x) indicates the derivative of h̃(x) and O2

represents the second and higher order terms of the
expansion.

6 One may note that Eq.(42) is always satisfied, in the case that
EFs of the quantum chaotic environment may be effectively
described by the random matrix theory (RMT). In fact, in this
case, h(e) is a constant, given by h(e) = tr(HIE)/dE [26].

To be specific, let us discuss a case, in which the initial
width δe0 increases slower than N such that

lim
N→∞

δe0

N
= 0. (57)

This case may be met quite often practically. Note that
Eq.(57) does not really require narrowness of the initial
shell ΓE0 ; e.g., it holds for δe0 ∼ N b with a parameter
b < 1. Then, as long as µ < 1 for wεmax ∼ Nµ, Eq.(57)
implies that

lim
N→∞

δe

N
= 0. (58)

This implies that the ratio |ei − ej |/N should approach
zero in the limit of large N for ei, ej ∈ ΓE . If h̃′ 6= 0,
then, according to Eq.(56), the difference [h(ei)−h(ej)] is
approximately given by the first-order term at sufficiently
large N . As a consequence, h(e) is approximately a linear
function within ΓE and ∆h in Eq.(43) is written as

∆h ≈ δe

2N

∣∣∣h̃′ (e0

N

)∣∣∣ . (59)

One sees that, as long as
∣∣∣h̃′ (e0/N)

∣∣∣ has a finite upper
bound, ∆h/h0 → 0 in the limit of N → ∞. Otherwise,
i.e., if h̃′ = 0, one may consider the second-order term
(if nonzero) in Eq.(56) and, following arguments similar
to those given above, reach the same conclusion. Similar
arguments also apply, when higher-order terms dominate.
Therefore, for systems with µ < 1, under an initial
condition satisfying Eq.(57), the condition (42) is usually
fulfilled at sufficiently large N .

2. Relevance of the interaction strength

Among the three terms of ∆S , δe0, and wεmax in δe,
only the EF width wεmax depends on the interaction
strength λ. As is well known, usually, wεmax increases
with increasing λ, when other parameters in the total
Hamiltonian are fixed. It is reasonable to expect that
dependence of wεmax on the pair of (N,λ) may behave
in a quite complicated way. A full understanding of this
behavior is beyond the scope of this investigation. Below,
for the sake of clearness in discussion, we usually consider
a fixed value of N when discussing influence of λ.

To study influence of the interaction strength λ on
the condition in Eq.(42), let us consider a case in which
Eq.(42) is satisfied at λ = 0 with wεmax = 0. For example,
one has such a case, if the initial shell ΓE0 is sufficiently
narrow and the value of ∆S is sufficiently small. With
increase of λ from 0, the value of δe increases due to the
increase of wεmax. At a small λ, the width wεmax is still
small and, as a result, Eq.(42) is also satisfied.

When the value of λ increases beyond some regime,
usually, it is possible for ∆h to become sufficiently
large such that Eq.(42) gradually becomes invalid. Note
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that the width wεmax has no upper bound, because it
should increase (approximately) linearly with λ when
the interaction Hamiltonian dominates in the total
Hamiltonian. To be quantitative, related to breakdown
of Eq.(42), one may consider a value of λ, indicated as
λh, at which the value of |∆h/h0| first reaches εh when λ
increases from 0. Making use of Eqs.(59) and (36), from
Eq.(42) one gets that

δe0 + 2∆S + wεmax(λh) ≈ 2Nεh

∣∣∣∣∣ h0

h̃′
(
e0
N

) ∣∣∣∣∣ . (60)

Two properties are seen from Eq.(60): (1) Since the width
wεmax usually increases with increasing λ, for systems
with µ < 1, the value of λh may increase with increasing
N ; and, (2) λh should increase with decreasing ∆S , if
other parameters are fixed.

IV. FURTHER DISCUSSIONS

In this section, we discuss two situations, in which
some modified versions of the RDM relations given in the
main result still hold when some restrictions used above
are loosened. In Sec.IVA, we derive RDM relations
in the weak coupling limit, without the restriction of
Eq.(42). In Sec.IVB, we show that the main result may
be generalized to a generic local interaction Hamiltonian.

A. Offdiagonal elements at very weak couplings

In this section, in the weak coupling limit of λ,
without using the condition in Eq.(42), we derive an
expression for offdiagonal elements of the averaged
RDM of nondegenerate levels, by employing a first-order
perturbation treatment. In this limit, diagonal elements
of RDM keep approximately constants, directly given by
the initial condition:

ρSαα ' |c0α|2 for nondegenerate levels α. (61)

To be specific, below, we consider two arbitrary
nondegenerate levels of the central system S, indicated
by α and β with eSβ 6= eSα. The zeroth-order branches,
denoted by |E0th

α (t)〉, are computed by the Schrödinger
evolution of the initial state |Ψ(0)〉 under the uncoupled
Hamiltonian H0. Noting Eq.(11), one directly gets that

|E0th
α (t)〉 = 〈α|e−iH

0t|Ψ(0)〉

= c0αe
−ieSαt

∑
ej∈ΓE

0

e−iejtc0j |j〉. (62)

Substituting Eq.(62) into Eq.(21) and noting that eSβ 6=
eSα, one sees that ρSαβ has a vanishing zeroth-order term.

The zeroth-order term of Fαβ , indicated as F
0th

αβ ,
is computed by substituting Eq.(62) into Eq.(24) and

taking the long-time average. Noting that the chaotic
environment E has a nondegenerate spectrum, direct
computation gives that 7

F
0th

αβ = |c0α|2h1δαβ , (64)

where

h1 =
∑
ei∈ΓE

0

|c0i|2HIE
ii . (65)

Now, we compute the first-order term of ρSαβ . For this
purpose, let us rewrite Eq.(29) as follows,

ρSαβ =
λ

eSβ − eSα

m∑
γ=1

[
HIS
αγF βγ −HIS

γβF γα

]
. (66)

Substituting the above-obtained zeroth-order terms F
0th

αβ

into the rhs of Eq.(66), one gets the following expression
of ρSαβ up to the first-order term:

ρSαβ '
λHIS

αβh1

eSβ − eSα

(
|c0β |2 − |c0α|2

)
. (67)

Finally, we compare two results obtained above,
Eq.(67) and Eq.(52), the latter of which is a TLS case
of the main result in Eq.(51). The two results were
gotten under different conditions: Eq.(67) was derived
merely under the condition of very weak coupling, while,
Eq.(51) was derived under a condition that includes three
requirements : ETH ansatz in Eq.(10), Eq.(42), and
largeness of N . We would remark that the above two
conditions are sufficient conditions for the corresponding
results, but not necessary conditions. For example, it
is possible for Eq.(52) to hold in some cases, even when
Eqs.(10) and (42) are not fulfilled. In addition, none of
the two conditions includes the other.

To show consistency of the above two results, let us
consider a case in which both conditions are satisfied.
In fact, under Eqs.(10) and (42), it is easy to see that
h1 in Eq.(65) satisfies that h1 ' h0. Then, in the weak
coupling limit with Eq.(61), Eq.(67) is written as

ρSαβ ' ληrh0(|c0β |2 − |c0α|2). (68)

Clearly, Eq.(68) gives the same prediction as Eq.(52) in
this case.

7 For an environment that possesses a degenerate spectrum, one
may divide the set of those labels i, for which ei ∈ ΓE0 , into
subsets according to the degeneracy. We denote the subsets by
Dq with a label q, such that ei = ej for all i, j ∈ Dq . Then, it is
easy to find that

h1 =
∑
q

∑
i,j∈Dq

c∗0iH
IE
ij c0j . (63)
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B. A generic interaction

In this section, we give a brief discussion for a generic
local interaction Hamiltonian HI , which is written as
a sum of direct-product terms. Suppose that there are
MLIT such terms, with the subscript “LIT” standing for
“local interaction terms”. Then, HI is written as

HI =

MLIT∑
ν=1

λνH
IS,ν ⊗HIE,ν , (69)

where λν are parameters and HIE,ν are local operators
of the environment. The operators HIE,ν are assumed
to satisfy the ETH ansatz, with functions hν(e),
respectively. For such a generic HI , the operator F (t)
in Eq.(25) is written as

F (t) =

MLIT∑
ν=1

F ναβ(t)|α〉〈β|, (70)

where

F ναβ(t) = 〈Eα(t)|HIE,ν |Eβ(t)〉. (71)

Following arguments similar to those given in Sec.III,
with appropriate generalizations, one may study the
long-time average of this generic operator F (t) and get
similar results. More exactly, the main generalization is
that Eq.(42) is now written as∣∣∣∣ 1

hν0
∆hν

∣∣∣∣ ≤ εh
MLIT

with εh � 1 (∀ν), (72)

where hν0 = hν(e0) and

∆hν = max
ei∈ΓE

|hν(ei)− hν0 |. (73)

The final result is that, at a sufficiently large N ,

[H̃S , ρS ] ' 0, (74)

where

H̃S = HS +

MLIT∑
ν=1

λνh
ν
0H

IS,ν . (75)

V. NUMERICAL TESTS

In this section, we present numerical simulations that
have been performed for checking analytical predictions
given above. Specifically, we discuss the employed
model and analytical predictions in Sec.VA, and discuss
numerical simulations in Sec.VB.

A. The model

In numerical simulations, we employ a TLS as the
central system S and one defect Ising chain as the
environment E . The TLS has a self-Hamiltonian written
as

HS = qsS
z, (76)

where qs is a parameter and Sz indicates the z-
component Pauli matrix divided by 2.

The defect Ising chain is composed of a number N of
1
2 -spins lying in an inhomogeneous transverse field, whose
Hamiltonian is written as

HE = Bx

N∑
l=1

Sxl + d1S
z
1 + d5S

z
5 + Jz

N∑
l=1

Szl S
z
l+1, (77)

where Sxl and Szl indicate Pauli matrices divided by
2 at the l-th site. Here, Bx, Jz, d1, and d5 are
parameters, which are adjusted such that the defect
Ising chain is a quantum chaotic system. That is, for
levels not close to edges of the energy spectrum, the
nearest-level-spacing distribution P (s) is close to the
Wigner-Dyson distribution PW (s) = π

2 s exp(−π4 s
2), the

latter of which is almost identical to the prediction of
RMT [44–46]. Exact values of the parameters used are
Bx = 0.9, Jz = 1.0, d1 = 1.11, and d5 = 0.6; and N
is between 10 and 13. In our numerical computation of
EFs, the periodic boundary condition was implied and
the so-called Krylov-space method was used.

The TLS is coupled to the k-th spin of the defect Ising
chain. We have studied two specific forms of the local
interaction Hamiltonian, indicated as HI

(1) and HI
(2),

HI
(1) = λSx ⊗ Sxk , (78a)

HI
(2) = λ(Sx + Sz)⊗ Sxk . (78b)

Their difference lies in that the TLS part of HI
(1) has

no overlap with HS in Eq.(76), while, HI
(2) has some.

According to Eqs.(4) and (53), one finds that ∆S = qs,
ηd = 0 and ηr = 1

2qs
for HI

(1), and ηd = − 1
qs

and ηr = 1
2qs

for HI
(2). Numerically, we have checked that the ETH

ansatz is applicable to local operators in the defect Ising
chain (see Appendix C).

Below, we discuss predictions for properties of the
long-time-averaged RDM element ρS12 of the TLS, which
are given by analytical results of previous sections. We
discuss in the increasing order of the interaction strength
λ.

(1) Regime of very small λ (weak coupling limit).
As discussed in Sec.IVA, ρS12 should satisfy Eq.(67) at
very small λ. Since the ETH ansatz is applicable to
the defect Ising chain, when Eq.(42) is satisfied, this
prediction coincides with Eq.(52), which is the TLS case
of the main result in Eq.(51).
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FIG. 2. Values of |ρS12| (triangles) vs the coupling strength λ
in the logarithm scale, under two interaction Hamiltonians of
HI

(1) and HI
(2). Left panels: qs = 0.05, and right panels:

qs = 0.3. The solid lines (red) represent predications of
the main result Eq.(52), and the dashed-dotted lines (blue)
show predications of Eq.(67) for very weak couplings. The
vertical dot lines (black) indicate positions of λc, which were
computed by Eq.(79) with εc = 0.1. Parameters: (c01, c02) =
(0.51, 0.86), N = 13, e0 = −1.2, δe0 = 0.1, and k = 7.

(2) Regime of small but not very small λ.
(a) Eq.(42) being valid at λ = 0.
In this case, Eq.(42) is also valid at small λ. As a
result, ρS12 should satisfy the main prediction Eq.(52) at
sufficiently large N .
(b) Eq.(42) being invalid at λ = 0.
In this case, there is no definite analytical prediction for
ρS12 beyond the weak coupling limit.

(3) Regime of λ below λh with Eq.(42) valid.
As discussed in Sec.IIID 2, Eq.(52) is applicable for λ
below λh. The value of λh, which satisfies Eq.(60), is
expected to increase with increasing N if µ < 1, while,
increase with decreasing ∆S .

As discussed previously, Eq.(42) belongs to a sufficient,
but not necessary, condition for validity of Eq.(52). This
implies that Eq.(52) might be useful even beyond λh. To
directly study validity of Eq.(52), one may compute the
value of λ, indicated by λc, at which the relative error
first reaches some small parameter indicated by εc when
λ increases from 0,

∣∣∣∣∣ρS12 − ρS12,th

ρS12

∣∣∣∣∣
λ=λc

= εc, (79)

where ρS12 indicates the exact value of the RDM element
and ρS12,th is for the prediction of Eq.(52).

We have no definite analytical prediction for behaviors
of λc. It seems reasonable to expect that, at least in some
cases, λc may show some behavior qualitatively similar
to that of λh as discussed above in predication (3).

FIG. 3. (a) Variation of wεmax vs λ, with λ in the
logarithm scale, for qs = 0.05, N ∈ [10, 13], and ε = 0.05.
The interaction Hamiltonian is HI

(1). Inset: both axes in
the logarithm scale, showing that wεmax has approximately
a λ2-behavior in the middle regime of λ. (b) Similar to
(a), but for qs = 0.3. (c) Variation of |∆h/h0| vs λ for
qs = 0.05. Inset: |∆h/h0| vs N at λ = 0.1, showing a 1/N
behavior, as predicted by Eq.(59). (d) Similar to (c), but for
qs = 0.3, with some difference in the scale of the vertical axis.
Other parameters are the same as in Fig.2, except that e0 is
determined by keeping e0/N constant.

B. Numerical simulations

We have numerically checked the above predictions
for various values of the parameters concerned. The
environmental initial state was taken as a typical state
within an energy shell ΓE0 , which is given by e0 = −1.2
and δe0 = 0.1.

Two values of qs has been studied, namely, qs = 0.3
and 0.05. For qs = 0.3, we found that |∆h/h0| ' 0.6
at λ = 0 and N = 13, implying invalidity of Eq.(42).
With qs changed to qs = 0.05, we found |∆h/h0| ' 0.1,
implying validity of Eq.(42). In both cases, h1 ' h0.

Variations of |ρS12| versus the interaction strength λ are
shown in Fig.2, for the above-mentioned two values of
qs and for the two interaction Hamiltonians in Eq.(78).
One sees that there is in fact no qualitative difference
between results for the two interaction Hamiltonians. In
the computation of the rhs of Eq.(52), exact values of ρS11

and ρS22 were used. In agreement with prediction, both
the main result of Eq.(52) (solid lines) and the weak-
coupling prediction of Eq.(67) (dashed-dotted lines) work
well at very small λ, more exactly, at λ around 0.001
and smaller. Consistently, the mean nearest-level spacing
of the total system was found about 7.3 × 10−4 in the
considered energy region at N = 13.

With λ increased above 0.001, as expected, the
weak-coupling predictions (dashed-dotted lines in blue)
gradually deviate from the exact values of |ρS12|
(triangles). Meanwhile, consistent with the prediction
of (2)(a), for qs = 0.05 with Eq.(42) valid, predictions of
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N = 10 N = 11 N = 12 N = 13

λh(qs = 0.05) None 0.04 0.07 0.1
λh(qs = 0.3) None None None None
λc(qs = 0.05) 0.025 0.04 0.07 0.1
λc(qs = 0.3) 0.1 0.015 0.025 0.015

TABLE I. Values of λc and λh, obtained with εh = εc = 0.1,
the interaction Hamiltonian is HI

(1).

Eq.(52) (solid lines in red) remain close to the triangles,
up to λ ∼ 0.1. It is of interested to note that, even in
the case of qs = 0.3 with Eq.(42) unsatisfied, predictions
of Eq.(52) remains valid up to λ ' 0.01.

To get further understanding for the above-discussed
behaviors of |ρS12|, we have studied variation of the
maximum width wεmax, which is responsible to the λ-
dependence of the width δe(= δe0 + 2qs + wεmax) of ΓE ,
versus λ, as well as variation of |∆h/h0| (Fig.3). It is
seen that, at qs = 0.05 and N = 13, the value of wεmax

keeps small for small λ and begin to increase fast around
λ = 0.1; and, consistently, |∆h/h0| (triangles down)
behaves in a similar way. Similar behaviors are seen at
qs = 0.3 and N = 13, except that |∆h/h0| is already
large at λ = 0.

We have also studied impact of the particle number N .
As seen in Fig.3, the width wεmax is almost independent of
N for N from 10 to 13, which implies a negligible value of
µ, i.e., µ ≈ 0. Meanwhile, the value of |∆h/h0| decreases
with increasing N , in agreement with a prediction of
Eq.(59) that ∆h may scale as 1/N at a fixed value
of e0/N [insets of Fig.3(c) and (d)]. Moreover, with
µ ≈ 0, according to prediction (3), λh may increase with
increasing N ; in other words, Eq.(52) may work better
at larger N , which is seen by comparing Fig.4 and Fig.2.

Finally, we discuss numerically obtained values of λh
for validity of Eq.(42) and values of λc for practical use
of Eq.(52). The values of λh may be directly gotten from
Fig.3. Taking εh = 0.1, we found that Eq.(42) is valid for
no value of λ at qs = 0.3 and N = 10, 11, 12, 13, which
is indicated as λh = none in Table I; and, similarly, for
qs = 0.05 and N = 10. Thus, λh has definite values only
at qs = 0.05 and N = 11, 12, 13. If the restriction of
εh = 0.1 is loosed a little, i.e., if taking εh larger than 0.1
but still small (e.g., 0.15), λh may have definite values in
more cases, which is clear from Fig.3(c). In all the cases
in which λh has definite values for Eq.(42), we found
that larger value of λh corresponds to larger value of
N , meanwhile, larger value of λh corresponds to smaller
value of qs, in agreement with prediction (3).

Values of λc were computed by making use of Eq.(79)
with εc = 0.1. At qs = 0.05 with Eq.(42) valid, as
seen in Table I, λc increases with increasing N and is
close to λh for N = 11, 12, 13. But, at qs = 0.3 with
Eq.(42) invalid, λc shows a quite complicated behavior;
more exactly, it does not increase monotonically with N
and is unexpectedly large at N = 10.

FIG. 4. Similar to Fig.2 (a), but, for N = 10 and 12.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, the long-time averaged RDM has
been studied for a generic small central system S with
m levels, which is locally coupled to a large many-
body chaotic environment E , with the total system
undergoing a Schrödinger evolution. Beside largeness
of the particle number of E , the only restriction is that
the environmental part of the interaction Hamiltonian
satisfies the ETH ansatz, with the diagonal term in
the ansatz [namely the function h(e)] approximately a
constant within the energy region of relevance. For such
a total system, on the eigenbasis of the central system,
1
2 (m − 1)(m + 2) approximate relations have be derived
among elements of its steady states (if existing).

The above-discussed relations imply that the steady
RDM should be commutable with a renormalized
Hamiltonian H̃S of the central system, which includes
certain averaged impact of the system-environment
interaction. As a consequence, decoherence happens
on the eigenbasis of the renormalized Hamiltonian,
even under a system-environment interaction that is
dissipative for the original Hamiltonian HS , and leads
to a PBS given by the eigenbasis of H̃S . This
enriches analytical knowledge about PBS for systems
under nonweak and dissipative system-environment
interactions, which had been previously observed
numerically in some specific models (see, e.g., Ref.[47]).
8 Moreover, results of this paper give an explicit way of
constructing renormalized Hamiltonian for PBS.

In fact, renormalized Hamiltonian is also used in a
standard master-equation approach to RDM. There, at
an initial stage before the derivation begins, the self-
Hamiltonian of the central system is taken as certain
renormalized Hamiltonian, which we indicate as HS

mas

with “mas” standing for “master equation”, given by
HS

mas = HS + λHIStr(HIEρEth), where ρEth denotes a
thermal state of the environment. Under the ETH

8 We would note a difference between the type of models studied
in this paper and the spin-boson models used in Refs.[17–21].
That is, in a spin-boson model, the environment (the bosons) is
not a quantum chaotic system and the ETH ansatz is usually
inapplicable. Due to this difference, even if a PBS may exist in a
spin-boson model, the mechanism should be quite different from
that discussed in this paper.
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ansatz and the condition in Eq.(42), HS
mas has almost

the same expression as H̃S in Eq.(50), if the state ρEth
lies effectively within the energy shell ΓE .

However, there is a big difference between the physical
meanings of HS

mas and H̃S . In fact, in our approach,
the operator H̃S is derived by faithfully taking the long-
time average over the overall Schrödinger evolution; and
it indicates the existence of a PBS, if the RDM may
approach a steady state. While, in the master-equation
approach, the operator HS

mas is mainly employed for
the sake of convenience in derivation, though with deep
physical intuition lying behind it. Only after a certain
type of analytical solution to a derived master equation is
found, which is usually a hard task except in some special
models, could it become clear whether HS

mas may indeed
be of relevance to a PBS. Moreover, as an approach based
a perturbative treatment, validity of the master-equation
approach at long times is a subtle issue.

Finally, we would mention that, beside the field of
decoherence, results of this paper may also be useful
in other fields in which properties of steady states of
small and open quantum systems are of relevance, such
as quantum thermodynamics [36, 48–50].
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Appendix A: Derivation of Eq.(22)

In this appendix, we derive Eq.(22). Using Eq.(21),
the time evolution of the RDM is written as

i~
dρSαβ(t)

dt
= i~

d

dt
〈Eβ(t)|Eα(t)〉 = A1 +A2, (A1)

where

A1 = i~
(
d

dt
〈Eβ(t)|

)
|Eα(t)〉, (A2a)

A2 = i~〈Eβ(t)|
(
d

dt
|Eα(t)〉

)
. (A2b)

Making use of Eq.(19), one finds that

A1 = −
∑
γ

〈Eγ(t)|Hγβ |Eα(t)〉. (A3)

From Eqs.(7) and (20), one gets that

Hαβ = 〈α|H|β〉 = eSαδαβ + λHIS
αβH

IE +HEδαβ . (A4)

Then, we write Eq.(A3) as,

A1 =− eSβ 〈Eβ(t)|Eα(t)〉 − λ
∑
γ

HIS
γβ 〈Eγ(t)|HIE |Eα(t)〉

− 〈Eβ(t)|HE |Eα(t)〉. (A5)

Noting Eqs.(21) and (24), the above equality gives that

A1 = −eSβρSαβ(t)− λ
∑
γ

HIS
γβFγα(t)− 〈Eβ(t)|HE |Eα(t)〉.

(A6)

Similarly, one finds

A2 = eSαρ
S
αβ(t) + λ

∑
γ

HIS
αγFβγ(t) + 〈Eβ(t)|HE |Eα(t)〉.

(A7)
Putting the above results together, one gets Eq.(22).

Appendix B: Scaling of the fluctuation operator

In this appendix, we show that the main N -scaling
behavior of the fluctuation operator ∆,

∆ =
∑
αβ

∆αβ |α〉〈β|, (B1)

is an exponential decay with increasing N . For this
purpose, let us compute the Frobenius norm of ∆,

||∆||2F =
∑
αβ

|∆αβ |2. (B2)

Making use of Eq.(41), direct derivation shows that

||∆||2F =
∑
αβ

∣∣∣∣∣∣
∑
ij

g(e, ω)e−S(e)/2f∗βifαjRij

∣∣∣∣∣∣
2

=
∑
αβ

∑
iji′j′

g(e, ω)e−S(e)/2f∗βifαjRij

× g∗(e′, ω′)e−S(e′)/2fβi′f∗αj′ R
∗
i′j′ . (B3)

Note that g(e, ω) = g∗(e,−ω) and Rij = R∗ji. To
proceed, let us discuss the statistical average of ||∆||2F ,
taken over the random variables Rij , which is indicate by
〈·〉. This averaging procedure results in that [26, 51]

〈RijR∗i′j′〉 = δii′δjj′ + δij′δi′j , (B4)
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and, as a consequence,

〈||∆||2F 〉 =
∑
ij

|g(e, ω)|2e−S(e)

×

∑
αβ

∣∣f∗βifαj∣∣2 + f∗βifαj · fβjf∗αi


≤ 2

∑
ij

|g(e, ω)|2e−S(e)
∑
αβ

∣∣f∗βifαj∣∣2
≤ 2 max

ij
(|g(e, ω)|2e−S(e))

∑
ij

∑
αβ

∣∣f∗βifαj∣∣2.
(B5)

To compute f∗βifαj , we make use of the fact that fαj =

〈αj|Ψ(t)〉. This gives that

f∗βifαj = 〈Ψ(t)|βi〉〈αj|Ψ(t)〉

=
∑
mn

〈Ψ(0)|n〉〈n|βi〉ei(En−Em)t〈αj|m〉〈m|Ψ(0)〉. (B6)

Note that the environment E , as a quantum chaotic
system, has a nondegenerate spectrum. Under a generic
system-environment interaction, the spectrum of the
total system is nondegenerate, too. Then, one has
ei(En−Em)t = δmn and, as a result,

f∗βifαj =
∑
n

〈Ψ(0)|n〉〈n|βi〉〈αj|n〉〈n|Ψ(0)〉. (B7)

This gives that∣∣∣f∗βifαj∣∣∣2 =
∑
nm

〈Ψ(0)|n〉〈n|βi〉〈βi|m〉〈m|Ψ(0)〉

× 〈Ψ(0)|m〉〈m|αj〉〈αj|n〉〈n|Ψ(0)〉. (B8)

Then, making use of the completeness of the basis of
|α〉 and that of |i〉, one gets that∑

αβij

∣∣∣f∗βifαj∣∣∣2 =
1

L0
, (B9)

where L0 is the so-called participation function of the
initial state |Ψ(0)〉, defined by

L0 =
1∑

n |〈Ψ(0)|n〉|4
. (B10)

As is known, L0 gives a measure to the localization
length, i.e., to the number of those levels En that are
effectively occupied by the state |Ψ(0)〉. For a large
environment and an initial shell not extremely narrow,
the value of L0 is large.

Substituting Eq.(B9) into Eq.(B5), we get an upper
bound to the averaged norm 〈||∆||2F 〉, i.e.,

〈||∆||2F 〉 ≤
2

L0
max
ij
|g(e, ω)|2e−S(e) ∼ 2N2γ

L0
e−S(e).

(B11)

FIG. C. 1. Upper panel: Diagonal matrix elements of two
local observables Szk and Sxk (k = 7) of the defect Ising chain
vs the environmental energy εi = ei/N for different chain
size N . In agreement with the ETH ansatz in Eq.(10), these
elements fluctuate around certain slowly-varying functions of
e, respectively, and the fluctuations decrease with the increase
of the particle number N . Lower panel: Locally averaged
values of the above elements (within windows with a width
0.01), showing a feature of approximate size-independence.

Since the averaging procedure does not change the N -
scaling behavior of the norm ||∆||2F and the exponential-
decay term e−S(e)/2 already exists in the exact expression
of ∆αβ in Eq.(41), from Eq.(B11) one sees that the
N -scaling behavior of fluctuation operator ∆ should be
dominated by the exponential decay e−S(e)/2.

Appendix C: Verification of ETH ansatz

Due to the hypothesis feature of the ETH ansatz
in Eq.(10), we have checked its validity in the model
employed in this paper. We did this for the two local
operators Sxk and Szk at the site k = 7 in the defect Ising
chain.
Diagonal ETH.— Let us first discuss predictions

of Eq.(10) for diagonal elements of local observables.
Expectation values of the two local observables,

(Sak)ii = 〈i|Sak |i〉 with a = x, z, (C1)

are plotted in Fig.C. 1. It is seen that, in agreement with
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FIG. C. 2. (a) Exponential decay of the deviation
σad in Eq.(C2) with the increase of N , for fluctuations of
the diagonal elements of Sxk (empty squares) and of Szk
(solid circles). (b) Exponential decay of σand in Eq.(C4)
for fluctuations of offdiagonal elements. The results are in
agreement with the prediction of ETH in Eq.(10).

ETH, the diagonal elements fluctuate around certain
slowly varying function h(e) and the fluctuations decrease
with increasing the particle number N . Note that the
horizontal axis is labeled by ei/N . For a = z, the values
of h(e) are close to zero, while, for a = x, most of |h(e)|
are notably larger than zero.

To study quantitatively the fluctuations of (Sak)ii, we
have computed the standard deviations σad ,

σad =

√√√√ 1

NΓE
0

∑
ei∈ΓE

0

|(Sak)ii − µa|2, (C2)

where

µa =
1

NΓE
0

∑
ei∈ΓE

0

(Sak)ii. (C3)

As seen in Fig. C. 2 (a), the fluctuation decays
exponentially with the increase of N , as predicted by
the term e−S(e) in the second part on the rhs of Eq.(10).
Moreover, in agreement with the prediction of ETH, the
distributions of [(Sak)ii−µa]/σad are close to the Gaussian
form [Fig. C. 3 (a) and (b)].
Off-diagonal ETH.— Next, we discuss the offdiagonal

elements (Sak)ij . In agreement with the prediction of
ETH, the probability distributions of (Sak)ij/σ

a
nd have a

Gaussian form [Fig. C. 3 (c) and (d)], where σand are the
standard deviations for the offdiagonal elements,

σand =

√√√√ 1

NΓE
0
(NΓE

0
− 1)

∑
i 6=j∈ΓE

0

|(Sak)ij |2. (C4)

These standard deviations also decay exponentially with
the increase of N [Fig. C. 2 (b)].

To get some knowledge about shapes of the function
g(e, ω), which lacks an analytical expression, numerical

FIG. C. 3. Distributions of fluctuations of the diagonal
elements of Szk (a) and of Sxk (b), rescaled by σzd and σxd ,
respectively. And, distributions of the offdiagonal elements of
Szk (c) and of Sxk (d), rescaled by σznd and σxnd, respectively.
The dashed curves represent the Gaussian distribution with
unit variance.

FIG. C. 4. Locally averaged values (in the logarithm scale) of
the absolute square of off-diagonal elements of (a) Szk and (b)
Sxk , within an energy shell centered at −1.2 and with a width
0.2, vs ω = ej − ei. Local averages were taken within small
windows with width 0.01.

simulations have been performed for locally averaged
values of |(Szk)ij |2 and |(Sxk )ij |2 for off-diagonal elements.
As seen in Fig.C. 4, the function shows a size-independent
feature, with an exponential-type decay at large ω.
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