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Coupled-wire constructions have been widely applied to quantum Hall systems and symmetry-
protected topological (SPT) phases. In this Letter, we use the coupled one-dimensional nonchiral
Luttinger liquids with domain-wall structured mass terms as quantum wires to construct the crys-
talline higher-order topological superconductors (HOTSC) in two-dimensional interacting fermionic
systems by two representative examples: D4-symmetric class-D HOTSC and C4-symmetric class-
BDI HOTSC, with Majorana corner modes on the edge. Furthermore, based on the coupled-wire
constructions, the quantum phase transition between different phases of 2D HOTSC by tuning the
inter-wire coupling are investigated in a straightforward way.

Introduction – Topological phases of quantum matter
have become one of the greatest triumph of condensed
matter physics since the discovery of fractional quantum
Hall effect [1, 2]. Topological order defined by patterns
of long-range entanglement provides a systematic way of
understanding topological phases of quantum matter [3].
Furthermore, the interplay between symmetry and topol-
ogy plays a central role in the topological phases of quan-
tum matter. In particular, symmetry-protected topolog-
ical (SPT) phases has been systematically constructed
and classified in short-range entangled systems [4–26].
An elegant example of SPT phases is topological insula-
tor, protected by time-reversal and charge-conservation
symmetry [27, 28]. Recently, crystalline SPT phases have
been intensively studied [29–60], with great opportunities
for experimental realizations [61–64]. In particular, dif-
ferent from internal SPT phases, the boundaries of 2D
crystalline SPT phases are almost gapped but with pro-
tected 0D corner zero modes. This type of topological
phases are called higher-order topological phases [65–76].

The study of higher-order topological phases mainly
focus on free-fermion systems, because interactions and
crystalline symmetries restrict the analytical study of lat-
tice model, only numerics on finite size lattice can give
some insights. On the other hand, a clear and powerful
tool of studying topological phases of quantum matter
is coupled-wire construction [77–88]. One decomposes a
higher-dimensional system into an assembly of 1D quan-
tum wires, and topological properties then arise from
the suitable couplings of them. A unique advantage of
coupled-wire construction is that different from higher-
dimensional quantum field theory, the powerful bosoniza-
tion technique of one-dimensional subsystems can be
used to challenge the strong interaction effects. Different
phases are manifested by patterns of coupled wires and
the quantum phase transition of different phases is con-
trolled by tuning inter-wire couplings directly. Therefore,
an important open question arises: if the strongly corre-
lated higher-order topological phases can be constructed
by coupled-wire perspective?

In this Letter, we systematically construct the crys-
talline HOTSC in two-dimensional interacting fermionic
systems by coupling the circular 1D nonchiral Luttinger
liquids with domain-wall structured mass terms as quan-
tum wires, via two typical intriguing interacting exam-
ples: D4-symmetric class-D HOTSC and C4-symmetric
class-BDI HOTSC, whose higher-order edge modes are
Majorana zero modes (MZMs) [45, 46]. By suitable inter-
wire tunneling/interaction, several 1D quantum wires are
assembled and fully gapped, living few dangling quan-
tum wires at the edge or near the center of the systems.
Near the center, the dangling quantum wires are fully
gapped by intra-wire interactions; on the edge, the dan-
gling quantum wires explicitly manifest the higher-order
topological edge modes of 2D HOTSC by their domain-
wall structure. Different 2D HOTSCs are characterized
by different patterns of coupled-wire. Lattice translation
symmetry can also be imposed straightforwardly. Fur-
thermore, with concrete coupled-wire construction of 2D
HOTSC, we directly investigate the quantum phase tran-
sitions by tuning different coupling constants of inter-
wire interactions. We stress that our arguments are not
sensitive to specific geometry of quantum wires: the cal-
culations are applicable to any geometry respecting the
specific crystalline symmetry, we choose circular geome-
try for calculational convenience.
D4-symmetric class-D HOTSC – For 2D D4-

symmetric systems with spinless fermions, there is an
intriguing interacting 2D HOTSC with protected Majo-
rana corner modes ξk and ξ′k (k = 1, 2, 3, 4) that can be

reformulated to complex fermions c†k = (ξk + iξ′k)/
√

2
(see Fig. 1). In this section we construct this phase by
an “almost free” coupled-wires, with necessary interac-
tion only defined near the D4-center. These Majorana
corner modes are also reformulated in terms of domain
walls of 1D nonchiral Luttinger liquids [89]. Consider 2n
decoupled 1D quantum wires with circular geometry (see
Fig. 1), the Lagrangian of jth quantum wire is:
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FIG. 1. Coupled-wire construction of 2D fermionic crys-
talline HOTSC. Right panel: dangling gapless modes of
D4-symmetric class-D or C4-symmetric class-BDI HOTSC.
Dashed lines are reflection axes for D4 symmetry.

where φj = (φj1, φ
j
2)T is the 2-component bosonic field of

jth quantum wire and Kj = σz as the K-matrix of the
topological term [90]. The total Lagrangian of decoupled

wires is: L0 =
∑2n
j=1 L

j
0. The D4 symmetry properties

of these bosonic fields are (R ∈ C4/M1 ∈ ZM2 is rota-
tion/reflection generator of D4 = C4 o ZM2 symmetry):

R :

{
φj1(θ) 7→ −φj1(θ + π/2)

φj2(θ) 7→ −φj2(θ + π/2) + π

M1 :

{
φj1(θ) 7→ −φj2(2π − θ) + π/2

φj2(θ) 7→ −φj1(2π − θ) + π/2

(2)

To figure out the Majorana corner modes of D4-
symmetric HOTSC, we should further introduce the mass
term with domain wall structure of each quantum wire:

Ljwall = m sin(2θ) · cos
[
φj1(θ) + φj2(θ)

]
(3)

where Ljwall is symmetric under (2), and Lwall =∑2n
j=1 L

j
wall. For each quantum wire with a domain-wall

structured mass term, there are four complex fermion
zero modes at poles c†1,2,3,4 of the circle, with θ =
0, π/2, π, 3π/2 because of the vanishing mass term, which
are equivalent to eight MZMs. These dangling 0D gapless
modes cannot be gapped in a D4-symmetric way.

Subsequently we define two types of D4-symmetric (2)
inter-wire tunneling that couple the (2j − 2 + k)th and
(2j − 1 + k)th quantum wires (m1,m2 < m, k = 1, 2):

Ljck = mk

2∑

α=1

cos
[
φ2j−2+kα (θ)− φ2j−1+kα (θ)

]
(4)

and Lck =
∑n
j=1 L

j
ck. There are two extreme cases:

m1 6= 0,m2 = 0/m1 = 0,m2 6= 0 corresponds to the
phase that Lc1/Lc2 dominates the inter-wire physics. For
Lc1-dominant phase, the (2j − 1)th and 2jth wires are
paired up and gapped, hence the corresponding system
is fully gapped on a open circle and topological trivial.
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FIG. 2. 4 distinct phases of 2D BDI-class (C4×ZT
2 )-symmetric

system. Each four 1D wires with narrower intervals can be
gapped by inter-wire interactions Lck, and the 1D wire near
C4-center can be gapped by intra-wire interactions Lint.

For Lc2-dominant phase, the 2jth and (2j + 1)th wires
are paired up and gapped, hence all 1D wires except 1st

and 2nth are gapped. The 1st wire on the edge of the
system presents 4 complex fermions/8 MZMs at poles
of circle, which are exactly the second-order topological
surface modes of 2DD4-symmetric class-D HOTSC. Near
the D4-center, there are also gapless modes on the 2nth

quantum wire. Distinct from quantum wires away from
D4-center, bosonic field φ2n of the 2nth quantum wires
with different polar angles can tunnel to/interact with
the field at other places. Consider two interacting terms
of 2nth quantum wire near the D4-center:

Lint = m′
2∑

β=1

cos

(
2∑

α=1

[
φ2nα (θ)− φ2nα (βπ − θ)

]
)

(5)

i.e., the intra-wire couplings of the 2nth wire lead to a
fully gapped bulks. Equivalently, a nontrivial 2D class-D
D4-symmetric HOTSC are described by 1D coupled wires
with Lagrangian LDD4

= L0 +Lwall +Lc2 +Lint. The in-
triguing interacting nature of this HOTSC is reflected by
Lint near the D4-center. On the other hand, the physics
away from the D4-center is well-understood on the nonin-
teracting level. The classification of 2D class-D HOTSC
is Z2, composed by phases dominated by inter-wire cou-
pling Lc1 and Lc2 (see Fig. 5).
C4-symmetric class-BDI HOTSC – For 2D BDI-class

systems with C4-symmetry, there is another type of in-
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FIG. 3. Bulk gap of 2D D4-symmetric Lagrangian L0 +Lc1 +
Lc2 + Lint, with respect to the ratio m2/m1.

triguing interacting 2D HOTSCs [45]. We construct these
phases by “interacting” coupled-wires in this section.
Consider 4n 1D circular quantum wires, each wire is de-
scribed by Lagrangian (1) with φj = (φj1, φ

j
2, φ

j
3, φ

j
4)T as

4-component bosonic field of jth quantum wire, Kj =
σz ⊕ σz as the topological K-matrix, and the total La-
grangian of all 4n 1D quantum wires is L0 =

∑4n
j=1 L

j
0.

The (C4 × ZT2 )-symmetry properties are defined as [90]:

R :





φj1 7→ φj1 + φj3 − φj4 − π/2
φj2 7→ φj2 − φj3 + φj4 + π/2

φj3 7→ φj1 + φj2 − φj3 + π/2

φj4 7→ φj1 + φj2 − φj4 + π/2

, θ 7→ θ + π/2 (6)

T :





φj1(θ) 7→ φj2(θ)− φj3(θ) + φj4(θ)

φj2(θ) 7→ φj1(θ) + φj3(θ)− φj4(θ) + π

φj3(θ) 7→ φj1(θ) + φj2(θ)− φj4(θ) + π

φj4(θ) 7→ φj1(θ) + φj2(θ)− φj3(θ)

(7)

Then we repeatedly figure out the Majorana corner
modes by backscattering terms with domain-wall struc-
ture: for each quantum wire, we introduce a symmetric
[cf. Eqs. (6) and (7)] mass term:

Ljwall =m

2∑

α=1

cos
(
θ − απ

2

)
· cos

[
φjα(θ)− φj5−α(θ)

]
(8)

And Lwall =
∑4n
j=1 L

j
wall. For each quantum wire, there

are 4 gapless comlex fermions c†k (8 MZMs ξk and ξ′k)
at poles of the circle, two of them at north and south
poles are from the first term of (8) and other two at east
and west poles are from the second term of (8). These
dangling gapless modes cannot be gapped in a (C4×ZT2 )-
symmetric way.

Subsequently we consider (C4 × ZT2 )-symmetric [cf.
Eqs. (6) and (7)] inter-wire interactions including four
1D quantum wires (k = 1, 2, 3, 4) [90]:

Ljck = mk

2∑

α=1

cos
[
φ4j−4+kα − φ4j−4+k5−α + φ4j−3+kα − φ4j−3+k5−α

]
+ cos

[
φ4j−4+kα − φ4j−4+k5−α + φ4j−2+kα − φ4j−2+k5−α

]

+ cos
[
φ4j−2+kα − φ4j−2+k5−α + φ4j−1+kα − φ4j−1+k5−α

]
+ cos

[
φ4j−3+kα − φ4j−3+k5−α + φ4j−1+kα − φ4j−1+k5−α

]
(9)

and the total Lagrangian of inter-wire couplings is Lck =∑n−1
j=1 L

j
ck. There are four extreme cases: mk 6= 0

(k = 1, 2, 3, 4) as the only nonzero index inm1,2,3,4, which
corresponds to the phase that Lck deminates the inter-
wire physics. For Lc1-dominant phase, the (4j − k)th

(k = 0, 1, 2, 3) quantum wires are assembled and gapped,
hence the spectrum is fully gapped on a 2D open circle,
and the corresponding phase is topological trivial.

For Lc4-dominant phase with m4 6= 0 and m1,2,3 = 0,
by applying Lwall and Lc4, the (4j + 3 − k)th quan-
tum wires are assembled and gapped, and there are
only 4 quantum wires remain gapless: 1st, 2nd, 3rd on
the edge, and 4nth near the C4-center. On the edge,
1st, 2nd and 3rd quantum wires with dangling gapless
modes are treated as the higher-order edge state of 2D
C4-symmetric class-BDI HOTSC; near the C4-center, in
order to obtain a HOTSC, we should further add some

intra-wire interactions to fully gap the 4nth quantum wire
in order to get a fully-gapped bulk state. Consider the 4-
body interacting terms of 4nth quantum wire, composed
by the backscatterings of bosonic fields φ4n1,2,3,4 with dif-
ferent polar angles [90]:

Lint = m′
2∑

α,β=1

cos
[
φ4nα (θ)− φ4n5−α(θ) + φ4nα (θ + βπ/2)

−φ4n5−α(θ + βπ/2)
]

(10)

i.e., the intra-wire interactions of the 4nth quantum
wire lead to a fully gapped bulk, and a nontrivial 2D
(C4×ZT2 )-symmetric HOTSC with spinless fermions are
described by 1D coupled quantum wires with Lagrangian
LBDI
C4

= L0 + Lwall + Lc4 + Lint. Similar for Lc2 and
Lc3 dominant phases, and there are 4 topological distinct
phases for 2D BDI-class (C4×ZT2 )-symmetric system, see
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FIG. 4. Coupled wires of 2D p4mm-symmetric class-D
HOTSC. Each “

⊗
” symbol depicts a center of D4, each line

(horizontal or verticle) depicts a quantum wire, and each dot
depicts a domain wall described by Lj

wall. Red and black dou-
ble arrows depict different inter-wire couplings Lc1 and Lc2.

Fig. 2. The interacting nature of these topological phases
are reflected by inter-wire interactions Lck and intra-wire
interactions near the C4-center, Lint. The classification
of 2D class-BDI HOTSC is Z4, composed by phases dom-
inated by inter-wire couplings Lck (k = 1, 2, 3, 4).

The coupled-wire construction is not limited to super-
conductors, it is also applicable to topological insulators:
the only difference is that the Luttinger liquid (1) should
respect the U(1) charge conservation.

Imposition of Lattice Translation – With point group
symmetric cases, by D4-symmetric class-D example, we
demonstrate that the imposition of lattice translation
symmetry is straightforward: impose the lattice transla-
tion to D4 leads to p4mm wallpaper group. We arrange
8 quantum wires near each D4-center (4 vertical and 4
horizontal, see Fig. 4), different topological phases are
also controlled by patterns of inter-wire couplings: topo-
logical trivial phase is dominated by Lc1 (black double
arrows in Fig. 4), and nontrivial phase is deminated by
Lc2 (red double arrows in Fig. 4) and Lint at each D4-
center in order to the fully gapped bulk.

Quantum phase transition of HOTSC – Coupled-wire
picture serves a unique platform for investigating the
quantum phase transition (QPT) of 2D HOTSC because
of its clear formulations. In this section, we elucidate the
QPT of 2D intriguing interacting D4-symmetric HOTSC
as a representative example. Consider the D4-symmetric
Lagrangian L0 + Lc1 + Lc2 + Lint, above we have dis-
cussed two extreme cases with m1 = 0/m2 = 0, derive
two distinct phases characterized by appearence of Majo-
rana corner modes on the edge (1st quantum wire). Now

x

y

x

y

m2/m1, ↑
=⇒
QPT

m2 −m10

FIG. 5. Quantum phase transition of 2D D4-symmetric
HOTSC, with respect to m2 − m1. Each pair of quantum
wires with narrower intervals are coupled.

we suppose m = 10m1 and set both m1 and m2 finite and
study the possible QPT by tuning their ratio m2/m1. As
summarized in Fig. 3, turn on m2 in m2 < m1 regime,
the system remains fully gapped with narrower gap; at
m1 = m2, the gap closes and the system becomes critical;
keep increasing m2 toward m2 > m1 regime, the system
reopens a bulk gap but leaving several gapless modes on
the edge, which are exactly the Majorana domain walls
of 1D quantum wire on the edge. Therefore, we conclude
that there is a clear quantum phase transition from triv-
ial state to 2D D4-symmetric HOTSC at m1 = m2 point.
Equivalently, this quantum phase transition is character-
ized by different inter-wire entanglement patterns of 1D
quantum wires, as illustrated in Fig. 5.

For 2D C4-symmetric class-BDI system, the quantum
phase transitions can be described in a similar way with
little complications. For this case, there are four distinct
phases controlled by four different parameters m1,2,3,4

(see Fig. 2). As an example, for the quantum phase tran-
sition between phase-2 and phase-3, we set m1 = m4 = 0
and investigate the bulk gap by tuning the ratio m2/m3.
Heuristically, we see that the system will be critical for
m2 = m3, hence there will be a quantum phase tran-
sition at this point [90]. As a matter of fact, distinct
phases of 2D HOTSC are controlled by different patterns
of inter-wire entanglements, and their quantum phase
transitions can be manipulated by tuning the intensities
of different types of inter-wire couplings. In other words,
coupled-wire construction provides a straightforward way
of comprehending the quantum phase transitions of 2D
HOTSCs, by tuning the inter-wire couplings to control
the patterns of inter-wire entanglement. Different phases
are manifested by different numbers of Majorana zero
modes at each pole of the outer-most quantum wire.

Experimental Implications – In this Letter, the ex-
plicit manifestations of second-order modes on the edge
of the systems by domain-wall structured quantum wires
serves a direct opportunity for observing the higher-order
topological phases by tunneling spectroscopic measure-
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ments. Recently, the coupled-wire picture is straight-
forwardly manifested in two-dimensional Moiré superlat-
tices [91, 92]. In particular, in Ref. [92], one-dimensional
Luttinger liquids behavior has been explicitly observed
in 2D bilayer WTe2 Moiré superlattice by direct trans-
port measurements. Hence our approach can directly be
applied to Moiré superlattice.

Conclusion and Discussion – Coupled-wire construc-
tion is a celebrated aspect in topological phases of quan-
tum matter, for both long-range and short-range entan-
gled systems. In this Letter, we establish the coupled-
wire construction of 2D intriguing interacting fermionic
crystalline HOTSC, with two representative examples:
2D D4-symmetric class-D and C4-symmetric class-BDI
HOTSC phases. An indispensable advantage of coupled-
wire construction is that the powerful bosonization tech-
nique can be utilized, and the inter-wire couplings can
be straightforwardly involved by many-body backscat-
tering terms in the Lagrangian. With this advantage, we
use the 1D nonchiral Luttinger liquid with a domain-wall
structured mass term as an “almost gapped” 1D quan-
tum wire. Based on these quantum wires, we introduce
some suitable inter-wire couplings in order to gap out
the bulk by assemblies of quantum wires. The remain-
ing ungapped quantum wires on the edge are treated as
the edge theory of 2D HOTSC. Near the center of point
group, the ungapped quantum wires are gapped by in-
teractions of bosonic fields at different places. The lat-
tice translation symmetry can be straightforwardly im-
posed. Distinct HOTSCs are manifested by different
patterns of inter-wire entanglement. Furthermore, the
concrete coupled-wire constructions serve a straightfor-
ward way to comprehend the quantum phase transitions
of 2D HOTSCs, by directly tuning the inter-wire cou-
plings to control the inter-wire entanglement patterns.
The coupled-wire construction can also be generalized
to the systems with arbitrary cyrstalline symmetry SG
and internal symmetry G0 in arbitrary dimensions, and
especially in 2D Moiré superlattice, with more compli-
cated inter-wire entanglement patterns, and their quan-
tum phase transitions should also be controlled by inter-
wire entanglement patterns of quantum wires. Further-
more, with explicit corner modes, the 2D HOTSC may di-
rectly justified by tunneling spectroscopic measurements
on the edge.
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phases in two-dimensional systems: A coupled-wire study”

K-matrix formalism of fSPT

In the main text, we define the 1D quantum wire based
on the nonchiral Luttinger liquid with topological K-
matrix. In this section we review the K-matrix formal-
ism of fermionic symmetry-protected topological (fSPT)
phases. A U(1) Chern-Simons theory has the form:

L =
KIJ

4π
εµνλaIµ∂νa

J
λ + aIµj

µ
I + · · · (S1)

where K is a symmetric integral matrix, {aI} is a set
of one-form gauge fields, and {jI} are the corresponding
currents that couple to the gauge fields aI . The symme-
try is defined as: two theories L[aI ] and L[ãI ] correspond
to the same phase if there is an n×n integral unimodular
matrix W satisfying ãI = WIJa

J .
The topological order described by Abelian Chern-

Simons theory hosts Abelian anyon excitations. An
anyon is labeled by an integer vector l = (l1, l2, · · ·, ln)T .
The self and mutual statistics of anyons are:

θl = πlTK−1l

θl,l′ = 2πlTK−1l′
(S2)

The total number of anyons and the ground-state de-
generacy (GSD) on a torus are both given by |detK|. For
SPT phase, there is no GSD or anyon, hence we require
|detK| = 1 for SPT phases.

The K-matrix Chern-Simons theory has a well-known
bulk-boundary correspondence [1, 2]. In a system with
open boundary, the edge thoery of (S1) has the form:

Ledge =
KIJ

4π

(
∂xφ

I
) (
∂tφ

J
)

+
VIJ
8π

(
∂xφ

I
) (
∂xφ

J
)

(S3)

where φ = ({φI})T are chiral bosonic fields on the edge
and related to dynamical gauge field aIµ in the bulk by

aIµ = ∂µφ
I , and an anyon on the edge can be created by

the operator eil
Tφ.

Assemble of quantum wires of C4-symmetric
class-BDI HOTSC

In the main text, the inter-wire couplings of 2D C4-
symmetric class-BDI HOTSC are defined by backscat-
terings of four 1D quantum wires as an assembly. In
this section we demonstrate that the minimal number of
quantum wires of an assembly should be four, equiva-
lently, two quantum wires cannot be gapped in a sym-
metric way.

The 1D quantum wire building block for coupled-wire
construction of 2D C4-symmetric class-BDI HOTSC is
described by 1D nonchiral Luttinger liquid on a circle,
with the Lagrangian:

Lj0 =
Kj
IJ

4π

(
∂θφ

I
j

) (
∂tφ

J
j

)
+
V jIJ
8π

(
∂θφ

I
j

) (
∂θφ

J
j

)
(S4)

where θ is the polar angle of the circle, φj(θ) =
(φj1(θ), φj2(θ), φj3(θ), φj4(θ))T as 4-component bosonic
fields of jth quantum wire, and Kj = σz ⊕ σz as the
topological K-matrix. In the main text, the (C4 × ZT2 )
symmetry has been defined on the bosonic fields as Eqs.
(6) and (7), which can be reformulated to:

R : φj 7→WR
j φ

j + δφRj , T : φj 7→W Tj φ+ δφTj (S5)

where (Θ is the operator that transforms the polar angle
θ 7→ θ + π/2)

WR
j =




1 0 1 −1
0 1 −1 1
1 1 −1 0
1 1 0 −1


Θ, δφRj =

π

2




−1
1
1
1


 (S6)

and

W Tj =




0 1 −1 1
1 0 1 −1
1 1 0 −1
1 1 −1 0


 , δφTj =




0
π
π
0


 (S7)

Now we consider two copies of such quantum wire
and investigate whether they can be fully gapped out.
The corresponding Lagrangian has the similar form to
Eq. (S4), with φ(θ) = (φ1(θ), φ2(θ))T as 8-component
bosonic fields, and K = (σz)⊕4 as the topological K-
matrix. For this case, the (C4×ZT2 ) symmetry is defined
on φ as:

R : φ 7→WRφ+ δφR, T : φ 7→W T φ+ δφT (S8)

where

WR =




1 0 1 −1
0 1 −1 1
1 1 −1 0
1 1 0 −1


⊗ 12×2Θ (S9)

δφR = δφR1 ⊕ δφR2 , δφT = δφT1 ⊕ δφT2 , and

W T =




0 1 −1 1
1 0 1 −1
1 1 0 −1
1 1 −1 0


⊗ 12×2 (S10)
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We now try to construct interaction terms that gap out
the edge without breaking R and T symmetries, neither
explicitly nor spontaneously. Consider the backscatter-
ing term of the form:

U =
∑

k

U(Λk) =
∑

k

U(θ) cos
[
ΛTkKφ− α(θ)

]
(S11)

The backscattering term (S11) can gap out the edge as
long as the vectors {Λk} satisfy the “null-vector” condi-
tions [3] for ∀i, j:

ΛTi KΛj = 0 (S12)

For the present case, there are only two linear indepen-
dent solutions to this problem:

ΛT1 = (1, 0, 0, 1, 1, 0, 0, 1)
T

ΛT2 = (0, 1, 1, 0, 0, 1, 1, 0)
T

(S13)

Nevertheless, there are eight bosonic fields φ1,2, we
should introduce at least 4 independent backscattering
terms in order to fully gap them out, hence we cannot
fully gap out the two copies of 1D quantum wires for the
cases of 2D C4-symmtric class-BDI HOTSC.

For the case with 4 copies of 1D quantum wires, we
have introduced eight linear independent 4-component
backscattering terms in the main text that can fully
gap all four quantum wires. As the consequence, in the
coupled-wire construction of 2D C4-symmetric class-BDI
HOTSCs, we should assemble the 1D quantum wires
by four, and the corresponding classification from the
coupled-wire constructions is Z4.

Symmetry and couplings of quantum wires

In this section, we explain the symmetry defined in
the main text in details and demonstrate the inter-wire
and intra-wire couplings are symmetric under arbitrary
crystalline symmetry operations.

D4-symmetric class-D HOTSC

In the main text, we have defined the D4-symmetry in
Eq. (2). Here we justify the couplings introduced in the
main text are D4-symmetric.

Firstly, it is easy to verify that the D4 symmetry op-
erations defined in Eq. (2) satisfy the group structure of
4-fold dihedral symmetry. Firstly, the rotation and reflec-
tion generators, R and M satisfy the following condition
for spinless fermions:

R4 = M2 = 1 (S14)

and the symmetry operation MRM will transform the
bosonic fields φj1,2 as:

φj1(θ) 7→ −φj1(θ +
3π

2
)

φj2(θ) 7→ −φj2(θ +
3π

2
) + π

(S15)

which is identical to R3. We can straightforwardly verify
that the backscattering terms [cf. Eqs. (3)-(5) in the
main text] are D4-symmetric.

Then we focus on the inter-wire and intra-wire
backscattering terms and demonstrate that they can fully
gap out the bulk of the D4-symmetric class-D HOTSC.
Consider the (2j − 2 + k)th and (2j − 1 + k)th quantum

wires, there are 4 independent bosonic fields φ2j−2+k1,2 and

φ2j−1+k1,2 . In order to gap them out, we need to intro-
duce at least two linear independent backscattering terms
satisfying the Haldane’s “null-vector” condition [cf. Eq.
(S12)]. It is straightforwardly to verify that the inter-wire
coupling Ljck includes two linear independent backscat-
tering terms satisfying the Haldane’s “null-vector” con-
dition, hence the related (2j− 2 +k)th and (2j− 1 +k)th

quantum wires are fully gapped out by Ljck.
For nontrivial HOTSC dominated by Lc2, the inner-

most quantum wire remains gapless at each pole. The
neighborhoods of all four poles includes four segments of
bosonic field, φ1,2(θ), where θ ∈ (−ε + βπ/2, ε + βπ/2),
β = 0, 1, 2, 3. The intra-wire coupling Lint includes
only two linear independent backscattering terms glob-
ally, nonetheless, if we only focus on the gapless segments
at poles of the circular quantum wire, there are four lin-
ear independent backscattering terms, two of them take
the value θ = 0 and the other two take the value θ = π/2.
Hence all gapless modes at poles are fully gapped by Lint.

C4-symmetric class-BDI HOTSC

In the main text, we have defined the C4 symmetry in
Eq. (6) and time-reversal symmetry in Eq. (7). Now we
justify the couplings introduced in the main text that are
(C4 × ZT2 )-symmetric.

Firstly, it is easy to verify that the generators of 4-fold
rotation and time-reversal, R and T satisfy the condi-
tion:

R4 = T 2 = 1

We note that the interactions we have introduced in the
main text as Eqs. (8)-(10) are (C4×ZT2 )-symmetric only
if we define the rotation and time-reversal symmetries as
Eqs. (6) and (7) in the main text.

Then we focus on the inter-wire and intra-wire
backscattering terms and demonstrate that they can fully
gap out the bulk of the C4-symmetric class-BDI HOTSC.
Consider the (4j − k)th (k = 0, 1, 2, 3) quantum wires,
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there are 16 independent bosonic fields φ4j−k1,2 . In order
to gap them out, we should introduce at least 8 linear in-
dependent backscattering terms satisfying the Haldane’s
“null-vector” condition [cf. Eq. (S12)]. It is straightfor-
wardly to verify that the inter-wire coupling Ljck includes
8 linear independent backscattering terms satisfying the
Haldane’s “null-vector” condition, hence the related four
quantum wires are fully gapped by Ljck.

For nontrivial HOTSC dominated by Lc4, the inner-
most quantum wire remains gapless at each pole. The
neighborhoods of all four poles includes sixteen segments
of bosonic field, φ1,2(θ), where θ ∈ (−ε+βπ/2, ε+βπ/2),
β = 0, 1, 2, 3. The intra-wire coupling Lint includes only
four linear independent backscattering terms globally,
nonetheless, if we only focus on the gapless segments at
poles of the quantum wire, there are eight linear indepen-
dent backscattering terms, four of them take the value

θ = 0, and the other four take the value θ = π/2. Hence
all gapless modes at poles are fully gapped by Lint.
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