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Inspired by recent experimental findings that will be presented elsewhere, we formulate and inves-
tigate a model of a superconducting junction that combines the electron propagation in a quantum
channel with an arbitrary transmission, and that through a localized state. Interesting situation
occurs if the energy of the localized state is close to Fermi level, that is, the state is in resonant
tunnelling regime. Since this energy is affected by the gate voltage, we expect a drastic modification
of transport properties of the junction in a narrow interval of the gate voltages where the energy
distance to Fermi level is of the order of Γ,∆, Γ being the energy broadening of the localized state,
∆ being the superconducting energy gap.

We consider the model neglecting the interaction in the localized state, as well as accounting for
the interaction in a simplistic mean-field approach where it manifests itself as a spin-splitting. This
spin splitting is also contributed by external magnetic field. We also take into account the spin-orbit
interaction that can be significant in realistic experimental circumstances.

In normal state, we find that the model may describe both peak and dip in the transmission at
resonant gate voltage. Spin splitting splits the positions of these peculiarities. Fano interference of
the transmission amplitudes results in an asymmetric shape of the peaks/dips. In superconducting
state, the spin splitting results in a complex dependence of the superconducting current on the
superconducting phase. In several cases, this is manifested as a pair of 0 − π transitions in the
narrow interval of gate voltages.

The article in the present form is not intended for a journal submission.

I. SCOPE, STYLE AND STRUCTURE OF THE
ARTICLE

In its present form, this article is not intended for a
submission to a journal. We believe that the theory de-
veloped here is worth a journal publication only together
with the account of experimental activities, and full com-
parison of experimental and theoretical findings. This
publication is in preparation.

We also find the model to be of significant general in-
terest for current research in superconducting nanostruc-
tures. Despite the basic simplicity, the derivation of the
model and elaboration on concrete results invokes a big
number of technical details which are not normally given
in a journal publication. So we chose to share our results
in the present form that gives a full account of these tech-
nical details.

As a matter of style, this article does not include
a usual introductory part and is not accompanied by
proper references.

The structure of the article is as follows. In Section
II, we give a short summary of our impression of the ex-
perimental results. We explain motivation of the model
and list its key ingredients in Section III. The Hamil-
tonian formulation is given in Section IV. In Section V
we derive the Landauer description of normal electron
transport for an arbitrary number of dots and leads. We
specify to two-dot, two-lead model in Section VI where
we perform the necessary derivations to adjust the model
to the situation at hand for the case of normal transport.
The illustrative normal transport examples are given in
Section VII. We turn to theoretical description of super-
conducting transport in Section VIII and describe our
numerical methods in Section IX. The most important

Section X prodives several examples of superconducting
transport. We conclude in Section XI.

II. SHORT SUMMARY OF EXPERIMENTAL
OBSERVATIONS

Let us shortly present the essence of experimental find-
ings that inspired us to elaborate on the model. These
experiments have been performed by V. Levajac, J. Y.
Wang, L.P. Kouwehnoven, and other members of their
team at QuTech, Delft University of Technology. The
proper account of the experiments will be published else-
where. Here we present our personal (theoretical) im-
pression of the results.

The setup involves two superconducting junctions
made by covering a semiconducting nanowire with su-
perconducting electrodes. The junctions are enclosed in
a SQUID loop that enables to characterize the depen-
dence of the currents in the junctions on the supercon-
ducting phases changing the magnetic flux in the loop.
A substantial magnetic field can be also applied in the
plane of the substrate. There are gate electrodes affecting
the junctions separately. The measurement is a simple
voltage measurement at a given current bias. (Fig. 1
a). From this, one can inherit the critical current of two
junctions in parallel. Another parameter that can be var-
ied in this experiment is the magnetic field in the plane
of substrate, parallel field.

Naturally, the supercurrents vary smoothly upon
changing the gate voltages at various magnetic fields.
This is explained by depletion/addition of electron den-
sity to the junction that closes/opens the transport chan-
nels and modulates their transparency. The conduc-
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tances of the junctions are several GQ ≡ e2/π~ suggest-
ing 1-2 open transport channels. An unusual observation
the experimentalists share with us is a sharp dependence
of the supercurrent upon changing one of the gate volt-
ages in a narrow interval. In this interval, the change
of the electron energies induced by the gate voltage is
of the order of 1meV, that is comparable with the value
of the superconducting gap and Zeeman energy coming
from the parallel field.

Some data can be interpreted as two close 0− π tran-
sitions in this narrow interval of gate voltages. In an
idealized case (which is not necessary an experimental
one) where the supercurrents through the junctions dif-
fer much in the magnitude, the I − φ dependence of the
Josephson current in the junction with smaller current
can be directly seen in the dependence of the critical
current on the flux Φ in the SQID loop. If one changes
the gate voltage controlling the smallest junction, the
observation could be then summarized as follows (Fig. 1
b): i. the positions of supercurrent minima are close to
Φ0/4+nΦ0 indicating the minimum of Josephson energy
at φ = 0 ii. π-shifted dependence in the middle of the
interval indicating the minimum of Josephson energy at
φ = π iii. Double periodicity of the current at the borders
of the interval.

Such pairs of close 0 − π transitions occur may oc-
cur several times at different gate voltage settings. The
widths of the interval increases upon increasing the par-
allel magnetic field. Sometimes the transitions merge and
disappear at small magnetic field. Sometimes the effect
persists even at zero field.

III. THE MOTIVATION AND ESSENCE OF
THE MODEL

The sharp dependence on the gate voltage in a nar-
row interval suggest that a localized state is involved.
The gate voltage shifts its energy level with respect to
Fermi energy. Beyond the interval, the state is either
empty or occupied and hardly participates in transport,
either normal or superconducting. In the interval, res-
onant transport occurs via the state. The width of the
interval is set by either Γ, the width of the level due to
escape to the leads, or ∆, the superconducting energy
gap.

There are known mechanisms of 0 − π transitions in-
volving a localized state. First one is due to spin split-
ting of Andreev states in magnetic field. If the splitting
is of the order of ∆, the curvature of Andreev levels at
zero phase may be inverted, and the Josephson energy
achieves minimum at φ = π rather than zero. If in-
teraction in the localized state is essential, the state is
single-occupied in an interval of the gate voltage, and
the minimum of Josephson energy may be at φ = π in
this interval (Contrary to a popular belief, this is not al-
ways true for a single-occupied state). These mechanisms
are not mutually exclusive but rather related: in a mean-
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FIG. 1: a. Scheme of the setup (not in scale). Two
semiconducting wires (black) are covered with a
superconducting film (light grey) forming two

Josephson junctions in a SQUID loop. The wires are
affected by the voltages applied to the gate electrodes

(dark grey).The loop is penetrated by magnetic flux Φ.
The parallel magnetic field B may be applied. b. An
intriguing observation: a pair of 0− π transitions in a
narrow interval of a gate voltage. The curves give the

dependence of critical current on the flux in the loop for
a set of increasing gate voltages and are offset for clarity.

field approximation, the interaction may be described as
a spin splitting, and the field-induced splitting leads to
single occupation if the chemical potential is between the
split levels. This provides extra motivation to explain the
experimental observation with a localized state.

However, the situation is obviously more complex than
just the transport through a localized state. At least a
single transport channel is open when the localized state
becomes resonant. A very simplistic model would be in-
dependent parallel transport in the localized state and in
the channel. This model, however, is not flexible enough
to fit the experimental data. We need to take into ac-
count interference of transmissions through the channel
and the resonant states.
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FIG. 2: a. Cross-section of the wire. Geometry of
electron distribution in the wire and the leads. The

filled states are given in black. The electron density is
depleted near the wire surface. Random potential

minima are either filled (small black regions) or empty
(regions with dashed boundaries). The resonant state is

given in dark grey. b. Essential parameters of the
two-dot model in use. The second dot is only use to
simulate a transport channel with a transmission not

depending on energy, so that the tunnel rates ΓR,L1,2 and
the positions of the dot energy levels with respect to

Fermi level, E1,2, satisfy ΓR,L2 , E2 � ∆ ' ΓR,L1 , E1.
There is also tunneling κ between the dots, and the
tunneling rates γR,L that cannot be ascribed to a

certain dot.

A motivation for this also comes from the presumed
geometry of electron distribution in the nanowire: the lo-
calized states are most likely appear in random potential
minima of a nanowire part where the density is depleted.
(Fig. 2 a) Electron tunneling from these minima may
proceed to the leads as well as to the transport channel.
There may be many such minima that are subsequently
filled upon changing the gate voltage giving rise to many
localized states. We note that only the states with the
escape rate Γ ' ∆ may be responsible for the observed
peculiarity. Those with Γ � ∆ modify the transport
smootly at the energy scale Γ, so at the energy scale ∆
that is relevant for superconducting transport would only
cause the renormalization of the transmission coefficients
of the transport channels. Those with Γ� ∆ modify the
transmission only in a narrow energy interval: this would

not give rise to Andreev states that require significant
transmission at two opposite energies (for electrons and
holes).

To formulate a practical model encompassing the chan-
nel and the localized state, we note that the transport
channel can be conveniently modelled with a localized
state as well, provided the escape rate of this state Γ2 by
far exceeds ∆. So we elaborate the model that encom-
passes two localized states, or dots, that are connected
to two leads by tunnelling. Before writing any Hamilto-
nians, let us list most important parameters of the model
(see Fig. 2 b). Two dots are at energy levels E1,2 and
are connected to left and right lead by tunneling with the

rates ΓL,R1,2 . There is a direct tunnel coupling κ between
the dots. Important non-trivial element are tunneling
rates γL,R that can not be ascribed to a certain dot but
are requied to describe tunneling of a superposition state
of to dots. Since the second dot is here only to model a
channel, the model only makes sense under assumption

ΓL,R2 � ΓL,R1 , E1. Owing to this, we can neglect the in-
fluence of the gate voltage and magnetic field on E2. The
parameters κ, γ are at intermediate scale, κ, γ '

√
Γ1Γ2.

The most important interaction in this model is the on-
site interaction in the localized state. It would be tempt-
ing to neglect this interaction, since we cannot treat it
exactly. Besides, the localized state is near the transport
channel so the interaction should be strongly suppressed
by screening. However, the 0 − π transition pairs are
sometimes observed at zero magnetic field, this suggest
that interaction should play a role. We compromise by
treating the on-site interaction in a simple mean-field ap-
proach.

The bandstructure of the semiconductor material of
the wire provides strong spin-orbit interaction that we
also include to the model. The coefficients κ, γL,R there-
fore posses the corresponding spin structure.

IV. HAMILTONIANS

In this Section, we give the Hamiltonians of the con-
stituents of our model.

A. The single dot

We start with a dot Hamiltonian. It involves on-site
annihilation operators d̂α, α being the spin index, and
reads

ĤD = d̂†αHαβ d̂β + Un̂↑n̂↓ (1)

n̂α = d̂†αd̂α. The single-particle Hamiltonian reads

Ȟ = E + B · σ

B being the magnetic field, σ being the vector of Pauli
matrices.
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Importantly, we treat the interaction in the mean-field
approximation. If there is a natural quantization axis
(that can be absent in the presence of SO interaction
in the coupling to the leads), the mean field gives the
following additions to the single-particle Hamiltonian,

H↑↑ = U〈n̂↓〉;H↓↓ = U〈n̂↑〉. (2)

In general situation,

Hαβ = U
(
δαβ〈N̂〉 − 〈d̂†αd̂β〉

)
(3)

The advantage of this mean-field scheme is that it deliv-
ers exact results in the absence of tunnel coupling. In
particular, at zero magnetic field the ground state cor-
responds to single occupation of the dot in the interval
U > E − µ > 0. At the ends of the interval, sharp
transitions bring the dot to the states of zero and double
occupation. The scheme is approximate in the presence
of tunnel coupling, yet we use it for the lack of better
general approach to interaction.

B. The leads

We introduce annihilation operators in the leads ĉk,α
where k labels the states of quasi-continuous spectrum
in the leads. The states k are distributed over the leads,
those are labelled with a. We assume the states k are
invariant with respect to time inversion.

The leads are described by the usual BSC Hamiltonian

Ĥleads =
∑
k

ξk ĉ
†
k,αĉk,α +

∑
a

∑
k∈a

(∆∗aĉk,↑ĉk,↓ + h.c) (4)

ξk are the energies of the corresponding states. The su-
perconducting order parameter ∆a is different in different
leads. To describe normal leads, we just put ∆a = 0.

C. Tunnel coupling

The tunnel coupling to the states is described by the
following Hamiltonian

ĤT =
∑
k

ĉ†k,αt
k
αβ d̂β + h.c (5)

For time-reversible case, the tunnel amplitudes are given
by

ť = tk + itk · σ (6)

with real tk, tk. Of course, the multitude of tunneling
amplitudes comes to the answers only in a handful of
parameters. One of such parameters is the decay rate
from the dot to the continuous spectrum of the lead a,

Γa(ε) = 2π
∑
k∈a

(
|tk|2 + |tk|2

)
δ(ξk − ε) (7)

One can disregard the dependence of the rates on the
energy ε.

V. NORMAL TRANSPORT FOR MANY DOTS

In this Section, we will derive the currents in the nanos-
tructure assuming the leads are normal and are kept at
different filling facts. We do this derivation for an ar-
bitrary number of the leads and dots, and later specify
this for two dots and two terminals. Let us consider the
following Hamiltonian where we do not specify spin or
dot structure

Ĥ =
∑
k

ξk ĉ
†
kck + d̂†αHαβ d̂β +

∑
k

(ĉ†kt
kβ d̂β + h.c) (8)

The Heisenberg equations read

i ˙̂ck = ξk ĉk + tkαd̂α (9)

i
˙̂
dα = Hαβ d̂β + t∗kαĉk (10)

The current operators are thus given by

Îa =
∑
k∈a

−itkαd̂†k ĉα + h.c. (11)

We solve for operators ĉk,

ĉk(t) = ĉ0e−ixikt +

∫
dt′gk(t, t′)tkαd̂α(t′),

gk(t, t′) ≡ −ie−iξk(t−t′), and subsequently for d̂α,

d̂α(t) =

∫
dt′Gαβ(t, t′)t∗βke

−iξkt′ d̂0
k

where the Green’s function obeys(
i∂t − Ȟ − Σ̌

)
Ǧ = δ(t− t′) (12)

and

Σ̌(t, t′) =
∑
k

t∗kαgk(t, t′)tkβ . (13)

It is also useful to introduce partial Σ that describe the
decay to a certain lead,

Σ̌a(t, t′) =
∑
k∈a

t∗kαgk(t, t′)tkβ (14)

. With this,

ĉk(t) = c0ke
−iξkt

+gk(t, t′)tkαGαβ(t′, t′′)t∗k′βe
−iξk′ t′′ ĉ0k′ (15)

in the above expression, we assume summation over
t′, t′′, k′. We substitute this into the current operator,

average over the quantum state replacing 〈ĉ0†k ĉ0k〉 = fk
and get two contributions corresponding to two terms in
Eq. 15. The contribution A depends only on the filling
factor in the lead a and reads

IaA = Tr
(
Ǧ(t, t′)F̌ a(t′, t)− F̌ a(t, t′) ˇ̄G(t, t′)

)
(16)
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where Ḡ(t, t′) ≡ G†(t′, t),

F̌ a(t, t′) =
∑
k∈a

t∗kαtkβfke
−iξk(t−t′) (17)

The contribution B depends on filling factors in all leads

IaB = Tr

(
Ǧ(t, t′)

∑
b

F̌ b(t′, t′′) ˇ̄G(t′′, t′′′)Σ†a(t′′′, t)

−Σa(t, t′)Ǧ(t′, t′′)
∑
b

F̌ b(t′′, t′′′) ˇ̄G(t′′′, t)

)
(18)

We switch to the energy representation. To deal with the
tunnel amplitudes, we will use the following relation

Γ̌a(ε) = 2π
∑
k

t∗kαtkβδ(ε− ξk) (19)

Γ̌a characterizing the decay from all dots to the lead a.
Conventionally, we will disregard the energy dependence
of Γ (since we are working close to the Fermi level). With
this,

F̌ a = −iΓ̌afa(ε); Σ̌a = − i
2

Γ̌a, (20)

where we have taken into account that the filling factor
depends on energy only, and disregarded real part of Σ
(that would lead to a renormalization of the dot Hamil-
tonian). With this, the Green function is given by

Ǧ =
1

ε− Ȟ + iΓ̌/2
; (21)

Γ̌ ≡
∑
a Γ̌a. The B contibution for the current for all

b 6= a can be written as

Ia/e =
∑
b 6=a

∫
dε

2π
Pab(ε)fb(ε) (22)

Pab being the probability to scatter from all channels of
terminal b to the channels of terminal a,

Pab(ε) = Tr{Γ̌aǦ(ε)Γ̌b ˇ̄G(ε)} (23)

This is in accordance with the corresponding part of Lan-
dauer formula for multi-terminal case. The contibution
A reads:

IaA/e = −i
∫

dε

2π
fa(ε)Tr{Γ̌a(Ǧ− ˇ̄G)} (24)

We use the relation

Ǧ− ˇ̄G = −iǦΓ̌ ˇ̄G (25)

to represent the contribution A in the form

IaA/e = −
∫

dε

2π
fa(ε)

∑
b

Pab(ε) (26)

summing everything together, we reproduce the Lan-
dauer formula

Ia/e =

∫
dε

2π

∑
b6=a

Pab(ε)(fa(ε)− fb(ε)) (27)

Let us construct a scattering matrix corresponding to the
situation. The scattering to a terminal a is described by
Γ̌a. Let us represent this matrix as Γ̌a = W̌ †aW̌a. The
matrix W̌a is a matrix where the second index goes over
the dots and the first one over the channels of the ter-
minal a. This is of course an ambiguous representation,
but so the scattering matrix is (tell more about?) We
combine all matrices Wa block by block to the matrix W
where the first index goes over all channels in all termi-
nals. We note W̌ †W̌ = Γ̌. With this, a scattering matrix
describing the situation reads

Š = 1− iW̌ ǦW̌ † (28)

Its unitarity can be proven with using the relation (25).

VI. NORMAL TRANSPORT FOR TWO DOTS

The case of the two dots, two terminals seems trivial
but requires some elaboration for the limit where Γ in
the dots are very different, this is the case under consid-
eration. To warm up, let us specify to a single dot. We
note that Γa in this case are diagonal in spin owing to
time-reversability and can be regarded as numbers. The
transmission probability from the left to the right (or vice
versa) can be written as

T0(ε) =
ΓLΓR

(ε− E)2 + Γ2/4
(29)

The ideal transmission is achieved at ΓL = ΓR = Γ/2 and
ε = E. Let us go for two dots and list possible parameters
of the model. Those are: level energies (split in spin)
E1+B1·σ, E2+B1·σ, decays from the dots Γ1 = ΓL1 +ΓR1 ,
Γ2 = ΓL2 +ΓR2 , tunneling between the dots κ+ iκ ·σ, and
non-diagonal tunneling to the leads Γ12,21 ≡ γ ± iγ · σ.
Let us write down the Green’s function:

Ǧ−1 = ε−
[
H1 H12

H†12 H2

]
(30)

H1,2 ≡ E1,2 +B1,2 · σ − iΓ1,2/2 (31)

H12 ≡ κ+ iκ · σ − i(γ + iγ · σ)/2 (32)

The idea of further transform is that the second dot pro-
vides a featureless background for the first dot. To this
end, we consider big E2,Γ2 � ε, B2, E1,Γ1 As to γ, κ,
they are assumed to be of an intermediate scale, say
γ '
√

Γ1Γ2.
We will apply a transform that approximately diago-

nalises the Green function so that

Ǧ = ǓǦdǓ
−1 (33)
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where

Ǔ =

√
1 + s

2s

[
1 η+

−η− 1

]
; (34)

Ǔ−1 =

√
1 + s

2s

[
1 −η+

η− 1

]
(35)

and

η± =
µ±

1 + s
; s ≡

√
1 + µ+µ−; (36)

µ± = 2
k ± k · σ
−E2 + iΓ2/2

; (37)

k,k ≡ −κ+ iγ/2,−κ+ iγ/2 (38)

with this, the biggest block of Ǧ−1
d is −E2 + iΓ2/2, while

the smallest one reads

ε− E1 + iΓ1/2−
k2 + k2

−E2 + iΓ2/2
(39)

We rewrite it as

ε− E1 + iΓ/2−∆E1 (40)

where the actual level width Γ is given by

Γ = Γ1 +
Γ2C11 − 2E2C10

E2
2 + Γ2

2/4
; (41)

C11 ≡ κ2 − γ2/4 + κ2 − γ2/4; (42)

C10 ≡ κγ + κγ (43)

and we neglect insignificant shift of the level position

∆E1 = −C10Γ2/2 + C11E2

E2
2 + Γ2

2/4
(44)

The Γa matrices are transformed as Γ̌L → Ǔ†Γ̌LǓ , Γ̌L →
Ǔ−1†Γ̌LǓ−1.

Keeing terms of the relevant orders only, we obtain

Γ̌L =

[
gL Γ+L

12 − η∗−ΓL2
Γ−L12 − ΓL2 η− ΓL2

]
(45)

gL ≡ ΓL1 − Γ+L
12 η− − η∗−Γ−L12 + η∗−ΓL2 η− (46)

Γ̌R =

[
gR Γ+R

12 − η+ΓR2
Γ−R12 − ΓR2 η

∗
+ ΓR2

]
(47)

gR ≡ ΓR1 − Γ+R
12 η∗+ − η+Γ−R12 + η+ΓR2 η

∗
+− (48)

With this, we can summarize the results for the total
transmission coefficient Ttot (summed over two spin di-
rections). We introduce compact notations that adsorb
the energy dependence of the coefficient:

G± =
1

ε− E1 ±B + iΓ/2
; (49)

Gs,a =
G+ ±G−

2
; Ḡi = G∗i (50)

and write it down as

Ttot(E) = 2T0

+(ΓLΓR + Γ2)(G+Ḡ+ +G−Ḡ−) (51)

+2((Γ ·B)2/B2 − Γ2)GaḠa (52)

+RX(G+ +G− + Ḡ+ + Ḡ−) (53)

−IXIm(G+ +G− − Ḡ+ − Ḡ−) (54)

Here, the partial decay rate read (ΓL + ΓR = Γ)

ΓL = ΓL1 +
C1ΓL2 − CL3 Γ2 − 2E2C

L
2

E2
2 + Γ2

2/4
(55)

C1 ≡ κ2 + γ2/4 + κ2 + γ2/4 (56)

CL2 ≡ κ · γL + γLκ (57)

CL3 ≡ γ · γL + γγL, (58)

and similar for R. The spin-orbit interaction is repre-
sented by the vector Γ,

Γ =
E2C5 + κC4 +C6 × κ+ κC6

E2
2 + Γ2

2/4
(59)

C4 = ΓL2 γR − ΓR2 γL (60)

C5 = γRγL − γLγR + γR × γL (61)

C6 = ΓR2 γL − ΓL2 γR (62)

and the coefficients RX, IY read

RX =
1

E2
2 + Γ2

2/4
(−E2C7 + κC8 + κ ·C9

−T0(E2C11 + C10Γ2/2)) (63)

IX =
1

E2
2 + Γ2

2/4
(−C7Γ2/2 + γC8/2+

γ ·C9/2− T0(E2C10 − C11Γ2/2)) (64)

C7 = γRγL + γR · γL (65)

C8 = ΓL2 γR + ΓR2 γL (66)

C9 = γRΓL2 + γLΓR2 (67)

We will explain the physical significance of each term in
Eq. 54 in the next Section.

To treat the interaction self-consistently, we also need
the average charge and spin in the dot,

〈d̂†αd̂β〉 ≡ nδαβ + n · σ (68)

This is given by

ň =

∫
dε

2π
Ǧ
(
(ΓR + Γ · σ)fR(ε)

+ (ΓL − Γ · σ)fL(ε)
)

(69)

This can be rewritten in more detail as (b = B/B)

n =

∫
dε

2π

(
(GsḠs +GaḠa)(ΓRf

R(ε) + ΓLf
L(ε))

+ (b · Γ)(GaḠs +GsḠa)(fR(ε)− fL(ε))
)

(70)

n =

∫
dε

2π

(
2b(b · Γ)GaḠa + Γ(GsḠs −GaḠa)+

(b× Γ)i(GaḠs −GsḠa))(fR(ε)− fL(ε))

+ b(GaḠs +GsḠa)(ΓRf
R(ε) + ΓRf

R(ε)
)

(71)
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We substitute filling factors at vanishing temperature
fL,R = Θ(eVL,R − ε) and integrate over ε to obtain n,n
and full current. It is also advantageous at this stage
to switch to dimensionless variables measuring energy in
units of Γ and setting e = 1. We introduce convenient
functions

K±R,L =
1

2π
atan(2(VR,L − εd ±B)); (72)

L±R,L =
1

2π
ln(4(VR,L ±B)2 + 1); (73)

L± = L±R − L
±
L ; K± = K±R −K

±
L . (74)

With this,

n =
∑
k=L,R

Γk(1/2 +K+
k +K−k )

+ (b · Γ)(K+ +K−), (75)

n = b
(
ΓR(K−R −K

+
R ) + ΓL(K−L −K

+
L )
)

+ Γ
1+4B2

(
K+ +K− +B(L− − L+)

)
+ (b×Γ)

2(1+4B2)

(
B(K+ +K−) + L+ − L−

)
+ 2b(b·Γ)B

1+4B2

(
4B(K+ +K−) + L+ − L−

)
(76)

The self-consistency equations then read:

εd = Un; B = B0 − Un (77)

B0 being the external magnetic field. This equation has
to be solved at each VR,L. With this solution, we can
evaluate the current

I = T0(VL − VL)/π + 2(ΓLΓR + Γ2)(K+ +K−)

+ 4((Γ · b)2 − Γ2)
B

1 + 4B2
×

×
(
4B(K+ +K−) + L+ − L−

)
+ RX(L+ + L−)− IX(K+ +K−)/2 (78)

Let us elaborate on the equilibrium case VR = VL = µ.
The terms with spin-orbit interaction do not appear in
this case and the self-consistency equations read (K̃ =
KR = KL)

εd = U(1/2 + K̃+ + K̃−); (79)

B = B0 − bU(K̃− − K̃+) (80)

We specify to B0 = 0 and determine the boundary of
spontaneously magnetic phase where B → 0. In this
limit,

K̃− − K̃+ → −B
2

π

1

1 + 4(µ∗)2
;µ∗ = µ− εd (81)

with this, the equations for the boundary read

U = (1 + 4(µ∗)2)
π

2
; (82)

µ = µ∗ + U(1/2 + (1/π)atan(2µ∗)) (83)

An implicit plot is given in Fig 3. The splitting occurs
above critical value Uc = π/2, at large U the magnetic
phase occurs in the interval µ = (0, U) as it should be.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

FIG. 3: The domain of magnetic phase.

VII. NORMAL TRANSPORT EXAMPLES

In this Section, we will analyse the peculiarities of nor-
mal transport in the model at hand. We restrict our-
selves to zero-voltage conductance and non-interacting
case where zero-voltage conductance is simply given by
Ttot at ε corresponding to Fermi level,

G(Vg) =
GQ
2
Ttot(ε = EF ). (84)

Since E1 is a linear function of the gate voltage, and
shift of ε in Eq. 54 is equivalent to the shift of E1, the
energy dependence of Ttot directly gives the gate voltage
dependence of the conductance. The conductance with
interaction is qualitatively similar to the non-interacting
one since the main effect of interaction in our model is
the spin-splitting corresponding to B ' U .

Let us explain the physical significance of the terms
in Eq. 54. All spin-orbit effects are incorporated into a
single vector Γ in the spin space. To start with, let us
neglect the spin-orbit interaction setting Γ = 0, so we can
disregard the third term. In this case, Ttot is contributed
independently by spin orientations ± with respect to B.
Their contributions are shifted by 2B in energy.

The first term in Eq. 54 gives the featureless transmis-
sion of the transport channel and asymptotic value of the
conductance at |E1| � Γ. The second term describes the
resonant transmission via the localized state and would
show up even if there is no interference between the trans-
missions through the channel and the localized state. It
rives rise to a Lorentzian peak - resonant transmission -
of the width ' Γ in conductance that splits into two at
sufficiently big spin splitting ' Γ. Let us bring the fifth
term into consideration. Since G − Ḡ = −iΓGḠ its en-
ergy dependence is identical to the second one. However,
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it usually gives a negative contribution to transmission
describing destructive interference of the transmissions
in the dot and in the channel - resonant reflection.

The fourth term describes the celebrated Fano effect
coming about the interference of the resonant and fea-
tureless transmission. It is visually manifested as asym-
metry of otherwise Lorentzian peaks or dips. The anti-
symmetric Fano tail ∝ ε−1 at large distances from the
peak/dip centre beats Lorentzian tail ∝ ε−2. All these
terms are hardly affected by spin-orbit interaction, while
the second one manifests it fully. It mixes up spin chan-
nels and makes conductance to depend on the orientation
of B with respect to Γ.

We illustrate the possible forms of the conductance
energy/gate-voltage dependence with the plots in Fig. 4

for 4 settings of the parameters ΓL,R2 , E2, κ,κ, γL,R,γL,R.
Owing to separation of the scales assumed, the relevant
parameters ΓL,R,Γ, RX, IX are invariant with respect to
rescale with the factor A,

ΓL,R2 , E2 → A(ΓL,R2 , E2) (85)

κ,κ, γL,R,γL,R →
√
A(κ,κ, γL,R,γL,R). (86)

For all settings, energy is in units of the resulting Γ.
For each setting, we give the plots at B = 0 and B =
2Γ, the latter to achieve a visible separation of resonant
peculiarities. Spin-orbit interaction is weak except the
last setting where we give separate plots for B ‖ Γ and
B ⊥ Γ.

For Fig. 4 a we choose ΓL2 ,Γ
R
2 , E2 = A(0.2, 0.8, 0.5),

κ, γL, γR =
√
A(0.5, 0.2, 0.2), ΓL1 ,Γ

R
1 = 1.6, 3.5. We also

specify small but finite spin-orbit terms yet they hardly
affect the conductance. In this case, the transmission
through the localized state is faster than the interference
with the transmission in the channel. This results in a
resonant reflection peak at B = 0 that splits into two
upon increasing the magnetic field. A little Fano asym-
metry can be noticed upon a close look.

For Fig. 4 b we choose ΓL2 ,Γ
R
2 , E2 = A(0.5, 0.5, 0),

κ, γL, γR =
√
A(3.5, 0.2, 0.2), ΓL1 ,Γ

R
1 = 0.5, 0.5. The

transmission trough the channel is ideal, T0 = 1, the
localized state is connected to the channel better than to
the leads. This results in a pronounced resonant reflec-
tion dip at B = 0 that also splits into two upon increasing
the magnetic field.

For Fig. 4 c we choose ΓL2 ,Γ
R
2 , E2 = A(0.2, 1.5, 0),

κ, γL, γR =
√
A(1.5, 0.3, 0.1), ΓL1 ,Γ

R
1 = 0.8, 0.1. This

choice is such that the competing processes of reson-
tant transmission and reflection almost compensate each
other so the resulting resonance peculiarity assumes al-
most antisymmetric Fano shape. The separation of the
peculiarities upon the spin splitting is less pronounced
than in the previous examples owing to long-range Fano
tails mentioned.

We illustrate the effect of strong spin-orbit inter-
action in Fig. 4 d. We choose ΓL2 ,Γ

R
2 , E2 =

A(0.2, 0.8, 0.5), κ, γL, γR =
√
A(0.5, 0.2, 0.2), ΓL1 ,Γ

R
1 =

1.6, 3.5. As to spin-dependent parameters, we choose

κ =
√
ASO[0, 0.2,−0.6], γL =

√
ASO[0.3, 0, 0], γR =√

ASO[0.0, 0, 1] and set the coefficient SO to 1.6, this is
its maximal value that satisfies the positivity conditions
imposed on the matrices of the rates. The peculiarity at
B = 0 is a peak with a noticeable Fano addition. It splits
at B = 2Γ changing its shape, that is different for B ‖ Γ
and B ⊥ Γ as well as for positive and negative energies.
Note that owing to Onsager symmetry G(B) = G(−B).

We also provide an example with interaction im-
plementing the self-consistent scheme described in the
previous Section (Fig. 5). For this example, we
choose ΓL2 ,Γ

R
2 , E2 = A(0.2, 1.5,−15), κ, γL, γR =√

A(0.8, 0.1, 0.1), ΓL1 ,Γ
R
1 = 1.1, 0.9. This choice corre-

sponds to very low channel transmission (T0 = 10−3).
The average number of electrons in the dot is presented
in Fig. 5a as a function of E1 for several interaction
strengths, at zero voltage difference and magnetic field.
All curves change from full occupation at big negative E1

to zero occupation big positive E1. At U = 0 and U = Γ
the curves are smooth with no spontaneous spin splitting
emerging throught the whole interval of E1. For higher
interaction strengths, there is an interval of E1 where the
spontaneous splitting is present. The ends of this interval
are in principle manifested by cusps in the curves. Only
cusps at the end of the interval close to zero are visible,
the cusps at the other end are too small. It might seem
that the zero-voltage conductance (Fig. 5 b) can be com-

puted from Ttot at the parameters Ẽ1, B̃ that solve the
self-consistency equation at zero voltage difference. How-
ever, this is not so, since these parameters also depend
on voltage difference. We compute zero-voltage conduc-
tance by numerically differentiating the current (Eq. 78)
at small voltage differences. At zero interaction, we see a
resonant transmission peak. Its height does not reach GQ
because of the asymmetry ΓR 6= ΓL. At U = Γ, there is
still a single peak. At higher U we see the splitting of the
peak. The height of the peaks split is a half of the height
of the original peak if they are sufficiently separated. As
we have conjectured earlier, this is qualitatively similar
to the conductance traces where spin splitting is induced
by the magnetic field.

VIII. SUPERCONDUCTING TRANSPORT

In this Section, we elaborate on the description of su-
perconducting transport in our model. Since supercur-
rent is a property of the ground state of the system, it
is convenient to work with electron Green functions in
imaginary time and introduce Nambu structure. Let us
start, as we did previously, with an arbitrary number
of dots and superconducting leads. If we neglect tunnel
couplings, the inverse Green function H(ε) is a matrix in
the space of the dots, spin and Nabmu and reads:

Ȟ = iετz − Ȟ. (87)
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FIG. 4: Examples of normal transport. The energy dependence of Ttot is the same as the conductance dependence
on the gate voltage. Red curves correspond to B = 0, green curves to B = 2Γ. a. Basic example: resonant

transmission b. Dip: resonant reflection c. Fano. d. Strong spin-orbit. Here, green (blue) curve is for parallel
(perpendicular) orientation of B with respect to Γ.

The tunnel couplings to the leads labelled by a add the
self-energy part

Ȟ = iετz − Ȟ +
i

2

∑
a

Γ̌aQ̌a (88)

where Γ̌a are given by Eq. 19 and the matrix Q̌a is a
matrix in Nambu space reflecting the properties of the

superconducting lead a,

Qa =
1√

ε2 + ∆2
a

[
ε ∆ae

iφa

∆ae
−iφa −ε

]
, (89)

Q2
a = 1.
To find supercurrents, we need to evaluate the total

energy and take its derivatives with respect to the phase
differences. Since that are dots that connect the leads
with different phase, the phase-dependent energy is the
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FIG. 5: Example of normal transport with interaction. Resonant transmission regime, no magnetic field, no SO
coupling. The setup parameters are given in the text. a. The average number of electrons in the localized state

versus E1 at various interaction strengths. b. Zero-voltage conductance versus E1 at various interaction strengths.

energy of the dots. The latter can be expressed as

E = −1

2

∫
dε

2π
ln det(Ȟ) (90)

To see how does this work, let us check this formula
neglecting tunnel couplings. With this, the energy is the
sum over eigenvalues of Ȟ, En,

E = −1

2

∫
dε

2π
ln(ε2 + E2

n) (91)

The integral formally diverges at ε → ∞. To regularize
it, we substract its value at En = 0 to obtain

E = −
∑
n

|En|
2

+ const (92)

To recover a familiar formula, we shift the constant by
Tr(Ȟ)/2,

E = −
∑
n

|En|
2

+
∑
n

En
2

+ const = (93)∑
n

EnΘ(−En) + const, (94)

so it becomes the energy of the filled states (those with
En < 0). This suggest we need to handle the integral
with care keeping eye on possible problems at big ε. For-
tunately, no special care has to be taken for the phase-
dependent energy since it is accumulated at supercon-
ducting gap scale ε ' ∆. We have to be careful when ex-
pressing the occupation of the dots in terms of derivatives
of E with respect to dot energies (as we do for numerical

calculations). For instance, the average occupation of the
dot 1 reads

〈n̂1〉 =
∂E
∂E1

+ 1, (95)

the last term correcting for high-energy divergences.
For our starting two-dot, two-lead model, the inverse

Green function reads (c.f. with Eq. 30).

H =

[
H11 H12

H21 H22

]
(96)

, where

H11 = iετz − E1 − (B1 · σ̌)τz

+
i

2
(ΓR1 Q̌R + ΓL1 Q̌L), (97)

H22 = iετz − E2 − (B1 · σ̌)τz

+
i

2
(ΓR2 Q̌R + ΓL2 Q̌L), (98)

H12 = −κ̌+
i

2
{γ̌LQ̌L + γ̌RQ̌R}, (99)

H21 = −κ̌† +
i

2
{γ̌†LQ̌L + γ̌†RQ̌R}, (100)

and we turn back to the compact notations

κ̌, κ̌† = κ± iκ · σ (101)

γ̌L,R, γ̌
†
L,R = γL,R ± iγL,R · σ (102)

and made use of Q matrices corresponding to two leads

Q̌L,R =
1√

ε2 + ∆2

[
ε ∆eiφL,R

∆e−iφL,R −ε

]
. (103)
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Next goal is to reduce the number of parameters im-
plementing the separation of scales mentioned and im-
plemented for the normal transport. This is achieved by
the following transformation of the determinant

ln det(Ȟ) = ln det(Ȟ11 − Ȟ12Ȟ−1
22 Ȟ21)

+ ln det(Ȟ22) (104)

and implementing E2,Γ2 � γ, κ� ε, B2, E1,Γ1.
Let us first evaluate det(Ȟ22), which is that of a 4× 4

matrix with spin structure taken into account. Since we
may assume ε, B2 � Γ2, E2 the spin structure is trivial
and the answer reads

ln det(Ȟ22) = 2 ln(E2
2 +

1

4
Γ2

2)+

2 ln(1− T0
∆2

∆2 + ε2
sin2 φ/2), (105)

where, as previously, we define Γ2 = ΓL2 + ΓR2 and T0 =
ΓL2 ΓR2 /(E

2
2 + 1

4Γ2
2).

The energies of Andreev levels are determined from
zeros of this determinant. We recover the well-known
expression for the energy of the spin-degenerate Andreev
level in a contact with transparency T0,

EAndr = ∆

√
1− T0 sin2(φ/2) (106)

The integration of the log of the determinant over the
energy gives the expected result for the energy of the
ground state,

E = −EAndr (107)

Let us turn to evaluation of the rest of the expression.
We note that

Ȟ−1
22 = −

E2 + i
2 (Γ2RQ̌R + Γ2LQ̌L)(

E2
2 +

Γ2
2

4

)
(1− T0s)

(108)

where we have introduced a convenient compact notation

s ≡ ∆√
∆2 + ε2

sin2(φ/2) (109)

The matrix in the first determinant thus contains a factor
(1−T0s) in the denominator. Multiplying with this factor
cancels det(Ȟ22) so the whole expression can be reduced
to the following relatively simple form

ln det(Ȟ) = (110)

ln det ((1− T0s)(iετz − E1 − (B · σ̌)τz)

+∆E + s∆ES (111)

+
i

2
(ΓR(s)Q̌R + ΓL(s)Q̌L) (112)

+
i

4
Γ · σ̌(Q̌LQ̌R − Q̌RQ̌L)

)
,

where

ΓL,R(s) = ΓL,R + sΓL,RS . (113)

The parameters ΓL,R, ∆E, Γ have been already defined
in our consideration of normal transport. The compact
description of superconducting transport brings three ad-
ditional parameters

∆ES =
−E2C7 + κC8 + κ ·C9

E2
2 + Γ2

2/4
(114)

ΓLS = −T0ΓL1 +
ΓR(γ2

L + γ2
L)

E2
2 + Γ2

2/4
(115)

ΓRS = −T0ΓR1 +
ΓL(γ2

R + γ2
R)

E2
2 + Γ2

2/4
. (116)

Here, ∆ES is a part of the expression (63) for RX but is
an independent parameter.

Since both normal and superconducting transport orig-
inate from the same scattering matrix, there are many
examples when the parameters characterizing the super-
conducting transport can be directly determined from
the results of normal transport measurements, a single
channel with transparency T0 being the simplest one.

The presence of the additional parameters ∆ES , ΓL,RS is
therefore rather disappointing: we cannot predict super-
conducting transport exclusively from the results of nor-
mal transport measurements and have to rely on model
assumptions.

Let us outline the physical meaning of the overall struc-
ture of the expression (110). The first term is a prod-
uct of the terms whose zeros give the Andreev level in
the transport channel and energy level in an isolated lo-
calized state, the product indicate that these levels are
independent. The rest of the terms thus describe the
hybridization of these levels. Note that the terms with
∆E cannot be cancelled by a shift of E1, so in distinc-
tion from the normal case, are active in the presence of
superconductivity. The terms with Γ(s) are similar to
tunnel decay terms in Eq. 97, in distinction from normal
case the presence of the second dot does not just renor-
malize Γ. The last term describes spin-orbit effect and
is proportional to the same vector Γ as in the normal
case. In distinction from all other terms, it is odd in the
phase difference since it is proportional to the commu-
tator of two Q̌. The combination of this term and that
with magnetic field results in a shift of the mimimum of
superconducting current from 0 or π positions.

IX. NUMERICAL DETAILS

In this Section, we provide the overal strategy and de-
tails of our numerical calculations.

We postpone the discussion of self-consistency assum-
ing that we already know E1 and B. To find the phase-
dependent energy, we have to integrate the log of the de-
terminant over ε. We compute directly the determinant
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of 8 × 8 matrices implementing the difference of scales
numerically. For quick computation at each energy, we
represent the matrix Ȟ as a sum over various scalar func-
tions of ε,

Ȟ = Ǎ+εB̌+
ε√

ε2 + ∆2
Č+

∆√
ε2 + ∆2

Ď(φL, φR) (117)

where the matrices Ǎ − Ď do not depend on ε and only
Ď depends on the supercondictig phase. We define the
function of ε as log(det(Ȟ(ε, φ = 0)) − log(det(Ȟ(ε, φ =
0)) and intregrate using scipy.quad. Direct evaluation
of the sum over discrete equidistant ε the interval of the
order of 5∆ provides comparable numerical efficiency and
accuracy.

As mentioned, we treat interaction self-consistently, as
the interaction-induced shift in E1 and B. The self-
consistency equations read as

Ẽ1 = E1 + Un(Ẽ1, B̃) (118)

B̃ = B − Un(Ẽ1, B̃) (119)

,where the average number of particles on the dot are
given by derivatives of the total energy N = (∂E1

E + 1)
and n = ∂B1E . We compute these derivatives integrat-
ing the analytical derivatives of det(Ȟ(ε) over ε. These
integrals may converge at a ε� ∆ provided E1,B � ∆,
an adaptive grid of discrete ε could be chosen to speed
up the evaluation, yet using scipy.quad suffices for our
purposes.

To solve the self-consistency equations, we implement
a root-finding minimization algorithm minimizing the
function F = f2 + |f |2, where f,f are defined as

f = Ẽ1 − E1 − Un(Ẽ1, B̃) (120)

f = B̃ −B + Un(Ẽ1, B̃) (121)

and checking if the minimum is achieved at F = 0. Alter-
natively, we can make use of the fact that the solutions of
the self-consistency equations correspond to the extrema
of the following energy functional

ET (Ẽ1, B̃) = E(Ẽ1, B̃)− (E1 − Ẽ1)2

2U
+

(B − B̃)2

2U
(122)

Unfortunately, this energy functional is not bounded, and
the extrema required are rather saddle points than min-
ima. However, they can be found, for instance, by max-
imization of the functional in Ẽ1 and subsequent mini-
mization in B̃.

The Andreev bound states are given by the zeros of
the determinant at imaginary ε (thus real energy E = iε)
in the interval (0,∆). We find these roots by minimiz-
ing det(Ȟ(ε))2 and checking if the minimum is achieved
at zero. but because of the different scales in the prob-
lem and existence of a big scale, we first try to find an
equivalent matrix, whose determinant is more numeri-
cally apt to minimize. Typically, there are multiple An-
dreev states, so we subdivide the interval (0,∆) to find
them all.

X. SUPERCONDUCTING TRANSPORT
EXAMPLES

In this Section, we present the examples of numeri-
cal evaluation of supercurrent and Andreev state ener-
gies in our model, for 3 sets of parameters. It has to
be noted that the parameter space of the model is large
and at the moment the examples are not exhaustive. We
have been mostly searching for the parameter sets man-
ifesting a pair of 0 − π transitions. This is achieved if
ET (φ = π) − ET (φ = 0) ≡ Eπ < 0. Contrary to our
initial expectations, it is rather difficult to achieve such
inversion for an arbitrary parameter set at high transmis-
sion T0. It is rather easy to find 0− π transitions at low
T0. More extensive exploration of the parameter space
is required to reveal the role of various parameters and
draw conclusions. Nevertheless, the following examples
provide interesting illustrations of rich physics captured
by the model.

In this Section and in all plots, we measure the ener-
gies,decay rates and the current I/2e in units of ∆.
Example A (Fig. 6) Here, we disregard spin-orbit cou-

pling and interaction. The parameters are ΓL2 ,Γ
R
2 , E2 =

A(1.9, 1.9,−2), κ, γL, γR =
√
A(0.4, 0.1, 0.1), ΓL1 ,Γ

R
1 =

1.2, 0.9 and correspond to T0 = 0.47, ΓL = 1.3,ΓR =
0.96,Γ = 2.22. As we can see from the normal conduc-
tance traces presented in Fig. 6e, for this parameter set
we have the resonant transmission accompanied by very
weak Fano asymmetry. The resonant transmission peak
splits upon increasing the magnetic field.

Actually, this set illustrates an unsuccessful attempt
to achieve a pair of 0 = π transitions. This is seen from
the plots in Fig. 6a that give the (gate-voltage) traces of
Eπ at various magnetic fields. Zero-field trace peaks near
the centre of conductance peak indicating the enhance-
ment of supercurrent upon increasing the transmission,
and saturates at finite value at |E1| � 1: this saturation
is achieved for all magnetic fields. Upon increasing the
magnetic field the value of ET near the resonance gets
down. It becomes smaller than the saturated value at
B > 0.8. It seems it has a chance to pass zero manifesting
0−π transitions. However, this does not happen:the ten-
dency changes and the minimum of ET starts to increase
at B > 1.5. Prominent features in the plots are sharp
cusps in energy dependence. They indicate the crossings
of Andreev states with zero energy that, for the features
in this plot, are located at φ = π and corresponding gate
voltages.

Let us set E1 = 0 and look at the phase dependence of
energy(Fig 6b) for a set of magnetic fields. Here we also
see the cusps corresponding to the crossings at certain
values of the phase. Superconducting currents plotted
in Fig.6c are obtained by numerical differentiation of the
energy, so the cusps become jumps, the discontinuities
of the current. The zero-field curve is prominently non-
sinusoidal as expected for high transmission at this value
of E1. The current becomes smaller tending to almost
sinusoidal curve at high magnetic fields upon increasing
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magnetic field, but does not get inverted. At intermedi-
ate fields, the current jumps between non-sinusoidal and
sinusoidal curve.

In Fig. 6d we show the phase dependence of ABS en-
ergies for E1 = 0 and |B1| = 1. We see four spin-split
ABS counting from down up. Eventually, the picture of
ABS demonstrates little interference between the trans-
port channel and the localized state. The third and the
fourth curves are close to EAndr for T0 = 0.47 and are
thus associated with the transport channel, their spin-
splitting ' 0.1 is small coming from the interference.
The first and the second state are associated with the
dot. The spin splitting is thus big: the first curve looks
like the second curve shifted by ' 1 downwards, with the
part shifted to negative energy being flipped to positive
ones. This also explains sharp cusps in the first curve.

Although in our model the phase-dependent energy is
not a minus half-sum of ABS energies as it would be for
energy-independent transmission, we can use this sum
for qualitative estimations. With this, the half-sum of
the first and second energies would result in an inverted
supercurrent, but the half-sum of the third and fourth
states, that is, the contribution of the transport channel,
adds to the balance a usual supercurrent of slightly bigger
amplitude.

Example B. (Fig. 7) This inspired us to check if the
0 − π transitions can be achieved at very low transmis-
sion of the transport channel. We have taken the fol-
lowing set of parameters ΓL2 ,Γ

R
2 , E2 = A(0.2, 1.5,−15),

κ, γL, γR =
√
A(0.8, 0.1, 0.1), ΓL1 ,Γ

R
1 = 1.1, 0.91. For this

choice, T0 ' 10−3 ΓL = 1.1,ΓR = 0.91,Γ = 2.03. The
normal conductance traces (Fig. 7d) show a classical sce-
nario of resonant transmission that saturates to almost
zero far from the resonance.

The check was successful. We plot the traces of ET ≡
ET (φ = π) − ET (φ = 0) for various magnetic fields in
Fig. 7a. The traces look like those in Fig. 6a except the
shift downwards by ' 0.25. Owing to this, ET is negative
for B > 0.8 in an interval of gate voltages that increases
with B, 0− π transitions are at the ends of the interval.

We plot the phase dependence of the supercurrent for
|B| = 2 and various E1 in Fig. 7b. The 0− π transitions
at this field take place at E1 ≈ ±1.25. In accordance
with this, the almost sinusoidal curves at E1 = −2.5, 2
are of positive amplitude while those at E1 = 0,−1 are
of negative one. Note a rather low value ' 0.02 of the
maximum ”negative” current, almost 25 times smaller
than the maximum value of the current in a single trans-
port channel. An interesting curve is found close to the
transition, at E1 = −1.5. Here, the current jumps be-
tween sin-like curves of positive and negative amplitude.
The total integral of the current between 0 and π is still
positive, so Eπ > 0.

An example of the phase dependence of ABS energies
is given in Fig. 7c. Since the transmission of the channel
is very low, we see only two spin-split ABS. The upper
one is close to the gap edge, and eventually merges with
continuous spectrum at φ ≈ 0.6, 2π − 0.6. The lower

one is close to zero, and exhibits two zero crossings at
φ ≈ π ± 0.65 corresponding to the discontinuities in cor-
responding curve in Fig. 7b.

Example C. (Figs. 8,9) In this example, we il-
lustrate the effect of SO coupling on the super-
conducting transport. We choose ΓL2 ,Γ

R
2 , E2 =

A(1.2, 1.5,−1), κ, γL, γR =
√
A(0.2, 0.6, 0.2), ΓL1 ,Γ

R
1 =

1.6, 3.5. As to spin-dependent parameters, we choose
κ =

√
ASO[0, 0.8, 0], γL =

√
ASO[0, 0.2, 0], γR =√

ASO[0, 0.1, 0] with SO = 1 that gives T0 = 0.64,ΓL =
1.1,ΓR = 1.38,Γ = 2.48 and a significant Γ = 0.45y. As
we see from the Figs. 8d,9d that give the traces of nor-
mal conductance, this set also illustrates a well-developed
Fano resonance with antisymmetric features split in suf-
ficiently high magnetic field.

We consider first B ⊥ Γ. In this case, the time-
reversibility provides the symmetry φ ↔ −φ that was
present in all previous plots. Let us concentrate at the
0 − π energy difference (Fig. 8a). The curve at zero
magnetic field qualitatively follows the normal conduc-
tance. Upon increasing the magnetic field we see the
multiple cusps that are already familiar from Figs. 6, 7
and indicate the spin splitting and eventual zero crossing
of ABS. The shape of the trace becomes more complex,
and the minimum ET becomes smaller. However, it does
not reach zero that is necessary for 0− π transition.

The phase dependence of superconducting current at
B = 2 and various E1 is presented in Fig. 8b. Most
curves display pronounced discontinuities manifesting
the zero crossings at corresponding phases. Except for
this, the dependence is rather sinusoidal corresponding
to moderate transmission. It looks like the current jumps
between two sin-like curves of different amplitudes.

It is interesting to see 3 ABS in the plot presenting the
phase dependence of ABS energies for E1 = −1.5 and
B = 2 (Fig. 8c). The fourth state is either shifted over
the gap edge to the continuous spectrum or is present
very close to the edge so we cannot resolve it with accu-
racy of our numerics. The lowest state displays the fa-
miliar zero crossings corresponding to the current jumps.

When we change from perpendicular to parallel field
(Fig. 9) we do not see much change in normal conduc-
tance: the difference between the corresponding traces in
Figs. 9d and 8d does not exceed 10 % . This is explained
by the fact that the effect is of the second order in Γ,
∝ Γ2/Γ2, and |Γ|/Γ ' 0.2 is not so big. We also do not
see much changes in ET traces (Fig. 8a versus Fig. 9a).

The most prominent effect of SO coupling is the break-
ing of φ ↔ −φ symmetry in magnetic field, the effect
∝ |Γ|/Γ at B ' Γ. We see this in Fig. 9b where the
current-phase dependencies for B = 2 are now shifted
sin-like curves with jumps. The values of the shift vary
from trace to trace, also in sign, and are ' 0.2− 0.3. In
addition to the shifts of the sin-like curves, the positions
of jumps are shifted non-symmetrically, these shifts are
' 0− 0.5.

Non-symmetry of the phase dependence of ABS ener-
gies is clearly seen in Fig. 9c that is done at the same
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parameters as Fig. 8c. Also, beside shift, the energy
first ABS is significantly affected by the direction of the
magnetic field. A fine detail is the crossing of the sec-
ond and the third ABS near φ ≈ 1. It may seem that
in the presence of SO coupling all level crossings shall
be avoided, since spin is not a good quantum number.
However, since Γ is the only spin vector in our model,
for the particular case B ‖ Γ the projection of spin on
B is a good quantum number and the leves of different
projections may cross.

XI. CONCLUSIONS

In conclusion, we have formulated a model that accu-
rately describes normal and superconducting transport
for a situation where a high transmission in a transport
channel is accompanied by propagation through a reso-
nant localized state. The motivation came from experi-

mental observation of a pair of 0−π transitions separated
by a small interval in the gate voltage. We have presented
several examples those by no means exhaust the rich pa-
rameter space of the model. More extensive exploration
of this space is required to understand if the model can
explain the experimental observation.

The data, the code and the figures can be found at
https://doi.org/10.5281/zenodo.5879475.
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(a) Eπ ≡ ET (φ = π)− ET (φ = 0) versus E1 at several
values of magnetic field.
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(b) The phase-dependent part of energy
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(d) The phase dependence of ABS energies at E1 = 0
and |B| = 1.
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(e) Normal zero-voltage conductance versus E1 at
several values of magnetic field.

FIG. 6: Example A. Resonant transmission, moderate channel transmission. No SO coupling.
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(a) Eπ versus E1 at several values of magnetic field.
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(b) The phase dependence of the superconducting
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(d) Normal zero-voltage conductance versus E1 at
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FIG. 7: Example B. Resonant transmission, low channel transmission. No SO coupling. A pair of 0− π transitions
occurs at |B| > 0.
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(b) The phase dependence of the superconducting
current at B = 2 for several values of E1.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
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(d) Normal zero-voltage conductance versus E1 at
several values of magnetic field.

FIG. 8: Example C. Well-developed Fano features, moderate SO coupling. Magnetic field B ⊥ Γ
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(a) Eπ versus E1 at several values of magnetic field.
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(b) The phase dependence of the superconducting
current at B = 1.5 for several values of E1.
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(c) The phase dependence of ABS energies at E1 = −2
and |B| = 2.
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(d) Normal zero-voltage conductance versus E1 at
several values of magnetic field.

FIG. 9: Example C. Well-developed Fano features, moderate SO coupling. No interaction. Magnetic field B ‖ Γ.
Pronounced asymmetry in φ.
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