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Abstract

We consider the linear BCS equation, determining the BCS critical temperature, in the
presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-
dimensional case with point interactions, we prove that the critical temperature is strictly
larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave
function localizes near the boundary, an effect that cannot be modeled by effective Neumann
boundary conditions on the order parameter as often imposed in Ginzburg-Landau theory.
We also show that the relative shift in critical temperature vanishes if the coupling constant
either goes to zero or to infinity.

1 Introduction and Main Result

We study how a boundary influences the critical temperature of a superconductor in the Bardeen—
Cooper—Schrieffer (BCS) model. At superconductor—insulator (or superconductor—vacuum)
boundaries, it is natural to impose Dirichlet boundary conditions on the Cooper-pair wave
function. In several works [I,/5L6] it was concluded that the presence of the boundary only
affects the Cooper-pair wave function on microscopic scales; in particular, on larger scales
described by Ginzburg-Landau theory (GL), the effect of the Dirichlet boundary conditions
disappears and consequently the GL order parameter should satisfy Neumann boundary condi-
tions [11, Ch. 7.3], [14, Ch. 6]. This seems to implicitly assume that the effect of the boundary
on the critical temperature is negligible. Recent computations [3,4.[16] indicate, however, that
the Cooper-pair wave function can localize near the boundary, leading to an increase in the
critical temperature compared to its bulk value. In this paper, we shall give a rigorous proof of
the occurrence of this phenomenon in the simplest setting of one dimension, with J-interactions
among the particles. We consider a system on the half-line, where the boundary is then just a
point.

The increase of the critical temperature in the presence of a boundary has some far-reaching
implications. First of all, it implies that boundary superconductivity in the BCS model sets
in already above the bulk value of the critical temperature. Second, it questions the validity
of the often employed phenomenological GL theory in the presence of boundaries, as detailed
in [I7]. Note that GL theory has so far only been rigorously derived from the BCS model for
periodic systems without boundaries [9]. (In the low-density BEC limit at zero temperature it
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was shown in [10] that the effective Gross—Pitaevskii theory inherits the microscopic Dirichlet
boundary conditions.)

In mathematical terms, the presence of a boundary manifests itself in a compact perturbation
of a translation-invariant operator, and we shall show that at weak coupling this leads to the
appearance of discrete eigenvalues outside the continuous spectrum. In particular, there is an
effective attraction to the boundary, which is strong enough to create bound states.

In the following, we shall consider a superconductor on a domain €2, with either 2 = R or
=R, = (0,00). The main quantity of interest is the linear two-particle operator

A, — Ay — 2

—Ay— —A —H
tanh (TH) + tanh ( S

Hf =

—vi(z —y) (1.1)
)

acting in Lgymm(QQ) = {¢ € L>(Q?)|(z,y) = ¥(y, ) for all 2,y € Q}, where A denotes the
Dirichlet Laplacian on 2, and the subscripts  and y, respectively, indicate the variable on which
A acts. The first term is defined through functional calculus. In the second term, § is the Dirac
delta distribution, and v > 0 is a coupling constant. Moreover, T' > 0 denotes the temperature,
and p € R is the chemical potential.

As explained in [§], H¥ characterizes the local stability of the normal state in BCS theory.
If H¥ has spectrum below zero, i.e. inf U(H¥) < 0, the normal state is unstable and the system
in © is superconducting. If ian(Hr?) > 0, the normal state is locally stable. We define the
critical temperatures TS as
T(v) := inf {T € (0,00)| inf o (H) = 0} . (1.2)

C

The sample is thus superconducting for 7" < T, CQ In the translation-invariant case, i.e. {1 = R, it
is also known that local stability of the normal state implies global stability [12]; in particular, the
sample is always in a normal state for 7' > TX in this case, i.e. X separates the superconducting
and the normal phases. For the point interactions considered in (I.T]), one can derive the explicit
relation ,
tanh (u)
1jﬂdq:1' (1.3)
R

2 @ —pu v

Because of translation invariance, H$ has purely essential spectrum. Moreover, H$+ has
the same essential spectrum and possibly additional eigenvalues below it. In particular, for all
v > 0 the critical temperatures satisfy

TR+ (v) = TR (v). (1.4)

Our main result states that this inequality is actually strict, at least for small v, proving that
the boundary increases the critical temperature. Moreover, the relative difference between the
two critical temperatures vanishes both in the weak and in the strong coupling limit.

Theorem 1.1. Let p > 0.

(i) There is a © > 0 such that
Te (v) > e (v) (1.5)

for0<wv <.

(ii) In the weak coupling limit
T (v) — TR (v)

li < =0 1.6
TR (16)
(iii) In the strong coupling limit
R
Tt (v) — T ()
vlg]rglO TE () 0 (1.7)



This result can be viewed as a rigorous justification of the observations in [16]. Numerics
shows that the ratio Te * (v)/T®(v) can be as large as 1.06, see [16, Fig. 2]. Moreover, numerics
also suggests that T+ (v) and TX(v) actually agree for v large enough, but it remains an open
problem to show this.

Part (i) of Theorem [ Tlfollows from the existence of an eigenvalue of H$+ below the spectrum
of Hl}g. It is quite remarkable that a Dirichlet boundary can decrease the ground state energy
and create bound states. In contrast, for two-particle Schrodinger operators of the form —A, —
Ay + V(z —y), only Neumann boundaries can bind states [7,[15].

While we restrict our attention in this article to the one-dimensional setting with point
interactions, we expect that our methods can be generalized to a larger class of interaction
potentials, as well as to higher dimensions and the corresponding more complicated geometries
possible. We shall leave these generalizations for future investigations, however.

Remark 1.2. Our techniques can also be applied in case of Neumann boundary conditions for
A on R, . In this case one obtains the following results instead.

(i) For all v >0
Te (v) > T3 (v) (1.8)

(ii) In the weak coupling limit
T (v) — TR (v)

li < = 1.
M =% 0 (1.9)
(iii) In the strong coupling limit
R
Tt (v) — T (v)
0< q}an}o TE(v) < (1.10)

In the remainder of this article we shall give the proof of Theorem [Tl In the next Section 2,
we shall use the Birman—Schwinger principle to conveniently reformulate the problem in terms
of bounded operators and compact perturbations. Section [ contains the proof of part (i), the
existence of boundary superconductivity. The analysis of the weak and strong coupling limits
in parts (ii) and (iii) is the content of Sections [ and [5] respectively. Finally, Section [6] contains
the proofs of some auxiliary Lemmas.

2 Preliminaries
Let us fix the notation
tanh (’222—;&> + tanh ('122—;’1)

P +¢—2u

LT”u(p, q) = (21)

Using the partial fraction expansion for tanh (Mittag-Leffler series), one can obtain the series
representation [8]

1 1
Lr,(p,q) = 2T . . 2.2
w(p:9) g%p?uzwnfuﬂwn (22)
for wy, = m(2n + 1)T. Moreover, let
tanh (’%)
Fr,u(p) = Lru(p,p) = ——5—> 2.3
u(p) u(p:p) 2 (2.3)
and
p+q p—gq
BT,u(pa Q) = LT,M <T, T) (24)

3



In order to control the kinetic energy in H¥ the following bounds turn out to be useful. We
shall prove them in Section

Lemma 2.1. Let T > 0. There are constants C1(T, ), Co(T, 1) > 0 such that for all p,q € R

Cr(T, 1) (1 +p* + ¢*) < Ly u(p, @) ™' < Oo(T, 1) (1 + p* + ¢%) (2.5)

Moreover, for Ty > 0 there is a C5(Ty, p) > 0 such that

Cg(To, M)(T + p2 + q2) < LT,u(p7 Q)il (2'6)
for allT > Ty and p,q € R.

Since vd(x — y) is infinitesimally form bounded with respect to —A, — A, it follows that
the H¥ are self-adjoint operators defined via the KLMN theorem. Moreover, the operators H¥
become positive for T' large enough. In particular, the critical temperatures defined in (L2]) are
finite in both cases 2 =R and Q = R,.

Let L%u denote the operator L ,(—iV,, —iV,) defined through functional calculus. Of

course, L¥ i depends on the domain 2 and on the boundary conditions imposed on A. Its
integral kernel is given by

LY (z,y;2'y) = L@ dpdqta(zp)ta(yq) Lt .(p, 9)ta(z'p)ta(y'q) (2.7)

where for the problem on the full real line tg(z) = \/LQ—We*im and on the half-line with Dirichlet
boundary condition tg, () = ﬁ sin(z). For Neumann boundary conditions, one would have
tr, (x) = ﬁ cos(z) instead.

It is convenient to switch to the Birman—Schwinger formulation of the problem. For a more
regular interaction V instead of &, the Birman-Schwinger operator would be V/ QL% MVl/ 2. For

the d-case, it turns out that V2 has to be understood as restriction of a two-body wave function
to its diagonal. Hence, the Birman-Schwinger operator has kernel L,% M(m, x;2’,2’) and acts on
functions of one variable only. For the two domains under consideration, the Birman-Schwinger
operators AH;L : L2((0,00)) — L?((0,0)) and Aﬂ%“ : L2(R) — L?(R) are explicitly given by

() = % [ dn [ ao [ dysingea)singo) s ) sinto) sinanyats) @29

and

(AF)@) = 15 | av j dg j dy T+ L (p, g)5(y) (2.9)

rel
Lemma 2.2. The condition infa(H%) < 0 is equivalent to

1
sup O’(A%ﬂ) > (2.10)

for either Q =R or Q =R,.

Proof. The quadratic form corresponding to H¥ is defined on the Sobolev space Do = HE(Q?).
Since the operator L,% i is positive definite, one can write

1 1
Q
s LT’“) IS )
\V Tk \V Tk
Hence, inf o(H$) < 0 is equivalent to
sup <1/)’4/L¥M54/L¥M‘¢> > — (2.12)

Ye(LF )2 Dallvll2=

HE = (L) — v =

(JI N (2.11)



By Lemma 2.1] L%u : L2(9%) — Dgq and its inverse are bounded. Hence, (L%ﬂ)*lﬂDQ =
L?(92). The projection onto the diagonal H'(Q?) — L?(Q), ¥(z,y) — 9 (z, x) defines a bounded
operator [2, Thm 4.12]. Let Mg : L*(Q?) — L%*(Q) be the composition of \/E with the
projection H'(0?) — L2(2). Explicitly, Mgq is given by

Mov(o) = | dpda | aray Talepin@oy/ Lo, ate@ptaWaie ) (213)

where tg(x) = \/%e_ix and tgr, (z) = ﬁsin(m). Note that L%ﬂ6 L%ﬂ = MJZMQ and
A’%u = MQMJ2 Hence, O'(A,%M)\{O} =o( L%u(; L%M)\{O} and the claim follows. O

From now on we will work with the operators A¥ " rather than H¥ In momentum space,
the operator Aﬂj{i , I8 multiplication by the function

AT;L( f BT,LL b,q )dq, (214)
where B is defined in (2.4]).
Lemma 2.3 (Momentum representation of Aﬂ% M). With ﬁ SR Bz ”’xdx we have for
all 81,082 € D(AéRi,ﬂ)
G 3> = [ Br(p) A ) Bl (2.15)

The following Lemma shows that adding the boundary to the system effectively introduces
the perturbation ﬁBT,;“ where Br, is short for the operator with integral kernel Br ,(p, q).

Lemma 2.4 (Momentum representation of Aﬂ;L). With &(p) = §; a(z)5= cos(px)dx we have

for all aq, a9 € D(A )

il ) = | EArDa)dp - - | | F0Br () daldpde. (210)

Note that here we work with the cosine transform and not the sine transform as might be
expected from (2.8]). This is because « is the diagonal of a function which is antisymmetric
under both z — —z and y — —y and hence symmetric under (z,y) — (—z, —y).

Proof or Lemma[2 Using that sin(pz) sin(qz) = %[cos((p — ¢)z) — cos((p + ¢)x)] and substi-
tuting p’ = p — ¢ and ¢’ = p + q gives

1 “ « . . . .
lAF o) = = | apda | " ao |~ ayar@)sin(oe) sin(ar) L, p.0) sinon)sin(ay)oa 0

1 dp'dq’
N 47'('2 R2

[ o [ avat@oostt)-costa'ania, (P L 75 ) foostly) -cos(dmleatn

= f dg;’dq’ [al(P') - al(Q')] Bru(p',qd") [a2(0') — da2(q)] . (2.17)
R2 7T

Since B(p',q') = B(¢,p’), this reduces to

dp'dq’

@l o) = [ B GG Bral ) [a20) - 4a(a)]. (218)



Lemma 2.3] follows from an analogous computation.
Since the operator A]%M is multiplication by the function (2.I4]), it has purely essential

spectrum. The perturbation Br, in AH;L is Hilbert—Schmidt and thus compact. Hence,

J(A]%M) = JeSS(Aﬂ;L). It follows that for all T < TX(v) we have sup O'(AH;L) > sup J(A]%M) > 1/v,

which implies (L4)).

Remark 2.5. Choosing Neumann instead of Dirichlet boundary conditions amounts to changing
the minus sign in (2.I6]) into a plus sign.

It is possible to give a more explicit expression for sup O'(Aﬂ,}; M). The following is proved in
Section

Lemma 2.6. For allpe R

f Br u(p,q)dg < f Br,,(0,9)dg. (2.19)
R R
Consequently,
1
ar,, := sup J(A]%M) = fR Br,,(0,q)dgq . (2.20)

Hence, in the translation invariant case superconductivity is equivalent to ar, > % and the
critical temperature is determined by (3). Note that ar, is decreasing in T'. Therefore, T (v)
is a monotonically increasing function of v.

3 Existence of Boundary Superconductivity

From now on we assume that g > 0. In this Section, we show that for weak coupling the half-line
critical temperature is higher than the bulk critical temperature. The idea is to prove that for
T below a threshold Ty > 0 we have

sup O'(AE;L) > ary, - (3.1)
Then consider v < ¥ := a;ol 4~ We must have TR(v) < Ty by the monotonicity of TX(v). By

definition and continuity of infa(H$+) in T, supo (Aﬂ;i@( : ) =1 _ ark(y) - 1 TR(v) =
V), ery

v

To+ (v), we would get a contradiction to B.1). Thus, T (v) # T.+ (v) and, together with (L4,
part ({l) of Theorem [IT] follows.

To prove ([B.I]), we use the variational principle with a trial function mimicking the ground
state found in [I6]. We choose 9} (x) = e~I%l + Ag(x), where A € R and the cosine Fourier
transform g(p) = ﬁ SSO g(x) cos(pr)dx is real, continuous and centered at 2,/1.

Proposition 3.1. Let g(p) = e~ (PI=2V)*/b for some constant b > 0. For u > O there exists
Ty > 0 such that for T < Ty

. R
max ll_)I%<1/J€>\‘ATL — aT,uHW?> > 0.
As discussed above, Theorem [IT] (i) follows directly from Prop. Bl

Proof. Let he(z) = e~€l*l. The cosine Fourier transform of the trial state is 152‘ (p) = }\LE (p)+Aq(p),
~ . R . R

where he(p) = ﬁw We have limeo(¢2| Az, — arl[¢d) = limeolhe| Ayt — ardlhe) +
. R R R

2A\ lime—o{g| A7), faT,ﬂH|h€>+)\2<g|ATL —ar,,l|g). In LemmaB.3 we show (g[Ay!, —arl|g) < 0.

Maximizing over A thus yields
. R
limeo{g|A7), — ar ,I|he)?

R
(9lAz}, —ar,llg)

: A 2R A . R
max ll_{%@be Az, — ar dlPe) = 11_r>%<h€‘ATL — arllhe) —

(3.2)



We now compute the two limits. Note that for bounded continuous functions f, we have

lime 0 { ﬁﬁ f(p)dp = /7 f(0). Moreover, for bounded functions f such that lim, ,o %

exists, lime_,q SR %ﬁ f(p)dp = + hmpHO I With the momentum space representation of

AE;L in Lemma [2.4] we thus obtain

tim(hl AT, — ar,dlg) = Ty | dp he0)a0) (Aru(0) = Az,s(0)

~tim [ api) | Ao 1Bt a)i@) = —= [ do Br0.03(0). (33

Moreover,
. Ry
imche| Ay, — ar ullhe)
e—0 ?

. - 1 . - -
~tim [ avh2() | do = (Bro(p.0) = Br,0.0) ~lin | dohe) | do 1-Bru o
1

1 1
= —lim | dg . —(Bru(p,q) = Br.u(0,9)) - _BT,M(O7O)- (3.4)
R 7 4

In the first summand, we want to interchange limit and integration using dominated convergence.
The following Lemma is proved below.

Lemma 3.2. The function f(p,q) = %(BTM(p, q) — Br,(0,q9))
(i) is continuous at p = 0 and satisfies f(0,q) = 0 for all q.
(ii) There is a g € L'(R) n L®(R) such that |f(p,q)| < g(q) for all p and q.

By dominated convergence the first term on the right hand side of (8.4]) vanishes and thus
limea0<h€|A@7R;L — aryllhey = =2 Br,,(0,0). Combining this with ([3.2) and B3] yields

~ 2
1 (§g Bru(0,9)3(q)dq)
math(?,!) |AT —ap I|y2) = *—BT;L(O 0) — ——~F R
M 167 (g|Ap, — arule)

(3.5)

For T' — 0 the term Br ,(0,0) is bounded while the second summand diverges logarithmically,
which is content of the following Lemma.

~ (pl—2vm)?
Lemma 3.3. Let g(p) = e~ P for some b > 0. Then,

(i) % _b <11mT_,0(1 ) S]RBTMOq) ()dq<ﬁ,

.. . —1
(i) 0 = limpo (In4) " (gl A7), — arlg) > —o0.

Therefore, the last term in (B.5]) dominates for small 7" and makes the right hand side positive.
This completes the proof of Prop. Bl O

Remark 3.4. For Neumann boundary conditions, one obtains limg_,0<he\Aﬂ;L —arllhe) =

+L7,(0,0) > 0. Hence, the trial state he suffices to prove sup O'(AH;L) > ar,, for all T' > 0.

Proof of Lemma[3.2. Using (2.2]) one obtains the series representation

fpa) =3 5 — . . - .
o = ((p_;q) —M—iwn) <(z%) —u—i—iwn) ((%) —M—zwn> ((%) —u—i—zwn)

(3.6)

T Z Sup — p> + 2pq® — 16iqwy,



where w, = (2n+1)7T. From this, claim (1) is easy to see. For part (@), note that by Lemma[2.T],

[f(p. @)l < 75z = 91(q) for |p| > /. For |p| </,

[8up — p° + 2pg?|
oot ptq)? ; p—q)? ;
(p,@)eR?,|p|<y/1x ((T) o zwn) <(T) —p+ zwn>
8ulpl + Ip + 2lple?

- =:cp < (3.7)
]R2 —a\2
onestinet ] ega)? — vty [ (5597 -]+
and
16|qwy, |
sup 5 —
(p,q)eR? ((%) —,u—z'wn> <(’%) —,quz'wn)
16
< sup g =:cg <0 (3.8)

(p,q)eR2 2 2
P.a \/[(p;rlql) —M} + w2

With these estimates, one obtains for |p| < /i

|f(p,a)] < T(c18+ c2) % ( . 1>2 — (3.9)
ne T M Wy,

Using that the summands are decreasing in n, we can estimate the sum by an integral

T(c1 + co 1 © 1
R e e dx
(% - u) +wi 12 <qZ - u) + 4721222
14—l
arctan
T(c1 +c 1 ( mr >

= ( 14 2) 5 2 + P2 = 92((1) (3'10)

(4 -n) +up  2TIT - u
Clearly, g = max{g1, g2} € L'(R) n L®(R). O

The logarithmic divergence in Lemma [B.3] originates from the following asymptotics proved

in Section
Lemma 3.5. Let 4> 0. AsT — 0

| | 8 v d
J Fr,(p \f (n? +v+ nw) +o(1) = j@FTw(p) p+ O(1), (3.11)

where v denotes the Euler—Mascheroni constant.

4

Proof of Lemma[3.3. Part (). On the interval [—2+/2u,2+/2p] the minimum of g is e . We

estimate

242 o R
f Br(0,p)e ¥ dp < fRBT,um,p)g(p)dp

Non
f N e (0 —— d (3.12)
< ; ,p)dp + f 7 oo dp, .
Y g NP2V oy



where we used g(k) < 1 and tanh(z) < 1. The last summand is some constant independent of
T. Using that Bz, (0,p) = Fr,(p/2) and Lemma [3.5] the asymptotic behavior for 7" — 0 is

220 220 Nem 4
f Br,(0,p)dp = f Fr,(p/2)dp = 2f Fr,(p)dp = —1In fod +0(1) (3.13)
~2y/2% ~2/2 —V/20 N

and the claim follows.
Part (). Recall that

AT~ anuloy = | a3 (Ar,) — or,) - [ Wp3) | da 1-Brup.ite). (14)

By Lemma [2.6] the first summand is negative and thus also <g|A;RiL — arulg) < 0. Moreover,
using Lemma and 0 < g(p) <1 we have

~ ~ 1
ol = arulo)| < | apaoPar,+ [ apa) | do B0, @15)

In both terms, the integral over p gives a finite constant independent of 7. The claim follows
from the asymptotics in Lemma O

4 Weak Coupling Limit

In [16] it was observed by numerical and non-rigorous analytical computations that the ef-

fect of boundary superconductivity disappears in the weak coupling limit, in the sense that

T2 ()T ()
T (v)
Recall that the bulk critical temperature 7= (v) is the unique 7' > 0 such that ar, = % For

— 0 for v — 0. In this section we shall verify this claim.

the system on the half-line, we have by continuity of inf U(H$+) inT
. R _
TR+ (v) = min{T € [0, 0)|sup o(Ar),) =v . (4.1)

We want to invert this function and view v as function of T *. We define o(T) := (sup J(Aﬂrﬁz))_l.

Note that voTe+ = id and for all T > 0 we have To* (0(T)) < T.
The claim can be reformulated in terms of the operator Aﬂ;iz and ar, in the following way.
Lemma 4.1. lim,_,o 2 =0 < limp_,ginfo(ag,I — AH;L) = 0.

Proof. By definition, we have sup J(A;Rij;) = ﬁ = ape(o(7)),u- Hence,

. R : [ TE(o(T))
%131}0 info(ar,l—Ag),) = F}EI}O(CLT,# — AR (o)) = T %1111)0 In <7 (4.2)

where in the last equality we used Lemma and that T > TcRJr(U(T)) > TR®(v(T)) = 0 and
thus limy_o TX(0(T)) = 0. Therefore,

lim inf o(ar,,l — Az)) = 0 < lim =0. (4.3)

T—0
There exists a sequence (7)) such that T,, — 0 as n — o and e *(o(T,)) = T, for all n.
Therefore,
T — TR(o(T
lim —— s (v(T) = lim —=<
T—0 TR(v(T)) T-0 TR(v(T))

(4.4)



Since limz_,0 TX(0(T)) = 0, also limz_,0v(7T) = 0. Thus,

Te (o(T)) — TR (o(T)) Te (v) — TR (v)

= D)) = I 7R (4:5)
and the claim follows. O
Recall the definition of A7, in (ZI4]). With the notation
Er,(p) = 4m (a1 — A1 u(p)) (4.6)
we have for all ¢ € L?((0,0))
tr(ar,d — AR )0(p) = Enu(p)b(n) + fR Br,u(p, 0)¥(g)dg. (4.7)

For the proof of Theorem [IT] (i), we need the following intermediate results which are proved
in Section .11

Lemma 4.2. Let > 0. Then
sup|[Br., || < o0 (4.8)
T>0

Lemma 4.3. Let I<. denote multiplication with the characteristic function of the interval [—e, €]
i momentum space. Let > 0. Then

lim sup||[I<e By pl<e|| < lim sup||I<e Br ul<c|lus= 0, (4.9)
e—0 7 e—0 7

where ||-||las denotes the Hilbert-Schmidt norm.

Lemma 4.4. Let 0 < € < 2,/p1. For |p| > € we have

Eru(p)=cln (%2) (4.10)

for constants c1,co > 0 and T small enough.

Proof of Theorem [I1 (). By Lemma A1l it suffices to prove 0 = limp_,oinf o(ar,,I — AE;Z) =

limy_,0 ﬁ inf o(E7,, 4+ Br,,). By (L4), we only need to show that limy_,o inf o(E7, + Br) = 0.
For § > 0 we can write

1 1
Er,+Br,+d=+/Er, +6 |1+ B
T o ( VEru+0  M\/Er,+6

since Et,(p) = 0 by Lemma We shall show that for all § > 0

) N ET,, +96 (4.11)

lim

=0. 4.12
T—0 0 ( )

1 1
Br
4/ET,M+5 ’“«/ET7M+5
Hence, the operator in the bracket in (4I1]) is positive for small 7. This implies that for all
d > 0 for T' small enough we have inf o(Er , + B, + ) > 0. Since ¢ can be arbitrarily small,
the theorem follows.
To prove ([AI2]), we use the notation of LemmaM.3land estimate for an arbitrary 0 < e < 2,/i

1 1 1 1
B 1 B I
H VEr+o M /Br,+o S VEBrato M Br,to

n n . (4.13)

1 1 1 1
I B I I B
S B 10 B0 || T Ere 8 B, 10

10



Now we use that £z, > 0 and Lemma [4.4] to obtain

1/2
1 2c

im hm I<cBr , d<.|| + hm 1 B . (4.14
iy |V e | < s e Prated + iy il Pl 440

With Lemma it follows that the second term vanishes and
li < II<eBr,I<c 4.15
Tlﬁn}0 *ETM FTM SUP | <e DTl || ( )
Since € > 0 was arbitrary, (4I2]) follows from Lemma [£3] O

Remark 4.5. In the case of Neumann boundary conditions, the same argument proves (L9]).

4.1 Proofs of Intermediate Results

Proof of Lemma[{.2. In order to bound By ,(p,q) we apply the following inequality proved in
Section

Lemma 4.6. For all x,y € R and T > 0 it holds that

tanh(z/T") + tanh(y/T) - 2
T +y x| + [yl

(4.16)

Hence, Br ,(p,q) is bounded above by
2
2 o2 :
| (B59)" = ul + [ (25%)” — ul

The function f has singularities at the four points where {|p|, |q|} = {0,2,/z}. Since f diverges
linearly at those points, the idea is to do a Schur test with a test function of the form d(p)?,
where d(p) is the distance from the singularities in variable p and a € (0,1). We choose the
function h(p) = min{|p|, [2,/f — |p||}*/?. The Schur test gives

wpsuph(p) [ Pra®a),, o L.
Sl%p||BT,ﬂ‘|<bl%p5pph(p)jR h(q) J f

h(p)f(p.a) _ h(pl)f(pl.lq])
h(q) h(lql)

In order to estimate h(p) 80 b (( ))dq, we split the domain into nine regions as indicated in

Figure[ll The finiteness of the right hand side of (4.I8]) follows from the bounds listed in Table[Il
In the following, we prove the bounds in Table [l
In region 1, we have

f(p,q) =

(4.17)

4 18)

where we used that

for the last equality.

j f(pa Q) dg = j 5 5 1 dg < f 3 dg
2/fi+p h(q) 2 /f4+p P° T 47 — Ap (g — 24/p) 2,/f+p (¢ +2y/1)(q —2y/1)
1 (® 1 2

q = .
\/— ayiitp (4= 24/11)%? VHDY/?

(4.19)

In region 2, we have

f 2P f(p,q) d

fx/ﬁﬂ’ 2 2 f\/ﬁ*p 1
max{2./1,p—2./f} h(Q)

——————pdg < - ——————>dg
max{2yp—2yvE) PAG =22 T plan alg —2y/m)Y?
I 1 2

S = ada = 12
VI Doy (4= 2y1) VD

(4.20)

11



0 ﬁ2ﬁ3\/ﬁ4ﬁ)za

Figure 1: The nine regions of the domain of p, ¢ in the proof of Lemma

Region Expression Upper bound | Proof
1 S2f +p figl()qg) dg % @13
2| A >Sii;é”f,p 2y i 0 woo|am
3 ) 2" Hetlag Z |
1 15 ey | @
5 | hip) Siﬁ;@f iy i dd 7 @.23)
6 h(p) S?{Q\ﬁp 2/m} f(z(>(§)dq % @)
7 h(p) s‘“m{f PV L) g = @)
8 (1) Sy B0 da 7 ©.28)
9 h(p) pnVEr 2 ] f,ﬁfg)dq - @21)

Table 1: Overview of the estimates used in the proof of Lemma

In region 3, we have p > 4,/u and

f”_QW [ _JP‘QW 4 1 .
2,/ h(q) - 2.0 P>+ q®—4u(q— 2\/ﬁ)1/2 9
P2V 1 8 8 P
<5 ——dg = —(p -4/ < - < ——— (421
P by (q—2ym)/? 1= (P =4vi) P2 /apt/? (4.21)

where we used p > 4,/p in the last inequality.
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In region 4, we have p < ,/u and

rﬁ‘pf(nq)dq:r‘/ﬁ_p 4 L 4
N () vi An—p?P =2 2yp—q'?
1

2Vh—p 4
f\/ﬁ (V4 —p* +q) \/W— q) ( 2\/_—q)1/2dq

JQI P 4 1 do < J~2f P 4 N
\/_ (WAp—p? —q) 2y —a)'? \/— (/A — p? — )32

8 8

VAW A —p? =2+ p)i2 VARV = )V (24 + p)V2 — (25— p) 2]

1/2 1/2
sleyiep +yr-p]” _ s s
VERyE =)V (2p)? VERYE 2p) 2 i
where we used p < ,/u in the last inequality.
In region 5, we have
JW‘ 1.4) 4, _ rﬁ 2 L 4
max(2y/fi—p,Ep—2ya} 1(2) max(2y/Ti-p,y -2y} P4 (2y/1 — @)V/?
2 (A 1 4
S ——= dg = min{p, \/p, 4y/p — p}1/2
p\/ﬁ max{Q\/ﬁ—p7\/ﬁ7p—2\/ﬁ} (2\//7 - Q)l/Z p\/7 \/—p1/2
(4.23)
In region 6, we have p > 3,/u and
Jmin{Q\/ﬁvp_Q\/ﬁ} f(p’ q) Jmin{Qﬁvp_Qﬁ} 4 1 d
= q
VB h(q) VB P?+ g% —4Ap (2 — )2
4 2V 1 8 8
< — — dg=———(2 /2 _ 9 1/2
) N A T L Rl PV e R L)
1/2
< ° N p—— (1.24)

B — ) ) (7 + (30)74)

In region 7, we have

\/ﬁ(?) _ 33/4)p1/2'

min{VA2VE2} f(p ) min{7,2y/fi—p} 4 1
f ~-dg = f T eanl
0 h(q) 0 dp —p? —q? ¢V
_ 4 fmin%%/ﬁp} L o Smin{y, 2y —p}!?
= Ap - p? — min{/, 2/ — p)? 2% T = p? — min{y /7, 20— p)?

gul/4 1/4 .
I L R M IS VE g
Ten = RV o =B RV

In region 8, we have p > ,/u and

Vi fp.q) Ve 2 1 2 (* 1
" dg = f ———dg < —f dg = —|2 p|7Y2. (4.26)
fwn—p h(q) 27| P4 ¢ VB Sy @2 Vi i
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In region 9, we have p > 2,/u and

fmin{\/ﬁ,p%/ﬁ} f(p,q) fmin{\/ﬁ,p%/ﬁ} 4 1 1
0 hg) " Jo P g2
4 Jmin{ﬁ7p2x/ﬁ} 1 8 1 L
< 5—— ——=dq = min /,p—2 /2
p? —4u Jo q'/? (p+2y/0)(p — 2y/R) W e =2/
2
< (4.27)
Vilp = 2y
U

Proof of Lemma[{.3 Let 0 < ¢ < /u. For 0 < |pl,|q| < € we have 2 — (p_erq)Q - (u)2 >
21 — 2¢2. Together with 0 < tanh(z) < 1 for 2 > 0 we obtain

1
0 < Bru(p,q) < —. (4.28)
w—€
Using this estimate, we bound the Hilbert—-Schmidt norm as
) € € 5 462
[I<e Br,pl<ellfis= Bru(p,q)"dpdq < ——5- (4.29)
—€eJ—e¢ (:u' —¢€ )
O

Proof of Lemma[{4 Recall that Er,(p) = 4mar,, — §g Bru(p,¢)dg. The idea is to show that
the supremum sup,.. 7~ g Br,u(p,q)dg < oo. Then, for T — 0 we have inf|, > B, (p) ~
4
dmar,, ~ /i In£&.
We shall prove that the following four expressions are finite.

o0
Iy == sup f Br,.(p,q)dq (4.30)
p>e, >0 p+24/p
2,/—p
I:=  sup f Br . (p,q)dq (4.31)
2\/n>p>¢, T>0J0
D—2,/1L
I3 = sup f Br,,.(p, q)dq (4.32)
p>2,/1,T>0Jo
p+2./1
Iy := sup f Br . (p,q)dgq (4.33)
p>€,7>0J|p—-2,/n]

From this, together with Br ,(p,q) = Br.(|pl,|q|) it follows that

o0 o0
sup f Bru(p,q)dg < 2maX{ sup f Br,(p,q)dg, sup f Bru(p, q)dq}
|p|>€,T>0JR 2\/p>p>¢,T>0J0 p>2,/1, T>0J0

<2max{lo+ Iy + I, I3+ Iy + 1} <o0. (4.34)
The following inequality is proved in Section
Lemma 4.7. For x,y >0

tanh(x) — tanh(y)

< e 2min{zy} (4.35)
T —y
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Applying Lemmas [4.6] and [.7] we estimate

% exp (—min {(p + q)> — 4, 4p — (p — q)*}/AT) for [p—2/ul <q<p+2yn
BT,H(P, q) < 8 otherwise
[(p+4)* —4pl+|(p—q)*—4u| '
(4.36)
With (4.36]) we have
© 4 © 4
p>e Jpyaym D7+ 7 —4p ev2 i 4° — 4p
Furthermore,
R (2vii-p) :
I, < sup J —————=dg < sup (2pu-—p
2\/u>p>€eJ0 4:“’ - p2 - q2 2\/u>p>e€ \/_ 4;“' - p2 - (2\/ﬁ - p)2
2 2
= sup -=-— (4.38)
2\/p>p>e p €
Moreover,
P—2\/1t
P=2VH 4 4arctan ( p+2ﬁ) arctan (x) 1
I3 < sup ———>5——dg= sup < sup ——— < —
p>2/i Jo p°+q°—4p p>2\/i p? —4dp O<z<l  A/PT Vi
(4.39)
In order to estimate Iy, note that (p + ¢)2 — 4u < 4u — (p — q)? < q < \/4p — p?. Let
9 [VAu—p?
I5 := sup — e“/T_(p+q)2/4qu, (4.40)
6<p<2\/;_1,,T>0T 2,/u—p
2 2,/p+p
Is = sup — =P AT=w/T qq. (4.41)
e<p<2ynT>0 1 J\/apu—p?
and r20E
9 (P+2Vi
I; .= sup — e(q—p)2/4T—u/qu. (4.42)
p>2\/;_1,,T>OT P—2/p
Then we have Iy < max{Il; + Ig, I7}. We can bound both I5 and I7 using
+2 2
Is, Iy < sup 2 (" ﬁe(qu)2/4Tfu/qu — sup EJ v 6q2/4Tfu/qu
p>eT>0 1 Jp—2 /n >0 T J 2/
4y/meHT 4
= sup Lerﬁ ( ﬁ) = VT sup xe_JCQerﬁ(x). (4.43)
T>0 VT T VI 2>0
Since /7 limg . ze~erfi(z) = 1, it follows that Ig, Iy < 0.
Finally,
) w/T  rA/4p—p%+p 9 w/T oo
I = sup ¢ j e*q2/4qu < sup c j e*q2/4qu
e<p<2ynT>0 1T Jom T>0 2 /H
2y/met/T 2
= sup ﬁieerfc ( ﬁ) = VT sup xererfc(x) (4.44)
T>0 \/T T \/,l7 >0

—a?
Since 0 < erfc(x) < 1 and for # — oo asymptotically erfc(z) ~ emﬁ + o(e™®"/z), we have

SUP,~ ze®’erfe(z) < oo and obtain I < 0. O

15



5 Strong Coupling Limit

The goal of this section is to prove part (i) of Theorem [Tl As for the weak coupling limit, we

first translate the question about the relative temperature difference into a condition on AE;L

and ar . While the weak coupling limit turned out to be equivalent to a low temperature limit,
the strong coupling limit corresponds to a high temperature limit. In this limit, the relevant
quantities behave as follows.

Lemma 5.1. Let p > 0. Then
(i) limy_oe T+ (v) = a0
(i3) limp_q TR (0(T)) = oo
(#4i) limp_, o Tl/zaT,ﬂ =ajp
() limg_,o T2 sup O'(AE;L) = sup J(A]ﬁg)
The proof is provided in Section [B.J1 We can reformulate Theorem [[I|[il) as follows.

Lemma 5.2. B
T @)~ TE)
im i
v TE(0)

Proof. By Lemma B.J|[v]) and the definition of v(T") we have

=0 < sup O'(A]sa) =ai (5.1)

supa(AIE’Or) — lim T"%sup O’(AH;-L) = lim T1/2aT2g(n(T))7u (5.2)

T—o0 ) T—o0

By Lemma B.II[) and (i) we get

1/2
lim T2 Caotim (N i () / 5.3
e ATE (o(T)),p = 41,0 S TR(o(T)) = G0 M TR(v) (5.3)

where we used Lemma [B.TI{) and U(T(];RJr (v)) = v for the second equality. Since ajo > 0, the
claim follows. O

Remark 5.3. In the case of Neumann boundary conditions, d := sup O'(A]F,B) — a0 > 0. With
the argument in Lemma [5.2, we have

R+
fim L () — T () =<i+1>2_1>0. (5.4)

V=00 TR (v) a1,

We are thus left with showing that sup O'(A]FB) = aio. Recall that sup UeSS(A]fa) = ay,0.

)

Hence it suffices to prove that for all ¢ € L?((0,0))

Wl = o= [ [ Brot.aloe)-v@Pdsda < - [ 196)Pdp [ Brof0. e = [9lBaro,

(5.5)
In order to show this, we shall bound Bj g by a positive definite kernel K, in such a way that
the right hand side of (5.5]) does not change.

Lemma 5.4. Let K be the operator on L*(R?) with integral kernel

K(pa Q) = min{Bl,O(pa O)aBl,O(Qa 0)} (56)

Then K satisfies

16



(i) Bio(p,q) < K(p,q) for allp,qe R

(ii) K(p,q) = K(q,p) for all p,q € R

(i) K is positive definite

(iv) SRK( SR (0,q)dq for allpe R
(v) Bio(p,0) = K(p,0) for allpe R

This implies (5.5]) and hence part (i) of Theorem [I[1] since

1
§f f Bio(p. @) (p) — ¥(q)]*dpdg < f f K(p,q)|¢(p) —v(q)|*dpdg
R JR
= [ W) [ K.adadp - ol
<f |¢(p)l2f K (p,q)dgdp
R R
<1015 | KO.00da = 13 | Bro0.0)aa.  (5.7)
Proof of Lemma[5.7 Property () is obvious. Properties (iv]) and (@) follow from the fact that

K(p,q) = min{F10(p/2), F1,0(q/2)} = Fro(max{|p|,[ql}/2), (5.8)

2
where F o(p) = ta“hzgié’/?) has a maximum at p = 0 and is monotonously decreasing for p > 0.
For (i) consider the following inequality, which is proved in Section

Lemma 5.5. For allp,ge R

tanh <p2J8rq2>
B W A (5.9)

p’+q?
1

Bio(p,q) <

Together with the monotonicity of tanh(p)/p for p > 0, it implies (il). For property (i) it
suffices to show that there is a real-valued function g such that

K(p,q) = fR g(r,p)g(r,q)dr. (5.10)

In fact, let g(r,p) = A/h(r)X,>p2 With

d tanh(z/2)
)= %= = 0. 5.11
(r) dx x R ( )
With this choice, (5.I0]) holds since
*© —max{p?,¢°} N
f g(r,p)g(r,q)dr = f h(r)dr = J di tanh(z/2) dr
R max{p2,q2} —00 i X r=r

_ tanh(max{p?, ¢*}/2)
~ max{p?,¢%}

= K(p,q) (5.12)

O
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5.1 Proof of Lemma [5.1]

Proof of Lemma [51]. For (fil) we have lim,_, 4 To (v) = lim, e TR (v) = o0 by (L4).
(i) follows easily from (ivl): Clearly (ivl) implies that

lim sup O'(AH;L) =0. (5.13)

T—0o0
Since arz (1)), = SUp O'(AH;L) this is equivalent to
lim a = 0. 5.14
A as o)) (5.14)
Using that ar, is strictly decreasing in T" with lim7_,o a7, = 0, this in turn is equivalent to

lim TX(0(T)) = oo. (5.15)

T—o0

For () we have after substituting ¢/27"/? — ¢

1 tanh <q272,u/T>
lim Tl/QaT,M = — lim d

———dgq. 5.16
T—o 2r T—w Jp = ¢ — /T e (5.16)

Fix some Ty > 0. Since tanh(x)/x is decreasing for x > 0 and bounded by 1, the integrand
. 1 1 .. 1 .
is bounded by 2X|q|<24/i/T0 + =i Xjq|>2+/alTo for T > Ty. This is an L* function, so by
dominated convergence we can pull the limit into the integral and arrive at the claim.

(@) Let Ur denote the unitary transformation Uri)(p) = TV*)(T?p) on L?(R?). We shall

prove that limg_,, || UrTY/ QAH;LU} - A]Eg | = 0, which implies the claim. Note that

UrT'? Ayt UL = A, (5.17)

Lu/T

Therefore, we have
: 1/2 4R R . R R
i U T2 A, U — A = lim | AYT — AYG

1
< — lim sup
7'(';,4—)0 p

1 .
JR(Bl,u(p, q) — B1o(p, q))dq‘ o }}_}I%HBLM — Bioll (5.18)

For the second term on the second line of (5.I8]) we bound the operator norm by the Hilbert—
Schmidt norm

1By, — Biol” < | Bry — Biollfis = JR dp JR dq (B1,u(p.q) — Bio(p.q))? (5.19)

Using that Bt ,(p,q) < 1/2T and |tanh(z)| < 1 one can bound

1 1 16
B <o in{ — = . (520
1,M(p7 q) 4Xp2+q2g4,u,(p7 q) + Xp2+q2>4u(p7 q) min {47 (p2 + q2 — 4M)2 } fu(pa q) ( )

By the monotonicity of f,, in u, we have for all v < u that (B, (p,q) — B1,0(p, q))2 < 2fu(p,q).

Since f, is an L' function, dominated convergence implies lim,,_,o||B1, — B1o|| = 0.
For the first term in the second line of (5.I8]) we estimate

ff”ag( )dd‘
- D1,\P, q)araq
Roal/l

0
— By, (p, q)‘ dg, (5.21)

lim sup
u—0 p

f (B1,u(p,q) — B1o(p, q))dq‘ = lim sup
R n—0 p

ov

< lim psup sup f
v=0" p pefo,u] JR
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where we used the triangle inequality and Fubini’s theorem in the last step. By ([2.:2]) we may
write

a 1
7/1/ p? - 2 Z 2 — 2 :
alu nez <(Tq) 7:“’*“011) (P_QQ) — K+ wn
1 1
MY . 5 5, (5.22)
(559" = i ((250)" — o+ s, )
where w, = m(2n + 1). Observe that
p+aq)’ .
and
p—q\’

Applying Fubini’s theorem to swap integration and summation, we have for all p and p

0 f Xjal>2y
—B1.,(p, <2 d +
J 0t 2 “’( AT (@A = p) + )
Xlq|>2/p
w2A/(q%/4 — p)? + w?

8\/_ 9 [ 1 )
_22[ 5/2f ds<(82+1)\/8+/‘/wn+\/(82+1)(S+M/wn)>]’ (5.25)

neZ

where we substituted s = w,, 1(¢?/4 — u). For i < 1 we therefore obtain a p-independent bound

sup sup J
P velo,u] JR

0
5Bl,u(p, q)’ dg

1
2%2[“}3 5/2f ds<(82+1 WE m)]«p. (5.26)

Thus, the last expression in (5.2I]) vanishes and the claim follows. O

6 Proofs of Auxiliary Results

6.1 From Section
Proof of Lemmal2.1. Note that for all p,q € R

1 2
L — 6.1
T,u(p’Q) mln{2T? |p2+q22/£|} ( )
Hence, L1, (p,q)(1+p*+¢ ) % and L1, (p, q)(T+p*+4¢°%) < 5T+2“ So with C1(T, u) =
% and Cs(To, p) = 5T +2 the respective inequalities hold.

For the remaining 1nequahty, note that L, vanishes only at infinity. Let € > 0. There is

a constant c¢; such that L7 ,(p,q) > ¢ for all |p|,|q| < y/max{2u,0} 4+ €. Moreover, if |p| or

lg| > +/max{2u,0} + €, we have

tanh +€)/2T) — tanh(p/2T c
Loy > P O2T) —tnb21) e o)
P>+ q*—2p p® + ¢* + max{—2yu,0}
In particular, L7,,(p, q)(1 + p* + ¢?) = min{cy, c2, ca/ max{—2pu, 0}}. O
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Proof of Lemmal2.0. First, we show that for every x,y € R

tanh(z) 4+ tanh(y) - 1 (tanh(az) N tanh(y)) (6.3)

T+y =2 T Y

Since changing * — —x,y — —y does not change the expressions, we may assume without loss
of generality that = > |y|. Note that

tanh(x) + tanh(y) 1 { (z+ ) (tanh(m) N tanh(y)) F -y <tanh(x) B tanh(y))]

N Zz Yy T Yy
(6.4)

Since tanh(x)/x < tanh(y)/y, the last term is not positive and the inequality (6.3]) follows.
For p € R we therefore have

Lo [ (22) s (52 e L

Since Fr,(q/2) = B(0,q), the claim follows. O

T+y 2(z +y)

6.2 From Section [3
Proof of Lemma[Z0. Substituting by p? — i =t for p?> > p and pu — p? =t for p? < pu we get

2

«>tanh»(gaiﬂ) © tanh(t/27) # tanh(t/27)
Fr. p@zQJ ——————@zzf —————m+2f-—————m. 6.6
J;R () I 0o 2tvptt 0o 2t/p—t (65)

It was shown in [I13, Lemma 1] that
# tanh(t/2T
g%(f-flu;lm—mﬁ)zy—mg. (6.7)

0 t T
By monotone convergence, we observe that

f o = e e (s ) ae o

as well as
“ tanh(t/2T 1 1 n1 /1 1 In (2(v2 — 1
1mf m(/)( ——J&:J-—( ___)&:BLQ;_E.@m
-0}y 2t Ve AN 0 A \VEFE VI N
Using monotone convergence once more, we obtain
© tanh(t/2T © In(v2 + 1

1mf-ﬂiLJw=f ar = DV2 1) (6.10)
7-0), 2t/pu+t u 20+t N

Combining all the terms we arrive at the first equality in (B.I1]). Observe that

0
1
0< F dp < 2f dp < 0. 6.11
JRXp>1/2M T,,u(p) p o p2_,u p ( )

Therefore, this term is of order one for T — 0 and {5 Frp,(p)dp = S% Fr,(p)dp+0(1). 0O
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6.3 From Section (4

Proof of Lemma[4.6 In the case zy > 0, the inequality follows immediately from the fact that
|tanh(z)| < 1 for all z € R. In the case zy < 0, let us replace y — —y and assume without loss
of generality that >y > 0. Since the function s — e~2* is convex, we have

—2y _ 2z
e e - d _o

< - — = 2e % 6.12
T —y dse ¢ ( )

S

Il
<

We estimate

v y(tanh(m) — tanh(y)) = Aoty eW—e™ < 2z +y)e min { 2 !
T—y l+e 2 (z—y)(l+e22) ~ 1+e 2 ‘r—y
42y +1/2)e™2%Y
< 6.13
1+e2v 7 (6.13)

where we maximized over z in the last step. The maximum of the last expression over y is
attained at the value y = § satisfying e =2 = 2 — 1/2. Therefore, we get

T +y
r—y

(tanh(z) — tanh(y)) < 4(29 — 1/2). (6.14)

The function e=2¥ is decreasing in y and 2y — 1/2 is increasing. For y = 1/2 we have e™! < 1/2,
hence the intersection point g satisfies 0 < ¢ < 1/2 . Thus, %(tanh(x) —tanh(y)) < 2, which
proves the claim. O

Proof of Lemma[4.7]. Without loss of generality, we may assume that y < z. We have

tanh(z) — tanh(y) = - ¢ ¢
et +e T e¥te (e + e %)(e¥ +e7Y)
_ —2y 2z
— = 2(e e )
Applying ([6.12)) the claim follows. O

6.4 From Section
Proof of Lemma [5.3. By concavity of tanh(x) for x > 0 for ,y > 0 it holds that

tanh(x) + tanh(y) < tanh (* +y tanh(z) + tanh(y) < tanh (23Y) (6.15)
2 2 2(z +vy) r+y
Choosing = = (p + ¢)%/8 and y = (p — ¢)?/8 gives the desired inequality. O
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