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SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2

LUCAS VACOSSIN

ABsTrACT. In this paper, we study the problem of scattering by several strictly convex obstacles,
with smooth boundary and satisfying a non eclipse condition. We show, in dimension 2 only,
the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside
the obstacles. The proof of this result relies on a reduction to an open hyperbolic quantum
map, achieved in [NSZI4]. In fact, we obtain a spectral gap for this type of objects, which also
has applications in potential scattering. The second main ingredient of this article is a fractal
uncertainty principle. We adapt the techniques of [DJN2I| to apply this fractal uncertainty
principle in our context.
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2 LUCAS VACOSSIN

1. INTRODUCTION

Scattering by convex obstacles and spectral gap. In this paper, we are interested by the
problem of scattering by strictly convex obstacles in the plane. Assume that

J
o=Jo;
j=1

where O; are open, strictly convex connected obstacles in R? having smooth boundary and sat-
isfying the Ikawa condition : for i # j # k, O; does not intersect the convex hull of O; U O.
Let

Q=R*\0O
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FIGURE 1. Scattering by three obstacles in the plane

It is known that the resolvent of the Dirichlet Laplacian in 2 continues meromorphically to the
logarithmic cover of C (see for instance [DZI8]). More precisely, suppose that x € C2°(R?) is equal
to one in a neighborhood of O.

X(=A =A%)y L(Q) — L*(Q)

is holomorphic in the region {Im A > 0} and it continues meromorphically to the logarithmic cover
of C. Its poles are the scattering resonances. We are interested in the problem of the existence of
a spectral gap in the first sheet of the logarithmic cover (i.e. C\ iR™). We prove the following
theorem :

Theorem A. There exist v > 0 and Ao > 0 such that there is no resonance in the region

This problem has a long history in the physics and mathematics literature. The spectral gap
has for instance been studied by [Ika88] in dimension 3. For related problems concerning the
distribution of scattering resonances for such systems, here is a non exhaustive list of papers in
which the reader can find pointers to a larger litterature : [GR89] for the three-disks problem,
[Geé8S], [Tka82] for the the two obstacles problem, [PS10] for link with dynamical zeta functions,
[BLRS&7|, [HL94| for the diffraction by one convex obstacle, [SZ99] among others papers of the
two authors concerning the distribution of the scattering resonances. We will also widely use the
presentation and the arguments of [NSZ14].
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The spectral gap problem is a high-frequency problem and justifies the introduction of a small
parameter h, where % corresponds to a large frequency scale. Under this rescaling, we are interested
in the semiclassical operator

P(h)=—h?A—1 h<hg
and spectral parameter z € D(0,Ch) for some C > 0.

In the semiclassical limit, the classical dynamics associated to this quantum problem is the
billiard flow in £ x S', that is to say, the free motion outside the obstacles with normal reflection
on their boundaries. A relevant dynamical object is the trapped set corresponding to the points
(x,€) € Q x S! that do not escape to infinity in the backward and forward direction of the flow.
In the case of two obstacles, it is a single closed geodesic. As soon as more obstacles are involved,
the structure of the trapped set becomes complex and exhibits a fractal structure. This is a
consequence of the hyperbolicity of the billiard flow. It is known that the structure of the trapped
set plays a crucial role in the spectral gap problem.

A good dynamical object to study this structure is the topological pressure associated to the
unstable Jacobian ¢,. This dynamical quantity is a strictly decreasing function s — P(s) which
measures the instability of the flow (see Section [2| for definitions and references given there). In
dimension 2, Bowen’s formula shows that the Hausdorff and upper box dimensions of the trapped
set are 2sp where sg is the unique root of the equation P(s) = 0. In [NZ09], the existence of a
spectral gap for such systems has been proved under the pressure condition

()<

Their result holds in any dimension, with a quantitative spectral gap. Our result doesn’t need this
assumption anymore. In fact, it relies on the weaker pressure condition :

P(1) <0
It is known that this condition is always satisfied in the scattering problem we consider since the
trapped set is not an attractor ([BR75]). Due to Bowen’s formula, this condition can be interpreted
as a fractal condition. This is this fractal property that will be crucial in the analysis.

Open hyperbolic systems and spectral gaps. The problem of scattering by obstacles falls
into the wider class of spectral problems for open hyperbolic systems (see [Nonll]). In these
open systems, the spectral problems concern the resonances : these are generalized eigenvalues
which exhibit some resonant states. Among the problems which widely interest mathematicians
and physicians, resonance counting and spectral gaps are on the top of the list. Spectral gaps
are known to be important to give resonance expansion (see for instance [DZ19]) and local energy
decay (see for instance the works of Tkawa [Tka82] and [Tka88] concerning local energy decay in the
exterior of 2 and several obstacles in R?). It has been conjectured in [Zwol7| (Conjecture 3) that
such systems might exhibit a spectral gap as soon as the trapped set has such a fractal structure.

Convex co-compact hyperbolic surfaces. Another class of open hyperbolic systems exhibiting
a fractal trapped set consists of the convex co-compact hyperbolic surfaces, which can be obtained
as the quotient of the hyperbolic plane H? by Schottky groups I. The spectral problem concerns
the Laplacian on these surfaces and its classical counterpart is the geodesic flow on the cosphere
bundle, which is known to be hyperbolic due to the negative curvature of theses surfaces. In this
context, it is common to write the energy variable A2 = s(1 — s) and study

(—A—s(1—s)""

The trapped set is linked to the limit set of I' and the dimension § of this limit set influences the
spectrum. The Patterson-Sullivan theory (see for instance [Borl6]) tells that there is a resonance at
s = ¢ and that the other resonances are located in {Re(s) < d}. In particular, it gives an essential
spectral gap of size max(0,1/2 — ¢). This is consistent with the pressure condition P(s) < 1/2
since in that situation, P(s) is simply given by P(s) = § — s. Results where obtained by Naud
(INau05]), where he improves the gap given by the Patterson-Sullivan theory in the case § < 1/2.
Recent results, initiated by [DZ16], have improved this gap. In [BDIS]|, the authors show that
there exists an essential spectral gap for any convex co-compact hyperbolic surfaces. In particular,
the pressure condition § < 1/2 is no more a necessary assumption. The new idea in these papers
is the use of a fractal uncertainty principle. It will be a crucial tool of our analysis.
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Potential scattering. Scattering by a compactly potential also falls in the class of open systems.
It consists in studying the semiclassical operator P(h) = —h?A + V(z) where V € C2°(R?).

A

FIGURE 2. Scattering by a smooth compactly supported potential V.

In this framework, the spectral gap problem consists in exhibiting bands in the complex plane

of the form
[a7b] — X [Oa hV]

where P(h) has no resonance, for h small enough. In the semiclassical limit, the behavior of P(h)
is linked to the classical flow of the system, that is the Hamiltonian flow generated by p(x,§) =
|€]2+V (z). Note that in potential scattering, one has to focus on some energy shell {p = E} where
E € R is independent of h, with Re z sufficiently close to E. This specification is not necessary
in obstacle scattering (implicitly, we have already decided to work with E = 1). The properties
of the resonant states uy, which are generalized solutions of the equation (P(h) — z)u, = 0, are
linked to the trapped set of the flow. This trapped set corresponds to all the trajectories which
stay bounded for the backward and forward evolution of the flow. When the flow is hyperbolic on
the trapped set, this trapped set is known to exhibit a fractal structure.

Reduction to open hyperbolic quantum maps. An important aspect of our analysis to prove
Theorem [A] relies on previous results of [NSZ14]. Their Theorem 5 (Section 6) reduces the study
of the scattering poles to the study of the cancellation of

z — det(I-M(2))
where
(1.1) M(z) : L*(00) — L*(00)

is a family of hyperbolic open quantum map (see below Section. The family z — M(z) depends
holomorphically on z € D(0,Ch) for some C' > 0 and is sometimes called a hyperbolic quantum
monodromy operator. The construction of this operator relies on the study of the operators My(z)
defined as follows : for 1 < j < J, let Hj(z) : C*(00;) — C*(R?\ O,) be the resolvent of the
problem

(—h?A—1—2)(H;j(z)v) =0

H;(z)v is outgoing

H;(z)v =v on 00;
Let ~; be the restriction of a smooth function u € C°(R?) to C>°(00;) and define My(z) by :

Oifi=3j
Mo(2) = { —v:H;(z) otherwise
Due to results of Gerard ([Gé8S8], Appendix II), this matrix is a Fourier integral operator associated
with a Lagrangian relation related to the billiard flow. A priori, it does exclude neither the glancing
rays nor the shadow region. Ikawa’s conditon allows the authors to get rid of these embarrassing
regions, since they do not play a role when considering the trapped set (see Section 6 in [NSZ14]).

A consequence of their analysis is that M (z) is associated with a simpler Lagrangian relation B,
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which is the restriction of the billiard map to a domain excluding the glancing rays. To be more
precise, let us introduce

So, = {(z,€) € T"R?,z € 90, |¢] = 1}
B*00; ={(y,n) € T*00;,[n| <1}
Tj : Spo, = B*00; the orthogonal projection on each fiber

FIGURE 3. Description of the Lagrangian relation B;;

B is then the union of the relations B;; corresponding to the reflection on two obstacles : for
(Piapj) € B*00; x B*&Oj :

(pispj) € Bij <= I}t >0,£ €Sz €00;
ﬂ-j(x,g):pj77ri(x+t£7£):piayj(x)'€>071/i(x+t£)"S<O

It is a standard fact in the study of chaotic billiards (see for instance [CMO00]) that the billiard map
is hyperbolic due to the strict convexity assumption. Ikawa’s condition ensures that the restriction
of the dynamical system to the trapped set has a symbolic representation ([Mor91]).

Spectral gap for hyperbolic open quantum maps. Using this reduction, Theorem [A] will be
proved once we are able to show that the spectral radius of M(z) is strictly smaller than 1 for
z € D(0,Ch) N {Imz € [—0h,0]}, for some & > 0. This will be a consequence of the following
statement, which will be demonstrated in this paper (see Section below for a more precise version).

Theorem B. Let (M(z)). be the family introduced in (I.1), that is a hyperbolic quantum mon-
odromy operator associated with the open Lagrangian relation B. Then, there exist hg > 0, v > 0
and Tmax > 0 such that the spectral radius of M(2), pspec(2), satisfies : for all h < ho and all
z € D(0,Ch),

pspec(z) S e~ Tmax Im z

When z € R, the operator M(z) is microlocally unitary near the trapped set and its L? norm
is essentially 1. Then, we have the trivial bound

Pspec(z) <1
The bound given by the theorem is a spectral gap since we obtain

Pspec(z) < eV <1
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The dependence of the bound with the parameter z is related to the symbol of the open quantum
map M (z).

The link between open quantum maps and the resonances of open quantum systems has also
been established in [NSZII| for the case of potential scattering. As a consequence, we will also
obtain a spectral gap in this context. We review this reduction both in obstacle and potential
scattering in Section [2] and show how it implies the spectral gap. This correspondance between
open quantum maps and open quantum systems leads to an heuristics : to a resonance z for the
open quantum systems, it corresponds an eigenvalue e~*7% of an open quantum map. Here, 7 is a
return time associated with the classical dynamics of the open system. In particular, the spectral
gap for open quantum maps given by the theorem heuristically implies that the resonances of the
open systems might satisfy Im z < —h 2.

On the fractal uncertainty principle. This is a recent tool in harmonic analysis in 1D developed
by Dyatlov and several collaborators. For a large survey on this topic, we refer the reader to
[Dyalg|. We do not enter into the details in this introduction and give the precise definitions and
statements in Section [f] We rather explain here the general idea of this principle in the spirit of
our use. Roughly speaking, it says that no function can be concentrated both in frequencies and
positions near a fractal set. Suppose that X,Y C R are fractal sets. To fix the ideas, let’s say that
X and Y have upper box dimension dx and dy strictly smaller than one. For ¢ > 0, let’s note
X(¢) = X + [—¢, +¢] and the same for Y. Also denote F}, the h-Fourier transform :

Foul€) = m /R =15 u(2)da

The fractal uncertainty principle then states that there exists 5 > 0 depending on X and Y (See
Proposition for the precise dependence) such that, for A small enough,

1 x (ny Pyl L2R)— L2(R) < 27

FIGURE 4. The fractal uncertainty principle asserts that no state can be microlo-
calized both in frequencies (in blue) and positions (in red) near fractal sets.

Actually, one can change the scales and look for the sets X (h**) and Y (h*¥) where ax and ay
are positive exponents. The result will stay true as soon as theses exponents satisfy a saturation
condition :

ax +ay >1

It will be a key ingredient in the proof of the main theorem of this paper. It has been successfully
used to show spectral gaps for convex co-compact hyperbolic surfaces ([DZ16], [BD17],[D.J18],
[DZ18]). A discrete version of the fractal uncertainty principle is also the main ingredient of [D.J17]
where the author proved a spectral gap for open quantum maps in a toy model case. Their results
concerning open baker’s map on the torus T? partly motivates our theorem on open quantum
maps.

The fractal uncertainty principle has also given new results in quantum chaos on negatively
curved compact surfaces. It has first been successfully used for compact hyperbolic surfaces in
[DJ17] where the authors proved that semiclassical measures have full support. The hyperbolic
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case was treated using quantization procedures developed in [DZ16], which allow to have a good
semiclassical calculus for symbols very irregular in the stable direction, but smooth in the unstable
one (or conversely). The existence of such quantization procedures relies on the smoothness of
the horocycle flow. This smoothness is no more possible for general negatively curved surfaces.
However, in [DJN2I], the authors bypassed this obstacle and succeeded to extend these results
to the case of negatively curved surfaces. This is mainly from this paper that we borrow the
techniques and we adapt them in our setting.

A model example. To explain the main ideas of the proof of Theorem let us show how it
works in an example where the trapped set is the smallest possible : a single point. In this context,
we only need a simpler uncertainty principle. We focus on the case z = 0 in Theorem [B] and focus
on a single open quantum map.

We consider the hyperbolic map

F:(z,8) € R? — (27 '2,2¢) € R?

It has a unique hyperbolic fixed point py = 0 and the stable (resp. unstable) manifold at 0 is given
by {¢ =0} (resp. {x = 0}). The scaling operator

U:ve L*R) — v2v(2z)

is a quantum map quantizing F. To open it, consider a cut-off function y € C:°(R?) such that
x =1 in B(0,1/2) and supp x € B(0, 1) and we consider the open quantum map

M = M(h) = Opa(x)U

where Opy, is in this example (and only in this example) the left quantization :

Opn(x)u(r) = ﬁ 2 (@, )T u(y) dyde

One easily checks that Egorov’s property for U is true without remainder term :
U* Opr(x)U =Opp(xoF) , UOpu(x)U* =Opp(xoF™)
To show a spectral gap for M, we study M™ with

3logh
= h ~ ——
n=n(h) 4 log 2
This time is longer than the Ehrenfest time —llgi g . We write :

M"™ = U"Oph(XoF")...Oph(XoFl)
The formula [Opp(a), Opx(b)] = O(h'=2%) is valid for a,b symbols in Ss (we recall the definitions
of symbol classes in section and § < 1/2. The problem here is that for 1 < k < n, y o F¥ are
uniformly in S3/4 : this is not a good symbol class. To bypass this difficulty, we observe that the
symbols y o F* are uniformly in Sgs for k € {—n/2,...,n/2}. As a consequence, for j € {1,...,n}
we write:

[Oph (x o F™),Opn (X ° FJ)] — /2 [Oph (X o Fn/2> . Opy, (X o Fj—n/2>] Un/?
— /20 (h1/4) Un/?
=0 (n'")

where the constants in O are uniform in j and depend only on x. Applying this formula recursively
to move the term Opy, (x o F™) to the right, we get that

M™=U"Opp (xo F"')...0pu(xo F')Opp(x o F*) + O <h1/4 logh)
Similarly, we can write :
M" T = Op, (x°o F~™) Opn(x)...Opn (xo F7"+1) Urtt 4+ 0 (h1/4 log h)
Hence, we have
M+ = AOpy, (x o F*) Opy (x o F") B+ O (h'/*logh)

with
A=Ah)=U"Ops(xo F" ") ...0ps (xo F') =0(1)



8 LUCAS VACOSSIN

and
B =B(h) =O0p(x)...Ops (xo F"tH U =0(1)
We have the following properties on the supports

suppx o F" C {[¢] <277} , suppxo F" C {|lz] <27"}

Assuming that n(h) > —2 {ggg, we observe that
Opn (x 0 F™) = Opn (x 0 F") L _ps/a pasa)(hDy)

Opn (X o F_") = Ljp-3/4 p3sa) () Opp, (X o F_")

Finally, we have
M = AOpy (x 0 F™) U_pa/a e (hDa) L py-s/a asay () Opa (x 0 F ™) B+ O (h'/*logh)
This is where we need an uncertainty principle :
[[L—ps/a pssa) (D)L -3/4 ps/a) ()| L2 p2 = |[L[—ps/a pssa) Fal|_ps/a ps/a)l|L2 - L2
< |‘]1[—h3/4,h3~/4]||L°°—>L2 X ||]'—h‘|L1—>L°C X ||11[_h3/4,h3/4]||L2_>L1
< CR3/8 5 B=1/2 x B3/8 = Copl/A

Here, the bound can be understood as a volume estimate : the box in phase space of size h3/* is
smaller than a "quantum box". Gathering all the computations together, we see that

M2 | o2 = O (" log )

Elevating this to the power we see that for every € > 0, we can find h. such that for h < h,,

1
2n+17
p(M) < (14¢)271/6

Remark. What matters in this example is the strategy we use, and not particularly the bound,
which is in fact not optimal.

Sketch of proof. The strategy presented in this simple model case is the guideline, but its direct
application will encounter major pitfalls that we’ll have to bypass.

e The trapped set being a more complex fractal set, we’ll need the general fractal uncertainty
principle developed by Dyatlov and his collaborators.

e Even in small coordinate charts, the trapped set cannot be written has a product of fractal
sets in the unstable and stable directions. To tackle this difficulty, we build adapted
coordinate charts (see in which we straighten the unstable manifolds. The existence of
such coordinate charts is made possible by Theorem 5] in which we prove that the unstable
(and stable) distribution can be extended in a neighborhood of the trapped set to a C1+5
vector field.

e In the model case, there is only one point and hence one unstable Jacobian to consider
which gives the Lyapouvov exponent of the map log J!(0) = log2. Generally, the growth
rate of the unstable Jacobian differs from one point to another (see[4.3)) and the choice of the
integer n(h) is not as simple. In fact, we prefer to break the symmetry 2n(h) = n(h)+n(h)
and split 2n(h) into a small logarithmic time Ny(h) and a long logarithmic time Ny (h) (see
section . The first one is supposed to be smaller than the Ehrenfest time and allows
us to use semiclassical calculus to handle M™°. As a matter of fact, the major technical
difficulties concerns the study of MN1.

e The study of Mt requires fine microlocal techniques. The trick used in the model case to
have the commutator estimate is no more possible and we have to use propagation results
up to twice the Ehrenfest time. This is what we do in section [£.4] but this study has to be
made locally and we need to split M into a sum of many terms Uy.

e We could use the fractal uncertainty principle to get the decay for single terms M™NoUy,.
However, a simple triangle inequality to handle their sum will no more give a decay for
MNo+N1 gince the number of terms in the sum grows like a negative power of h. To bypass
this problem, we need a more careful analysis and we gather them into clouds (see [4.7)).
These clouds are supposed to interact with a few other ones, so that a Cotlar-Stein type
estimate reduces the study of the norm of the sum, to the norm of each cloud. The elements
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of a single cloud are supposed to be close to each other, so that the fractal uncertainty
principle can be applied to all of them in the same time and gives the required decay for
a single cloud.

Our strategy follows the main lines of the proof of [DJN21]. In particular, their strategy allows
us to apply the fractal uncertainty principle of [BDI8] in a case where the unstable foliation is not
smooth (and in fact, a priori defined only in a fractal set). Their strategy relies on the existence of
adapted charts based on C? regularity of the unstable foliations in negatively curved hyperbolic
surfaces. It is based on results of [HK95| for Anosov flows. We needed to prove the existence of
such adapted charts in this different context. To do so, we prove that the unstable lamination can
be extended into a C1*# foliation (see . Another aspect which changes from [DJN21| is the
proof of porosity. In their study, the porous sets arise as iteration of artifical "holes" and they
had to control the evolution of such holes. In our context, this study is easier since we already
know that the trapped set has a fractal structure, characterized by its Hausdorff dimension. In
this paper, we will rather use the upper box dimension (but these two dimensions are equal in this
context).

Restrictions. The main restriction of our theorem is that it only applies to quantum maps with
two-dimensional phase space. In terms of open systems, it only concerns problems with physical
space of dimension 2. Several points explain this restriction :

e The fractal uncertainty principle works in dimension 1. In higher dimension, the result is
currently not well understood and the only known cases require strong assumptions on the
fractal sets (See [Dyal8|, Section 6).

e Our proof strongly relies on the regularity of the stable and unstable laminations.

e The growth of the unstable Jacobian controls the contraction (resp. expansion) rate in the
unique stable (resp. unstable) direction.

Plan of the paper. The paper is organized as follows :

e In Section [2] we present the main theorem of this paper and show how it gives a spectral
gap in some open quantum systems.

e In Section |3, we give some background material in semiclassical analysis (pseudodifferen-
tial operators and Fourier integral operators). We also recall some standard facts about
hyperbolic dynamical systems and give further results. In particular, in Theorem [f] we
show that the unstable and stable distribution have C'*# regularity.

e The proof of Theorem [[]starts in Section [ where we introduce the main ingredients needed
for the proof and give several technical results.

e In Section [B] we use fine microlocal methods to microlocalize the operators we work with
in small regions where the dynamic is well understood and we reduce the proof of Theorem
to a fractal uncertainty principle with the techniques of [DJN21].

e In Section [6] we conclude the proof of this theorem by applying the fractal uncertainty
principle of [BD18|, and more precisely, the version stated in [DJN2I].

Acknowledgment. The author would like to warmly thank Stéphane Nonnenmacher for his careful
reading and helpful discussions which contributed a lot in the achievement of this work.
2. MAIN THEOREM AND APPLICATIONS

2.1. Hyperbolic open quantum maps. We introduce the main tools needed to state the main
theorem of this paper. The following long definition is based on the definitions in the works of
Nonnenmacher, Sjéstrand and Zworski in [NSZ11] and [NSZ14] specialized to the 2-dimensional
phase space. Consider open intervals Y7,...,Y; of R and set :

J J
Y=||yc||Rr
j=1 j=1
and consider

J
UUCUTW; U; € T*Y;

Jj=1
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The Hilbert space L?(Y) is the orthogonal sum @;Izl L2(Y;).

Then, we introduce a smooth Lagrangian relation F' C U x U. It is a disjoint union of symplec-
tomophisms. For j = 1,...,J, consider open disjoint subsets D;; € U;, 1 < i < J and similarly,
for i = 1,...,J consider open disjoint subsets A;; € U;, 1 < j < J. We consider a family of
smooth symplectomorphisms
(2.1) Fij : Dij — Fij (D”) = Aij
and define the relation F' as the disjoint union of the relation Fjj;, namely,

(p,p) e F < 31 <4,j<Jp =F;p)

In particular, F' and F~! are single-valued. We will identify ' with a smooth map and note by
abuse p’' = F(p) or p = F~!(p') instead of (p/,p) € F.

We note L
WL(F):EZU Uzzva

i=1j=1
mr(F)=D=| | |JDy

Il
-

=1

j
We define the outgoing (resp. incoming) tail by 74 = {p € U; F~"(p) € U,Vn € N} ( resp.
T_ ={p e U;F"(p) € UVn € N}). We assume that they are closed subsets of U and that the
trapped set
(2.2) T=T:Nn7T_
is compact. We note f : T — T the restriction of F' to 7. For,j € {1,...,J}, wenote T; = TNU,,
Dij ={p € Tj; f(p) € Ti} C Dy
and -
Aij={peTif ' (p) € T} C Ay
Remark. F is an open canonical transformation since F' (resp. F~!) is defined only in D (resp.
A). The sets U \ D (resp. U \ A) can be seen as holes in which a point p can fall in the future
(resp. in the past).

We then make the following hyperbolic assumption.

(Hyp) T is a hyperbolic set for F'

Namely, for every p € T, we assume that there exist stable and unstable tangent spaces E*(p) and
E*(p) such that :

o dim E*(p) = dim E¥(p) =1

o T,U = E*(p) & E*(p)

e there exist A > 0, C' > 0 such that for every v € E*(p) (% stands for u or s) and any n € N,

(2.3) vE B (p) = [ld,F"(v)|| < Ce™|v]]
(2.4) ve B (p) = [ld,F 7" (va)l| < Ce™™| o]
where || - || is a fixed Riemannian metric on U.

The decomposition of T,,U into stable and unstable spaces is assumed to be continuous.

Remark.

- The definition is valid for any Riemannian metric and we can of course suppose that is it
the standard Euclidean metric on R2.

- Tt is a standard fact (See [MatG8]) that there exists a smooth Riemannian metric on U,
which is said to be adapted to the dynamics, such that and hold with C = 1.

- It is known that the map p — E,/s(p) is in fact f-Holder for some 8 > 0 ([HK95]). We
will show further an improved regularity. This will be an essential property for the proof
of the main theorem.
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The last assumption we’ll make on 7T is a fractal assumption. To state it, we introduce the map
bu:p €T — —log | |dpF|Eu(p) H associated with the bijection f. We suppose that

(Fractal) = Yer = —P (— log | ’dPF|Eu(p)H vf) >0
Here, in terms of thermodynamics formalism, P denotes the topological pressure of the map ¢,.
The norm || - || is associated with any Riemannian metric on U. For instance, a possible formula

for the definition of the pressure is

1 n—1
P(¢) = lim lim sup — log sup Z exXpek=0 o(f*p)
e=20 pstoc N E
peEE
where the supremum ranges over all the (n,e) separated subsets E C T (E is said to be (n,¢)
separated if for for every p, p’ € E, there exists k € {0,...,n — 1},d(f*(p), f¥(p)) > e).

Remark.

® 7. is the classical decay rate of the dynamical system. It has the following physical
interpretation : fix a point pp € T and consider the set B,,(pg, €) of points p € U such that
|F*(p) — F*(po)| < & for 0 < k < m — 1. Then, its Lebesgue measure if of order e,

e In Section [A74] we recall arguments showing that 7 is indeed "fractal". More precisely,
the trace of 7 along the unstable and stable manifolds (see Lemma for the definitions
of these manifolds) have upper-box dimension strictly smaller than one. In fact, Bowen’s
formula (see for instance [Bar08| and referecences given there) gives that this upper-box
dimension corresponds to the Hausdorff dimension dy and it is the unique solution of the
equation

P(s¢y, f)=0,s€R
The Hausdorff dimension of the trapped set is then 2dy.

e This condition has to be compared with the pressure condition P(1¢,) < 0 in [NZ09] which
ensured a spectral gap for chaotic systems. This condition required that 7 was sufficiently
"thin", i.e. with Hausdorff dimension strictly smaller than one. Our condition allows to
go up to the limit dimy 7 =2~.

We then associate to F' hyperbolic open quantum maps, which are its quantum counterpart.
Definition 2.1. Fix ¢ € [0,1/2). We say that T' = T'(h) is a semi-classical Fourier integral operator
associated with F, and we note T = T'(h) € I5(Y x Y, F') if : For each couple (i, ) € {1,...,J}?,

there exists a semi-classical Fourier integral operator T;; = Tj;(h) € Is(Y; x Y;, Fj;) associated
with F;; in the sense of definition such that

J J
T = (Tijh<ij<t @LQ(Yi) - @LQ(Yi)
i=1 =1

In particular WF,(T) C A x D. We note I+ (Y XY, F') = N0 Is(Y XY, F').

We will say that T' is microlocally unitary near T if the two following conditions hold :
o ||TT*|| <1+ O (h®) for some ¢ > 0
o there exists a neighborhood Q C U of T such that, for every u = (u1,...,uy) € @3]:1 L(Y;),

Vie{l,...,J},3 WFy(u;) CQNU; = TT u=u+ O(h™)||ul|p2, T"Tu = u+ O(h>)||u|| L2

Let us now briefly see what the second condition implies for the components of T*T'. First focus
on the off-diagonal entries.
J J
(T*T)i; = > (T")irThj = Y (Thi)* T
k=1 k=1

Ifke{l,....,J} and ¢ # j, (Thi)*Tk; = O(h*°) since

WFh(T]:z) C 5k1 X ZM ; WFh(Tkj) C gkj X 5@' and gkj N A'ki =0
As a consequence, the off-diagonal terms are always O(h>). For the diagonal entries,

J

(T*T)ii = Y (Tii) T

k=1
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Each term of this sum is a pseudodifferential operator with wavefront set
WFh(T]:ZTkz) C Dki

Since the 5;” are pairwise disjoint, 771" = Id2(y) +O(h>) microlocally near 7 if and only if for
all k,4, T, Ty; = Idp2(y,) +O(h*°) microlocally near Dy;. The same computations apply to T7™.
As a consequence, T is microlocally unitary near 7 if and only if for all (k,4), Ty; is a Fourier
integral operator associated with Fj;, microlocally unitary near Dy; X Ag; (see the paragraphe
below Definition .

Notations. An element of S5°"*(U) is a J-uple o = (e, ..., ;) where each a; is an element of

Sgomp(RQ) such that esssupp a; C U; (this notation is recalled in the next section).
We fix a smooth function ¥y = (¥y,..., V) such that, for 1 < j < J, ¥, € C°(Y}, [0,1]) satisfies
U; =1 on w(U;) (recall that U; € T*Y).

For o € S5°™"(U), we also note Opp,(cr) the diagonal operator valued matrix:

J

J
Oph(a) = Diag(¥1 Opn(a1) ¥y, ..., ¥, Opa(a,)¥,) : @ L*(V;) = E LA (V)
j=1 j=1

Note that as operators on L?(R), Opp(a;) and ¥; Opp(a;)¥; are equal modulo O(h*).

We can now state the main theorem of this paper, namely a spectral gap for hyperbolic open
quantum maps. We note pspec(A4) the spectral radius of a bounded operator A : L?(Y) — L*(Y).

Theorem 1. Suppose that the above assumptions on F , are satisfied. Then, there
exists v > 0 such that the following holds :

Let T =T(h) € Iy+(Y X Y, F') be a semi-classical Fourier integral operator associated with F
in the sense of definition and a € S§°"P(U). Assume that T is microlocally unitary in a
neighborhood of T. Then, there exists hg > 0 such that

VO <h<hy , pspec(T(h)Opp(a)) < e 7||aloc
ho depends on (U, F), T and semi-norms of « in Ss.

For applications, we will need the following corollary (it is in fact rather a corollary of the
method used to prove Theorem |1)) :

Corollary 1. With the same notations and assumptions as in Theorem if R(h) is a family of
bounded operators on L*(Y) satisfying || R(R)|| = O(h") for some 1 > 0, then the there exists '
depending only on v and n, such that for 0 < h < hg,

pspec(T(h) Opa(a) + R(h)) < e ||a|oo

Remark.

e If the value hy depends on T and «, this is not the case of v which depends on (U, F).
e This is a spectral gap : it has to be compared with the easy bound we could have

pspec(T Opr(a)) < [laf|oc + o(1)

In particular, if & = 1 in a neighborhood of T and |a| < 1 everywhere, pspec(T(h)) <
e 7 <L

e T Opy(«) is the way we’ve chosen to write our Fourier integral operator with "gain" (or
absorption depending on the modulus of «) factor a. T Opy(«) transforms a wave packet ug
microlocalized near pg lying in a small neighborhood of 7 into a wave packet microlocalized
near F'(pg), with norm essentially changed by a factor |a(po)].

e The proof will actually show that if 5 is strictly bigger than some threshold, then " = +.

Notations. Throughout the paper, the meaning of the constants C' can change from line to line but
these constants will only depend on our dynamical system (U, F'). If there is another dependence,
it will be specified.
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2.2. Applications of the theorem. This theorem has applications in the study of open quantum
systems. We refer the reader to [Nonll| for a survey on this topic. The spectral gap given by
Theoremwill actually give a spectral gap for the resonances of semiclassical operators P(h) in R?
or for the resonances of the Dirichlet Laplacian in the exterior of strictly convex obstacles satisfying
the Tkawa non-eclipse condition. We refer the reader to the review [Zwol7] for more background
on scattering resonances or to the book [DZ19]. The results we will obtain from Theorem (1| give a
positive answer (in dimension 2) to the Conjecture 3 in [Zwol7|, under a fractal assumption.

Scattering by strictly convex obstacles in the plane. As already explained in the introduc-
tion the main problem motivating Theorem[T] is the problem of scattering by obstacles in the plane
R2. Tt leads to

Theorem 2. Assume that O = Uz]=1 O; where O; are open, strictly convex connected obstacles
in R? having smooth boundary and satisfying the Tkawa condition : for i # j # k, O; does not
intersect the convex hull of O; U Oy. Let

Q=R*\0O

There exist v > 0 and Ao > 1 such that the Dirichlet Laplacian —A on L*(Q) has no scattering
resonance in the region

(Ao, +o0[+i[—7, 0]

Let us give the arguments to see why Theorem [I] implies this theorem. After a semiclassical
reparametrization, is is enough to show that there exist 6 > 0 and hy > 0 such that P(h) =
—h%A —1 has no resonance in D(0, Ch) N {Im z € [~Jh,0]}, for any h < hg. As already explained,
the implication relies on [NSZ14| (Theorem 5, Section 6). They prove the existence of a family of

(2.5) (M(2))zep(0,cn) = (M(2,h))
such that

o M(z) = II;, M (2)IT}, + O(hY) where IIj, is a finite rank projector, of rank comparable to
h=1, L > 0 is a fixed constant (which can in fact be chosen as big as we want) and M(z)
is described below and satisfies IT;, M (2)II, = M (z) + O(h%) ;

e M (0) is an open quantum map associated with a Lagrangian relation B presented in the
introduction, which is microlocally unitary near 7. B and M (0) play the role of F' and T
in Theorem (1] and satisfy its assumptions ;

e M(z) = M(0)Opy (e%) + O (h*~#) uniformly in D(0,Ch), where € > 0 can be chosen
arbitrarily close to zero and 7 € C.°(U) is a smooth function (which has to be seen as a
return time) ;

e The resonances of P(h) in D(0,Ch), are the roots, with multiplicities, of the equation

det(I — M(z)) =0

Hence, to prove the theorem, it is enough to show that the spectral radius of M(z) is strictly
smaller than 1 for z € D(0,Ch) N{Im z € [—dh,0]} for some § > 0 and for h small enough. To see
that, we write

M(z) = M(0)Opy, (') + R(h)

with R(h) = O(h") for any n < min(1, L). We apply Theorem |1| and find some +’ such that

popec(M(2)) < e |

ei”/hH <e Ve 2 e D(0,Ch) N {Imz € [~6h,0]}

where Tpaz = ||T||co. This ensures a spectral gap of size

!

v

Tm ax

0 <
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Schrédinger operators. Actually, the obstacles, seen as infinite potential barriers, can be smoothened
with a potential V € C2°(R?) and we can consider the Schrodinger operators Py(h) = —h?A+V (z)

Unlike the obstacle problem, a simple rescaling does not allow to pass from energy 1 to any
energy F and the behavior of the classical flow can drastically change from an energy shell to
another. To study the problem at energy E > 0, independent of h, we rather consider

P(h) = Py(h) — E

The resolvent (P(h) — 2)~! continues meromorphically from Imz > 0 to D(0,Ch) (as previously
in the sense that x(P(h) — z)!x extends meromorphically with y € C2°(R?)) and we are interested
in the existence of a spectral gap.

The classical Hamiltonian flow associated with P(h) is the Hamiltonian flow ®' generated by
po(r,€) = |€]? + V(x) on the energy shell p; ' (E). The trapped set is defined as above by

Kp = {(z,£) € T*R? po(,€) = E, ®'(x,€) stays bounded as t — +o0}

We assume that the flow is hyperbolic on Kp and that the trapped set is topologically one-
dimensional. Equivalently, we assume that transversely to the flow, K is zero-dimensional. Under
these assumptions, the authors proved (see Theorem 1 in [NSZII]) the existence of a family of
monodromy operators associated with a Lagrangian relation Fr which is a Poincaré map of the
flow on different Poincaré sections ¥y,...,%; C py'(E). The assumption on the dimension of
Kpg implies that the assumption is satisfied since Kg cannot be an attractor ([BR79]).
Hence, Theorem 1 applies and we can prove as done in the case of obstacles

Theorem 3. Under the above assumptions, there exists § > 0 such that P(h) has no resonances
m

D(0,Ch) N {Im z € [—idh,0]}
3. PRELIMINARIES

3.1. Pseudodifferential operators and Weyl quantization. We recall some basic notions and
properties of the Weyl quantization on R™. We refer the reader to [Zwol2] for the proofs of the
statements and further considerations on semiclassical analysis and quantizations. We start by
defining classes of h-dependent symbols.

Definition 3.1. Let 0 < § < . We say that an h-dependent family a := (a(+; h))o<n<i is in the
class Ss(T*R™) (or simply S5 if there is no ambiguity) if for every a € N?", there exists C, > 0
such that :
VO<h<1, sup |0%(x,&h)] < Cuh™0lel
(2,6)ER

In this paper, we will mostly be concerned with § < 1/2. We will also use the notation Sy+ =
mé>0 Ss-
We write a = O(h?")g; to mean that for every o € N2, there exists C, x such that

YO<h<1, sup [|0%f(x,&h)| < ConholIpN
(z,6)ER™

If a = O(hN)g, for all N € N, we'll write a = O(h*)g,. A priori, the constants C, ny depend on
the symbol a. However, in this paper, we will often make them depend on different parameters
but not directly on a. This will be specified when needed.

For a given symbol a € S5(T*R™), we say that a has a compact essential support if there exists
a compact set K such :

Vx € CZ(Q),suppx N K =0 = xa = O(h™)s(-rn)

(here S stands for the Schwartz space). We note esssuppa C K and say that a belongs to the
class S{"""(T*R™). The essential support of a is then the intersection of all such compact K’s. In
particular, the class S5°™” contains all the symbols supported in a h-independent compact set and
these symbols correspond, modulo O(h™)s(r+g), to all symbols of S§°"**. For this reason, we will
adopt the following notation : a € S5°"?(Q2) <= esssuppa € Q.

For a symbol a € Ss(T*R™), we’ll quantize it using Weyl’s quantization procedure. It is infor-
mally written as :

1

(Oph(a)u)(l‘) = (GW’U/)(I‘) = W /Rzn a (1‘ —2’— y7§) u(y)e’ (%*h'y)-&dyd5
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We will note Ws(R™) the corresponding classes of pseudodifferential operators. By definition,
the wavefront set of A = Opp(a) is WF(A) = esssupp a.

We say that a family v = u(h) € D'(R") is h-tempered if for every x € C°(R"™), there exist
C > 0and N € N such that ||XU||H}—N < Ch~". For a h-tempered family u, we say that a point

p € T*R™ does not belong to the wavefront set of u if there exists a € S™P(T*R™) such that
a(p) # 0 and Opp(a)u = O(h*°)s. We note WFy,(u) the wavefront set of u.

We say that a family of operators B = B(h) : C3°(R™2) — D’(R™) is h-tempered if its Schwartz
kernel Kp € D'(R™ x R™2) is h-tempered. We define

WF(B) = {(2,¢,y,—n) € T"R™ x T"R™, (z,£,y,1) € WF,(Kp)}

Let us now recall standard results in semi-classical analysis concerning the L?-boundedness of
pseudodifferential operator and their composition. We’ll use the following version of Calderon-
Vaillancourt Theorem ([Zwo12|, Theorem 4.23).

Theorem 4. There exists C,, > 0 such that the following holds. For every 0 < § < %, and
a € Ss(T*R™), Opp(a) is a bounded operator on L? and

[1Opn(a)l|L2®n)—r2@n) < Cn Z RI/2)16%a| | oo
|a|<8n

As a consequence of the sharp Géarding inequality (see [Zwo12|, Theorem 4.32), we also have
the precise estimate of L? norms of pseudodifferential operator,

Proposition 3.1. Assume that a € S5(R?*"). Then, there exists C, depending on a finite number
of semi-norms of a such that :

1_
[10p(a)l|z2or2 < [lallo + Cah®™°

We recall that the Weyl quantizations of real symbols are self-adjoint in 2. The composition
of two pseudodifferential operators in Wy is still a pseudodifferential operator. More precisely (see
[Zwo12], Theorem 4.11 and 4.18), if a,b € Ss, Opp(a) o Opx(d) is given by Opp(a#b), where a#b
is the Moyal product of a and b. It is given by

a#b(p) = eihA(D)(a & b)‘p:m:pz

where a ® b(p1, p2) = a(p1)b(p2), e"AP) is a Fourier multiplier acting on functions on R*" and,
writing p; = (2, &),

1
A(D) = §(D§1 OD$2 _Dﬂ?l ODE2)

We can estimate the Moyal product by a quadratic stationary phase and get the following expan-
sion: for all N € N,

N-1

k¥
a#b(p) = Z %l AD)(a® D)lp=p1=p> + 7N
k=0 ’

where for all a € N27, there exists C,, independent of a and b, such that
||8a’l“NHoo S C’ahN||a & b||czN+4n+1+\a|
As a consequence of this asymptotic expansion, we have the precise product formula :

Lemma 3.1. For every N € N, there exists Cy > 0 such that, for every a,b € Ss(R"™),

N=lokpk
(3.1) Opn(a) o Opp(b) = Opy, <Z X A(D)*(a® b)PP1P2> + RN
k=0

where

(32) ||RN||L2(]R)—>L2(]R) < CNhNHCL ® b| |02N+12n,+1
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Remark. It will be important in the sequel to understand the derivatives of a and b involved in
the k-th term of the previous expansion. A quick recurrence using the precise form of the operator
A(D) shows that A(D)*(a ® b)(p1,p2) is of the form

S Aasd®a(p1)b(p2)
|l =k.|8|=k

This can be rewritten [, (dka(pl), dkb(pg)) where [, is a bilinear form on the spaces of k-symmetric
forms on R*". Of, course, we make use of the the identifications 7, T*R" ~ T, T*R™ ~ R*"

As a simple corollary, we get an expression for the commutator of pseudodifferential operators.

Corollary 3.1. For every N € N, there exists Cy > 0 such that, for every a,b € S5(R"™),

N-1
[Opn(a), Opn(b)] = Opy, (?{a,b} +) hkLk(dka,dkb)> + Ry
k=2

where
||RN||L2(]R)%L2(]R) < CNhNHa & b| |C2N+12n+1

where the Lj are bilinear forms on the spaces of k-symmetric forms on R?".

3.2. Fourier Integral Operators. We now review some aspects of the theory of Fourier integral
operators. We follow [Zwo12], Chapter 11 and [NSZ14]. We refer the reader to [GS13| for further
details. Finally, we will give the precise definition needed to understand the definition [2.1

3.2.1. Local symplectomorphisms and their quantization. We momentarily work in dimension n.
Let us note IC the set of symplectomorphisms & : T*R"™ — T*R"™ such that the following holds :
there exist continuous and piecewise smooth families of smooth functions (¢ )ef0,1], (¢¢)tefo,1] such
that :

vVt € [0,1], k¢ : T*R™ — T*R"™ is a symplectomorphism ;

ko = Idp+gn, K1 = K ;

Vt € 10,1],k:(0) =0 ;

there exists K € T*R"™ compact such that V¢ € [0,1],¢; : T*R™ — R and supp¢; C K ;
gkt = (k)" Hy,

If k € K, we note C = Gr'(k) = {(z,&,y,—n), (z,§) = k(y,n)} the twisted graph of k. We recall
[Zwo12], Lemma 11.4, which asserts that local symplectomorphisms can be seen as elements of K,
as soon as we have some geometric freedom.

Lemma 3.2. Let Uy, U; be open and precompact subsets of T*R"™. Assume that « : Uy — Uj is a
local symplectomorphism fixing 0 and which extends to Vy Uy an open star-shaped neighborhood
of 0. Then, there exists & € K such that &|y, = k.

If k € K and if (q;) denotes the family of smooth functions associated with « in its definition,
we note Q(t) = Opp(q:). It is a continuous and piecewise smooth family of operators. Then the
Cauchy problem

(3.3) { hD,U(

H+UB)QE) =0
U(0)=1d

is globally well-posed.
Following [NSZ14], Definition 3.9, we adopt the definition :

Definition 3.2. Fix § € [0,1/2). We say that U € I5(R"™ x R"; C) if there exist a € Ss(T*R"™)
and a path (k:) from Id to & satisfying the above assumptions such that U = Op(a)U(1), where
t+ U(t) is the solution of the Cauchy problem (3.3).

The class Ip+ (R x R, C) is by definition ;. Is(R x R, C).

It is a standard result, known as Egorov’s theorem (see [Zwol2|, Theorem 11.1) that if U(t)
solves the Cauchy problem (3.3)) and if a € S5, then U~! Opy(a)U is a pseudodifferential operator
in Ws and if b = a o x, then U~* Opp,(a)U — Opy(b) € h1=20W,.
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Remark. Applying Egorov’s theorem and Beal’s theorem, it is possible to show that if (k)

is a closed path from Id to Id, and U(t) solves (3.3), then U(1) € ¥o(R™). In other words,

Is(R x R,Gr'(Id)) C Ws(R™). But the other inclusion is trivial. Hence, this in an equality :
Is(R™ x R™, Gr'(Id)) = Us(R™)

The notations I(R™ x R™, (') comes from the fact that the Schwartz kernel of such operators are
Lagrangian distributions associated with C', and in particular have wavefront set included in C.
As a consequence, if T' € I5(R" x R™, C), WF;/(T) c Gr(T).

Let us state a simple proposition concerning the composition of Fourier integral operators :
Proposition 3.2. Let k1,r2 € K and Uy € I5(R x R, Gr'(k1)),Us € I5(R x R, Gr'(1)). Then,
Ui oUs € Is(R x R, Gr' (k1 0 K2))

Proof. Let’s write Uy = Opp(a1)Ui(1), Uy = Opp(az)U2(1) with the obvious notations associated
with the Cauchy problems (3.3) for 1 and ko. Egorov’s theorem asserts that Uy (1) Opp,(ag)Uy (1)~ =
Opp(bs) for some by € S5 and Opp(ay) Opr(bs) = Opp(a1#bs). It is then enough to focus on the
case a1 = ag = 1. We set
Us(t) = { Up(2t) for 0 <¢<1/2
BTl (1) oUy(2t — 1) for 1/2 <t <1
It solves the Cauchy problem
{ hDUs(t) + Us(t)Q3(t) =0
U((0) =1d
with
Qs(t) = { 2Q1(2t) for 0 <t <1/2
BT 2Qe(2t — 1) for 1/2 <t < 1
To conclude the proof, it is enough to notice that this Cauchy problem is associated with the path
k3(t) between k(0) = Id and k3(1) = k1 0 kg where
(1) = { k1(2t) for 0 <t <1/2
Ralt) = Kiokg(2t—1) for 1/2<t< 1
(Il

3.2.2. Precise version of Egorov’s theorem. We will need a more quantitative version of Egorov’s
theorem, similar to the one in [DJN21| (Lemma A.7). The result does not show that U(1)~! Opp(a)U(1)
is a pseudodifferential operator (one would need Beal’s theorem to say that) but it gives a precise
estimate on the remainder, depending on the semi-norms of a. We now specialize to the case of
dimension n = 1 but the following result holds in any dimension but changing the constant 15 in
something of the form Mn.

Proposition 3.3. Consider x € K and note U(t) the solution of (3.3). There exists a family of
differential operators (D;);en of order j such that for all a € S5 and all N € N,

N-1
(3.4) U(1)™ Opn(a)U(1) = Opy | aok+ Y W (Dj1a) ok | + O, (BV]lal|cavis)

j=1
Proof. We keep the notations introduced previously. Let us first note

Ag(t) = U(t) Opn(a o k)U(t) ™"

and compute

Ut) Lo Ag()U(t) = —%[Q(t), Opn(ao k)] + Opp, ({gt, a 0 ki })

) N
i h , ; ;
= Opn ({qr, a0 ki }) — n Ops, ;{qhaont}+Zh]Lj(dth7dj(aomt))
j=2
+ O (hNHqt ® (a o Kt)||cz(1\r+1)+13)
N-1 _
=Opp | Y —ih? L1 (@ g, d (a0 ky)) | + O, (BN]al|c2n+15)

Jj=1
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We now define by induction a family of functions a;(¢),j =0,...,N —1 by
k—1 t
ap(t) =a; ag(t) = Z / iLkt1—m (dk+1_mq5, d* " (@, (s) 0 Ks)) o Ky 'ds
m=0"0

and set Ai(t) = U(t) Oppn (Z?:o hia;(t) o nt) U(t)~t. We first remark by an easy induction on
k, that ax(t) is of the form Dy41(t)a where Dyyq(t) is a differential operator of order at most
k 4+ 1, with coefficients depending continuously on ¢ and on (k;);. We now check by induction the
following :

N-1 k
UM 0 AU = —iO0pa | > S W Lo (@ g0, @ (@ (t) 0 k1)) | +O0, (W™ lal|coss1s)
j=k+1m=0

We've already done it for £ = 0. Let’s assume that the equality holds for £ — 1 and let’s prove it
for k> 1.
Ut) L0, Ap()U(t) = U(t) 1 0: Ap_1 (1)U (t) + hFU (£) 710, Opy, (ak(t) o k¢) U(t)
Let’s compute the second part of the right hand side.
U(t)~'0; Opp, (ar(t) o ke) U(t)

= 1 1Q(1), 0pa(ax(t) 0 w0)] + Opi({ae ax(t) o 5c}) + Opi (Gpan(t) o )
N—-1—-k
= —10py ( Z W Liyy (d7 g, d™ (ak(t) o Ht))) + Oy (BN 7F|lar(t)]| 2w +1-0r+13) + Opp (Brag(t) © ke)
=1

We can estimate the remainder by
OK (hNikHak(t”‘CQ(N+171¢)+13) = O,{ (hN7k|‘a||02(N+1—k)+13+k+1) = O,i (hN7k|‘aHCzN+15)

We now combine this with the value of

N-1 k-1
U() " 0 A (DU (1) =~ Opn | S S W Ljarm (g, 71" (0 () 0 50)) | 405 (Va1
j=k m=0

By definition of ay(t), the term h* Opy, (0sax(t) o k¢) cancels the term corresponding to j = k
in the sum. Moreover, for every j > k, writing j = k+ 1,1 € {1,...,N — 1 — k}, the term
REHL (d" gy, d" (ar(t) o ky)), gives the missing term b7 Lj 1 g (71 gy, i1 7K (ar(t) o ky)).
This gives the required equality for Ag(t).

In particular, ;An_1(t) = O, (h"||al|czn+15). We now use the fact that at ¢ = 0, ao(0) =
a,a(0) =0,k =1,...,N —1, U(0) = Id, k9 = Id, and hence Anx_1(0) = Opp(a). Integrating
between 0 and 1, we hence have

ANfl(t) - Oph(a) =0, (hN||a||C2N+15)
Conjugating by U(1), we finally have

N-1
V(1) Opa(@)U(1) = Opu(aor + 3 hay(1) o ) + O, (¥]lallcznre)
k=1
which is the what we wanted, since ax(1) = Dg4+1(1)a. O

3.2.3. An important example. Let us focus on a particular case of canonical transformations. Sup-
pose that  : T*R™ — T*R" is a canonical transformation such that

(z,§,y,m) € Gr(k) = (x,n)

is a local diffeomorphism near (xq, £, 0, 70).- Then, there exists a phase function ¢» € C°(R" xR"),
Qg,Q, open sets of R and 2 a neighborhood of (zg, £, %0, n0), such that

Grl(’i) m Q = {(%aﬂ/’(xa??)van"/)(fﬂ?), 777)71' S Qmﬂ] € Qﬁ}

One says that ¢ generates Gr'(k). Suppose that that a € S{”"7(Q, x ). Then, modulo a
smoothing operator O(h>), the following operator T is an element of I3 (R™ x R", Gr'(k)) :
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1

- - £ @ (zm)—y-n)
Tu(z) Gnh) /]R e oz, n)u(y)dydn

and if T*T = Id microlocally near (yo,70) then |a(z,n)[> = |det D2, ¢ (x,n)| + O(h'=%%)g, near
(z0,&0,Y0,M0). The converse statement holds : microlocally near (zo, £, Yo, 7o) and modulo O(h*),

the elements of I5(R™ x R™, Gr'(k)) can be written under this form.

3.2.4. Lagrangian relations. Recall that the Lagrangian relation F' we consider is the union of
local Lagrangian relations F;; C U; x U;. We fix a compact set W C 7z (F) containing some
neighborhood of 7. Our definition will depend on W. Following [NSZ14] (Section 3.4.2), we now
focus on the definition of the elements of I5(Y X Y; F’). An element T € I5(Y x Y; F’) is a matrix
of operators

J J
T = (Th<ij<r P LV) = P L (V)
j=1 i=1

Each T;; is an element of I5(Y; x Y}, Fz’j) Let’s now describe the recipe to construct elements of
I5(Y; x Yj,FZ’J) We fix 4,5 € {1,...,J}.

e Fix some small € > 0 and two open covers of U;, U; C Ulel Q, O e Ql, with ﬁl star-
shaped and having diameter smaller than €. We note £ the sets of indices [ such that
QO C mr(F;j) = D;j C Uj and we require (this is possible if ¢ is small enough)

Fw)ynu; c |J
leL

o Introduce a smooth partition of unity associated with the cover (), (xi)1<i<r € Co (4, [0,1]),
supp x; C €, >, x; = 1 in a neighborhood of Uj.

e For each [ € L, we denote Fj the restriction to Q; of F;;, seen as a symplectomorphism
F;j: Eij C U — V. By Lemma there exists k; € K which coincides with F; on ;.

e We consider T; = Opp(c;)U;(1) where Uj(t) is the solution of the Cauchy problem
associated with x; and a; € S5°""(T*R).

o We set

(3.5) T = "7, 0pn(xi) : L*(R) — L*(R)
lel
T® is a globally defined Fourier integral operator. We will note T® € I5(R x R, Fl). Tts
wavelfront set is included in Zij X 52]
¢ Finally, we fix cut-off functions (¥;, ¥;) € C°(Y;, [0, 1]) x C°(Yj;,[0,1]) such that ¥; =1
on 7(U;) and ¥; =1 on «(U;)(here, 7 : (z,§) € T*Y. — = € Y. is the natural projection)
and we adopt the following definitions :

Definition 3.3. We say that T : D'(Y;) — C™(Y;) is a Fourier integral operator in the class
I5(Y; x Yj, F};) if there exists TR € Is(R x R, F') as constructed above such that

L] \I/ZT\I/J = \I/iTR\I/]‘

For U} C U; and U] = F(U}) C U;, we say that T' (or T®) is microlocally unitary in U] x Uj if
TT* = 1d microlocally in U] and T*T = Id microlocally in U’.

Remark. The definition of this class is not canonical since it depends in fact on the compact set
W through the partition of unity.

Another version of Egorov’s theorem. The precise version of Egorov’s theorem in Proposition
[3:3]is only stated for globally unitary Fourier integral operator defined using the Cauchy problem
B:3] We extend it here to microlocally unitary and globally defined Fourier integral operators. We
fixi,je{l,...,J}
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Lemma 3.3. Let T' € I5(R x R, F};). Suppose that B(p,4¢) C U; and that T' is microlocally
unitary in Fj;(B(p,4¢)) x B(p,4e). Then, there exists a family (Dy)ren of differential operators

of order k, compactly supported in B(p, 3¢) such that the following holds : For every N € N and
for all b € C°(B(p, 2¢)),

N-1

T Opp(b) = Opy, <b or~t+ Z hk(Dk+1b) o /€_1> T+ 0 (hN||b||C2N+15)LZ(R)%LZ(R)
k=1

The constants in O depend on T and F'.

Proof. First, introduce some cut-off function x such that x = 1 in a neighborhood of B(p,2¢) and
supp x C B(p, 3¢). Due to these properties and Proposition we have

Op(b) = Opi(x) OPu(b) Opu(x) OPa(x) + O (Y [[bllo2n+18) 1oy 1o my
Moreover, Op(x)T*T = Opn(x) + O(h*>°) and hence,
T Opn(b) = T Opa(x) Opa(b) Opr(x) OPr(X)T*T+O0 (AN [|bl|cen+13) o, 2 +O(h™)|| Opa(b)|| 12— 12

The term O(h™)|| Opn(b)||L2— > can be absorbed in O (hN||b]|c2v+13),. ,,,. Consider & € K
extending x| p(,,3¢) and construct U = U(1) by solving the Cauchy problem ({3.3)) associated with &.
Due to the properties on composition of Fourier integral operators (Proposition, T Opn(x) U1
and U Opp(x)T* are pseudodiffferential operators, and we note them Opy(a;), Opp(az). Now write

T Opy(b) = [T Opa(x)U '] U Opu(b) Opa(x)U ! [U Opu(x)T*] T + O (h™[[b]|c2n+13)

= Oph(al) [U Oph(b) Oph(X)U_l] Oph(aQ)T + O (hNHb| ‘C2N+13)

L2—L?
L2—L?
By using the precise version in Proposition |3.3] one can write

N-1

U Opy(b) Opu(x)U ! = Opy, (b ok 4+ Y (Lpyad)o nl) + O (AN||bl|gzn+15) o o
k=1

Applying Lemma, we see that we can write

N-1

T Opp(b) = Opy, (bo okt Z (Djy1b) 0 /<;1> T+ O (hN||bllczn+15) 12, ;o
k=1

where by = a3 X bo k™! X as. T being microlocally unitary in B(p, 4¢), the product ajas is equal

to 1 in B(p,2¢), and hence, the lemma is proved. a

3.3. Hyperbolic dynamics. We assumed that F is hyperbolic on the trapped set 7. As already
mentioned, we can fix an adapted Riemannian metric on U such that the following stronger version
of the hyperbolic estimates are satisfied for some \y > 0 : for every p € T, n € N,

(3.6) v € By(p) = ||d,F"(v)]| < e 2"[|u]|
(3.7) v € By(p) = [|d,F" ()| < e |||
Notations. We now use the induced Riemannian distance on U and denote it d.

We also use the same notation || - || to denote the subordinate norm on the space of linear maps
between tangent spaces of U, namely, if F'(p1) = pa,

|d,, Fl| = sup |ldp, F (V)] 2

’UETPI lelv”f)l:l

If p € T, n € Z, we use this Riemannian metric to define the unstable Jacobian J¥(p) and
stable Jacobian J3(p) at p by :

(3-8) v € Eu(p) = |ld,F" (o) = Ty (p)[vl]
(3.9) v € Ey(p) = [ld,F"(v)[| = Ja(p)lll|

These Jacobians quantify the local hyperbolicity of the map.
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Notations. Suppose that f and g are some real-valued functions depending on the same family
of parameters P. For instance, for J¥*(p), P = {n, p}. We will note f ~ g to mean that there exist
constant a C' > 1 depending only on (U, F'), but not on P, such that C~1g < f < Cyg.

For instance, if we define unstable and stable Jacobian J* and .J# using another Riemannian metric,
then, for every n € Z and p € T,

Jp) ~ JE(p) 3 JTalp) ~ Ji(p)

From the compactness of T, there exist A\; > Ao which satisfies

(3.10) emo < J¥(p) < e and e”"M < J3(p) < e ™o i neNpeT
(3.11) emo < J8 (p) < e™M and e "M < JY (p) < e o ;i neNpeT

—_n
We cite here standard facts about the stable and unstable manifolds (see for instance [HK95],
Chapter 6).

Lemma 3.4. For any p € T, there exist local stable and unstable manifolds W(p), W, (p) C U
satisfying, for some £; > 0 (only depending on F) (x will denote a letter in {u, s} and the use of
+ with * has to be read with the convention u — —, s — +) )
(1) Ws(p), Wu(p) are C*°-embedded curves, with the C* norms of the embedding uniformly
bounded in p.
(2) the boundary of W, (p) do not intersect B(p,e1)
(3) Wilp) N Wulp) = {p}, T,Wi(p) = Ex(p)
(4) FX(W.(p)) C W, (F(p)).
(5) For each p' € W, (p),d(FE"(p), F£"(p')) — 0.
(6) Let 6 > 0 satisfying e™ < § < 1. If p/ € U satisfies d(F*(p), F¥(p')) < &, for all
i=0,...,n then d(p', Wi(p)) < CO"e; for some C > 0.
(7) If p,p’ € T satisty d(p, p’) < e1, then W, (p) N Ws(p') consists of exactly one point in T.

Since we work with the local unstable and stable manifolds, we may assume that W,(p) C
B(pv 251)‘

For our purpose, we will need a more precise version of these results. The following lemmas are
an adaptation of Lemma 2.1 in [DJN2I] to our setting.

Lemma 3.5. There exists a constant C' > 0 depending only on (U, F'), such that for all p, p’ € U,
(1) if pe T and p’ € Ws(p) then

(3.12) d(F"(p), F"(p)) < C Ty (p)d(p,p') . VneN
(2) if pe T and p' € Wy (p) then
(3.13) d(F~"(p), F7"(p")) < CJL,(p)d(p,p") , VneN

Proof. We prove (1). (2) is proved in a similar way by inverting the time direction. Let p € T, p’ €
Ws(p). Since T,(Ws(p)) = Eq(p) and d,F (Es(p)) = Es(F(p)), the Taylor development of F along
Ws(p) gives :

(3.14) d(F(p), F(p')) < J7(p)d(p, p) + Cd(p, p')* < J; (p)d(p, p') (1 + Cd(p, p"))

since J§ > C~!. Applying this inequality with F*(p) and F*(p’) instead of p and p’, and recalling
that, by lemma d(F*(p), F*(p")) < CO%d(p,p’), we can write,

(3.15) d(F*(p), FET (")) < T3 (FH(p)d(F* (p), F*(p)) (1 + CF)

By this last inequality and the chain rule, we have

n—1

(3.16) d(F™(p), F™(p')) < J3(p)d(p, p') [ (1 + CO%) < CT3(p)d(p, p')
k=0

The following lemma gives a stronger version of (6) in Lemma

Lin other words, there exists a smooth curve v : [=6,8] — U such that B(p,e1) N Wi (p) = Im~, with v(0) = p :
it means that the size of the (un)stable manifolds is bounded from below uniformly.
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FIGURE 5. Framework for the proof of Lemma

Lemma 3.6. There exist C > 0 and ¢; > 0, depending only on (U, F'), such that for all p,p’ € U
andn € N:

(1) if pe T and d (F'(p), Fi(p')) < ey for all i € {0,...,n} then

(3.17) A W) < Fs
and
(3.18) |l F™] < CJY (p)
(2) if pe T and d (F~(p), F~(p')) < &1 for all i € {0,...,n} then
C
(3.19) d(p',Wu(p)) < T (p)
and
(3.20) ldp F"[] < CJ2,(p)

Proof. We prove (1). (2) is proved in a similar way by inverting the time direction. Let p € T and
p’ € U such that d(F*(p), Fi(p')) < &1 for 0 < i < n with &1 to be determined. Denote pr = F*(p).
The first condition on e; is that it is smaller than the one of lemma so that we ensure the
folowing estimates : for k € {0,...,n}

(3.21) a(F (o), Wa(F*(p))) < CO" 2y
(3.22) a(F (), Wa(F*(p))) < Ct¥e,

We will use coordinates charts kg : p € Ug +— (u”, %) € V}, adapted to the dynamical system (see
[HK95], Theorem 6.2.3, the explanations below and Theorem 6.2.8 for the existence of this chart).
More precisely, we want these charts to satisfy

k(o) = (0,0)

Kk (Ws(pk)ﬂUk) {( ) SER}ﬁVk

Kk (W (pk)ﬂUk) {( ) uER}ﬂVk

For p € Uy, [u*] ~ d(p, Ws(pr)); s*] ~ d(p, Wu(pr)); [s*|* + [u*]* ~ d(pk, p)*.
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e (Kk)o<k<n are uniformly bounded in the CV topology for all N, with constant indepen-
dant of py and n. In particular, we may assume that ¢; is chosen small enough so that
B(pk,e1) C Uy for all 0 < k < n.

e Up to changing the metric we work with (which is not problematic), we may assume that
the restrictions of dky(p) to Es(p) and E,(p) are isometries for the metrics | - |5 and | - |,,.

If we note ﬁk =xkroFo /@,;_11, we can check that in this pair of coordinates charts, the action of
F~1is given by
(3.23) (b, ) = (0% () + an(ub, %), £7% (o0)s" + B (uF, 5*))

where oy, 81 are smooth functions, uniformly bounded in k for the C? topology and such that
ar(0,5%) =0, Br(u*,0) = 0, day (0,0) = 0,dBx(0,0) = 0.
With these properties, one can check that

(3.24) ag(uf, ) < Olu®| [|(u*, s%)]]
Let’s now denote p), = F¥(p') and (u*, s*) = ki (p},). By (3.21), (3.22)), (3.23), (3.24), we can write
u*™ 1\ < T2 (o)) |+ CluP|[|(u®, M)
T (FE(p))[ub| (1+ Cer (05 + 077))
< JU (FM(p))|uk| (1 + Cergminttn=h)

Then, using the chain rule, one has

n—1
(3.25) d(p/, Wa(p)) < Clu] < T, (F"(p)) [] (14 Cerominthn=h)
k=0
Finally, we can estimate
n _ [n/2] )
[T (14 Ceomintn=i))y < TT (14 Car6¥)" < C
k=0 k=0
which gives
C
3.26 d(p', Ws <CJ: (F" =
(3.26) (r', Ws(p)) (F™(p)) 75 ()

This proves (3.17)).
To prove (3.18]), we first construct a metric which simplifies the computations. If p € T, we pick

vy (p) € Ex(p)]such that ||v.(p)|| = 1. There exists a Riemannian metric | - | on 7 such that for
every p € T, (vu(p),vs(p)) is an orthonormal basis of T,U. This metric is y-Hélder in p € T since
stable and unstable distributions are y-Holder for some v € (0, 1).

If p € T and n € Z, we note Ju/s( ) € R the numbers such that

dp(F")(vu(p)) = T (p)va(F™(p)) 5 dp(F")(vs(p)) = T (p)vs(F"(p))
As already observed, |J U(p)| ~ J¥(p), for all n (with constants independent of n). We can also as-
sume that |J*(p)| > |J;(p)] for all p. In the orthonormal basis (v, (p), vs(p)) and (vu (F™(p), vs(F™(p))),

d,F" has the form
Julp) 0
0 Jip)

Due to the ortonormality of these basis, we have that for the subordinate norms, ||d, F™|| = |J%(p)|.
Hence, the chain rule implies the following equality for this particular Riemannian metric defined
onT :

(3.27) p € T [ldp(F™)[| = |3 (p)] = H [ (F (p) | = H ldps(o) P

We now claim that we can extend |- | to a relatlvely compact nelghborhood V of T such that
p €V ||, is still v-Holder. To do so, it is enough to extend the coefficients of the metric in

2Here7 we are not concerned by the orientation. It is simply a matter of direction.
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a coordinate chart in a y—Holder way, which is possible (for instance, in virtue of Corollary 1 in
[McS34]), which still defines a non-degenerate 2-form in a sufficiently small neighborhood of T.
We now aim at proving for this particular metric. will hold in the general case since
two continuous metric are always uniformly equivalent in a compact neighborhood of T.

In the following, we assume that €; is small enough so that p belongs to the neighborhood of 7 in
which [ - | is defined. Since p — ||d,F||7,u -7y, v is y-Holder (in the following, we will drop the
subscript in the norm) we have, for all 7 € {0,...,n}

(3.28) [l (o FIl = lldpeo FIl | < CAF' (o), F'(p))7 < Cerg7mintin =)

Using the chain rule and the submultiplicativity of || - ||, we have

(3.29) ldy F| < TT Nldpion FIl < T lldmip Pl (1 4+ Cerg7mmCn=9)
=0 1=0

Eventually, by (3.27) and the fact that [\, (1 + Ce167™n(:"=9) is convergent, (3.18) holds. O

As an immediate consequence of this lemma, we get :

Corollary 3.2. There exist C > 0 and 1 > 0 (depending only on (U, F')) such that for all p, o’ € T
and n e N:

(1) if d (F'(p), Fi(p')) < ey for all i € {0,...,n} then
(3.30) C™H T (p) < T (p") < CT(p)
(2) if d(F~"(p), F~(p')) < ey foralli € {0,...,n} then
(3.31) C™1I2,(p) < J2,(p') < CI2,(p)
Proof. This is a consequence of the previous lemma and of the fact that uniformly in p and n € N,

ldpE™ (| ~ J5 (p)
|dp " ][ ~ I, (p)
O

3.4. Regularity of the invariant splitting. It is known for Anosov diffeomorphisms that stable
and unstable distributions are in fact C?~¢ in dimension 2 (see [HHK90]). For our purpose, we need
to extend this result to our setting, where the hyperbolic invariant set 7 is not the full phase
space, but a fractal subset of it. In fact, we will show that one can extend the stable and unstable
distributions to an open neighborhood of 7 and that theses extensions are C*# for some 8 > 0.
Actually, since what happens outside a fixed neighborhood of T is irrelevant (one can always use
cut-offs), we will prove the following theorem which might be of independent interest.

Theorem 5. Let us denote G1(U) the Grassmanian bundle of 1-plane in TU. There exists 8 > 0
and sections E,, Es : U — G1(U) such that :

o For every p € T, Eyu(p) (resp. Es(p)) is the unstable (resp. stable) distribution at p ;
e E, and E, have regularity C18

Remark. It is likely that one can improve this regularity using the method of [HK90]. Our proof
relies on the techniques of [HP69|. In fact, in [HK95] 19.1.d, the authors show how one can obtain
C* regularity of the map p € T + E,(p) and explains how to prove C*# regularity. Their notion
of differentiability on the set 7 (which is clearly not open in our case) relies on the existence of
linear approximations. Here, we choose to show a slightly different version of this regularity by
proving that p € T — E,(p) can be obtained as the restriction of a C*# map defined in an open
neighborhood of 7.

3.4.1. Proof of the CY# regularity.
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Preliminaries. We recall that 7 is an invariant hyperbolic set for F. Hence, there exists a
continuous splitting of 77U, into stable and unstable spaces p € T +— Eq(p),p € T — Ey(p). We
use a continuous Riemannian metric on T'7U such that d,F is a contraction from Es(p) — Es(F(p))
and expanding from E,(p) — E,(F(p)), and making E,(p) and E4(p) orthogonal.
Let pe T — eu(p) € TU and p € T +— e4(p) € TU be two continuous sections E| such that, for
every pe T,
e eulp) spans By (p),
e ¢5(p) spans Es(p),
o [lea(p)ll =1, les(p)l| = 1
The matrix representation of dpFﬁ in theses basis is

_(Jp) 0
@F<o ﬁ@)

with v = sup 7 max {(‘j“(p)D js(p)H < 1.

We can extend e, and e, to U to continuous functions, still denoted e, and es. Let us consider
smooth vector fields v, and vs on U approximating e, and e; and a smooth Riemannian metric
approximating the one considered above. By slightly modifying this vector fields, we can assume
that for this new metric, (vy(p),vs(p)) is an orthonormal basis for all p € U. In these new basis,
we now write

-1
)

o= () i)

We assume that v, and v, are sufficiently close to e, and es to ensure that, for some 1 > 0 small
enough,

sup max ([b(p)|, [c(p)]) < n
pPET

sup [d(p)| <v+n<1—4dn
pET

inf >yl _p>1414
plnga(p)LV n>1+4n

We consider an open neighborhood 2 of 7 such that the following holds :
sup max ([b(p)] [e(p)[) < 2n

pe
sup |d(p)| <v+2n<1-3n
pPEQ
inf a(p)| > vt —2np>1+3y
pPEQ

Our method relies on different uses of the Contraction Map Theorem. We state the Fiber
Contraction Theorem of [HP69] (Section 1), which will be used further. We recall that a fixed
point x of a continuous map f : X — X is said to be attractive if for every x € X, f™(x) — xo.

Theorem 6. Fiber Contraction Theorem
Let (X,d) be a metric space and h : X — X a map having an attractive fixed point xo. Let us
consider Y another metric space and a family of maps (¢, : Y — Y),ex and denote by H the map

H:(z,y) e X xY > (h(x),9:(y)) € X xY

Assume that
e H is continuous ;
e For all x € X, limsup,,_,, L (ghn(x)) < 1 where L (ghn(x)) denotes the best Lipschitz
constant for gpn(z) ;
e Yo is an attractive fized point for gy, .

3Note that there is no problem of orientation to construct such global sections. Indeed, 7T is totally disconnected
and hence, one can cover 7 by a disjoint union of open sets small enough so that it is possible to construct local
sections in each such sets. Since these open sets are disjoint, these local sections allow us to build a global continuous
section.

4The definition of J*/$ may differ from the one of Jf/s above since we don’t work a priori with the same metric.
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Then (xo,yo) is an attractive fized point for H.

In the following, we study the regularity of the unstable distribution. The same holds for the
stable distribution by changing the roles of F~! and F.

F, is a fixed point of a contraction. By our assumption on v, and v, there exists a continuous
function A : U — R such that

Reu(p) = R(vu(p) + A(p)vs(p))
Hence, we will represent the extension of the unstable distribution by a continuous map A : 2 — R.
Our aim is to show that we can find A regular enough such that for p € T,

E.(p) = R(vu(p) + Ap)vs(p))

To do so, we will start by constructing A as a fixed point of a contraction in a nice space. This
contraction will be related to invariance properties of the unstable distribution.
First of all, if p’ = F(p) € QN F(), and if v = v, (p) + Avs(p), d,F maps v to

w = (a(p) + Ab(p))vu(p’) + (c(p) + Ad(p))vs(p)

Hence, the line of T,U represented by X is sent to the line represented by ¢(p, \) in T,»U where
_ Ad(p) +c(p)
~a(p) + Ab(p)
Set Q0 = QN F(Q) and let us consider a cut-off function x € C°(€Q;) such that 0 < x < 1 and
X = 1 in a neighborhood of 7. Let us introduce the complete metric space

X ={A e C(OR),||\|oc <1}
and consider the map T : X — X defined, for A € X and p’ € Q,
(3.33) (TN)(p") = x( )t (F~H (), A(FH(0"))
To see that this is well defined, first note that F'~! is well defined on supp x and F~!(suppx) C .

It is clear that if A € X, T\ is continuous. To see that ||TA||oc < 1, it is enough to note that if
p€Qand [N <1,

(3.32) t(p, \)

dp)| +lelp)] 1 =3n+2n _1-n

= < <1
la(p)| = [b(p)] = 1430 =20~ 141

t(p, M| <
Let us now prove the following

Proposition 3.4.

e T'is a contraction.
e If A, denotes its unique fixed point, then, for every p € T, E,(p) = R(vu(p) —i—)\u(p)vs(p))

Proof. Let \,u € X. If p’ € Q\supp x, we have Tu(p’) = TA(p’) = 0. Now assume that p’ € supp x
and write p’ = F(p) with p € Q.

ITA(") = Tu(p)l = [x(p")[t(p; X(p)) = tlp, u(p))| < [t(p; Mp)) — t(p, u(p))]

The map A € [—1,1] — ¢(p, A) is smooth, so that we can write
ITA=Tpllee < sup  |TA(p') = Tu(p)| < sup [Oxt] X ||A = ploo
p’ Esupp x Qx[—1,1]

It is then enough to show that supg,_1 1) [Oxt] < 1. For (p,A) € Q x [-1,1], we have
d Ad(p) +c
(3.34) ortipn) = — 10y Adl) Fcl)
a(p) + Ab(p) (a(p)) + Ab(p))

Hence, we can control
—3n 1—n
| < +n 5
L )
if n is small enough. This demonstrates that 7" is a contraction.
As a consequence, T has a unique fixed point, A,. We note v(p) = vy (p) + Au(p)vs(p). We want

to show that v(p) € Rey(p) for p € T (recall that e, : U — T'U is continuous and that e, (p) spans
E.(p)if p€ T). Since x =1 on T, we see by definition of T that for every p € T,

(3.35) d,F(v(p)) € Ro(F(p)

‘akt(pa )‘>

=k, <1
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If v, is sufficiently close to e,, we can find a continuous and bounded function p such that
Ro(z) = R (eu(z) + p(x)es(z))
From (3.35)), if p' = F(p) € T,

doF (eu(p) + u(p)es(p)) =Ji'(p) <€u(,0’) + 1(p)

This implies the equality

Ji (p)
(3.36) u(p') = pp) =
Ji'(p)
This equality implies that 4 = 0 on 7 and hence, v = e, on T, as expected. O

Remark. Aslong as p’ € {x = 1}, the vector field v(p’) = vy (p’) + A(p)vs(p’) is invariant by dF.
When p' € W,(p) N {x = 1} for some p € T, we will see below that the direction given by v(p’)
coincides with the tangent space to W (p), namely T,y Wy (p) = Ru(p’). When p" & U, e+ Wu(p),
there exists n € N such that F~"(p’) & supp x. Hence, A, (p’) is given by an explicit expression
obtained by iterating the fixed point formula.

Differentiability of \,. We go on by showing that A is C! by adapting the method of [HP69).
We now introduce the Banach space Y of bounded continuous sections « :  — T*Q). We will use
the norm on 7% adapted to the metric on T2, namely if « € Y,

lally =sup  sup la(p)(v)]
pEQVET,Q,v#0 ||vHTpQ

For A € X, let us introduce the map G, : Y — Y, defined as follows. For a € Y and p’' € Q,

(3.37) (Gra) (p') =x(p") [dpt (p, A(p)) + Ot (p, A(p)) a (p) } o (d,F) ™"+t (p, \(p)) dp x

with p = F~1(p’), which is well defined since p € Q if p’ € supp(). G, is constructed to satisfy :
for A € X, if A is C*, then the following relation holds :

(3.38) GA(dX\) =d(TX)
Let us first state the key tool to show the differentiability of A,,.
Proposition 3.5. For every A € X, GG is a contraction with Lipschitz constant L) satisfying

sup Ly <1
AEX

Before proving it, let us show how it leads us to
Proposition 3.6. ), is C'.
Proof. We use the Contraction Fiber Theorem. Let «,, be the unique fixed point of G,. The map
H:(Ma)e X xY = (TA\Gra) e X XY

is continuous and the previous proposition shows that for every A € X, sup,, L (Grny) < 1. The
Contraction Fiber Theorem implies that (A, «,) is an attractive fixed point for H.
Let A € X be C. Hence, H"(\,d\) = (Ay, ). But H™(X\, d)\) = (T™\, o) with

Ay = GTn—l)\ O---0 G)\dA

It is clear that if A € C!, so is T\ and an iterative use of (3.38) implies that a,, = d (T™\). This
shows that A, is C' and d\, = ay,. O

Let us now prove Proposition |3.5)
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Proof. Let A € X and fix a, 8 € Y. It is of course enough to control ||Gra(p’) — GAB(p')]| for
p' € supp(x) since both Gya and G, vanishes outside. Let us fix p’ = F(p) € supp(x).

Gra(p') — GAB(p) is given by
X(0")oxt(p, Ap)la(p) = B(p)] o (d, F)~"

so it is enough to control dxt(p, A(p))v(p) o (d,F)~! for v = o — B. With the precise expression of
Oxt(p, M(p)) given by (3.34), we can estimate

Ostp. NP = o L4 0,0) = 15 40,0

7), we mean that this term is bounded by Cn where C'is a constant depending
).

|d(p)|

(By the notation O, (
only on v and (F,U)
Moreover, we have ||(d,F)™!|| = max (ﬁp), ﬁp)) +0,(n) = ﬁp) + O, (n). Hence,

_ 1
103t(p. M) (0) (0 )11 < (525 + 0u() ) 1] < (o + Ol Il
Hence, if 7 is small enough, the proposition is proved. O

Holder regularity of a,. In fact, as explained at the end of 19.1.d in [HK95|, we can improve
the C' regularity.

To deal with Holder regularity of sections o : Q@ — T*Q , we will simply evaluate the distance
between a(p;) and a(psz) for p1, po € Q using the natural identification T*Q =  x (R?)*, where we
see a(p1) as an element of (R?)*. This allows us to write a(p;) —a(p2) and compute ||a(p1)—a(p2)]|
where || - || is a norm on (R?)*. There exists C' > 0 such that for every o € Y, sup g |la(p)|| <
Cllally-

Let us introduce p a Lipschitz constant for F~! on Q and an exponent 3 > 0 such that

(3.39) vpf <1

This condition is called a bunching condition in [HK95] (19.1.d). Such a f exists. We will then
show the following, which finally concludes the proof of Theorem [f]

Proposition 3.7. «, is S-Holder, that is to say, A, is C15.
Proof. Let us introduce
Y# = {a e€Y;ais f- Holder}

Let us consider some £ > 0 to be determined later and we equip Y” with the norm

|le(p1) — ex(p2)|
lledlys = [lally +ellells ; [lalls = sup
P1FP2 d(PlaP2)B

The map 7 : X — X defined by (3.33) actually maps X N C'(Q,R) to X N C*(Q,R). Moreover,
our previous results have proved that ), is an attractive fixed point for 7' in X N C1(Q, R), where
X NCYQ,R) is now equipped with the C* norm. For A € X and a € Y, we can write,

Gha =y + Gra
where for p' = F(p) € supp ¥,
(") = x(p")dpt(p, A(p)) + t(p; Mp))dpr X
Gralp') = x(p")ot(p, Ap))alp) o (d,F) !

We state here some obvious facts on 7, and G

C1 = supyex [l < 4005

if A € X NCHNQ,R), v, is also C;

According to Proposition Gy :Y — Y is a contraction with Lipschitz constant L and
v =supyex Ly <1

if A€ X NCHR) and « is f-Holder, Gaa is B-Holder.
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If M > % and A € X N CY(LR), then ||[d\|]ly < M = ||d(T)\)|]y < M. Indeed, we have

1—V1
IA(TN)ly = [|GA(dN)]ly = [l7a + GadAlly < C1+ 1M < M
Hence, we introduce the complete metric space
(3.40) X' ={Ae XNnCYQR),||d\]y < M}

T(X') C X' and A, is an attractive fixed point for (X', T).
We now wish to apply the Fiber Contraction Theorem to

Hs: (M a)e X' xYP s (TA,Gra) € X' xYP

To do so, we need to show that for every A € X', G : Y? — YP is a contraction and find a
uniform estimate for the Lipschitz constants.

Let’s consider a1, as € Y? and set v = ag — as. We want to estimate the Y? norm of Gyy. We
already know that [|Gav|ly < v1|[7]ly. Take pj, phy € Q and let’s estimate ||Gay(p}) — Gay(ph)|].
We distinguish 3 cases :

- phyph & supp x : there is nothing to write.
- ph €suppx, ph & QN F(2). In this case, d(p, p5) > § > 0 where ¢ is the distance between
supp x and (2N F(Q2))°. Hence,

1GAy(p7) — Ga(ph)]]
d(p}, py)?

- P, Py € QNF(Q). Let’s write p} = F(p1), py = F(p2) and note that d(p1, p2) < pd(pi, p3)-
GAv(ph) = Gav(ph) = Xx(p1)0rt(p1, A(p1)) [¥(p1) = v(p2)] o (dp, F)F F (1)

+ [X(p1)Ot(pr, Alpr)) — x(p2)Oat(p2, Mp2))]v(p2) 0 (dp F) ™ 3 (2)
+X(p5)Oxt(p2, A(p2))7(p2) © [(dyp, F) ™! = (dpy F) '] }(3)

To handle the last two terms (2) and (3), we notice that p’ € QN F(2) — x(p)Oxt(p, A(p)) is
Lipschitz since A is C', with Lipschitz constant which can be chosen uniform for A € X’. The
same is true for p — d,F~!. Hence, there exists a uniform constant C' > 0 such that

12) + B3Il < Cdlpy, p5)°|Ily

To deal with the first term (1), we recall that by previous computations,

IX(P")Oxt(p, X(p))| - [1(dpF)H| < v+ Ou(m)

< 6 7Gav(p)ll < 50CIGlly < vid~PClhlly

As consequence, we have

DI < (v + Oum))lsd(pr, p2)” < (v + Ou ()13 55, )

Henceforth, if 7 is small enough, so that v = (v + O, (n))u’ < 1,

HHxls < valllls + Clivlly

Eventually,

1Gxllys < mlblly + < Galllls + Clhrlly)
< (1 +€C) ||ylly + veel|v]s
< wsl[yllys

where v3 = max (v +eC, 1) < 1 if € is small enough.

The Fiber Contraction Theorem applies and says that (A, a,) is an attractive fixed point
for Hgz. We conclude as previously : consider A € C1#(Q,R) N X’ so that (\,d\) € X' x Y5,
HE (A, dX) = (TN, dT"\) — (A, o) in X' X Y#. That ensures that o, is S-Hélder. O
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3.4.2. Regularity of the stable and unstable leaves. Once we’ve extended the unstable distribution
to a an open neighborhood of 7, we take advantage of the fact that these distribution are 1-
dimensional to integrate the vector field defined by their unit vector.

We set E,,(p) = R(vy(p)+Au(p)vs(p)). Recall that in a compact neighborhood of T, the relation
d,F(E,(p)) = Ey(F(p)) is valid due to the definition of A, as the fixed point of T' defined in .
T*U is equipped with a smooth Riemannian metric such that dF'~! is a contraction on E,(p) for
p € T and hence, in a compact neighborhood of T, this is also true. We can consider the vector
field

p €U eup)

where e,(p) is a unit vector spanning F,(p). By our previous result, this vector field is C'*#
and if p lies in a sufficiently small neighborhood of T, d,(F~")(eu(p)) = J*(p)ewn(F~(p)) where
[J*(p)| < v < 1.

We denote by ¢! (p) the flow generated by e,(p) and we will show that one can identify the
unstable manifolds and the flow lines of e, in a small neighborhood of 7.

Proposition 3.8. There exists to such that for every p € T, {©%,(p), [t] < to} € Wa(p)

Proof. Consider ty is sufficiently small such that |J*(o% (p))| < v < 1for p € T, t € [~to,to]. For
(t,p) e R x U, set u(t,p) = fot J%(% (p))ds and we claim that for ¢y small enough, if |¢| < t,

F= gl (p)) = @0 (F~1(p))

Indeed, in ¢t = 0, both are equal to F~1(p) and a quick computation shows that both satisfy the

ODE

%Y(t) = J"(gu(p))ea(Y (1))

As a consequence, by induction, we see that one can write for n € N,

F7(@l(p)) = @hm P (F"(p))

where p, is defined by induction by pn41(t, p) = p(pn(t, p), F~"(p)). Hence, if |t| < tgand p € T,
we see that un(t, p) stays in [—to,to] and moreover |u,(t, p)| < v"|t|. We then see that if [t| < tg
and p € T,

d(F " (0 (p)), F"(p)) = d(phi“P(F~"(p)), F~"(p)) < Clun(t, p)| < Cv"

This shows that ¢f (p) belongs to the global unstable manifold at p, and hence, if t, is small
enough, ¢! (p) belongs to the local manifold W, (p) and ty can be chosen uniformly with respect
topeT. O

Since the regularity of the unstable distributions implies the same regularity for the flow ¢,
(see Lemma in the Appendix), we deduce that, up to reducing the size of the local unstable
manifolds, these local unstable manifolds W, (p) depend C*# on the base point p € 7. We'll
also use this proposition to show the same regularity for holonomy maps. Suppose that g is small
enough. We know that if p1, po € T satisfy d(p1, p2) < €0, then W, (p2) NWs(p1) consists of exactly
one point. Let’s note it H} (p2).

Finally, we define the holonomy map

Hy o ip3s € Wilp2) N'T = Hp (p3) € Wi(p1) N'T

Lemma 3.7. If ¢ is small enough, for every p; € T, the map
Hy TN B(pr,e0) = Ws(p1)) N'T
is the restriction of a map ﬁ;fl : B(p1,e0) — Wy (p1) which is C5.

Proof. Let p1 € T. As in the proof of Lemma consider a smooth chart x : Uy — V; C R? |
p1 € U1,0 € Vi such that :

k(p1) = (0,0)

£ (Ws(p1) NUL) ={(0,5),s e Ry N 11

k(Wy(p1) NUL) = {(u,0),u e R} NV

dyri(ea(p)) = (1,0).
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Wau(ps)
1

Wi(p1)
H;Ip,(pj)

P2

3

We now work in this chart V; and note ® = ko ¢! o x~! the flow in this chart, well defined for ¢
small enough. Consider the map
P(u,s) = 2%(0, s)
Y is CV% and dpyp = I,. By the Inverse Function Theorem, 9 is a local diffeomorphism between
neighborhoods of 0 :
Vo — Vg

Since dy,s) (1/1_1) = (dwfl(uys)w)fl, =1 is C1B. We now consider

ko=t¢ tor:k (Vo) =Uy =V
and observe that :

e ro(Ws(p1) NUz) = {(0,s),s e R} N V3 ;

e kool ok t(u,s)) = (u+t,s). In other words kg rectifies the unstable manifolds.
Armed with theses facts, we define

ﬁ;fl Uy — Wi(p1) ﬁ;‘l = /-@51 0 Mg 0 Ko

where ms(u,s) = (0, ). flgl is C1#. We assume that B(0,e9) C U;. Let us check that fI;‘l
extends the holonomy map in B(p1,ep) (if o is small enough). Let p2 € T N B(p1,€0) and note
Py = ﬁ:}l (p2). By definition of flgﬂ ph can be written ph = ! (p1) and hence, if £¢ is small enough,
ph € Wu(p1). Since, py € Wi(p2), we see that py = HJ' (p2). O

Note that by compactness, €9 can be chosen uniformly in p; € 7 and the C** norms of fI;‘l
are uniform. As a corollary, we get the following :

Corollary 3.3. Suppose that € is small enough. Then, the holonomy maps, defined for p1,p2 € T
with d(p1, p2) < €0,
HY ZWS(pg)mT% Ws(pl)ﬁT

P1;P2

are the restrictions of C'# : ﬁ;‘lm : Wi(p1) = Wi(p2) with C%# norms uniform in py, pa.

3.5. Adapted charts. We construct charts in which the unstable manifolds are close to horizontal
lines. These charts will be used at different places and their existence relies on the C'+7 regularity
of the unstable distribution.

Weak version. We start with a weak version of these charts.

Lemma 3.8. Suppose that C' > 0 is a fixed global constant and ¢¢ is chosen small enough. For
every pog € T, there exists a canonical transformation

ko : Uy — V) CR?

satisfying (we note (y,n) the variable in R?) :
(1) B(po,Ceo) C U, ;

Po?

(2) ko(po) =0, dp,ro(Eu(po)) = R x {0}; dpykio(Es(z)) = {0} x R ;
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(3) The image of the unstable manifold W, (po) N U, is exactly {(y,0),y € RyNV; .
Moreover, for every N, the CV norms of kg are bounded uniformly with respect to py € 7.

Remark. The difference with the charts used in the proof of Lemma [3.0] is that we require kg to
be a smooth canonical transformation.

Proof. W, (po) is a C°° manifold, hence there exists a C>° defining function 7 defined in a neigh-
borhood pg : namely d,,n # 0 and W, (po) = {n = 0} locally near py. Darboux’s theorem gives a
function y defined in a neighborhood of pg such that (y,n) forms a system of symplectic coordi-
nates. We can assume that y(po) = 0. If (p) = (y,7n), the third point is satisfied by assumption
on 1 and we need to ensure that d, x(Es(po)) = {0} x R by modifying n in a symplectic way.
Assume that d,,x(Es(po)) = R'(a,1). The sympletic matrix

1 —a
=G 1)
maps the basis (*(1,0),%(a, 1)) to the canonical basis of R? and we can set ko := Aok which is the
required canonical transformation, defined in a small neighborhood U;)O of pg.
We can ensure that B(pg,Ceo) C U 1/7 , for g9 small enough and the uniformity of the C" norms of

k thanks to the compactness of T and the fact that the unstable distribution depends continuously
onpyg€T. O

Straightened version. We now straighten the unstable manifolds in a stronger version of the
previous charts. The construction and the use of these charts is similar to [DJN21| (Lemma 2.3).

Lemma 3.9. Suppose that £ is chosen small enough. For every py € T there exists a canonical
transformation
K= FKpy : Upy CU =V, CR?
satisfying (we note (y,7n) the variable in R?) :
(1) B(po,2e0) C U, ;

(2) K(po) =0, dpr(Eu(po)) = R x {0}; dp,k(Es(po)) = {0} x R
(3) The images of the unstable manifolds W, (p),p € Uy, N T, are described by

(3.41) KWQWWWMJZ{@y@KWD)yGQ}

where Q C R is an open set, ¢ : U,y — Ris C1*# g: Q x I — Ris C'*7 (where I is a
neighborhood of {(U,,)) and they satisfy
(i) ¢ is constant on the unstable manifolds ;
(ll) C(pO) =0, g(yao) =0;
(i) 9(0,0) = ¢ ;
(iv) Ocg(y,0) =1
The derivatives of £, and the C'*# norms of g, are bounded uniformly in po.

Remark. The most important condition, which will be used later on, is the last one : it makes
the unstable manifolds very close to horizontal lines. The model situation we expect is when the
unstable distribution is constant and horizontal.

Proof. Around a point py € T, we work in the charts given by Lemma [3.8]: kg : U;)O — Vp’o. We
recall that the unstable distribution is given by the restriction of a C'*# vector field e,. If U ;U is

a sufficiently small neighborhood of py, we can write, for p € U ;0,

(3.42) dprolea(p)) € Reu(p) with &,(p) = (L, fo(p))

where fo: U ,go — R is a C'*# function which is nothing but the slope of the unstable direction in
the chart kg. In the (y,n) variable, we still note fo(p) = fo(y,n) and we observe that due to the
assumption on kg, we have

fO(yvo) =0, (y70) € Vplo

We consider ®¢(y,n) the flow generated by the vector field &,. Due to the form of €,, we can write,

' (y,n) = (y+1t, 2" (y,m))
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The reparametrization made in (3.42)) does not change the flow lines of the vector field (ko)«e€s.
In particular, in virtue of Proposition they coincide locally with the unstable manifolds. More
precisely, if we set,

9o(y, ) = Z(0,m)
then, for (0,7) = ko(p) € ko(T N Wi(po)),

ro(Wale)) 0 Iyl <y} = { (.90, ). Iyl < w0 }

for some gy small enough (which can be chosen uniformly in pp). To define ¢, we go back up the
flow : suppose that p € U, and write xo(p) = (y,7) and assume |y| < yo. We set

C(p) = 2"*(y,n)
To say it differently, xo(W,(p) intersects the axis {y = 0} at (0,{(p)).

—
o

Po wo(Waulpo))

FIGURE 6. The definitions of gy and ¢ use the flow generated by é,,.

¢ and gy are C'*8, their C'*# norms depend uniformly on py and they satisfy :
e By definition, ¢ is constant on the flow lines, and hence, on the unstable manifolds W, (p)
if peTNU, N{lyl <yo};
e ((po) =0}
e Since fo(y,0) =0, Z¥(0,0) = 0 and hence go(y,0) =0 ;
e Since Z°(0,n) =1, go(0,1) = 7.
However, at this stage, the last condition (0¢go(y,0) = 1) is not satisfied by gy and we need to
modify the chart. To do so, we’ll make use of the following lemma, which is proved in the appendix

A2

Lemma 3.10. The map y € {|y| < yo} + 8, fo(y, 0) is smooth, with C*¥ norms bounded uniformly
in pg.

We first show that this lemma implies that y € {|y| < yo} — 9,90(y,0) is smooth. Indeed, due
to the C'*7# regularity of E,, (t,y,1) — Z'(y,n) is C' and satisfies :

d
%%Z‘f(y,n) =0y fo (y+1t, 2 (y,n))
Specifying in (y,n) = (0,0), we have
%&,Zt(O, 0) = 9, fo(t,0)

This exactly says that y — 9,g0(y,0) is C* and has 9, fo(y,0) as derivative with respect to y and
hence y — 0,90(y, 0) is smooth, as required.
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Due to the relation go(0,7) = 1, we have 0,¢0(0,0) = 1. As a consequence, if yo is small enough,
we can assume that d,go(y,0) > 0 for |y| < yo and consider the smooth diffeomorphism defined in

{|y|<y0}
LY = yag (S O)ds
¢-y / n9go\S5,

We then use the canonical transformation

n
Vi ) = (00 5715

We finally consider the chart x,, = ¥ o xq defined in Uy, = U, N{[y| < yo} and if ¢ is small
enough, we can ensure that B(pg,2e9) C U,,. In this chart, the graph of go(-,{) is sent to the
graph of the function

, _ 90" (), <)

gyEQ ’lr/)(( yo;yo))'_) ¢/(w_1(y))

We eventually check that
9(y,0) = 0 since go(y,0) =0 ;
9(0,¢) = ¢ since ¥(0) =0, ¥'(0) =1 and ¢(0,¢) = ( ;
9g(y,0) =1;
The C'*# norm of g is bounded uniformly in pq ;
The CN norms of k,, are bounded uniformly in po.

4. CONSTRUCTION OF A REFINED QUANTUM PARTITION

We start the proof of Theorem [1] We consider T = T'(h) € Io+(Y x Y, F') a semi-classical
Fourier integral operator associated with F', microlocally unitary in a neighborhood of 7, and a
symbol a € Sy+(U). We want to show a bound for the spectral radius of M (h) = T(h) Opp(a),
independent of h.

4.1. Numerology. We’ll use the standard fact :
|M™||p2 2 < p = pepec(M) < p*/™

The trivial lemma which follows reduces the theorem to the study of ||[M"|| with n = n(h) ~
o) log h|.

Lemma 4.1. Let § > 0 and N(h) € N satisfy N(h) ~ d|logh|. Suppose that there exists hg > 0
and v > 0 such that

(4.1) VO<h<ho , |[M(R)NM|<nY]|al"
Then, for every € > 0, there exists h. such that, for h < h,
pspec(M(h)) < 6_%+EHO‘||OO

Proof. 1t suffices to observe that under the assumption || we have pgpec(M(R)) < ¢ N [le]| oo
and use the equivalence for N(h). ]

Remark. If we use the bound ||M|| < ||a||s + O(h'/?7%), one get the obvious bound ||[M7V]| <
[|lal|¥ (14 o(1)). Hence, (4.1)) is a decay bound.

The proof of Theorem [1|is then reduced to the proof of the following proposition.

Proposition 4.1. There exists § > 0, a family of integer N(h) ~ d|log(h)| and v > 0 such that,
for h small enough, (4.1]) holds.

Actually, this proposition is enough to show Corollary [I] concerning perturbed operators, in
virtue of

Corollary 4.1. Suppose that R(h) : L2(Y) — L?(Y) is a family of bounded operators such that
R(h) = O(h") for some i > 0. Then, there exists v = 4/(v,n) such that for h small enough,

H(M(h) + R(h))N(h)H < 1]V ®
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Proof. We write

(M+R)N=M"+ > (1M +(1—e)R)...(enM+ (1 —£y)R)

ec{0, 1}V
e#(1,...,1)

Using this, we can estimate
N
|+ RV < Wl + (1M1 + IRIDY = [|]1Y)
N—

< 17|ellX + NIRI| (1M + ||RIDY

< W& + Cllog hlA"|al|X7H (1 + O(h™))

= O((K" + h")llal2)
This gives the desired bound for any 4/ < min(vy, n). O

Actually, the precise value of N(h) we’ll use is rather explicit and we now describe it. We set

1
1+

where (3 is the one appearing in Theorem [5| concerning the regularity of the unstable distribution.
We now choose &y € (0, 1) such that

(4.3) b+ 5o < 1

(4.2)

For instance, let us set
5o — I-b B
0T T2 T 2145
Recalling the definitions of the exponent Ag < Ay in (3.10)) and (3.11)), we introduce the following

notations

(@) N = N+ M) No(h) = | g Na(h) = | -] tos(h)]|

No(h) (resp. Nj(h)) corresponds to a short (resp. long) logarithmic time. We will omit the
dependence on h in the following.
To be complete with the numerology, we introduce another number 7 < 1 such that

A
(4.5) b<7'<1and5070+7'>1
1

The meaning of these conditions will be clear in the core of the proof and we won’t miss to recall
where they are used. For instance, we set

4. —1-22 -
(4.6) T N 1

An important remark. If two operators M;(h) and Ma(h) are equal modulo O(h*°), this is also
the case for My (h)N ™ and My(h)N™) as long as

- N(h) = O(logh).

- My (h), My(h) = O(h~E) for some K.
This will be widely used in the following. In particular, recall that we work with operators acting
on L?(Y) but these operators take the form M;(h) = Wy My (h)¥y where ¥y € C°(Y,[0,1]) and
Ms(h) is a bounded operator on @}]:1 L?(R) such that My(h) = Wy Ma(h)¥y + O(h*) 2. As a

N(h)

consequence, modulo O(h*), it is enough to focus on Ms(h) . For this reason, from now on

and even if we keep the same notation, we work with

J
M (h) = T(h) Opp(a @ﬁ ) = P LR

where T'(h) = (T;;(h)) with T;; € Io+ (R x R, FZ’J) and
Opn(a) = Diag(Opn(ai), ..., Opplay))
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FIGURE 7. The partition (V,)4c 4., is made by small neighborhoods of 7 (small
purple disks) and a big open set included in U’.

4.2. Microlocal partition of unity and notations. We consider some ¢y > 0, which is supposed
small enough to satisfy all the assumptions which will appear in the following.
We consider a cover of T by a finite number of balls of radius &g :

Q
Tc|UBlpgeo) 5 pg€T

q=1

and we assume that for all ¢ € {1,...,Q}, there exists jg,l,, mq € {1,...,J} such that
B(pg;220) C Ajy1, N Doy, C Uy,

We also assume that 7" is microlocally unitary in B(pg,4eo). We then note

(4.7) Vq = B(pq: 2€0)

We complete this cover with

Q
(4.8) Voo = U\ | Blpg, €0)
qg=1
U’ € U is an open set such that WF,(M) € U’ x U’. We note U; the component of U’ inside Uj.
We note A ={1,...,Q} and A,, = AU {o0}.
We then consider a partition of unity associated with the cover Vi,..., Vg, Vs, namely a family
of smooth functions x, € C°(U), for ¢ € A such that :
e suppxq C Vy
e 0<x,<1
o 1= vea. Xaim Ugea Vq
More precisely, if ¢ € A, x4 € C*°(Uj,) and for every j € {1,...,J}, there exists b; € C°(U;) such
J
that on U, 1=bj + 3" c 4 ;= Xq- Thus, Xeo =327, b;.

We can then quantize these symbols so as to get a pseudodifferential partition of unity. More
precisely, to respect the matrix structure, we may write this quantization in a diagonal operator
valued matrix, still denoted Opy, :

o for g € A, A; = Opn(x,) is the diagonal matrix Diag(0,...,Opn(Xq),0,...,0) where the
block Opr(xq) is in the jg-ith position ;
e Opi(Xoo) = Diag(Opp(b1), ..., Opu(by)).
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The family (Aq)qc.. satisfies the following properties :

(4.9) > A, =1d microlocally in U’ ; Vg € Ax, [|Ay]| <1+ O(h'/?)
q€EAS
Since M =3 ., MA,; + O(h*), we may write
M™ = " Uq+O(h™)
qeAZ,
where for q =qo ... ¢n-1 € AL,
(4.10) Uqg=MA,, ,...MA,
Forq = qo...,qn-1 € A%, we also define a family of refined neighborhoods, forming a refined
cover of T,
n—1 . n—1 .
(4.11) Va=(1F"Wy) : Vi=F"(VO)=(F"" Vo)
i=0 =0

This definition imply that a point p € V; lies in V,, at time i (i.e F'(p) € Vy,) for 0 <i<n—1
and a point p € Vg lies in V,, _,
each operator Uq acts from Vg to V(‘l“ and is negligible (in some sense to be specified later on)
elsewhere. Combining and the bound on M | the following bound is valid (for any € > 0) :

at time —i, for 1 < ¢ < n. Roughly speaking, we expect that

(4.12) 1Uqllz2z2 < ([lalloo + O(h1/272))

As soon as |n| < Cyl|logh|, we have ||Uq||r2—12 < Clla||, for some C' depending on Cp and a
finite number of semi-norms of a.

Reduction to words in A. We can find a uniform T € N such that if p € V,, there exists
k € {-Ty,..., Ty} such that F*(p) "falls" in the hole. By standard properties of the Fourier
integral operators, each component (M To)ij of M0 is a Fourier integral operator associated with
the component (F7°);; of FTo. In particular, WF}'(M70) c Gr'(F™°).

Let us study M2T0+N(") Ifq =qp...qn_1 € AY and if there exists an index i € {0,..., N —1}
such that ¢; = oo, one can isolate this index ¢ and trap A,, between two Fourier integral operators
M, M>, belonging to a finite family of FIO associated with F70, so that we can write

MTUM™ = By My Au M3 By
where Bi, By satisfy the L?-bound :
1B1]| x [|Ball < ([l + O )N "1 = O(h™F)
for some integer K. Since,
WE/ (M Aso M) € {(F™ (), F~™(p)) 1 p € WFA(Asc)} =0
we have M A My = O(h®), with constants that can be chosen independent of q. Hence, the
same is true for MT0U M. | AN] is bounded by a negative power of h. So, we can write :
MN+2To — Z MTUMT
qe ALY
=Y MPUM™ + O(h*)
qeAN

=M™ [ " Uq | M +O(h)
qe AN
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We can then replace M by

(4.13) M= MA; = M(Id—Ax) + O(h™) 2,12
geA

A decay bound
(4.14) 19 ()N P < Bl [

will imply the required decay bound (4.1)) for M with N(h) replaced by N(h) 4 2T,. We are hence
reduced to prove the decay bound (4.14).

4.3. Local Jabobian.

A first definition. Following [DJN21], we introduce local unstable and stable Jacobians and we
then state several properties. For n € N* and q € A", let us define its local stable and unstable
Jacobian.

(4.15) Jg = inf J¥(p),JS = inf +an(p)
pET NV peTNVq

By the chain rule, we have for p € T NV,

70 = [ 9 (F'(0)

A similar formula is true for p € TNV -

n—1 n—1
s s i—n -1 s —1
I =T (i (F () =TI 72 (F ()
i=0 i=0
Hence, we’'ve got the basic estimates :
— Aon - Ain
(4.16) TNVy #0 = e < Jg <e
Aon Ain
(4.17) TNV #0 = e < Jg <e

Ifq=qo...qn-1and q- =qo...¢gn—2, then V' CV, and thus

_ Ao 7—
(4.18) Jyg =€ Jy
Similarly, if qy = ¢1...¢n—1, V4 C V('L and

+ 5 Ao g+
(4.19) Ji > ek

As a consequence of Corollary if ¢ is small enough, the local stable and unstable Jacobians
give the expansion rate of the flow at every point of 7 N V(f. If7n Vé‘ £,

(4.20) VpeTNVy, Julp) ~Jg
(4.21) VpeTNVE, J°,(p) ~ IS

This definition is slightly not satisfactory since qu = +00 as soon as Véﬁ NT = (. However,
when Véﬁ # ), this set can still stay relevant. For this purpose, we will give a definition of local
stable and unstable Jacobian for such words with help of the Shadowing Lemma ([HK95| , Section
18.1).
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Enlarged definition. Let n € Nand q=qp...¢n—1 € A". We focus on Vg, with the case of V(Jlr
handled similarly by considering F~! instead of F.

If Vg N'T # 0, we keep the definition given in Assume now that Vg # 0 but Vg N'T = 0.
Fix p € V. By definition of V,,, for i € {0,...,n — 1}, we have d(p;, F"*(p)) < 2. Hence,

d(F(pi), pit1) < d(F(pi), F™*(p)) + d(F(p), pis1) < Ceo

for a constant C' only depending on F'. That is to say, (po, ..., pn—1) is a Ceo pseudo orbit. Assume
that §p > 0 is a small fixed parameter. In virtue of the shadowing lemma, if ¢ is sufficiently small,
(poy- -+, Pn—1) is g shadowed by an orbit of F' : there exists p’ € T such that for ¢ € {0,...,n—1},
d(pi, F(p")) < bo. Consequently, d(F*(p), F'(p')) < 6 + Ceq. If py is another point in V, for
i=0,....,n—1, d(F%(p2), F*(p')) < 2e0 + Ceq + dp. For convenience, set e = 29 + do + Cey
and note that €5 can be arbitrarily small depending on €p. As a consequence, we have proven the
following

Lemma 4.2. If V; # 0, there exists p’ € T such that ¥i € {0,...,n — 1} and p € V,
d(F'(p), F'(p)) < e2.

Fix any p’ satisfying the conclusions of this lemma and we arbitrarily set
(1.22) Jy = T
If p is another point satisfying this conclusion, we have d(F*(p’), F'(p})) < 2 fori € {0,...,n—1}
and in virtue of Corollary (3.2)),

Tn(p") ~ T3 (p1)

Hence, up to global multiplicative constants, the definition of this unstable Jacobian is independent
of the choice of p'. Notice that if Vg N7 # 0, any p' € T NV satisfies the conclusions of Lemma
B2 and Jg ~ T ().

To define J, we can argue similarly and show that there exists p’ satisfying d(F*(p’), F*(p)) < &2
fori € {-n,...,—1} and p € V;f. We can assume that this is the same 5 as before and we set
Jo=J2,(p') for any p'.

Behavior of the local Jacobian. The following three lemmas are crucial to understand the
behavior of the evolution of points in the sets Vét. The first one gives estimates to handle these
quantities.

Lemma 4.3. Let n € N and q,p in A". If g is chosen small enough, then the following holds
1) Vi #0 <= V, #0 and in that case Jg ~ J.
2) If two propagated neighborhoods intersects, the local Jacobians are comparable :
+ + + +
(4.23) VanVg #0 = Jg ~J;
3) If q can be written as the concatenation of q; and g2 of lengths n; and ny such that
n1 + ne = n and if Vé[ # (), then
+ + 7+
(4.24) Ji ~ I am

Notations. The constants in ~ are independent of p and n. They depend on F' but also on the
partition (Vy),. In the following, we’ll be lead to use constants with the same kind of dependence.
These constants will be allowed to depend also on the partition of unity (x4), and on M. Constants
with such dependence will be called global constants.

Proof. 1) The equivalence is obvious. From the fact that F' is a volume-preserving canonical
transformation, we have for some C' > 0,

VpeT,VneN,C™' < Ji(p)J5(p) <C
and we write J%(p) ~ J:(p)~L. From F~"0o F"(p) = p, we also get J2(p) =t = J*, (F"(p)).
Eventually, if p' € T satisfies d(F'(p), F'(p') < e for i € {0,...,n—1} and p € V,
F™(p') = p* satisfies d(F*(p), F*(p*)) < &3 for i € {—n,...,—1} and p € VI. Hence

JE~ I (") ~ TR ~ Ty

a
Thanks to this first point, it is enough to show the remaining point only for —.
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FIGURE 8. Evolution of the set V (the red hatched set) at time 0 and n—1. The
points p;, F(p') are represented at these times, so as the balls B(F?(p’),e2) and
B(F(p'),80) (their boundaries are the blue dotted lines). We’ve also represented
the stable (resp. unstable) manifold at F(p’) to show the directions in which F'
contracts (resp. expands).
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2) Pick pq € T (resp. pp) satisying the conclusions of lemma [.2{ for Vg (resp. V).
d(F'(pq), F'(pp)) < 2e2 and hence, in virtue of Corollary 3.2} J%(pq) ~ J%(pp). This gives
2).

3) Pick p € T satisfying the conclusions of lemma for Vg .

By the chain rule, J}(p) = Jy, (F™(p)) J; (p). Remark that
Va =V NF (V)

q2

Hence, p satisfies the conclusions of Lemma [£.2] for q; with e; and the same is true for
F™(p) and qz. It follows that Jg, ~ Jy (p) and Jg, ~ Ji (F"™(p)). This gives 3).
|

Remark. The first point of the previous lemma shows that we could consider only one of the
two quantities. Nevertheless, we prefer keeping trace of it. The reason is that a priori J= and
J~ support two different kind of information : J; controls the growth of F™ whereas Jg controls
the growth of F~™. The fact that the two dynamics (in the past and in the future) have similar
behaviors is a consequence of the fact that F' is volume-preserving.

The next lemmas relate the local Jacobian to the expansion rates of the flow in the V(f. It will
be important in our semiclassical study of operators microlocally supported in Vét.

Lemma 4.4. Control of expansion rate by unstable Jacobian. If ¢, is small enough, there
exists a global constant C' > 0 satisfying the following inequalities.
For every n € N* and q € A" such that V # () we have :

(4.25) sup ||d,F"|| < CJg
pPEVY
(4.26) sup ||d,F"|| < C’J(Jlr
pEVY

Proof. This is a consequence of (3.18). Indeed, if Vg # 0 and if p’ € T satisfies the conclusions
of lemma for every p € Vg, ||d,F"|| < CJ}/(p) with C a global constant depending only on
£9. O

This third lemma emphasizes that Vg lies in a small neighborhood of a stable manifold and V;‘
lies in a small neighborhood of an unstable manifold, with the size of this neighborhood controlled
by the local Jacobian. It is a direct consequence of Lemma (3.6

Lemma 4.5. Localization of the V;—L. There exists a global constant C' > 0 such that for all
n € N and q € A",

(1) fV, # 0 and if p’ € T satisfies the conclusion of lemma then, for all p € V,

(4.27) d(p,Ws(p')) < <
Ta
(2) It Vf # 0 and if p' € T satisfies the conclusion of lemma in the future (namely,
d(F'(p), F'(p')) < ez for all p e V§ and i € {—n,...,—1}), then for all p € V],
C
(4.28) d(p,Waulp) = 5
q

4.4. Propagation up to local Ehrenfest time. In this section, we show that under some control
of the local Jacobian defined above, one can handle the operators Ug and prove the existence of
symbols aat (in exotic classes S5) such that

(4.29) Uq = Opy (af) T4 + O(h*)
(4.30) Uq =T 0py, (ag) + O(h™)

with symbols af supported in V. We recall that Uy = MA,,

Let us state the precise statement we will prove.

... MA, with M = T Op(a).

1

Proposition 4.2. Fix 0 < § < d; < % and Cy > 0.
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(1) For every n € N and for all q € A" satisfying
(4.31) J& < Coh™?
there exists ag € [la]|2,S5 ™ such that
(4.32) Uq = Opi (ad) T + O(h™) 12, 12
and
X + +
(4.33) suppag C Vg
(2) For every n € N and for all q € A™ satisfying
(4.34) Jg < Coh™°
there exists ag € [|[%, S5/ such that
(435) Uq = T" Opy, (aa) + O(hoo)L2_>L2
(4.36) supp ag C Vg
Remark.

e The implied constants appearing in the O(h*) are quasi-global : they have the same
dependence as global constants but depend also on Cpy,d,d;. What is important is that
they are independent of n and q as soon as the assumption (4.31) is satisfied.

(4.31) implies that VI # 0. In particular, if q satisfies this assumption, there exists a
sequence (o, ...,%,) such that for all p € {0,...,n —1},V, C D; 4, C U,
In fact, suppag C F (V,,_,) C U;,. Hence, the operator Opy, (af) acting on @;_; L*(R)
is the diagonal matrix Diag(0,...,Ops (af),...,0).
The symbol ajl has an asymptotic expansion in power of h. The principal symbol is given
by
n
(4.37) (ad)y =] can_p o F"
p=1
where a, = x4 X a. Note that if the functions a,,_, o F~7 are not necessarily well defined,
the product is well defined thanks to the assumptions on the supports of x,, namely
supp xq € V,. Indeed, such a symbol can be constructed inductively as the n-th term b,
of the sequence of functions by = ag, © F~1! and b;; is obtained from a; by the following
bi+1 = (aqi X ai) oF~1
If we assume that suppb; € V) ., then supp(aq, x b;) € F~1 (V). This property
allows us to define b; 1 and suppb;11 € V;;..‘q,_»
e The same hols for a, with principal symbol
n—1
(4.38) (aq)y = T @4, o F?
p=0

o Our proof follows the sketch of proof of [DJN21] (Section 5) and [Riv10] (Section 7).

In the end of this section, we focus on proving this proposition. We only prove the first point.
The second point can be proved similarly by using the same techniques.
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4.4.1. Iterative construction of the symbols. Let us start by a lemma combining the precise versions
of the expansion of the Moyal product (Lemma(3.1]) and of Egorov theorem (Proposition |3.3). This
lemma is the key ingredient for the iterative formulas below.

Lemma 4.6. Let ¢ € A and let a € S5”"" such that suppa € U; for some j € {1,...,J}. Then,
there exists a family of differential operators Lj , of order 2k, with smooth coefficients compactly
supported in Vg, such that for every N € N, we have the following expansion

N—-1

(439) MAq Oph(a) = Opy, (Z hk(Lk,qa) o F_1> T+ 0O (HaH02N+15hN)L2_>L2
k=0

Moreover, one has Lo, = Xq X 0 i= aq.

Remark.

o Again, since suppa C U, Opp(a) is a diagonal matrix with only one non-zero block equal
to Opp(a).

e Recall that we’ve supposed that V, C 5m As a consequence, the symbols

adq-

0" = Ligao F~!

are equal to Ly qa o (qujq)_l and are supported in Uy, : Oph(agk)) is still a diagonal
matrix.

Proof. Let us first work at the order of operators L?(R) — L?(R) and let us study :
My, OPr(Xq) OPn(a) = T, 5, OPn(@j,) Opn(xq) Opn(a)
Using Lemma we write

N-1 .1k
i"h
Opn(xq) Opn(a) = Opy < E TA(D)k(Xq ® a)|pp1p2> +0 (hNHXq ® al|pen-13)
k=0 ’

the principal term of the expansion being yga. Set aqx(p) = A(D)*(xq ® a)|p=p,=p, and use
Lemma [3.1] to write

iF1tk2 pRitke
Oph(ajq) Oph(Xq) Oph(a) = = Z W Oph (A(.D)k2 (Oéjq (024 aqykl)\p:m:m) + 0 (hN||a||CzN+13)
ki+ka<N e

The principal term in the expansion is a;, x4a. We note that

ars Z A(D)* (), ® aq,ky)lp=pr=p2
k1+ko=k

is a differential operator of order 2k. Using the precise version of Egorov theorem in Lemma (3.3
we see that for any b with supp(b) C V,,

N-1

qujq Oph(b) = Oph (b o (qujq)_l + Z hk(Dkb) o (qujq)_1> +0 (hN||b||C2N+15)
k=1

where Dy, are differential of order 2k compactly supported in V,. Applying this to the previous
expansion, we see that we can write :

N-1

Tonei, OPn(@s,) Opa(xy) Opn(a) = Opy, ((ajqxqa) o P74+ > kF(Lyg4a) 0 Fl) +0 (hM|al|can+15)
k=1

We now come to the entire matrix operator. Note that the matrix M Opy(x4) Opr(a) is of the
form

0 ... Mqu Oph(Xq) 0
Do ; : Op(a)
0 ... Mqu Oph(Xq) e 0
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Recall that WF;(Opp(xq)) C 5mqjq and WF),'(M,, ;) C Gr'(F,, ;). Hence, for m # myg,
M5, Opi(xq) = O(h™) and the previous matrix can be written

0 ... O(h*) 0 0 ... 0 .0
0 ... My, Opa(xg) --- 0[Opula)=10 ... My, Opr(xe)Opr(a) ... 0|+O0(h™)||Opn(a)||:
0 ... O(h™) .0 0 ... 0 0

With constant in O(h*°) depending on x4, M and || Opp(a)||r2—r2 = O(||al|cs). Let’s note

agk) = Liqa0 F
and observe that supp(agk)) C F(suppxg) € g7qujq. Consider a cut-off function x, such that

Xq = 1 in a neighborhood of F'(supp x,) and supp X4 C Ay, j,. Using Lemma and the support
properties of X, one has

Opn(af™) = Opa(a{”) Opr(g)+0 (B ~¥(|af™||cacv-x115 ) = Opu(al™) Opa(Rg)+0O (¥ ~F||al| s

Then, one can write Oph(agk))T on the form

0 0
Opn(@™) Opn(R) Tmyt -+ Opn(al™) Opw(Xg)Tinys | + O (BN 7F|lal|cani1s)
0 0

and for j # jg, Opn(Xq)Tm,; = O(h™°). We can conclude that

0 ... .. ... 0
Opi(a;)T=10 ... Opu(al"”) Opu(Xg)Tm,s, - 0 | +O0)][Opalai)llzzmsse + O (W [lallcas)
0 0
0 0
=10 ... Oph(agk))qujq 0l+0 (hN_k||a||C2N+13)
0 ... e ... 0
Combining this with the version obtained with My, ;. , we get (4.39). |

Let us now start the iterative construction of the symbols. Fix N € N which can be taken
arbitrarily large. Recall that we want to write

(4.40) Uq = Opy, (ad) T4 + O(h™) 2o, 1
Note U, = Uy,...q,_,- We want to write
N-1
(4.41) U, = Opy, <Z hka§k>> " + RW)
k=0

We start by writing

N-1
(4.42) Uy = Opy, (Z hkag’”) T + R

k=0
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which is possible in virtue of (4.39). To pass form U, to U,t1, we have the relation

N-1
Uppr = MA, Uy = > hW*MA, Opy (a®)) T7 + M A, RNV
k=0

So, we will construct inductively our symbols by setting

k
(4.43) o) =3 (LypgaP) o (Fipyi) ™
p=0
and
N—-1
(4.44) R} = MA, RN + 3 0 ([l | caon-w415)
k=0

The O encompasses the remainder terms in Lemma [1.39] The constants in the O only depend on
M and the x4,q € A, but not on q.

To make this construction work, we will have to prove that the symbols aﬁk) lie in a good symbol
class S5°™P.

Before reaching this step, let us just note that by induction one sees that :
[ )

N—-1r—1
(4.45) IRM|| < CnhY (1 +>3) ||a§’“)||02<N_k>+15>
k=0 1=0
with Cy depending on N, M and the a4, but neither on r nor q.
e Since L, 4, has coeflicient supported in V,, , we see by induction that supp af]i)l - V&g
as announced.

0) _ yyr+1 —p
b ar+1 - Hp:l aqT+1—p oF

e Qr

4.4.2. Control of the symbols. We aim at estimating the semi-norms |\a£k)|

and m € N. We will show the following :

cmfork< N, 1<r<mn

Proposition 4.3. For every r € {1,...,n}, k € {0,...,N — 1} and m € N, there exists C(k,m),
such that with T'y ,,, = (k+ 1)(m + k + 1),

2k+m
(4.46) [a®lem < Clhymyrtem (g )

q0---9r—1

el

Remark.

e What is important in this result is the way in which the bound depends on r and q. Up
to the term 7"'*m which is supposed to behave like O (\ log h|F’~*m), the significant part of
the estimate is that we can control the symbols by the local Jacobian.

e Since supp at® ¢ Vit 4. we need to focus on points p € V,F .

e Our method is very close to the ones developed in [Riv10] and [DJN21I]. However, we’ve
changed a few things at the cost of being less precise on the exponent I';, ,,,. Our aim was
to treat our problem as if we wanted to control the product of r triangular matrices.

Let us pick p € Vi . With (4.43]), one sees that if k,m € N, dma® depends on
q0---9r—1 r+1

dm/agk,)(F ~1(p)) for several m',k’. Before going deeper in the analysis of this dependence, let
us note two obvious facts :
e This dependence is linear, with coefficients smoothly depending on p.

o If dma£’21 depends effectively on dm/agk,)(Ffl(p)), then k' < k and 2k’ + m’ < 2k + m.
Precise analysis of the dependence. That being said, let us pick mg, kg € N. Set Ny = 2kg+mg
and consider the (column) vector

— m (k) sk
(4.47) Ar(p) = (d™af (p))kgkm%mgm SmTEU
k<ko,2k+m<Ng
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FIGURE 9. The starting point (ko,mg) is represented by a diamond. The set Z
corresponds to the couple (k,m) € N? in the region under the dotted lines k = kg
and 2k +m = Ny. We've represented a family of arrows starting from a point
~v1 € Z. The dotted arrows points toward 3 such that v2 < 1. The big red arrows
points toward points vy, such that Pnsgz =0.

Here S™TU is the spaces of m-linear symmetric form on 7,U. To define a norm on the fibers
S™T,U, we can use for f € S™T U,

flvg,...,v
(4.48) Fllm,p = sup Hony s om)
V1400, 0m €T, U ||01HP cee ||vm||P

where ||v||, for v € T,U is the norm induced by the Riemannian metric used to define J{* in
Note that for any fixed neighborhood of 7T, there exists a global constant C' > 0 such that for each
a € CF(U) supported in this neighborhood, one has

CMlallem < sup sup [|d™ allm,p < Cllallem

m’'<m peU

We will denote by 71,72, etc. elements of Z := Z(ko, mo) = {(k,m) € N2,k < ko,2k +m < Np}.

We equip Z with the lexicographic order < and note #Z := 'y, ., (see Figure E[) We order the
indices of A,(p) with <. A,(p) depends linearly on A,_1(F~1(p)) and this dependence can be
made explicit by a matrix

PO (p) = (P, (p)
so that
(4.49) Ar(p) = P (p) Ary (F(p))

Notations. If v; = (k,m),y2 = (m/, k"), p,p’ € U and if A : SmlT;,U — S™T;U is a linear
operator, we will note

Y1,72€T T2

H ) ||'Y1,p,'72,p/

its subordinate norm for the norms defined by (|4.48).

Analyzing (4.43), it turns out that if v; = (k,m),v2 = (¥, m’) € Z, then
o if k' >k P (p)=0;

 where PU), (p) € L(S™ Tj1 () U, STT3U )} if = (kym), 3 = (K, )
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e if k=K', the contribution to dmagk)(p) of agi)l comes from
m k -
d™ ((ag,_,al”) o F71) (p)
=aq_, (F7'(p)) xd™ (a?(ak_)l o F_l) (p) + (derivatives of order stricly less than m for afnk_)l)
_ _ @m m (k _ .
= ag_, (F7(p)) x ("dF~1(p))"" d™al), (F7(p)) + (idem)
In particular, if y1 = (k,m) < 72 = (k, m’) doesn’t hold, we see that Pv(fiz (p)=0.
o If k' < k, we can have Pv(f%z (p) # 0 with m’ > m. But, the use of the lexicographic order
ensures that y; < 72 in that case.

Hence, P(")(p) is a lower triangular matrix and the diagonal coefficients for the index v, = (k,m)
are given by

(4.50) P (p): f € S™"Thor (U aq,_, (F~1(p)) x ("dF~Y(p))"" f € S"T:U
Iterating 7 we have
Ar(p) = P ()P (F~Y(p)) ... PD (F=02(p)) Ay (F'"(p))
For v € 7, we note
EM={F=0n-w €T Y =7% <%t}

The triangular property of P allows us to write :

FIGURE 10. We’ve represented the reduction of an element 7 € &.(ko,mo), ie,
the arrows between ~; and ;41 when ~; # v;41. During the descent, the value of
m can only increase when k decreases strictly.

(Ar(p)), = > P (0) - P, (F072(0) (Au (F 7 (0)),
FeE(y)

1
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Control of individual terms. Let us fix v = (k,m) and pick 7 € &.(y). We wish to analyze
the operator

Py (p) = P20, (0) - P, (F72(p)
First of all, #{i € {1,...,7 — 1}, %41 # Vi} < Tkg.mo- S0 let us write
fie{l,...or =1y #wt={t1 < - <tq}

with d < T'yy m,- We can set tq41 = r,t9p = 0 and we can rewrite

; = (613"'7ﬂ17ﬂ27" '752;"'aBdV"35d76d+17"'7ﬂd+1)
—_———— ——— —_—— — o —
t1 to—t1 ta—tg—1 tay1—ta

For p € {1,...,d + 1}, we introduce the operator
tp —(r— p—112 —(r—tp—1—
Dylp) = Py, (F-070(p)) o By 2 (P20 2p)

and for p € {1,...,d}

pt1 —(r—t,—
To(p) = Py ll, (F~0=71(p)

so that we can write

P5(p) = Da+1(p)Ta(p)Da(p) - .- T1(p)D1(p)
For pe{1,...,d+ 1}, if 8, = (k,m), we can see that

tp—1

D)= | I a0 P D()| [(dF (F-0(p))) " 0o (far=t (Pt =2(p)) )7
Li=tp—1+1

tp—1

- H ag, © F—(?“—j)(p) (tdF—(tp—tpfl—l) (F—(r—tp)(p)>>

_j:tpfl"l‘l

Xm

We introduce the word
Ap = Gty - - - qt,—1

and set p, = F~("=%)(p), p! = F~(t»=t»-1=1)(p ). To estimate the subordinate norm of Dy (p), we
use Lemma Since p € V('f ,Pp € V&"p and we have

tp—1

[1 o F 00| sup [[dF===0(p,) "

1 Do (P)18y.00,8p.01,
J=ty_1+1 PrEVA,

tp—1

<(e)"| T awor o0

A

No o
< Croymo (J;'p) H ag, o F (r=3)(p)
=ty o1+l
To estimate the norms of T, (p), we simply note that they depend smoothly on p, which lies in
a compact set, so we can bound them by a uniform constant Cy. This is not a problem since they
appear d times in Pz with d < T’y ,,. Consequently, we can estimate ||P= (p)]

V071, F= (=1 (p)»

No N
(4'51) ‘|P7(/0)||v,p,’yl,F*<T*1>(p) < Oko,mo (‘];_1 s J;dJrl) |aq,7(p)| < Ckoﬂno (J;_) ’ |aq,7(p)|

where

d+1  tp—1

(4.52) a7 =11 I @4oF

p=1j=tp_1+1

Here, the last inequality holds by applying d times (4.24), with d < Ty, ,, once we’ve noted that

q=4d1..-9d+1
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Finally, if vy = (k1,m1), to estimate || (Al (Fl’r(p)))w1 [m,,71-7(p), We simply note that it depends
smoothly on F'~"(p), so that we can bound it by a uniform constant. Hence, we have

(4.53) 1P () A1 (7 (9)) llmp < Chomo (J3) ™ lag, 7 (0)]

Cardinality of &.(y). The bound we will provide is far from being optimal but it will turn out to
be enough for our purpose. To count the number of elements in &.(), we remark that it is similar
than counting the number of decreasing sequences of length r starting from ~. This number is
smaller than the number of increasing sequences of length 7 in {1,..., T, m, } - Recalling that the
number of sequences u; < us < --- < u, satisfying u; = 1 and u,, = b is equal to (b‘K;Z), one can
estimate

Crg,m
' (b+r—2

(4.54) ENOED ( i )érko,mo(rl)“w
b=1

Finally, we can compute explicitly Tk, m, and we find Tk, m, = (ko + 1)(mo + 1 + ko).

Conclusion. We finally combine (4.54) and (4.53|) to prove Proposition Recall that |a4| =
|alxq < lledloo-

sup Hdmoagk())”mo,p = sup (Ar(p))(ko,mo) [lmo.p
PEVqq...ap_1 PEVqg...ar_1

< Y P2(AL (FT(0) llmow
5 €& (ko,mo)
< Thg o™ 070 Chg o (J3) ™ g5 (0)]
< Crgmor™omo (J)™ ([0l 5
Finally, we get as expected
[k [gmo < Chgymgr™ 070 (J) ™ ([ 5

4.4.3. End of proof of proposition [{.4 Armed with these estimates, we are now able to conclude
the proof of Proposition under the assumptions (4.31)). Assume that this assumption is satisfied

and construct inductively the symbols a&k) with the formula lj Since J;‘ < Ch~°, it implies
that n = O(log h). Hence, we have for r < n,

a9 llem < i~ h=2 log P 5, < Ciosh™ 5™ =25 ol
The symbol h291%¢{¥) lies in llal[5e S5, ™" (T*R). Using Borel’s theorem with the parameter h’ =
h'=2%1 we can construct a symbol

o0

o0
s D = 5l € ol 5
k=0 k=0

that is, for every N € N,

ads a I—Zh’“ =0 (h*=2N|a||1,)
(k)

By construction of the a,;’, for every N € N, we have
_ Oph(a;r)T‘q‘ =RM) —i—O( (1=260)] || |1, )

Fix some K > 0 such that min(1,]||a||”) = O(h~K), so that ||a|%, = O(k~K). With - and
our estimates, we can control

HR’SLN)H < CNhN (1 + ‘ logh\rk*m+1h7§(2N+l5)h7K> < CNh71551+N(17261)7K
Since we can choose IV as large as we want, we have finally proved that
— Opi(ad) T = O(h™)
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4.4.4. Norm of sums over many words. We’ll make use of the tools and notations developed in
this subsection to prove the following proposition. To state it, we introduce the notations

(4.55) Q(n,7,Co) ={a € A" Jg < Coh ™"}

Proposition 4.4. There exists C = C(Cy, 7) such that for every Q C Q(n, 7, Cy), the following
bound holds :

(4.56) > Uq < Cllal["[1og |
qeQ L2512

Proof. Throughout the proof, we’ll denote by C' quasi-global constants, i.e. constants depending
on Cy, 7 and the same other parameters as global constants. We will also be lead to use a constant
C1: it has the same dependence.

Step 1: First note that since J < Coh™7, n satisfies the bound n = O(log h).

Step 2 : If q € Q(n,T,Cy), denote by I(q) = the largest integer such that
J+ < h—T/Q

q0---q1—1 —
Since Jy,..q > h~7/%, J& > Ch~™/? and hence
h—T
ot S Cq—— S a2
o JQO'HQZ—I

We can then write q = sr with s € Q(I,7/2,1),r € Q(n —1,7/2,C1). It follows that we can write

> Uq= Zn: > Fy(s, ) U Uy

qeQ =1 seQ(l,7/2,1)
reQ(n—1,7/2,Cq)

with Fi(s,r) = lsreg. It is then enough to show the bound

(4.57) max > Fy(s,r)U:Us|| < Ol

1<i<n
s€eQ(l,7/2,1)
reQ(n—1,7/2,C1)

In the following, we fix some 1 <[ < n and we’ll simply note ) _ _ to alleviate the notations. Note
that the number of terms in the sum is bounded by

1O, 7/2,1) x Q(n — 1,7/2,C1)| < | x |4 < |A]" < b0
where @ = C'log |A|.

Step 3: We fix some large N € N and ¢; € (7/2,1/2). Recall that we can write,

N-1
Us = (Oph (Z hk@@) +Or2,02 (h(1251)N1551|04||f>o)> T

k=0
N-1
Up =T (Oph (Z hka§k>> + 02,2 (h<1—251>N—1551||a||go—l)>
k=0

with bounds on agk) and a,(rk) given by Proposition
We then use the formula for the composition of operators in W§”""(T*R) (Lemma and for

simplicity, we note L (a,b)(p) = %(A(D))k(a ®b)(p,p). For 0 <k < N —1, we set
dori = X L () al)
Jk—+ki=k
Note that if j +k_ +ky > N,
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la) @ alflgzivis < C; sup [lal"||om- |0l ||oms
mi+m_=2j+13

< Oj,k_,k+h7(2k7+m7)61 h7(2k,+m+)61 | |a| ‘go
< G oy h2NUTR=HRD =10 |1

< Cj,k,,k+h_261 N—1361 | ‘04”20
and henceforth,
O (R Rtk |[alF=) @ aF+)| | casia ) = O (RO20ON =130 o2 )

As a consequence, we can write

N-1
UpUs =T (Oph (Z hk@s,r,k)) T'+Op2yp2 (h<1_261)N_1561||04||go)
k=0

It follows that

N-1
Z UU, = -l (Oph (Z hka(k)>> T + Oz e (h(1_261)N_1561_Q||aH2’0)
s,r k=0

where

(4.58) a® =3 " F(s,r)asr i

Suppose that N has been chosen such that
(1 —261)N > 1561 + Q
The remainder term is thus controlled by the desired bound since it is of order O(]|a||%).

Step 4: C° norm of a(®).

a® = Z F(s,r)a®a®

where, in virtue of (4.37)) and (4.38)),

n—Il—1

l
0) — —p. 40 _ P
ag’ = as,_, o F7V 5 ay’ = ar, o F
p:l p:O
As a consequence, we can estimate

a1 <> [l

l n—Ii—1
<TIL D lagl o2 I ( D lagl | o FP
p=1 \ q€A p=0 geA
< led[%

Step 5 : C™ norms of a'®). We will show the following : there exists constants Cl,m (depending
only on Cy, 01,7 and m, k) such that for all 0 < k < N — 1 and m € N,

(4.59) la®]|cm < Chmh™@FEmn|ja]|n
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Let’s compute :

Ha(k)Hcm < Z ||as,r,k||0m

S SR PAEERC]

. an
Sx jtki+hk_=k
(k-) (k+)
S Z Z Har ® s C2i+m
s jtki+hk_=k
< a(/u)H ’ alk+) ‘
- Z . Z ‘ r Cm,7 S Cm/+
s,r jtky+k_=k
my+m_<m+2j5
and hence
(4.60) l|a®[|gm < C sup ' a(k*)H ‘ alk+) '
" jthatho =k 2| cr= s lems

s

mi+m_<m-+2j

Let us fix j, k4, k—,my, m_ satisfying j + k+ + k— = k,m_ +m4 <m + 25 and let us estimate
> [al | % 2
S r

We estimate the sum over s. The same kind of estimates will hold for r with the same methods. We
reuse the tools developed in the last subsections. Namely, we set N. = 2k +m_, vy = (ky, m4),
Z =7Z(y4+) and

agk” ‘

o]

cm—

— (qgm, (k)
(As(p)) = (d g >k;gk+,2k+m§N+

We have shown that there exists a global constant C' > 0 such that

lal"llgms < SL;pIIAs(p)II <c > P30

Je&(vy)
N
< Y Onen U lar )
Fe&i ()
<On N2 S a2 ()

Feli(r4)

where Civ, ., depends on Cy, 7, N1, ky and global parameters. We hence have to estimate

Y lasz(p)

s Fe&ilvy)
Fix 7 € & (o) and write it
7 = (617"'7ﬂ17627"',62a"'75d7"'7ﬁd76d+1a--- ;Bd+l> where d S Fk:+,m+
—_— e N—— —_———
t1 ta—t1 ta—td—1 ta+1—td
and recall that
d+1 tp_l

ag =5 = H H as; © F=(=9)

p=1j=tp_1+1

When one sums over s € A, the values of s at the indices ¢;,1 < i < d do not play a role and we
write :
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2 leazl= 3 - S I Tf (}:mg>oF<lﬂ

st €A sy €Ap=1j=tp_1+1 \s€A

l
|A|? sup ( > as|>
p

scA
< KT flallh, < oy, lallly

IN

As a consequence,

YD laszl S #E()Ck m el < Oy (1= 1) [lalll,
s Fe&i(vy)
which gives

¥

where the last inequality (with a different value of Cy . ) follows from the fact that [ = O(log h)
and ¢; > 5. The same kind of estimates holds for the sum over r :

2l

Eventually, using (4.60)), we get (4.59) since
N++N, :2k++m++2k,+m, S 2(k++k,+])+m:2k—|—m

Step 6 : Conclusion. We can conclude the proof of the Proposition The bound (4.59) shows
that for 0 <k < N — 1, a®) € h=2%||a||7 S5°F and thus SV hEak) e S5 |||, - From the
L2-boundedness of pseudodifferential operators with symbol in S, ,

N-1 N-1 N-1
Oph <Z hka(k)> < Z Z hk+m/2||a(k)| om < Z Z Ck’mh(k?+2m)(1/2761)||aHTOLO < CHO‘HZO

k=0 k=0 m<M k=0 m<M

agk+)

oy S iy T2 = 1) [allly < Oy ™0V ol

< Cr_n =N [lal[i

where C' depends only on Cy, 7, d1. Since ||T|| < 1, we get

ZF(S7r)UrUS < Cllal|%

s,r
which concludes the proof of Proposition [£.4] O
4.5. Manipulations of the U,.

4.5.1. First consequences. We now make use of Proposition to deduce several important facts.
We go on following [DJN21]. In the whole subsection, we fix 0 < § < §; < % and Cy > 0. We
denote A7 =,y A"

Remark. The constants in O(h*°) depend on p and q only through Cjy,d,d1, not on the precise
value of p and q. It will always be the case in the following and we won’t precise it anymore. As
already done, all the quasi-global constants (i.e. depending on global parameters and Cy,d, 7, d1)
will be noted by the letter C.
Lemma 4.7. Let q,p € A7 satisfying VI NV, =0 and max(JS,J, ) < Coh™%. Then
UpUq = O(h™) 212

Proof. In virtue of Proposition [I.2] we can write

Up = T Op(ag) + O(h™)

Uq = Opu(ad)T!9 + O(h>)
With af € ||a\|‘£>‘5§fmp,a; € Ha||L%IS§fmp and suppa, C V, ,suppag C V. Since Vi NV, =0,
Opn(a;, ) Opn(ad) = O(h™) as a consequence of the composition of two symbols of Ss,. The

constants in O(h*) depend on semi-norms of these symbols, themselves depending on Cy, T, d;.
Since T™ = O(1), the result is proved. O
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Lemma [£.7) will have interesting consequences, starting with the following lemma which enables
use to get rid (that is to say to control by O(h*)) of words q where V(f = (), under some assump-
tions. In particular, it can be applied without trouble to words of "small" lengths N < ﬁ| log h|,
what could also be deduced from applying Egorov’s theorem up to the global Ehrenfest time

i\logh\.

Lemma 4.8. Let q € A7 such that n = |q] < Cg|logh| and assume that Vg = 0. We suppose
that one of the above assumptions is satisfied :

(i) Em=max{ke{l,....n}Vo o #0} Jo g, < Coh™2.

(ii) I =min{k € {0,...,n =1}V, . #0} J, . <Coh™.

Then, Uq = O(h™).

qn—

Proof. We prove this lemma under assumption (i). This is similar under (ii). We note m =
max{k € {1,...,n},V, . #0}and assume J . < Coh™?. Due to (4.12)), it is enough to
show that Uy,..q, = O(h™). Let us denote | = max{k € {1,...,m},J . < h7°} and notice
> h—o. According to

that [ < m (if h is small enough). By maximality of [, it is clear that J
the third point of Lemma

-q

-
_ qo---dm—1 -4

Jql+1~~'q”:.—1 ~ 7 <Ch
qo---q1

Set p=gqi.-.qmn.- We distinguish now between two cases

» V, #0: Wesetr=gqo...q1. It follows that
max(Jy, J;) < Ch™°
Moreover,
_ 1 _
Vo Ny =F (qumqm> =0
By Lemma [1.7, UpUy = Uyy..q,, = O(R™).
» V, = 0 : This time, we have max(J, , ,J; ) < Ch~? and Vo, NV =0
According to Lemma Ug..onn = Uqg, Ug,. = O(h™). It follows that Uy, 4, =
O(h®).

dm—1

]

4.5.2. Orthogonality of the Uq. We now focus on terms UqU}; and UgUp when VI and Vi are
disjoint, under growth conditions of the Jacobian. The following result shows that the operators
Uq and Uy are (up to O(h*)) orthogonal. These estimates will turn out to be important to apply
Cotlar-Stein type estimates.

Proposition 4.5. Assume that q,p € A~ are two words of same length |q| = |p| = n satisfying
V& nVE =0 and max(JS, JJ) < Coh™2°. Then,

a>“p
UqUp = O(h™)
UqUp = O(h™)
Before proving it, we need the following lemma, whose proof relies on the iterative construction
of the symbols a;;E.

Lemma 4.9. Assume that q,p € A~ are two words of same length |q| = |p| = n satisfying
max(Jg§, JF) < Coh™°. Then,

UqUp = Oph(a;) Oph(a;)* + O(h™)

UqUp = Opi(ag)* Opn(a, ) + O(h™)

Proof. (of the lemma) We prove the first equality. The second one could be treated similarly.
Recall the construction procedure of the subsection [£:4] We adopt the same notations. We will
show by induction on r € {0,...,n — 1} that :

V, =U, U* = Oph(a:;)mqril) Oph(a$.,,pr71)* + O(h™)

0--9r—1~po...Pr—1

The case r = 1 follows from
MAG, A, M* = Oph(a;;O)TT* Oph(a;fo)* +O0(h™) = Oph(a;)) Oph(a;'o)* + O(h™)
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where we use the fact that T7* = I + O(h®) microlocally in V;O, Assume that the assumption is
satisfied for r, namely :

V. = Opa(ag, ,,_,) Opalay, )+ O(r™)

Po.-Pr1
and let’s prove it for r + 1.
Vigr = MA, V. Ay M*
=MA,, Oph(a;;_”qr_l) Opn(a) )*AL M r + O(h™)

Po---Pr—1
= Oph(a;c)qu)TT* Oph(a;)...p,,>* + O(h*™)
= Opn(at . )Opnla) )+ O(h™)

The last equality follows from TT* = I + O(h>) microlocally in V" and the one before is due to

the recursive construction of the symbols a/f . in the subsection

gr

O

Proof. (of the proposition) Let us begin with the first equality. Consider the largest integer ! such

that
+ + -4
maX(JQOMCIL—l’ Jp0~~pl,—1) S h

We set q.- =qo...q—1 and q_s = ¢q; ... ¢n_1, and the same notations for p. We obviously have :

UqU;; = Uq  Uq, U; U

A<~ P P
We then consider two cases,

» Vi NVl =0: we may write

Uq. Uj_ =T'Opulag, ) Opn(ag, )*T" + O(h™)

U « P

Since, Vg, NV, _ = 0, we can use the composition formula in S5 to conclude that
Oph(aq, ) Opnlag, )* = O(h>), which gives the desire result, recalling that Ug = O(1).
> V(;_ N V;;_ # () : in this case, we use the previous lemma and we can write

Uy U: = Oph(aa“&) Oph(a;l)* + O(h™)

B g o P
In virtue of the se;cond point of L(?mma J;; ~ JI‘,'L. Moreover, by maximality of [,
. + — + —
either Jg_, >h"%or Jg_, >h° But
+ +
Jaca ~ Ja.

Hence, J;(_ ~ h~°%. Using now the third point of Lemma we conclude that
-+ + -6
Jq—> ~ JP—» ~h
This estimate allows us to write

UqUy = T~ Opnlag_,) Opalag, ) Opu(ag,_)* Opa(ag )" (T%)" ™" + O(h™)

q+ P~

with all the symbols in A~ 55" for some M > 0. To conclude, we use the composition
formula in this symbol class, noting that

— — 1 — —
V‘jl:—mvflamv;:—mvPﬁ:F(quvp):®
To deal with the second equality, we consider the smallest integer [ such that :

+ + -5
ma’X(Jqln-q”—l ’ Jpl---pn,fl) S h

As before, we write q.. = ¢o...q—1 and q_, = q;...¢n_1, and the same notations for p. We
obviously have :

UiUp = Ugs Ul Up Uy,

We distinguish the cases V(;: N V;JL = () or not and argue similarly. ]



56 LUCAS VACOSSIN

4.6. Reduction to sub-words with precise growth of their Jacobian. Recall that we are
interested in a decay bound for |[IMNoTM || where M = M(Id—A) = > gea M Ay For this

purpose, we decompose MV = quAwl Ug.
If ¢ € AN, either VJ = (), and in this case JJ = 400, or VS # (), which implies that
J;‘ > MmNt > p=1 > h=7. In both cases, the following integer is well defined :

(4.61) n(q) = max{k € {1, N1}, J;;Vlikqulfl <h7T}

We then set g = qn,—n(g)—1---qn,—1. The case Vg, = 0 is irrelevant. Indeed, if q € AN and if
Vq. = 0, then Uq = O(h*), as an obvious consequence of Lemma Then, we set

(4.62) Q={aec AV, vy, #0}
so that, due to the fact that |AN| = O(h=M), for some M > 0, we have
MmNt =3 " Uq+O(h™)
qeQ

We partition @ in function of the length of q, and the value of gy, —1. Namely, we set

Qo(n,a) ={q € Q;las| = n,qn,—1 = a}
We finally set Q(n,a) = {a,-,q € Qo(n,a)} which is simply the set of words q € A™ such that
Gn—1 =aand Jf - <h™T < Jf. Note that every word q € Qo(n,a) can be written in the
form q = rp with p € Q(n,a) and r € AN =", We deduce that, modulo O(h>°),

5 I I

n=1a€AqeQo(n.a)

Y Y b

n=1a€A peQ(n,a)
reAN1—

S vl )me

n=lacA \ q€Q(n,a)

As a consequence, we get

Ni—n
(4.63) NN | < CNy[A] sup [N Um0l (edlloo) ™
1<n<N;
acA
where we’ve noted

(4.64) Ugna) =, Uq

q€Q(n,a)

Since N1 = O(log h), the proof of (4.14]) is the reduced to prove :
Proposition 4.6. There exists v > 0 such that, for A small enough, we have

omNo
M < WY

4.65
(465) ™ =

1<n<N;

acA
4.7. Partition into clouds. We fix 1 < n < N; and a € A. We aim at gathering pieces of
omiNo Ug(n,a) into clouds and we want these clouds to interact (with a meaning we will define further)

with only a finite and uniform number of other clouds, so that the global norm of ||9n™o Ug(n,a)ll
can be deduced from a uniform bound for each cloud.

Recall that §p and 7 (see (4.2)), (4.3) and (4.5))) have be chosen such that
b+d<l;b<T

We start by defining a notion of closeness between two words q,p € Q(n,a). We choose e2 as
in Lemma [£.2]
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FIGURE 11. Two words q,p € Q(n,a) are close to each other if VJ and VT lie in
the hP-neighborhood of the same unstable leaves, as stated in Definition

Definition 4.1. Let q,p € Q(n,a). We say that these two words are close to each other if there
exists pg € T N F (V,(e2)) such that :

Vp € Vg VS, dp, Wulpo)) < h°
Otherwise, we say that q and p are far from each other.

Remark. By definition of V}, if q € Q(n,a) and if p € V}, p does not lie in V,, but F~!(p)
does. Hence, we work with F'(V,) instead of V,. Moreover, the set F' (V,(e2)) is chosen to fit well
in the computations below and in particular in the proof of Lemma We could replace it by
V. (Ces), where C' is any Lipschitz constant for F.

The important fact on words far from each other is that the associated operator 9t™No Uq are
almost orthogonal :

Proposition 4.7. Assume that q,p € Q(n,a) are far from each other. Then,
(4.66) (MMoUg)" (MMUp) = O(h™)
(4.67) (MMoUg) (M¥Ug)" = O(h)

We will need the following lemma.

Lemma 4.10. If q,p € Q(n, a) are far from each other, there exist words p1, g1, p2,qz such that
- [p1] = laul, [p2| = |az] ;
- 4=4d192,P = P1P2 ;
- VLNV, =0
- max(J3,, J,) < Ch~® (for some global constant C' > 0).
In particular, VS NV =0

Let’s momentarily admit it and prove the proposition.

Proof. (of the proposition). Fix q,p € Q(n,a) far from each other. Since Vi NVI = 0,UqU};
O(h®) in virtue of Proposition Hence, using the polynomial bounrds ||9™°|| = O(h=M) (for
some M > 0), we have
(MNoUy) (MNU,)" = O(h™)
To prove the first point, we write
(MNoUg)" (MU = Y UL UG, Uz UbUp,Up,
s,teANo

Hence, it is enough to show that Uy, UsUsUp, = O(h>) uniformly in s,t. To do so, we note that

Vazs MVpat C YV (Vi 0 V) =0

M Nop—b —(0+b
Jas S CITIS, < CeMNop=0 < op=00t0)

It < Ch=(ot0)
and apply Proposition with § = ‘sOTJFb < 1/2 (here we use the condition ) |

We now prove the lemma.
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Proof. (of the lemma) Consider q,p € Q(n,a) far from each other. Consider the smallest integer
m such that V&~ NV 0. We will show that m > 0 and set p2 = pp—1..-Pn-1,92 =
Gm-1---Qn-1- Pickp eV}~ nV}f . By choice of e after Lemma there exists pg € T
such that d(F~%(p), F~%(po)) < ez for i € {1,...,n —m}. In particular, d(F~1(p), F~1(po)) < ez
and F~1(p) € V,, so that py € F (V,(g2)). Since, q,p are far from each other, there exists
p1 € V& UV such that d(p1, Wy(po)) > h® (otherwise, it would contradict the definition .

Suppose for instance that p; € Vi < Vi . Hence, d(F~"(po), F~"(p1)) < 2g¢ + & for

i€{l,...,n—m}. From (3.17), d(p1, Wu(po)) < C(J;‘_m(po)fl and hence, J?"™(pg) < Ch~".

But, J2 "™ (pg) ~ J;,L,..pwl ~ J;"mqnfl, which gives

max (J;_MH-pn—l ’ J;;n~~Qn—1) S Ch_b
Since min(J&, JF) > h™" > h™° (here we use (4.5)), we cannot have m = 0 (if » small enough).
Thus, we can set p2 = Pym—1---Pn-1, 42 = Gm—1 - - - gn—1 Which satisfy the required properties by
minimality of m. 0

We now decompose Ug(y,q) into a sum of operators, each of them corresponding to a cloud of
words. In the following, we’ll use the term cloud to mean a subset @ C Q(n,a) and we’ll adopt

the notation
+ _ +
VQ - U Vq

qeQ
and the definition :

Definition 4.2. We say that two clouds Q1, Qs do not interact if for all couples (q1,q2) € Q1 x Qq,
q1 and qo are far from each other.

The existence of such a decomposition follows from the key proposition :

Proposition 4.8. Suppose ¢¢ is small enough.
There exists a partition of Q(n,a) into clouds Qy,...,Q, and a global constant C' > 0 such
that, fori=1,...,r,
i) there exists p; € T such that for all p € VJQ:,, d(p, Wu(pi)) < Ch® ;
ii) if Q; interacts with exactly ¢; clouds, then ¢; < C'.

Remark. Actually, » and the clouds Q; depend on n and a. We do not write this dependence
explicitly here to make the notations lighter. The second point is relevant since a priori, the only
obvious bound on r = r(n,a) is |r| < |A|", where n = O(logh).

Proof. Keeping in mind that for all q € Q(n,a), Vi C V,f, we fix p, € V[ If & is small enough,
V. do not intersect the boundaries of W(p,) and W, (pqa)-

For q € Q(n,a), there exists pq € T such that d(F~*(p), F~*(pq)) < €3 for all p € V and for
1 =1,...,n, according to Lemma and since J;r ~ hT,

d(p, Wu(pa)) < Ch™T
d(pa, pq) < C(e2 + €0) and hence, if ¢ is small enough, zq = H}' (pq) (here, H} : B(pa,en) —
Ws(pe)) is the unstable holonomy map defined before Lemma is well defined, and depends
Lipschitz-continuously on pq (with global Lipschitz constant).

Next, consider a maximal subset {z1,...,2,} C {2q,9 € Q(n,a)} which is h® separated. By
maximality, for every q € Q(n,a), there exists i € {1,...,7} such that |z — 24| < h® and we use
these z; to partition Q(n,a) into clouds Q; where for i € {1,...,7}, [2; — zq| < h® for all q € Q;.
We now show that this partition satisfies the required properties.

Let ¢ € {1,...,7}, g € Q; and p € VJ. By local uniqueness of the unstable leaves, we may
assume that ey is small enough so that W, (pq) NV = Wy (2q) NV, . Hence,

d(p,Wu(zq)) < Ch™7
Since the unstable leaves depend Lipschitz-continuously on p € T, we have
d(p, Wu(2:)) < Clzi — 24| + Cd(p, Wa(2q)) < Ch® + Ch™ < Ch®
This gives i).
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FIGURE 12. We gather the 6 small sets Vg into 3 clouds corresponding to z1, 22
and zZ3. Here, Ql = {ql}, QQ = {(]2,(]3,q4}7 Q3 = {q5,q6}. The clouds Ql and
Q. interact. The dotted lines draw tubes of width Ch® around the unstable leaves
Wy (2;). The sets Vq have width of order A7.

To show ii), suppose that Q; and Q; interact. Then, there exists (q,p) € Q; x Q; and py € T
such that for all p € VI UVE, d(p, Wu(po)) < k. Tt follows that d(zq, Wu(po)) < Ch™ +h* < ChP
and if we note zo = HY (po) the unique point in W, (po) N Wi (pa) then |zg — zq| < Ch®. The same
is true for p and we have |zq — zp| < Ch® and eventually, |z; — z;| < Ch®. Since 21,..., 2, are
hb separated, we see after rescaling that the number of j such that Q; and Q; interact is smaller
than the maximal number of points in B(0, C') which are 1-separated (one can for instance bound
it by (2C + 1)?, but what matters is that it is a global constant). O

This partition into clouds allows us to decompose 9tVo UQ(n,q) into a sum of operators
(4.68) By =mNoUg, = Y mMNUy 5 MNUga =D Bi

qQeQ; =1

The use of Cotlar-Stein theorem ([Zwo12]), Theorem C.5) reduces the control of the sum by the
control of individual clouds :

Lemma 4.11. With the above notations, there exists a global constant C' > 0 such that
(4.69) 9 Ugall <€ sup [|Bil] +O(h)

Proof. Cotlar-Stein theorem reduces to control
max Y ||B; B |
J
max Y 1B, B; |
J
Fixie{l,...,r}.

If Q; and Q; do not interact, ||B}B;||'/? (resp. ||B;B;||'/?) is a sum of terms of the form
(S)ZRNDUq)Hk (MNoU) (resp. (MNoUyg) (EDTNOUP)*) where p and q are far from each other. In



60 LUCAS VACOSSIN

virtue of Proposition these terms are uniformly O(h°°) and since the number of terms in the
sum grows at most polynomially with h, we can gather all these terms in a single uniform O(h*°).
As a consequence, we have

> BB < > 187 B;|'/? + O(h*)
j

Q; and Q) interact
< Y max||Bl|+O0(h%)
Q; and Q; interact

< Cm]?xHBkH + O(h™)
and the same holds for the second sum. This gives the desired inequalities. |

The proof of (4.14) and, as a consequence, of Proposition is then reduced to the proof of

Proposition 4.9. There exists v > 0 such that the following holds for A small enough. Assume
that @ C Q(n,a) satisfies, for some global constant C' > 0,

oo €T, VpeVh, dlp,Wu(po)) < Ch®
where b = ﬁ is defined in 1) Then,

vl _
ol =

5. REDUCTION TO A FRACTAL UNCERTAINTY PRINCIPLE VIA MICROLOCALIZATION PROPERTIES

In this section, we reduce the proof of Proposition [4.9) to a fractal uncertainty principle. To
do so, we aim at showing microlocalization properties of the operators involved. The disymmetry
between Ny and Nj in the decomposition N = Ny + N; will appear clearly in this section. Since
Ny is below the Ehrenfest time, we can actually use semiclassical tools. By contrast, things are
more complicated for operators Ug, with q € Q(n,a) and we’ll use methods of propagation of
Lagrangian leaves. These methods are inspired by [ANO7D|, [ANO7a] and [NZ09] and are also used
in [DJN21].

5.1. Microlocalziation of 9™¥o. We first state a microlocalization result for 9t™¥o. This is the
easiest one to obtain since Ny is below the Ehrenfest time. We recall the definition of 7_ the set
of the future trapped points

T =()F"(U)
neN

and focus on 71°¢ := T_ N T (4eg). T_ is laminated by the weak global stable leaves. Hence, if ¢ is
small enough, ensuring that the boundaries of the local stable leaves W (p), p € T do not intersect
T (4ep), we have

T C U Wi(p)

pET

A
When q € AN and Vg # @,V; lies in a O (h6°ﬁ> neighborhood of a stable leaves, as stated in

the following lemma. In the following, we write

Ao
1 =
(5.1) d2 = do N

We recall that we have defined b in (4.2) and 7 in (4.6) such that « < 7 < 1 and d + 7 > 1 (see
. Moreover, Ny = fi—(” log hl].

Lemma 5.1. There exists a global constant Cy > 0 such that for all q € AN satisfying Vq # 0,
d (Vy,T°) < Coh®

Remark. In the end of this section, the use of Cy will always refer to the constant appearing in
this lemma. On other places, we keep our convention on global constants, noting them always C.
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Proof. We already know by Lemma that there exists C' > 0 such that if Vg # (), there exists
po € T such that

C
d (V(; Ws(po)) < ?
q

A
But Jg > eroNo > O %% Finally, d(V;,TiOC) < Ch%2, as required. ]

The following lemma allows us to construct symbols in nice symbol classes with supports in k%
neighborhood. Its proof can be found in [DZI16] (Lemma 3.3).

Let Vo(h) C Vi(h) C RY be sets depending on h and

Lemma 5.2. Let ¢ > 0 and § € [0, 5.
h)¢) > eh?. Then, there exist a family y, € C°(R?) such

assume that for 0 < h < 1,d(Vo(h), V1
that, for all h < 1,
o xp =1on Vy(h);
e supp x C Vi(h).
e For every o € N, there exists C, depending only on ¢ such that for all 2 € R? and for all
0<h<1,

L
(

10 xn(2)| < Cah™l

Applying this lemma with Vo(h) = 72°¢ (2C2h%), Vi(h) = T¢ (4C3h%) with & = 2Cs, we
consider a family of smooth cut-offs x;, € S5 and we can consider it as an element of Sg"""(U)
since (at least for h small enough) the support of x; is included in U. We are now ready to state
the microlocalization property of 9t™o.

Proposition 5.1.
(5.2) Mo = MY Opp(xn) + O(h™) r2(vy—r2(v)

Proof. We need to show that 9tV (Opp(1 — x1)) = O(h*>®). To do so, we decompose MNo =
qu ano Uq. Since the number of terms in this sum grows polynomially with h, it is enough to
show that

Vg € AN, Uq(Opp(1 — x1)) = O(h™)
with bounds uniform in q. We then consider two cases :

> Vg =0: Lemma applies. Indeed, if m < Ng and V, , ~ #0, we have

q

J(;)..'qWI_l S 6771)\1 S eNo)\l S Ch*éo

Hence, Uy = O(h®), with global constants in the O(h>).

» Vg # 0 : We apply Proposition Since Jg < CeMNo < Ch=0% we take some 0; €], %[
(in particular, d; < 61) and we can write Ugq = T™° Opy(ag )+ O(h*) with ag € S57""(U)
and suppag C Vg . Noticing that x, =1on Vg C T loc (202h52), the composition formula
in S57"" implies that Opy(ag) Opa(l — xn) = O(h™). Since the seminorms of ag are
uniformly bounded in q, the constants appearing in O(h*°) are uniform in q.

This concludes the proof. O

5.2. Propagation of Lagrangian leaves and Lagrangian states. So as to study the mi-
crolocalization of Ug, we’ll use the same strategy as in [DJN21|, themselves inspired by [ANO7b],
[ANO7a| and [NZ09]. We cannot show that Uq is a Fourier integral operator since the propaga-
tion goes behind the Ehrenfest time. Instead, we show a weaker result which will be enough for
our purpose. The idea is to decompose a state u in a sum of Lagrangian states associated with
Lagrangian leaves almost parallel to unstable leaves, what we will call horizontal leaves (because
we will consider them in charts where the unstable leaves are close to be horizontal). Studying
the precise behavior of these states, we can get fine information on the microlocalization of Uqu.
Roughly speaking, we’ll show that if u is a Lagrangian state associated with an original horizontal
Lagrangian L4, 9 C V,,, then Uqu is a Lagrangian state associated with the piece of the evolved
Lagrangian F (Lg, ) inside V.

To define "horizontal" Lagrangian leaves, we need to work in adapted coordinate charts in
which the notion of horizontality (thinking W,,(p) as the reference) makes sens. For this purpose,
for g € A, we consider charts centered around the points p,, associated with the fixed macroscopic
partition of 7 by the V, = B(p,, 2¢¢). First, we consider symplectic maps
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kg : Wy C Uy, =V, CR?

satisfying (we note (z,&) the variable in U and (y,7) in R?) :
(1) B(pq,Ceo) C W, for some global constant C' > 2;

(2) K(pqg) =0, dr(pg)(Eu(pg)) = R x {0}; dr(pg)(Es(pg)) = {0} x R 5
(3) The image of the unstable leave W, (p,) is exactly {(y,0),y € R} NV,
Theses charts are for instance given by Lemma (at this stage, the strong straightening
property is not necessary). In these adapted charts where W, (p,) coincides with R x {0}, the
horizontal Lagrangian leaves will be the of the form

(5.3) Co = {(y,0),y € R}

Finally, we fix unit vectors on E,(p,) and E,(p,), eu(pq) and es(p,), used to defined the unstable
and stable Jacobians in section 3.9l Let’s write

dig(eu(pq)) = (Aqu,0) 5 drgles(pg)) = (0, Aq,5)

Agu 0 ) We dilate the chart %, and define

Note D, = ( 0 A\
q,S

Rq:p € Wy Dyrig(p) € Vg = Dy (Vy)
5.2.1. Horizontal Lagrangian and their evolution. Let us fix a word q € A™ and let us define
(5.4) Lao0 =g (CoNVg) NV,
Then, let’s define inductively
(5.5) Lag..q;0 =F (Lao...q;_1,0) NV,
which allows to define L£q 6. One can check that
(5.6) Lao=F ' (V) NF"" (L)
The term F~! comes from the definition of Vi

peEVS <= V1<i<nF(p)€V,,_,
Finally, let’s define
(5.7) Cq = Kg,_1 (Lq,)

We first focus on one step of the iterative process.
In V, C R?, we use the notations B,(0,r) for the cube] — r,7x] — r,7[ . We keep the subscript
q to keep trace of the chart in which this cube is supposed to live. Finally, we set

By(0,7) = Dyt (B,(0,7)) C V,

B,(0,7) is simply a rectangle centered at zero with size only depending on ¢ (this is also a ball
for some norm in R?). The advantage of Bq and K, compared with B, and k, will appear below.
However, kK, is not symplectic, and for further use, it is not possible to use K, as a symplectic
change of coordinates.

Let q,p € A and suppose that V,NF -1 (Vp) # 0. As a consequence there exists a global constant
C” > 0 such that d(F(pq), pp) < C'eo and if C in (1) of Lemma [3.8is large enough, we can assume
that for some global constant Cy > 0,

(5.8) kq (V) C B4(0,Che0) C Vg kpoF o /<;q*1 (B4(0,Che0)) C Vp

The following map is hence well defined
Tpq = fKpoFo m;l 1 B4(0,Cieg) = Tp,q(Bq(0,Creg)) C V,

Tp,q is nothing but the writing of I’ between the charts V; and V,. Note that since the number
of possible transitions is finite, we can assume that C; is uniform for all ¢,p € A such that
V,NF(V,) £ 0.

We also adopt the following definitions and notations :
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Definition 5.1. Let G, :] — Cieg, Cieo[—]| — Cigo, Cigo[ be a smooth map. It represents the
horizontal Lagrangian
Le, =Dy ({(y,G4(y),y €] — Crgo, Creo[}) C By(0,Creq) C V,
We say that such a Lagrangian lies in the «y-unstable cone if
IGlloe <
and we note G, € C;/(C120,7).

Remark. This is where the use of K, and Bq turns out to be useful : to represent horizontal
Lagrangian in V;, we use the cube B,(0,C1eg) C V, of fixed size.

With this definition, we show in the following lemma an invariance property of the y-unstable
cones :

Lemma 5.3. There exist global constants C' > 0,Cy > 0 such that if gq is sufficiently small, then
the following holds.
For every G, € Cj/(C1g0, Cep), there exists G, € Cp(Creo, Ceo) such that
(i) Tp,q (,C(;q) N Bp(O, 0160) = ﬁgp ;
(ii) For some global constants Cy,1 > 2, ||Gyllct < C1 = ||Gpller < Ci
Moreover, let’s define ¢, :] — Cieg, C1eo[— R by

Yg = bap(Up) == (Yp, Gp(yp)) = Dp o Tpg © Dq_1 ((¢qp(yp)7 Ggo ¢qp(yp)>

Then, ¢, is smooth contracting diffecomorphism onto its image. In particular, there exists a global
constant v < 1 such that |[¢),|[cc < V.

Proof. Take C; large but fixed (with conditions further imposed) and assume that g is small
enough so that holds. Let us note A\; = J{/(py) > 1 and py = Ji(pg) < 1 and let us fix some
global v satisfying
Vg e A, max(A;l,uq) <v<l1

Recall that e, and e, are C¢ in p. We write 9, and 9, to denote the unit vector of R x {0} and
{0} X R respectively. We fix a constant C' > 0 with conditions imposed further and we assume that
|G}l < Ceo. Wenote 7 = Do, qo D! (we drop the subscript for 7 to alleviate the notations).
In the computations below, the implied constants in the O are global constants (depending also
on the choices on ky):

* 7(0) = &p o Fpg) = O(e0); )
© 47(0) = diy (F(p,)) 0 dF (py) o [dRy(p)] ' 1
* d7(0)(9y) = dRp(F(pq))(Ageu(F(pg))) = Aq (dip(pp) + O(e0)) (eulpp) + Ofe0)) = Agy +
O(g0), where we use the Lipschitz regularity of p — e,(p) in the second equality ;
* Similarly, d7(0)(0,) = 1q0y + O(go);
(this is here that we use the renormalization of s, into R,). Eventually, we use the fact that
7 —7(0) = d7(0) = O(Cic0) 1 (B(0,C120)) and we get that
(5.9) 7(y,m) = Ay +yr(y. 1) an +1,(y,m), (y,m) € Bq(0, Creo)
where y,-(y,n) and n,-(y,n) are O(Cie0)cr. Before going further, let us show that we can fix C;
such that
(5.10) (y:1) € By(0,Che0) = |ugn +mr-(y:m)| < Creo
To do so, let us note that in fact 7 — 7(0) — d7(0) = O ((C1e0)?)
B,(0,C1e0) we have :
n-(y,m)| = O(e0) + O ((0150)2)00(3(0@150)) < (' (1 + 01280)
Assume that C; is large enough such that vC; + O’ < C’1”T+1. If (y,n) € Bq(O, Ciep), we have
v+1
2

This fixes C7. Since Cp is now a global fixed parameter, we can remove it from the O in the
estimates. If ¢¢ is small enough, depending on our choice of C1, (5.10) holds.

CO(B(0,Cren) and hence if (y,n) €

lgn + - (y,m))| < vCiego + C'eg (14 CTeg) < <C1 + 01250) €0
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To write the image of the leaf as a graph, we observe that, if £¢ is small enough (depending only
on global parameters) the map

Yy €] = Cieo, Creo[— Ay + 4 (y, G4 (y))

is expanding and we can impose [¢)'| > v~!. In particular, Im contains an interval of size

2v71Ce¢. Moreover, 1(0) = y,(0, G4(0)) < ||yr]lc1|G4(y)| = O(e3). We claim that if ¢ is small
enough, Im v contains | — Cieg, C1&p[. Indeed, it suffices to have
V7101€0 — |1/)(O)| > 0160
But we have
Cieo + |¢(O)| < 018()(1 + O(Eo)) < 01601/_1

if 1+ O(eo) < v™!, condition that can be satisfied if €y is small enough. Hence, ¢ = ¢,, =
wiiclso Creo| 18 Well defined and we set

(5.11) Go(y) = 14Ga(0(1) + 1 (81, Ga(6(1))) v €] = Creo, Cre

By definition, it is clear that 7,4 (Ca,) N By(0, C120) = La, and (3, Gy(y)) = 7(6(), Go(9(y)).
@ is obviously a smooth contracting diffeomorhpism and ||¢’|| < m < v. Moreover, due to

(5-10), |Gp(y)| < Ciegp. To prove that G, € Cp(Cieo, Ceg), we compute :

Go(y) = pgGy(d(y) x &' (y) + (Bynr + Ayne x Go(9(y))) &' (y)
Gy, (y)| < v*Cep + O(eo(1 + Ceg))v < [V*C + vC'(1 4 Ceg)leo

for some global C’ > 0. If we assume 2 + ¢qC’v < 1, which is possible if ¢ is small enough, then
we can choose C' large enough satisfying

Cx (V¥ +vC's) +vC' < C

This ensures that ||G}]|oc < Ceo.

Finally, we prove (ii) by induction on [ : the case [ = 1 is done. Assume that there exists a
constant Cj such that ||Gy||c: < €1 = ||Gpl|ct < C;. We want to find a constant Cyy; fitting
for the C'*! norm. Using , we see by induction that the (I + 1) derivatives of G, has the
form

GIHD(y) = ¢/ (1) "+ x GIHD(y) (1 + anm(y,¢(y))) + Py (Gy(v),....GP(w))

where Py(7y,...,7) is a polynomial with smooth coefficients in y. Hence, there exists a constant
M (C)) such that for y €] — Cieq, Cieo[, | Py (Gq(y)7 ce G((Zl)(y))’ < M(C)). Since

¢ W) (140 (w0 v) )| < v +20C") =1y

if g9 is small enough ensuring that v; < 1, we can take

Cl+1 = max <Cl M)

’ 1-— %1
Indeed, with such a constant, assuming that ||G,||ci+1 < Ciy1, we have
IGIHD(y)| < Crpavn + M(C) < Crpa
]

Armed with this lemma, we can now iterate the process and get the following proposition
describing the evolution of the Lagrangian Cq .

Proposition 5.2. Assume that g is small enough. Then, for every n € N*, q € A" , and 6 € R,
there exists an open subset Iq 9 C R and a smooth map Ggq,¢ such that :

* Cao = {0, Caow)).v € fao} ;

e [|G gllec < Ceg for some global constant C;
e For every | > 2, ||Gqllcr < C; for some global Cj;
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o If ¢q,0: Iq0 — R is defined by

oy © F" "o kg (da0(y),0) = (¥, Gao(v)
Then, for some global constants C' > 0 and 0 < v < 1, [|¢}, oI| < Cv"~!.

Proof. Assume that Lq ¢ # (), otherwise, there is nothing to prove. In particular, we can restrict
our attention to small 6, || < Cyep. As a consequence, for every i € {1,...,n}, F(V,, )NV, # 0.
Hence, we can consider the maps 7; := 74, 4,_, and since we assume that xq, (V,,) C By, (0, Cieo),

CQO---QMO =T (qu---Qi—lye) N ke, (th)
We start with a constant function Gy € C{(Cie0,0) such that Lo, = Cy (it suffices to take
Go = MAg.s0) and we inductively apply the previous lemma to show the existence of a family
Gj S C:;] (01607080),0 < j <n—1, such that
(1) Ti (‘CGi) n qu‘ (07 C’150) =Lg
(i) [|Giller < Cis
(111) If we define d)i Z} — 0160, 0150[—>] — 0160, 0160[ by

(4,Gi(y)) = Dg, 070 Dt (@(y% Gi-10 ¢i(y))

then there exists v < 1 such that ||¢}|]|ecc < v.
(iv) Cyo...q:,0 is an open subset of Lg;, .
We have

i+1 )

La, ,=D;', ({(y, Gn-1(y)),y €] — Cieo, 0150[})
This can be also written
_ —1 -1
£Gn,1 - {(yv)\qn_l’anfl(Aqnfhuy)) ) |y| < )\qn_l,uclgo}

It suffices to consider
Gq,@(y) = )\t;nl,l,anfl()\qnfl,uy)
Iq0 = {y €] = Al wCieo, A, W Creol, (¥, Gqo(y)) € Cqﬁ}

Pao(y) = Ay udro 0 n_1(Ag,_yul)
|
5.2.2. Ewolution of Lagrangian states. Once we’ve studied the evolution of the Lagrangian leaves
starting from Cy, we can study the evolution of the corresponding Lagrangian states. In our case,
since the leaves stay rather horizontal, the form of the Lagrangian states we’ll consider is the

simplest :
a(a:)e“/’(””)/h

where a is an amplitude and 1 a generating phase function. It is associated with the Lagrangian,
L ={(y.¥'(y)),y € suppa}
For q € A, we quantize x,. Remind that we denoted k, the integer such that V, € Uy, . There

exist Fourier integral operators By, B, € 157" (rq) x 157" (1),

By : L*(Yy,) — L*(R);
B : L*(R) — L*(Y},)

such that they quantize 4 in a neighborhood of r4 (V) xV,. Moreover, we impose that WF(B,B})
is a compact subset of R2. We will still denoted B, and By, the operators

By=(0,..., Bg,...,0): L*(Y) - L*(R) ; B,="0,..., B, ,...,0): L*(R) = L*(Y)
e et
q kq

If supp(cy) C V, and if C denotes the operator valued matrix with only one non zero entry Opj(cq)
in position (kq, kq), then as operators L*(Y) — L*(Y),

B/B,C = C +O0(h™); CB,B, = C + O(h™)

The proposition we aim at proving in the following :
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Proposition 5.3. Fix Cy > 0. For every n € N,q € A" and 0 € R satisfying
(5.12) n < Colloghl; 0] < Cy
and for every N € N, there exists a symbol aq0 n € Co°(Iq,¢) such that :

R g
() Uq (Byyei®) = MAq, By, _, (¢ agqon ) + O(h™) 12

(i) llago.nllc, < Cryh=Colos B

(iii) There exists 6 > 0 such that d (supp(aq,e,n), R\ Iqng) > ¢
where 14,9 is a primitive of Gq,9 and B > 0 is a global constant.

Remark. e Asusual, 6, C; n and C'y depend only on F, A,, By, B(’I, kq and the indices indi-
cated in their notations. \
e In other words, the Lagrangian state e*® is changed to a Lagrangian state associated with
Cq,0-

The end of this subsection is devoted to the proof of Proposition [5.3] In the rest of this section,
we fix a constant Cyp > 0 and we work with a fixed word q € A" with length n < Cy|logh| and
a fixed momentun |0 < Cy. From now on and until the end of the proof, the constants below
will always be uniform in q, satisfying the previous assumption. They will depend on global
parameters and on Cy. If they depend on other parameters, we will specify it with subscripts.
This is also the case for implicit constants in O (such as in O(h*)).

Preparatory work. We first note the following fact : if V,NF~1(V,) =0, A,M A, = O(h*). As
a consequence, if V,, , N F~1(V,,) = 0 for some i, then Uy = O(h™). In the sequel, it is enough
to consider words q for which V,, , N F~1(V,,) # 0 for 1 <i<n-—1.

We consider symbols @, such that supp(a,) C V, and @, = 1 on supp(x,). We denote A, =
Opn(@,) (as usual thought as a diagonal operator valued matrix). The following computations
holds since n = O(log h) and ||MAy|| < ||a||sc + 0(1) uniformly in g :

UqB,, =M A, ,A

=MA

MA

dn—1 qn—2

By, . B,

1

Ago_y.. . MAy Ay MAy, B, + O(h™)
Ag, \M...MA, B, By Ay MA, B, +O(h™)
We set 1), ¢ = BpflpMAqB; and M, = M A,B,, which allows us to write

qn—1 -1

UqB;O - M'anlTQn—17Qn—2 e qu]o + O(hoo)
For p,q € Awith V,NF~*(V,) #0, T, ,, € I;°"?(7p.4). Moreover, the previous computations have
shown that 7, , has the form
o (U, 1) = Ap,g¥ + Y2 (Y1), kp.gn + 10 (Y5 1)), (¥, 1) € Bqy(0, Creo)

where y,(y,n) and 7.(y,n) are O(eo)cr. This time, A, 4, 1y 4 are simply constants uniformly
bounded from below and from above for p,q € A (recall that B, (0, 1) is a rectangle in R?, built
from the cube B, (0, C1¢0) adapted to the definition of the unstable Jacobian). If £y small enough,
the projection 7 : (y,n,,£) € L, + (y,€) € R? is a diffeomorphism onto its image. where

Lop= {(Tq,p(x,«f),x, —£), (z,6) € Bq(0>0150)}

is the twisted graph of 7, ;. As a consequence, there exists a smooth phase function S, ; defined
in an open set (2, , of R?, generating £, , locally i.e.

Lyq N Tpq (By(0,Cre0)) x By(0,Cre0) = {(y»aysp,q(yvﬁ)’aESp,q(yvf)» =), (y,€) € Qq,p}

Hence, T}, , can be written in the following form, up to a O(h*°) remainder and for some symbol

pq(sh) € O (Qypq):

1

— % . eﬁ(Sp’Q(y’g)_ﬁ)ap,q(y,5; h)u(f)dxdg

(5.13) Tp,qu(y)

Moreover, due to the operators Ap and A, in the definition of T}, ;, we can assume that

(y,€) € supp(apq) = (0Sp.q(y,€),€) € Kq(suppay), (¥, 0ySp.q(y,§)) € Kp(supp ay)
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In the sequel, we write

Ci=Cqy..q00
and we change the subscripts (¢;—1, ¢;) to 7 in all the objects T, a, S, 7. Due to the previous results,
we can write C; = {(y, Gi(y)),y € Ii} with I; == I, 4.0 and G; = Gy, 4 .0. We also have
projection maps ®; : I; — R defined by :

001 (Pi(y),0) = (y,Gi(y))

satisfying ||®}||oc < Cv' < 1. Moreover, if we note the intermediate corresponding projection
¢; = P; 0 (I)i:ll : I; — I;_1, we observe that ¢; is constructed using the properties of F' and G;_1
(see the proof of Lemma and hence, for every [, ||¢:||ct < C; for some C; not depending on
q, 6 nor 1.

For 0 < i <n —1, we consider a primitive ; of G; so that C; is generated by ; i.e.

¢ ={.viw.ye L

The following lemma can be found in [NZ09| (Lemma 4.1). We state it without proof, since it is
the reference but it is a direct application of the stationary phase theorem.

Lemma 5.4. Pickie {1,...,n—1}.
Yiz1

For any a € C°(I;_1), the application of T} to the Lagrangian state ae’ %
gives a Lagrangian state associated with C; and satisfies

associated with C;_1

Yi—1 . B; iwi(y)

N-1
(5.14) T, (a7 ) () = %S5 (7 by + hVra(ysh)
j=0

where, if we note z = ¢;(y), b;(y) = (L;(x, Dy)a)(z) for some differential operator L;; of order
27 with smooth coefficients supported in I;_; and §; € R. Moreover, one have :

@iy, 1/2 .
© bo(y) = rapr-Eye [41(v)7 alz) with € = ], (2);
o [|bjllcrr,) < Cujllalleirzir,_ ), €N,0<j <N —1;
e |Irnllevay < Cnllallciviven g,y

The constants Cy and Cj ; depend on 7;, o, ||z/)§m)\|oo’1i.

Remark.

e In particular, in virtue of Proposition @ the constant C; ; and Cy can be chosen uniform
in q, 0 as soon as they satisfy the required assumptions. |q| < Cy|loghl|,0 < Cp.

e Without loss of generality, we can replace v; by §; 4+ 1; (this actually corresponds to fixing
an antiderivative on C;1) and hence we can assume that 8; = 0.

e The properties on the support of «; imply the following ones on the support of the differ-
ential operators L ; :

/

(5'15) Y € supp Lj,i = (ya %(y)) € Ka; (Supp &Qi) NT;_10 Kg;—1 (Supp aqifl)

Iteration formulas and analysis of the symbols. Then, we iterate this lemma starting from
o(x) = x - 0, in the spirit of Proposition 4.1 in [NZ09]. In the sequel, we adopt the following

convention : we note xy the variable in I and we naturally denote (zy,xg—_1,...,%1,20) the
sequence defined by ;1 = ¢;(x;). We also note
ai(x;, &
51(%) = Z( = ) ;o &= 77[’;—1(%'71)

|det D2, Si(wi, )M/ 7

2
filas) = Bla:) 16 (a)]”
We fix a constant B > 0 (depending only on F, A,, By, By, Cp) satisfying for all 1 <i <n — 1,

sup |ﬁz(xz)‘ <B

x,€l;

|ITi|| < B
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Roughly speaking, B is of order ||a||oo, but in this part, the precise value of B is not relevant.
Finally, note that there exists v < 1 (again depending only on F, A,, By, By) such that |¢;(z;)| < v
for z; € I;. Fix N € N and denote

(5.16) N =1+ [N + Cylog B]

We iteratively define a sequence of symbols a; ;, 0 <i<n—-1,0<j < N —1by ap0 =1,a09; =0
and for0<j< N -1

(5.17) aij(@:) =Y Ljpi(ai1p)(zi1)
p=0

The following lemma controls the growth of the symbols. The proof is a precise analysis of the
iteration formula and is rather technical. We write the detailed proof in the appendix (See
subsection and refer the reader to [NZ09] (Proposition 4.1), where the author lead the same
analysis (but in the case B = 1).

Lemma 5.5. For all j € {O,...,Z\7 —1},1 € N, there exists C;; > 0 such that for all i €
{0,...,n — 1}, one has

(5.18) laillerry < Ca (Bv'2)" i+ 1)
Remark. Again, what is important is the fact that C;; does not depend on q,n,6 nor i : it

depends on Cj and global parameters.

Control of the remainder. Let us call r; y(a) the remainder appearing in Lemma Define
inductively (R, y) by R, 5 =0 and

_ Wi iy
(5.19) Rign=e " Tin (6 " Ri,N) + D i ;(aiy)
=0

This definition ensures that for all 1 <7 <n,

N-1

i -4 (y) - N,

(5.20) Ty Ty () = e Wai;+ bR, g

=0

Lemma 5.6. There exists Cy depending only on N, Cy and global parameters such that for all
1<i<n-1, 4

|1R; gllLew) < CxB*
Proof. Recalling that ||T;||z2—,z2 < B and the bound on the remainder in Lemmal5.4] the recursive
definition of R, g gives the following bound:

N-1
||R¢,NHL2 < BHRZ‘—LNHLz + Z CI\"/—jHaifl,jHClH(N—j)
j=0

By induction and using the previous bounds on ||a; ;||c:, we get

i—1

N-1
||RJ\7,iHL2 < ZBz_l_p Z CI\"f—jHap,jHCIHWﬂ')
p=0 =0

i—1 N;p—1
<Y BTNP Y Oy Cxo(BYP)P(p 1)
p=0 j=0
1—1
S ONBZ Z VP/Z(p + 1)1+3N1
p=0
< CNBi

using that the sum is absolutely convergent. O
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End of proof of Proposition We’ve got now all the elements to conclude the proof. We set

We know that
Pq-

UqBy, (ei%) =My, (eiTaqﬁ,N) + Manl(hNRn—l,N)
Since M, are uniformly bounded in ¢ and Rnfl,];, < CNB"_1 < CNlh_C0 log B we have :
1M, (BN R,y )2 < CnhN =185 < Oy
Concerning the bounds on aq,¢,n, Wwe have

N-1
laqe.nllcr <Y W llan—1llc:
§=0

< Nz_:l Cii (Bul/Q)n_l nit3ipd
§=0

< Cl,an+3N (Byl/Q)n—l
n—1

S O[7Nh_CO log B’n,l+3NI/ 5

< Cl,NhicO log B

where we use the fact that n < Cy|log h| and bound n+3V "7 by some C, 5 since v < 1.
Finally, we need to prove the property on the support of aq.0,n. To do so, let us introduce, for
g € A, an open set W, satisfying

suppag € W, C V,
This allows us to define new objects replacing V,; by W; in the definitions :

n—1
Wh=(F"'W,) € Vs
=0

Dao = kagus (F7H (We) N F" (£40) ) € Cao
and the associated subinterval Jg ¢ € Iq ¢ built thanks to Proposition @ such that
Dao = {(5:Gao(¥)): ¥ € Jao}

Let us fix § > 0 small (with further conditions imposed). We will show the following stronger
statement

d(supp(aq,o,n), R\ Jq0) > 6

Suppose that this is not the case. We can find z,_1 € suppaqe,n,Yn—1 € Iq,0 \ Jq,¢ such that
|Zn—1—Yn—1] < J. As already done, we denote by x; (resp. y;) the points defined by ;1 = ¢;(x;)
(resp. yi—1 = @;(y;)). Since ¢; are contractions, we have |z; —y;| <6 for 1 <i <n— 1. If we note

pi = kg (o () 5 o= kg (W V(i)
we have for some C' > 0 : d(p;,(;) < C6. By definition, one also has

F 7 (pn-1) = pn-1—i ; F7"(Cuo1) = Cuo1—
By the support property (5.15|) of the operators L;;, p; € suppagq, for 0 < i < n—1. Let’s assume
that J is small enough so that for all ¢ € A,

d( supp g, (Wq)c) > 206

Hence,

pi € suppag, and d(p;, ;) < C6 = G €Wy,

As a consequence, for all 0 < i < n — 1, F'*1="(¢,_1) € W,,, or equivalently (,—1 € F~! (W;‘)
Hence,
(ynflaw:zfl(ynfl)) € Cq,0 N kg, (F_l (WJ)) CDqp
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showing that y,,_1 € Jq,9, and giving a contradiction with y,,—1 € Iq \ Jq,0-

5.3. Microlocalization of Ug. We now fix a cloud Q@ C Q(n,a), centered at a point py € T,
namely satisfying the condition of Proposition :

vpe (J Va.dlo. Wu(po)) < Ch?
qeQ
Let us note

(5.21) Ug =) Uq

qeQ
and
(5.22) vé=UJ Vs
qeQ

We fix an adapted chart s := k,, : Uy — Vj around pg as permitted by the Lemma We can
assume that VI € Uy (if ¢ is small enough and since the local unstable leaf W, (rhoy) is close to
points in V;7)). We consider a cut-off function x, € C°(Up) such that y, =1 on F(supp x,) and
supp Xa C V;. Let us note =, = Opp(Xa). Since Z,M A, = M A, + O(h>), |Q| = O(h~K) and
[|[Uql] = O(h=X) for some K > 0, we have

MmVoUg = MV=,Ug + O(h™)
Let us introduce Fourier integral operators B, B’ quantizing x in supp(xa) :
B'B = I + O(h®) microlocally in supp(xq)

Hence :
mVog = MmNz, B'BUg + O(h™)

We introduce the following sets :

(5.23) It =n(k(Vy)): QF =T"(h")
and for q € Q,
(5.24) Iy =n(x(Vg))

We will prove in the following lemma that the pieces Ug are microlocalized in thin horizontal
rectangles (see Figure [13).

Lemma 5.7. For every q € Q,
(5.25) Lt (ur) (hDy) BUq = BUq + O(h™)2_, 12
with uniform bounds in the O(h*).
Using the polynomial bounds |Q| = O(h™%) and ||Uq|| = O(h™°)), we immediately deduce the
Proposition 5.4.
(5.26) g+ (hDy)BUg = BUg + O(h™)2_ 12

5.3.1. Proof of Lemma . We fix a word q = qq ... gn—2a € Q. Since WF},(4,,) is compact, we
can find x € C°(R) such that

AQO = AQOB(/JOX(hDy)BQU + O(hoo)

Since there is a finite number of symbols in A, we can choose one single y for all the possible
symbols gg. We are hence reduced to prove that

(5.27) T pot (e (BDy) BUG By X(hDy) = O(h*) 12, 12

T
If u € L*(R), writing
1

(X(hDy)) (1) = Gy / (O Fru(8)e % do
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FIiGURE 13. The definition of the sets Fg. They are represented by the blue

segments on the n-axis and are the projections on the 7 variable of the sets Vﬁ{
(the hached sets). They are of width of order A".

we have
1 o
T (x(hDy)u) = TG /}R X(0)Fyu(®) (Te'™ ) do
Hence,
1 6
IO, )1 < G [ O Fa@) || i ]| do
]. -9
<— 0)Fpu(0 Te'
< Gaye [ NOFaO)] s (7|
< %”]:hUHLZ sup HTei%
h / fesupp x L2
Cx i%
< sl s ||Te®]]

fesupp x

-0
. o
As a consequence, we are lead to estimate SUDgesupp HT@ R ‘

2 We fix 0 € supp x. Writing that
supp x C [—Co, Co] and recalling |q| = n < Cy|log h| for some global Cy, we are in the framework
of Proposition [5.3]

We fix N € N and we aim at proving that Tei = O(RY). By Proposition there exists
aq.ng € C(Iq,0) such that

,0

UaB, (¢%) = MAB, (agnoe™+") + O0Y)
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Set S := BMA,B!. S is a Fourier integral operator associated with s := ko F o ;1. Recall that
the definitions and the description of the Lagrangian

Cqo =Fa (FE(VI)NF" " (Lgy0))
={(y,240(¥)),y € Iq0}

with @0 € (L) : [|Basllcr < Ceo : [[Bqsller < C.
Assuming that eq is small enough, we can assume that :

e s is well defined on B,(0,Cieo) and satisfies the conclusion of Lemma As a conse-
quence, the Lagrangian line
5(Cq0) =K (V;f) NKroF" (Lgy0)
can be written {(y,¥'(y)),y € I} for some open I C R and some function ¥ € C*(I)
satisfying
1¥]ler < Ceo s [[¥]ler < Cr
with global constants C' and Cj.

e S has the form (5.13) with a phase function and a symbol having C' norms bounded by
global constants (depending on ).

Hence, we can apply Lemma [5.4] to see that there exists b € C2°(I) such that

6

iZat i N
S(aq,Nﬁe z ) =be'r + O(h™) 2
b satisfies the same type of bounds as aq,n,6, namely :
1Bl < Cowh =018 "

Moreover, since d(supp aq,n,0, R\ Iq,0) > J, there exists ¢’ > 0 such that d(suppb, R\ I) > ¢’. The
constants C; y and ¢’ are global constants. Since N is arbitrary, to conclude the proof of Lemma
[b.7 it remains to show that

(5.28) Ly ury (BDy) (b€ ) = O(h™)

To do so, we make use of the fine Fourier localization statement from Proposition 2.7 in [DJN21].
We state it for convenience but refer the reader to the quoted paper for the proof.

Proposition 5.5. Let U C R™ open, K C U compact, & € C*(U) and a € C°(U) with
suppa C K. Assume that there is a constant Cy and constants Cy, N € N* such that :

(5.29) vol(K) < Cy

(5.30) d(K,R"\U) > Cy!

(5.31) max sup |[0%®| < Cn; N > 1
0<la|EN U

(5.32) max sup|0%| < Cn;N >1
0<|a|<N U

(5.33)

Finally, assume that the projection of the Lagrangian {(x,®'(x)),z € U} on the momentum
variable has a diameter of order h”, namely :

(5.34) diam(Qe) < Coh™ where Qg = {®'(x),z € U}
Define the Lagrangian state
(5.35) u(z) = a(z)e > € C2(U) € C°(R™)

Then, for every N > 1, there exists C’ such that
(5.36) L\ g (nryul] < CAAY
C'\ depends on 7,n, N, Cy, Cy- for some N'(n, N, 7).



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 73

When U = I, K =suppb, a = h“0 18 By & = W, the assumptions (5.29) to (5.32) are satisfied
for some global constants Cy, C. In this case,

Qg = {\I//(y)vy € I} = 77('% (VJ) NkoF" (K’QOJ‘)))

Since Qg C '}, to prove (5.28), it is enough to prove it with I'J replaced by Qg and to apply the
last proposition, it remains to check that the last point ([5.34) is satisfied. Since who can do more,
can do less, we will show that

diam (I‘g) < Coh™

This is where the strong assumption on the adapted charts will play a role. To insist on this role,
we state the following lemma :

Lemma 5.8. Let Cy > 0. Assume that p; € T NU,, satisfies d(p1, Wy (po)) < Coh®. If py €
W.(p1), then for some global constant C' > 0,

(5.37) n(k(p1)) = n(k(p2))| < CCGHh

Proof. Recall that the chart (k,U,,) is the one centered at py, given by Lemma In this chart,
k(Wy(p1)) is almost horizontal : we have

K(Wul(p1)) = {y, 9(y, C(p1)),y € Q}

where € is some open bounded set of R, with g and ¢ satisfying the properties of Lemma[3.9] Hence,
to prove the lemma, it is enough to estimate |g(y, ((p1)) — g(0,{(p1))],y € Q. Since {(py) = 0 and
¢ is Lipschitz, |((p1)| < Coh®. Indeed, if pf, € W, (po) satisfies d(p}, p1) < 2Coh®,

1C(p1)| = [¢(p1) = C(p)| < Cd(pr, py) < CCoh®

Then, we have

19(y,C(p1)) — 9(0,¢(p1))| = lg(y, ¢(p1)) — 9(y,0) — Fcg(y,0)¢(p1)]

¢(p1)
/O (9c9(y,€) — Ocg(y,0)) dC‘

¢(p1)
/ cchdc
0

< CC(Pl)lJrﬁ < CC(}+ﬁhh(1+’8)

<

In the first equality, we’ve used the facts that ¢(0,{) = ¢, d¢g(y,0) = 1 and g(y,0) = 0. This
concludes the proof since, by definition (see (4.2)), b(1 + ) = 1. O

Remark. This lemma explains our definition of b.

From this lemma, we can deduce (5.34). Indeed, recall that there exists pq € 7T such that
Vi € Wu(pq)(ChT). If p1, p2 € V{, there exists pi, py € Wy(pq) such that

Hence, one can estimate

(n(k(p1)) = n(k(p2))| < [n(k(p1)) = n(k(p1))| + [n(k(p1)) — n(K(p2))| + [n(k(p2)) — (K (p2))]
<Ch~ <Ch <Ch~

The inequality in the middle is a consequence of the previous lemma. Indeed, p}, ph € W, (p})
where (recall that 7 > b)

d(p}, Wu(po)) < d(p1, p}) + d(pr, Wau(po)) < Ch™ + Ch® < 2Ch°
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5.4. Reduction to a fractal uncertainty principle. We go on the work started in the last
subsection and we keep the same notations. In virtue of Proposition and Proposition we
can write

(5.38)

where

In V,

PO

classes,

(5.39)

MY Ug = MY B'B Opp(xn)ZaB' 1o+ (hDy)BUg + O(h™) 2, 12

xn € S5."", xn =1 on Tloc(205h%2) and supp x5 € T¢(4C2h%2) (see Proposition and
before);

Zqa = Opp(Xa) where x, € C°(Up) is a cut-off function such that x, = 1 on F(supp xa)
and supp X, C V. (see the beginning of subsection [5.3)) ;

ot = ’I](K, (VJQF) )(hT) (see and Proposition

Ug is microlocalized in a region {|n| < Ch®}. To work with symbols in usual symbol
we will rather consider a bigger region {|n| < h°}. For this purpose, let us denote

P = y(r (VE N T UCR™) 0 (o] < h*Y) 1 Q7 =T (h%)

Since V& C Wu(po)(Ch®), Q4 C [~Coh®, Coh®] C [—h%, h%] for h small enough. By Lemma
there exists x4+ (1) = x+(n; h) € C°(R) such that :

X+ =1on QF;
supp x+ C [~h%, 7] ;
Vk € Nand n € R, |X5f)(77)| < Cxh™%F for some global constants Cj.

X satisfies :

Lo+ (hDy) = X+(hDy)]lﬂ+ (hDy)

Let’s now consider the following subset of I'™ :

I = y(/i (V;' N T_loc(402h52)) N {n € supp X+}>

The inclusion '~ C '~ comes from the support property of x.

FIGURE 14. The set Q7% is represented on the 7-axis, with the support of the
function x4. On the y-axis, we project the gray set x (V; N T_loc(402h52)) to
obtain both I'™ and T'~ depending on the size of the n-window. The larger set 2~
is also represented in red.

Using again Lemma [5.2] we construct a family x_(y) = x—(y; h) € C°(R) such that :

Xx—=1lonI7;
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e suppy_ C Q™ =T"(h%) ;
e VkeNand y € R, \X(f)(y)\ < Cph=%Fk,
and y_ allows to write

X-(¥)Lao-(y) = x-(v)
We now claim that

(5.40)  MNUg = M Opy(xn)ZaB'x—(y)1a- (y) Lo+ (hDy)BUg + O(h™) 2, 12
Due to the polynomial bounds on ||9%™0|| and ||Ug]|, it is then enough to show that

Opnr(xn)ZaB'(1 = x—(y))x+(hDy) = O(h™)
Using Egorov’s theorem in U5, (R), we see that Zg := B Opp(xn)EqB’ is in ¥s, (R) and WF,(Zg) C
K(supp Xa Nsupp x»). We now observe that
(y;m) € WFR(ZEo) N WF (1 = x—(y)) N WEF}, (x4 (hDy)) =

(y,m) € K(supp xa NSUPP Xn),n € SUPp x4,y €I,

But the first two conditions imply that y € r-. Hence,
WEL(Z0) N WE (1= x—(y)) N WF, (x4 (hDy)) = 0

By the composition formulas in s, (R), Zo(1—x-(y))x+(hD,) = O(h™). Note that the constants
in O(h*) depend on the semi-norms of x+ ,x, and x,. Due to their construction, the semi-norms
of x+ and yy are bounded by global constants. As a consequence, the constants O(h®) are global
constans.

This proves the claim Recalling the bound

1% L2 2 < Jlall™ (@ +0(1) , Uallpzyr2 < Clloghlllal|3

we see that the proof of Proposition [£.9]and hence of Proposition has been reduced to proving
the following proposition.

Proposition 5.6. With the above notations, There exists v > 0 and hg > 0 such that :
(5.41) Vh < ho, |[Lo-(y)La+(hDy)||r2—12 < A7

Remark. 7 and hg are global : they do not depend on the particular @ C Q(n, a) satisfying the
conditions of Proposition nor on n.

The proof of this proposition is the aim of the next section and relies on a fractal uncertainty
principle.

6. APPLICATION OF THE FRACTAL UNCERTAINTY PRINCIPLE

The fractal uncertainty principle, first introduced by Dyatlov-Zahl in [DZ16] and further proved
in full generality by Bourgain-Dyatlov in [BD18], is the key tool for our decay estimate. We’ll use
the slightly more general version proved and used in [DJN21].

6.1. Porous sets. We start by recalling the definition of porous sets and then we state the version
of the fractal uncertainty principle we’ll use.

Definition 6.1. Let v € (0,1) and 0 < ap < ay. We say that a subset  C R is v-porous on

scales ag to a if for every interval I C R of size |I| € [ag, a1], there exists a subinterval J C I of
size |J| = v|I| such that J N = 0.

The following simple lemma shows that when one fattens a porous set, one gets another porous
set. For its (very elementary) proof, see [DJN21I] (Lemma 2.12).

Lemma 6.1. Let v € (0,1) and 0 < ag < aj. Assume that a; € (0,5aq] and © C R is v-

porous on scales ag to a;. Then, the neighborhood Q(as) = Q + [z, as] is §— porous on scale

max(ap, %0[2) to aj.
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= I el

F1GURE 15. Example of a porous set. Its construction is based on a Cantor-like
set. Red intervals correspond to choices of I, blue ones correspond to J.

The notion of porosity can be related to the different notions of fractal dimensions. Let us
recall the definition of the upper box dimension of a metric space (X, d). We denote by Nx(¢) the
minimal number of open balls of radius € needed to cover X. Then, the upper box dimension of
X is defined by :

__ log N
(6.1) TmX i lim sup 22X ()
es0  —loge

In particular, if 6 > dimx, there exists g > 0 such that for every ¢ < g9, Nx(g) < e~%. This
observation motivates the following lemma :

Lemma 6.2. Let 2 C R. Suppose that there exist 0 < § < 1, C' > 0 and ¢y > 0 such that
Ve < eg, Nq(e) < Ce°
Then, there exists v = v(4, €9, C') such that Q is v-porous on scale 0 to 1.

Remark. The proof will give an explicit value of v. This quantitative statement will be important
in the sequel to ensure the same porosity for all the sets W, /s(po) N7

Proof. Let us set T = |max ((650)_1, (660)ﬁ>J + 1 and v = (3T)~!. We will show that € is
v-porous on scale 0 to 1. Let I C R be an interval of size |I| € (0,1]. Cut I into 3T consecutive

closed intervals of size v: Jy, ..., Jspr—1. We argue by contradiction and assume that each of these
intervals does intersect €. Let us show that

(6.2) No(v/2) > T

Assume that Uy, ..., Uy is a family of open intervals of size v covering Q. For i =0,...,T—1, there

exists z; € Js;41 and j; € {1,...,k} such that z; € Uj,. It follows that U;, C J3; U J3i41 U J340
and hence i #1 = U;; NUj, = 0. The map i € {0,...,T — 1} — j; € {1,...,k} is one-to-one,
and it gives l) Since T > %, v/2 < ep. As a consequence ,

T < N(v/2) < C(6T)°
which implies 7779 < C6°. This contradicts the definition of T O
In the appendix we give a result in the other way, namely, porous sets down to scale 0 have

an upper box dimension strictly smaller than one.
For further use, we also record the easy lemma :

Lemma 6.3. Assume that (X,d), (Y,d’) are metric spaces and f : X — Y is C-Lipschitz. Then,
for every € > 0,

Ny(x)(e) < Nx(e/C)
In particular, if Nx(¢) < Cfe° for € < &, then for e < Ceg, Ny(x)(e) < (C10)°e°.

6.2. Fractal uncertainty principle. We state here the version of the fractal uncertainty principle
we'll use. This version is stated in Proposition 2.11 in [DJN21|. The difference with the original
version in [BD18] is that it relaxes the assumption regarding the scales on which the sets are porous.
We refer the reader to the review of Dyatlov [Dyal9] to an overview on the fractal uncertainty
principle with other references and applications.

Proposition 6.1. Fractal uncertainty principle. Fix numbers ’ygt,ﬁ such that

0<AF <% <Ly +m <1<+
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and define

v =min(yy, 1 —7) — max(y, 1 —75)
Then for each v > 0, there exists § = B(v) > 0 and C = C(v) such that the estimate
(6.3) Lo Frla, |lr2@—r2@) < ChYP
holds for all 0 < h < 1 and all h-dependent sets Q4 C R which are v-porous on scale B to i
Remark. In the sequel, we will use this result with ﬁ = 0. In this case, the condition on 73[
becomes 7, + g > 1 and the exponent v is 7, + g — 1. This condition can be interpreted as a
condition of saturation of the standard uncertainty principle : a rectangle of size R x B0 will

be subplanckian.

6.3. Porosity of O and Q. Since we want to apply Proposition to prove Proposition
we need to show the porosity of the sets QF defined in (5.23) and (5.39). The main tool is the
following proposition.

Proposition 6.2. There exist § € [0,1], C > 0 and gy > 0 such that for every p, € T, if
X =Wy/s(po) NT N U,

Nx(e) < Ce™% Ve < gg

Remark. Recall that W, /,(po) is a local unstable (resp. stable) manifold at pg, and in particular
a single smooth curve. U, is the domain of the chart adapted &,, (see .

Roughly speaking, this proposition says that the upper box dimension of the sets W, /,(p) N T,
the trace of T along the stable and unstable manifolds, is strictly smaller than one. This condition
on the upper box dimension is a fractal condition. In our case, we need uniform estimates on
the numbers Nx(g) for X = W, /,(p) N'T. This uniformity is a consequence of the fact that the
holonomy maps are C! with uniform C! bounds (and thus Lipschitz, which is enough to conclude).
This result is clearly linked with Bowen’s formula which has been proved in different contexts and
links the dimension of X with the topological pressure of the map ¢, = —log|J}|. This is where
the assumption is used. This proposition is proved in the Appendix [A-4] where we borrow
the arguments of [Bar(8] (Section 4.3) to get the required bounds.

From the Proposition [6.2] we get

Corollary 6.1. There exists v > 0 such that for every py € T, the sets y ok (Wy(po) N T NU,,)
and ¢ (Ws(po) NT NU,,) are v-porous on scale 0 to 1.

Proof. The maps y o k and ( are C-Lipschitz for a global constant C. As a consequence, the
previous lemma and Lemma [6.3] give

Ve < g0/C, No(e) < C%~° | where Q =y o r (Wu(po) N T NU,,) or ¢ (Ws(po) NT NU,,)
Applying Lemma the v-porosity is proved for some v = v(6,C, gp). g
To conclude, we use this corollary to show the porosity of QF. We start by studying Q.

Lemma 6.4. There exists a global constant C' > 0 such that
Q" CC(Walpo) N T N T,,) (CH7)
Proof. Since QF =T (h7), it is enough to show the same statement for It =7 o, (VJQF)

Let p € V‘é. By assumption on Q and po, d(p, Wy (po)) < Ch®. Since p € Vq for some q € Q, there

exists p; € T such that d(p, Wy (p1)) < % < Ch™. Fix ps € Wy (p1) such that d(p, p2) < Ch™.
aq (P1

Inor(p) = Clp1)| = [noklp) = C(p2)| < |noklp) —norlp2)| +[nok(p2) = C(p2)]
Since 7 o k is Lipschitz, we can control the first term by
Inok(p) —mok(pz)| < Cdlp,p2) < ChT
To estimate the second term, the same arguments used after Lemma show that
In o k(pa) = C(p2)| < diam[n ok (Wy(p2) NU,,) ] < Ch

It gives [nok(p) —((p1)| < Ch™. To conclude, note that there exists a unique point pj € Wi (po) N
Wu(p1) and C(p1) = ((p}). O
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As a simple corollary of this lemma and of Lemma [6.1] we get
Corollary 6.2. QF is v/3-porous on scale 2ChT to 1.

We now turn to the study of Q7. We can state and prove similar results with different scales of
porosity. Recall that §, = i—‘l’%.

Lemma 6.5. There exists a global constant C' > 0 such that
Q~ Cyor(Wulpo) NT NU,,) (Ch%)
Proof. Since Q= = T'~(h%) with dy > s, it is enough to prove if for
I~ =yor (Vi NTP (40:h%) N{n| < h™})

Recall that 71°¢ c |J se1 Wis(p). Since in Vf, all the local stable leaves intersect Wy (po), we have

VinTleUch™) ) Wal(p)(ACah™)
PEWL(po)NT

Fix p € Wy(po) N T. Since dr(Es(po)) = ROy, if €¢ is small enough, we can write k(W(p)) =
{(G,(n),m),n € O} where O is some open subset of R and G, : O — R is C*°. In particular, it is
Lipschitz with a global Lipschitz constant C. If |n| < h%, |G,(n) — G,(0)] < Ch%. Recall that
k(Wy(po) NUp,) C R x {0} and hence, G,(0) = yo k(p). As a consequence, if py € Wi(p) N{|n| <
R}, writing r(p1) = (G,(n),n), we have

ly o K(p1) =y o k(p)| =G, (n) — G,(0)] < Ch*
Then, if py € W,(p)(4C2h%?), since  is Lipschitz with global Lipschitz constant ,
ly o k(p2) — y o k(p)| < Ch% + Chd% < Cho

This shows that y o k(p2) € y o k(W (po) N T)(Ch’2) and concludes the proof. O

As a corollary, using Lemma [6.1], we get
Corollary 6.3. 2~ is v/3-porous on scale %C’hé2 to 1.

We can now prove the last Proposition [5.6] needed to end the proof of Proposition This is
a consequence of the porosity of QF and the fractal uncertainty principle. To apply Proposition
we need to ensure that the scale condition is satisfied, that is to say

bo+17>1

which has been supposed when defining 7 in (4.5 and (4.6]). Proposition then comes with any
0<vy<(62+7—1)3(r/3).
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APPENDIX A.
A.1. Holder regularity for flows.

Lemma A.1. Let U C R” be open and Y : U — R” be a complete C'*# vector field. We note
¢*(z) the flow generated by Y. Then, for any '€ R and K C U compact, the map

(t,z) € [-T,T] x K = ¢'(z)
is C115.

Proof. We fix T, K as in the statement. We’ll use the same constants C,C’ at different places,
with different meaning. In addition to Y, they will depend on T, K .

Since Y is C', Cauchy-Lipschitz theorem gives the local existence and uniqueness of the flow.
It is standard that the flow is also C'! and satisfies

(A.1) 0ydd' (x) = dY (¢'()) o dp' ()
Let’s note A'(z) = d¢'(z) and Z(¢,z) = dY (¢'(x)). The assumption on Y implies that Z is 3-
Holder.
Fix (to,z0), (t1,71) € [-T,T] x K and let’s estimate ||A" (z1) — A% (z0)||. We split it into two
pieces and control it with the triangle inequality :
[|A™ (1) — A" (@o)|| < [|A™ (21) — A" (@1)|| + ||A" (1) — A™ (z0)]]

It is not hard to control the first term of the right hand side using (A.1)) since

A" (1) — A" (21)]] = < Clty — ol

ty
/ E(s,x1) 0 A%(x1)ds

to

To estimate the second term, we estimate
10:(A" (1) — A'(z0))I| < || (E(t, 21) — E(t,20)) 0 A'(21) + E(t, 20) 0 (A*(w1) — A'(20))l|
< Cd(wg, 21)" + C'||A'(z1) = A'(x0)|
By Gronwall’s lemma,
|| A% (1) — A (0)|| < Cd(xo,x1)%eCt < Cd(g, 21)”
This concludes the proof. O

A.2. Proof of Lemma We give the missing proof of Lemma [3.10] and widely use the
notations of the subsection [3.5] Its proof uses the construction of e,, in the proof of Theorem 5] It
is inspired by techniques usually used to show the unstable manifold’s theorem (see for instance
[Dyal§]). In fact, the smoothness of y — fo(y,0) is a direct consequence of the smoothness of the
unstable manifold W, (pg). It was not clear for us if it was possible to easily deduce from this the
required smoothness of y — 9, fo(y,0). This is why we decided to give a proof of this proposition.
It uses the fact that e, has been constructed to satisfy Rd,F'(e,(p)) = Rey(F(p)) for p in a small
neighborhood of 7. To show the lemma, we need information along all the orbit of pg. For this
purpose, we introduce the following, for m € Z,
® pm = F"(po) ;
® Ky, : Uy — Vi C R? the chart given by Lemmacentered at p,, and we assume that the
relation Rd,F'(e,(p)) = Re,(F(p)) holds for p € U,,. We will note (Y, ) the variable
in V, ;
o Gy =tmp10oFor iV — Vi s
e A reparametrization of the vector field (K )xey @ R(Km)«€y = Rey, where en, (Ym, Mm) =
(1, 8 (Y, Mm)) Where s, is a slope function which is known to be C**+5.
Note that sy, (Ym,0) = 0 due to the fact that ., (Wy(pm)) C Rx{0}. The hyperbolicity assumption
on F' and the properties of x,, allow us to write

G (Ym, Mm) = ()\mym + W (Yms M) s T+ B (Y nm))

where
e For some v < 1, 0 < || < v, [An| > v7L forallm € N ;
o 0 (0,0) = B (0,0) = 0;
® Bin(Ym,0) =0 for (ym,0) € Vin
o da(0,0) = dBm(0,0) =0 ;
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e We can assume that U, are sufficiently small neighborhoods of p,, so that B,,,a, =
O(d0)c1(v,,) for some small 6y > 0.

The property d,F(e.(p)) € Re,(F(p)) implies that d(,, . Gm (em (Y, nm))) € Rempa (Gm(ym, nm)).
As a consequence, the transformation of the slopes gives an equation satisfied by the family of slopes

(Sm)mez :

(A.2) $mt1 (G (Yms Mm)) = Qun (Yms s Sm (Y hm))

where @, is the smooth function

s X (Mm + anmﬂm(ymvnm)) + 8ym/8m(ym77lm)
)\m + aymOém(mi nm) +s X 8ﬂm,am(ym’ nm)

Writing G (Ym, Mm) = (Ym+1,Mm+1), we deduce by differentiation of (A.2]) with respect to
NDm+1: (we omit the point of evaluation of the maps involved in the right hand side to alleviate the
line)

Qm(Ym,Mm,s) =

(A'3) anm+1sm+1(ym+la"7m+1) = 8mem X 8nm+1ym + aanm X aannm
4 0sQum X (8ymsm X Opyo1Ym + O, 8m X a,,mﬂnm)

This last equation gives the transformation of vertical derivative of the slope. We now evaluate this
identity at the point (y,,+1,0). In the following lines, when the variable ¥, and y,,1+1 appear in
the same equation, we implicitly assume that they are related by (ym+1,0) = Gu(Ym, 0), namely
Ym+1 = AmYm + @m (Ym,0). We remark that due to the fact that By, (¢m,0) = 0, Qun(Ym,0,0) =0
and the first term of the right hand side vanishes. The term 0,,, 5., also vanishes at (yy,,0). We
will note

Om(Ym) = 8nm Sm(Ym,0)

hin (Ym) = O, @ (Y 0,0) X Oy 1l (Y41, 0)

m(Ym) = 0sQum(Ym;0,0) X Op,. M (Ym+1,0)
These notations allow us to rewrite at (Ym1,0) :

(A~4) 0m+1(ym+1) = hm(ym) + Cm(ym) X Um(ym)

We observe that |y, ., m (Ym, 0)| = [um' + O(d0)co| and after some computations, we see that

0sQm (m: 0,0) = £ + O(do) o

As a consequence,
(A.5) lem (ym)| = (At + O(0)co < 11

where, if §q is small enough, we can fix vy < 1. Moreover, ¢,,, and h,, are smooth functions and their
C" norms are bounded uniformly in m, and actually by global constants depending only on F.
Furthermore, ¥, = ym+1 is given by Ym — Ay + @ (ym, 0) and is an expanding diffeomorphism
provided dq is small enough.

We fix some small ¢ such that (—¢,e) x {0} C Uy, for all m. Let’s note I = (—¢,¢). We will
make use of the Fiber Contraction Theorem to show that y,,, € I — 04, (Ysm) is smooth for every
m, with uniform C% norms. For this purpose, let us introduce the following notations :

e Cy <(C; <...Cn <... afamily of constant which will be specified in the sequel ;

e The complete metric space Xn = {v € CN(D);||7||cr < Ck,0 < k < N} equipped with
the CN norm ;

e The auxiliary metric space X% = {y € C°(1);||7||lsc < Cn} equipped with the C° norm

)

e The complete metric space Ey = (X N)Z equipped with the metric

d(v1,72) = sue%ll(%)m - (2)mllen~

e Its auxiliary counterpart E4'* = (Xj‘{;“”)z equipped with the metric

d(y1,72) = sup (7 1)m — (Y2)mllco
me
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For v € En, let’s define Ty with the formula (A.4]) :

(TY)m+1Um+1) = (hm + cm¥m) (Ym)

Since Y, — Ymy1 is expanding, we see that ymi1 € I = ym, € I. Hence, (T)my1 is well
defined on I. Our aim is to show by induction on N that for every N € N, 0 := (0, )mez is in Ex
and is an attractive fixed point of T : Eny — En.

We start with the case N = 0. We need to check that T(Ep) C Ey. It will be the case as soon
as

C(OVI + sup Hh'mHoo S C’O
m
For instance, take Cy = % Due to the fact that [|c,,||cory < vi, T is a contraction
with contraction rate v; and hence T : Ey — FEy has a unique attractive fixed point. This fixed
point is necessarily o since o satisfies (A.4)).
Arguing by induction, we assume that o € En, T(Eyx) C En and o is an attractive fixed point
for T and we want to show that the same is true for N + 1. For this purpose, suppose that v € En
is of class CV*+1. Analyzing the formula defining T', we see that can can write, for m € Z,

8m —N-1
(A0) (T i) = D) + emlim) * () X2 D )

+ Ry (Yms Y Um)s - 95 (ym) )

where Ry : I x [=Cp,Co] x --- x [-Cn,Cn] — R is a polynomial in the last N + 1 variables
with smooth coefficients in y,,, uniformly bounded in m. As a consequence, there exists a global
constant Cy_ ; such that

sup sup |RNm (Y 05 -+ ™) | < Civyy
m [x[—Co,Co]x - x[~Cn,CnN]

We can then choose Cy 41 > Cpn such that

sup ||hmHCN+1 + C;V-H + V10N+1 < CN+1
m

which ensures that T : Eny1 — En41. We now wish to use the Fiber Contraction Theorem
(Theorem @ If v € En, we define the map S, : E{*f, — ERE by

(550), 21 (Wms1) = BT () e (ym) X ( gy = (ym)> X O (Ym )+ BN (Yms Yo Ym)s - - Vo (Ym) )

Due to the choice of Cn41, we see that S, is well defined and since we have

it )
Oy
and ||c;||co(ry < vi, Sy is a contraction with contraction rate v, for every v € Ex. In particular,
the map S, has a unique fixed point oy 41 € B .
The Fiber Contraction Theorem (Theorem @ applies to the continuous map

Ty : (7,9) € By X Exfufl — (T%SVG) € En X E]avufl

and (o,0n41) is an attractive fixed point of Ty in Ey x ERE;.

In particular, if vy € En1, then 7 := (y,y(V*1)) € By x E{T, and

. P~ : aux
pl}ljrnoo TNy = (0,0n41) in Exy x EYY

However, by definition of S,
T84 = (T, (T77) )

Hence, for every fixed m, (T%7),, converges to o, in Xy and (Tpv)sévﬂ) converges uniformly on I
to on41. This proves that o is CV*! and 0¥+ = g, ;. We conclude that o € En, 1 is then an

attractive fixed point of T': Enxy1 — Eny1, which proves the induction and concludes the proof
of Lemma [3.101



82 LUCAS VACOSSIN

A.3. Proof of Lemma We give the missing proof of Lemma [5.5] The proof is a precise
analysis of the iteration formula . We adopt the notations introduced for Lemma We
argue by induction on J to show the property P;:" the bound is valid for all j < J and for
all 1 <i<n—1,l € N with some constants C;;".

1. Base case. Let us start with Py. The iteration formula (5.17)) implies that
i
aio(z:) = [ filar)
=1

Hence, the bound ||a;ol|ce < (BVUQ)Z is obvious and we can set Cpo = 1. We now argue by
induction on ¢ and prove the property Py ;:"the bound is valid for 7 =0, ¢ and for all [ € N
for some constants C;;".Theses bounds are trivially true for ¢ = 0 and are direct consequences of
Lemma [5.4] for ¢ = 1. Suppose that the property holds for ¢ — 1 for some i > 1 and let’s show it
for 1.

1.1. Case | = 1. Let us first deal with [ = 1 and compute the derivative of a; o, using the formula
: ai,O(mi) = fi(xi)aifl,o(xifl)'

a;o(zi) = f'(@i)ai—1,0(zi-1) + fi(zi)ai_1 o(zi-1) (a;;l)

Oxy_1

We use the (weak) bound | ==

< 1 and the property Py ;—1 to show that :
llaiollcr < C (Bul/Z)iil + Co1 (BV1/2> X (Bul/Q)iili < Co (Bul/g)i (i+1)
assuming that Co; > C (Bul/Q)_l.
1.2. General case for [ > 0. We now come back to the g(;e)neral case [ > 0. By using the formula
0

a;o(z;) = fi(x;)a;—1,0(xi—1), one sees that we can write a;  on the form :

O0zi_1

l
(e = fiteaofwi 1) (221) 40 (laisller)

The constants appearing in the O depend on C! norms of f; and ¢;, which, by assumption are
controlled by some uniform C]. Hence, using the assumption Py ;_1,

l Oxi_1
@)l < (B lloisller (%2

< Coy (BV1/2> (Bul/Q)i_l it + ClCo11 (BV1/2)i_1 -1

l
)+ Clllaiolic

< Cou (BU'2)" (i + 1!

assuming that Cj ; is chosen bigger than %C’Z’Co,l,l (Bz/l/2) 71. As a consequence, we can build con-
stants satisfying these conditions by defining inductively Cp; = max (Co)l,l, 1C/Coy—1 (Bv/?) 71).
This ends the proof of Py ; and hence of Py.

2. Induction step. We now assume that P;_; is true for some j > 1 and aim at proving P;.
Again, we do it by induction on ¢ by proving the properties P;; : "the bound is true for j,i
and all [ € N ". Theses bounds are trivially true for ¢ = 0 and are direct consequences of Lemma
6.4 for ¢ = 1. Suppose that the property holds for i — 1 for some i > 2 and let’s show it for 1.

2.1. Case | = 0. Let’s start with [ = 0. The iteration formula shows that
j—1

a;j(w;) = filz)ai1j(@i1) + Y Lipi(aio1,p)(i1)

p=0
By Lemma there exists constants C;, ,, > 0 such that

| Lpiallcm 1,y < Cp llallcoem s,y
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Hence, assuming that (5.18)) holds for a,_; ; with [ = 0.

. j—1
i—1 5.
llaijlloe < Cjo (BY2) (BU2)" % 4+ 3 CF ollai1pllcai-n
p=0
i1t -1 .
< Cjo (BVM?) % 437 Ch, 0Caimp (BYY?) 0P
p=0

. .o, J-1
172\ .35 | 25 17241 ,
< Cjo <Bu / ) ) 44 (Bl/ / > ZC}?EOCP,Q(J—,MZ”
p=0
=1
i—1

P g . i—1
< Cjo (By1/2> i3 42 (Bul/z) sup Cl_p, 0Cpa(i—p)
0<p<j—1

i ogs g i—1 ~ il —1 5 il
<Cjpo <Bu1/2> i3 31 (BV1/2> |:O<§)]il;)—10;pyocp72(jp)} C; where — 1 < G L
< Cro (Br?) (i +1)¥

assuming that C} o is chosen bigger than K; := % (Bl/l/2>_1 [Supogpgj_1 C’j’;p’OC’ ,Q(j_p)] Cj. As
a consequence, the bounds hold for [ = 0 and 1, j if we set C; o = max(1, Kj).

2.2. Case [ > 0. Consider now [ > 0. As already done, one can write

axi7 l Jj—1
) = fiaal i) (Z) 40l vllor) + 3 (L pilai 1) i)
[ p=0

As usual, the constants in O depend on [, j but not on ¢ and we note C’l" ; the constant in this O.
Hence, we can control :

j—1

i—1 i—1 o
lla)]loe < Cj (BYM?) (BuM2)" i35 4 O Chua (BYM?) i3 4 3 1Ly pi(ai1p)l|en

p=0
. i1 j—1
1/2\" :1+3; 1" 1/2\* " ;1435—1 /
< Cj,l (BI/ / ) it 4 ClJ-Cj,l_l (Bl/ / ) girsiml E Cj_pJ‘|ai_17p||cl+2(jfp)
p=0
j—1

7 . i—1 . i—1 .
< Cja (BY'?) i 4 Gy (BUM?) i 4 37 O 1Cyap (BYY?) it

p=0

i . . 1 -1 ~
< Cjy (Bl,l/2>l §133 4 i3l o (Byl/z) (Cll’/jCj7l_1 + O<sgp_ 10}_%50 ’l+2(jp)Cj)
7, <p<j—

éj,l
<Cj (Byl/Q)l (i + 1)l+3j

if ¢;; > C;;. Eventually, we define by induction on [ the constants C;; by setting C;; =
max (Cj’l,l, CN'j,l), achieving the proof of P;. This concludes the proof of the lemma.

A.4. Upper-box dimension for hyperbolic set. This subsection is devoted to the proof of
Proposition [6.2] We will simply recall some arguments which lead to give an upper bound to the
upper box dimension. We borrow this arguments from [Bar(08| (Section 4.3) and refer the reader
to this book for the definitions and properties of topological pressure (definition 2.3.1), Markov
partition (definition 4.2.6) and other references on this theory.

We’ll show that the pressure condition implies Proposition We prove it for the
unstable manifolds. The proof is similar in the case of stable manifolds by changing F into F~1.
We first begin by fixing a Markov partition for 7 with diameter at most 7y. This is possible in
virtue of Theorem 18.7.3 in [HK95|. We note Ry,...,R, C T this Markov partition. Here, ng is



84 LUCAS VACOSSIN

smaller than the diameter of the local stable and unstable manifolds and the holonomy maps H::if,
are well defined for d(p, p’) < no :

H;L’/ps, : Wy u(p) = Wsu(p'), ¢ = the unique point in W, (¢) N W(p')

Due to our results on the regularity of the stable and unstable distributions, these maps are
Lipschitz with global Lipschitz constants. In particular, if an inequality of the kind

Nw, (pn7(e) < Ce™°

holds for some p, it holds for p’ if d(p, p’) < no with C replaced by K°C where K is a Lipschitz
constant for the holonomy maps. We fix (p1, ..., pp) in (Ri,...,Rp) and weset V = Jo_, W, (p;)N
R;. It is then enough to show that

dimV < 1
Indeed, if dimV < 1, for 6 € (dimV, 1), there exists gy > 0 such that
Ve < &g, Ny(e) < g~d

and we conclude the proof of Proposition[A-4] with the above considerations on the holonomy maps.

§ := dimV satisfies the equation P(6¢,) = 0. We will actually show that P(3¢,) > 0. Since
s+ P(s¢,) is strictly decreasing and has a unique root, the assumption P(¢,) < 0 will give § < 1.
We will note

n

Rig,....i ﬂ s Vig,sin = Rig, i, OV
the elements of the refined partltlon at time n. Similarly to the definitions of JJ , we will note

JiUv--wi‘n, = inf{JS(p%p € Rio,n-,in}

and write

Z J_ i = Z exp Amax ( Z¢“0Fk>
i Q0yeesin 07 in

(the last equality follows from the chain rule). Properties of Markov partitions ensure that

P(s¢y) = lim llogcn(s)

n—o0o N
Fix s > §. Hence, there exists £1 such that Ve < ey, Ny(e) < e~ 5.
Fix n € N*. By writing V = Uim iy Vio,oyin We have

Z NV10 ..... in 6

7 !’LTL
Note that

F*(Vig,...sin) C Wul(F"™(piy)) N R,
and
H;'”(pio),pin (Fn(‘/io;nwin)) C ‘/'Ln

Hence, if we cover V;, by N sets of diameter at most €, Uy, ..., Uy, the sets F~"oH* U;), 1<

pln’F (pio) vl -
i < N cover V;, and have diameters at most K&:Jizln__in. Hence,

Ny, (5) > NVm ..... in (KEJi;,l...,in)

which gives

i0 ytn
. 71 _
As a consequence, if ¢ < e1KJ, , where J,, = sup; ; Ji, . i,, we have
S 7—S —Ss __ S_.—S
Ny(e) < K*Jir .8 0 = Ke en(s)
10;---ym

By iterating this process, we see that for all m € N, if ¢ < &1 (K J,; )™
Ny(e) <e *K™c,(s)™



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 85

Hence,
log Ny (g) <sq mlog(K cn(8)) <sim log(K cn(f)l)
—loge —loge —log (e1(K Jy 1)™)
We then take the limsup as € — 0 first and then pass to the limit as m — 400 and find that
Ty < s+ 28 wl®)
—log K J,
Then, we pass to the limit s — ¢ and find that log(K°¢,(5)) > 0. Hence,
1 —dlog K
P(5¢y) = lim ~logen(8) > lim ——82 —¢
n—oo N n—00 n

This ends the proof of the required inequality and gives that dimV < 1.

A.5. From porosity to upper box dimension. We have shown that sets with upper box di-
mension stricly smaller than one are porous. In this appendix, we show a result in the other way,
namely, porous sets down to scale 0 have an upper box dimension strictly smaller than one. The
following lemma gives a quantitative version of this statement. This is not useful for our use (we
only needed the first implication) but we found that it could be of independent interest. Our proof
is based on the proof of Lemma 5.4 in [DJ18]. We adopt the same notations as in

Lemma A.2. Let M € N,v > 0,7 > 0. Let X C [-M, M] be a closed set and assume that
X is v-porous on scale 0 to «;. Then, there exists C = C(v,a1, M) > 0, g9 = £o(v, 1, M) and
0 =4(v) €[0,1) such that

Ve <eg; Nx(e) < Ce™?
In particular, o

dimX < §
Proof. We note L = [2] and kq the unique integer such that
I A
We will note I,,, . = [mL~%, (m +1)L=F] for k € N,m € Z.
We now show by induction on k > kg that there exists Y, C Z such that :
(A7) #Ve <2MIP(L—1)" 0 | Lok
meYy

namely, at each level k > ko, one new interval I,,, , does not intersect §2.
The case k = kg is trivial since we simply cover €2 by the intervals I, ,, for MLF <m < MLF.
We now assume that the result is proved for & > kg and we prove it for k + 1. Fix m € Y. We
write I = Uf:_ol Imr+jk+1- We claim that among the intervals Ip,74; r+1, at least one does not

intersect 2. Indeed, since |I| < L=* < qy, the porosity of 2 implies the existence of an interval
J C I of size v|I| = vL™F > 2071 such that J N Q = 0. Since |J| > 2L~%~1  J contains at least
one of the intervals I, 11 r+1. We note this index j,,. We now set

Yier= |J {mL+4.5€{0,.... L1} \ jm}
meYy
By the property of j,, Q C UmeYHl Lgr1 and #Yj1 < (L — D)#Y) < (L — 1)kti=kogp ko,
We now consider € < %L‘kﬂ and write k the unique integer such that
—log(2¢)
WW

Since we can cover ) by 2MLFo(L — 1)*=%o closed intervals of size L™*, we can cover Q by
4M L*o (L — 1)k=ko open intervals of size 2¢. Hence,

L <2< L7F1 e k= {

L \F on(2e
Nq(e) < AML* (L —1)* ko < 4Mm (ﬁ) (L — 1)—110;2L>+1 <Ce?

log 2

k
with 6 = 12870 € [0,1) and € = 4M (27)" (L —1)' iz, O
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FIGURE 16. It illustrates the tree structure of the family of intervals I} ,, with
L = 3. The porosity allows us to withdraw at least one child to any parent. The
missing children are drawn in red.
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