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Abstract. In this paper, we study the problem of scattering by several strictly convex obstacles,
with smooth boundary and satisfying a non eclipse condition. We show, in dimension 2 only,
the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside
the obstacles. The proof of this result relies on a reduction to an open hyperbolic quantum
map, achieved in [NSZ14]. In fact, we obtain a spectral gap for this type of objects, which also
has applications in potential scattering. The second main ingredient of this article is a fractal
uncertainty principle. We adapt the techniques of [DJN21] to apply this fractal uncertainty
principle in our context.
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2 LUCAS VACOSSIN

1. Introduction

Scattering by convex obstacles and spectral gap. In this paper, we are interested by the
problem of scattering by strictly convex obstacles in the plane. Assume that

O =

J⋃
j=1

Oj

where Oj are open, strictly convex connected obstacles in R2 having smooth boundary and sat-
isfying the Ikawa condition : for i 6= j 6= k, Oi does not intersect the convex hull of Oj ∪ Ok.
Let

Ω = R2 \ O

Figure 1. Scattering by three obstacles in the plane

It is known that the resolvent of the Dirichlet Laplacian in Ω continues meromorphically to the
logarithmic cover of C (see for instance [DZ18]). More precisely, suppose that χ ∈ C∞c (R2) is equal
to one in a neighborhood of O.

χ(−∆− λ2)−1χ : L2(Ω)→ L2(Ω)

is holomorphic in the region {Imλ > 0} and it continues meromorphically to the logarithmic cover
of C. Its poles are the scattering resonances. We are interested in the problem of the existence of
a spectral gap in the first sheet of the logarithmic cover (i.e. C \ iR−). We prove the following
theorem :

Theorem A. There exist γ > 0 and λ0 > 0 such that there is no resonance in the region

[λ0,+∞[+i[−γ, 0]

This problem has a long history in the physics and mathematics literature. The spectral gap
has for instance been studied by [Ika88] in dimension 3. For related problems concerning the
distribution of scattering resonances for such systems, here is a non exhaustive list of papers in
which the reader can find pointers to a larger litterature : [GR89] for the three-disks problem,
[Gé88], [Ika82] for the the two obstacles problem, [PS10] for link with dynamical zeta functions,
[BLR87], [HL94] for the diffraction by one convex obstacle, [SZ99] among others papers of the
two authors concerning the distribution of the scattering resonances. We will also widely use the
presentation and the arguments of [NSZ14].
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The spectral gap problem is a high-frequency problem and justifies the introduction of a small
parameter h, where 1

h corresponds to a large frequency scale. Under this rescaling, we are interested
in the semiclassical operator

P (h) = −h2∆− 1 h ≤ h0

and spectral parameter z ∈ D(0, Ch) for some C > 0.
In the semiclassical limit, the classical dynamics associated to this quantum problem is the

billiard flow in Ω× S1, that is to say, the free motion outside the obstacles with normal reflection
on their boundaries. A relevant dynamical object is the trapped set corresponding to the points
(x, ξ) ∈ Ω × S1 that do not escape to infinity in the backward and forward direction of the flow.
In the case of two obstacles, it is a single closed geodesic. As soon as more obstacles are involved,
the structure of the trapped set becomes complex and exhibits a fractal structure. This is a
consequence of the hyperbolicity of the billiard flow. It is known that the structure of the trapped
set plays a crucial role in the spectral gap problem.

A good dynamical object to study this structure is the topological pressure associated to the
unstable Jacobian φu. This dynamical quantity is a strictly decreasing function s 7→ P (s) which
measures the instability of the flow (see Section 2 for definitions and references given there). In
dimension 2, Bowen’s formula shows that the Hausdorff and upper box dimensions of the trapped
set are 2s0 where s0 is the unique root of the equation P (s) = 0. In [NZ09], the existence of a
spectral gap for such systems has been proved under the pressure condition

P

Å
1

2

ã
< 0

Their result holds in any dimension, with a quantitative spectral gap. Our result doesn’t need this
assumption anymore. In fact, it relies on the weaker pressure condition :

P (1) < 0

It is known that this condition is always satisfied in the scattering problem we consider since the
trapped set is not an attractor ([BR75]). Due to Bowen’s formula, this condition can be interpreted
as a fractal condition. This is this fractal property that will be crucial in the analysis.

Open hyperbolic systems and spectral gaps. The problem of scattering by obstacles falls
into the wider class of spectral problems for open hyperbolic systems (see [Non11]). In these
open systems, the spectral problems concern the resonances : these are generalized eigenvalues
which exhibit some resonant states. Among the problems which widely interest mathematicians
and physicians, resonance counting and spectral gaps are on the top of the list. Spectral gaps
are known to be important to give resonance expansion (see for instance [DZ19]) and local energy
decay (see for instance the works of Ikawa [Ika82] and [Ika88] concerning local energy decay in the
exterior of 2 and several obstacles in R3). It has been conjectured in [Zwo17] (Conjecture 3) that
such systems might exhibit a spectral gap as soon as the trapped set has such a fractal structure.

Convex co-compact hyperbolic surfaces. Another class of open hyperbolic systems exhibiting
a fractal trapped set consists of the convex co-compact hyperbolic surfaces, which can be obtained
as the quotient of the hyperbolic plane H2 by Schottky groups Γ. The spectral problem concerns
the Laplacian on these surfaces and its classical counterpart is the geodesic flow on the cosphere
bundle, which is known to be hyperbolic due to the negative curvature of theses surfaces. In this
context, it is common to write the energy variable λ2 = s(1− s) and study

(−∆− s(1− s))−1

The trapped set is linked to the limit set of Γ and the dimension δ of this limit set influences the
spectrum. The Patterson-Sullivan theory (see for instance [Bor16]) tells that there is a resonance at
s = δ and that the other resonances are located in {Re(s) < δ}. In particular, it gives an essential
spectral gap of size max(0, 1/2 − δ). This is consistent with the pressure condition P (s) < 1/2
since in that situation, P (s) is simply given by P (s) = δ − s. Results where obtained by Naud
([Nau05]), where he improves the gap given by the Patterson-Sullivan theory in the case δ ≤ 1/2.
Recent results, initiated by [DZ16], have improved this gap. In [BD18], the authors show that
there exists an essential spectral gap for any convex co-compact hyperbolic surfaces. In particular,
the pressure condition δ < 1/2 is no more a necessary assumption. The new idea in these papers
is the use of a fractal uncertainty principle. It will be a crucial tool of our analysis.
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Potential scattering. Scattering by a compactly potential also falls in the class of open systems.
It consists in studying the semiclassical operator P (h) = −h2∆ + V (x) where V ∈ C∞c (R2).

Figure 2. Scattering by a smooth compactly supported potential V .

In this framework, the spectral gap problem consists in exhibiting bands in the complex plane
of the form

[a, b]− i× [0, hγ]

where P (h) has no resonance, for h small enough. In the semiclassical limit, the behavior of P (h)
is linked to the classical flow of the system, that is the Hamiltonian flow generated by p(x, ξ) =
|ξ|2 +V (x). Note that in potential scattering, one has to focus on some energy shell {p = E} where
E ∈ R is independent of h, with Re z sufficiently close to E. This specification is not necessary
in obstacle scattering (implicitly, we have already decided to work with E = 1). The properties
of the resonant states uh, which are generalized solutions of the equation (P (h) − z)uh = 0, are
linked to the trapped set of the flow. This trapped set corresponds to all the trajectories which
stay bounded for the backward and forward evolution of the flow. When the flow is hyperbolic on
the trapped set, this trapped set is known to exhibit a fractal structure.

Reduction to open hyperbolic quantum maps. An important aspect of our analysis to prove
Theorem A relies on previous results of [NSZ14]. Their Theorem 5 (Section 6) reduces the study
of the scattering poles to the study of the cancellation of

z 7→ det(I−M(z))

where

(1.1) M(z) : L2(∂O)→ L2(∂O)

is a family of hyperbolic open quantum map (see below Section 2.1). The family z 7→M(z) depends
holomorphically on z ∈ D(0, Ch) for some C > 0 and is sometimes called a hyperbolic quantum
monodromy operator. The construction of this operator relies on the study of the operators M0(z)
defined as follows : for 1 ≤ j ≤ J , let Hj(z) : C∞(∂Oi) → C∞(R2 \ Oj) be the resolvent of the
problem  (−h2∆− 1− z)(Hj(z)v) = 0

Hj(z)v is outgoing
Hj(z)v = v on ∂Oj

Let γj be the restriction of a smooth function u ∈ C∞(R2) to C∞(∂Oj) and define M0(z) by :

M0(z) =

ß
0 if i = j
−γiHj(z) otherwise

Due to results of Gerard ([Gé88], Appendix II), this matrix is a Fourier integral operator associated
with a Lagrangian relation related to the billiard flow. A priori, it does exclude neither the glancing
rays nor the shadow region. Ikawa’s conditon allows the authors to get rid of these embarrassing
regions, since they do not play a role when considering the trapped set (see Section 6 in [NSZ14]).
A consequence of their analysis is that M(z) is associated with a simpler Lagrangian relation B,
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which is the restriction of the billiard map to a domain excluding the glancing rays. To be more
precise, let us introduce

S∗∂Oj = {(x, ξ) ∈ T ∗R2, x ∈ ∂Oj , |ξ| = 1}
B∗∂Oj = {(y, η) ∈ T ∗∂Oj , |η| ≤ 1}
πj : S∗∂Oj → B∗∂Oj the orthogonal projection on each fiber

Figure 3. Description of the Lagrangian relation Bij

B is then the union of the relations Bij corresponding to the reflection on two obstacles : for
(ρi, ρj) ∈ B∗∂Oi ×B∗∂Oj :

(ρi, ρj) ∈ Bij ⇐⇒ ∃t > 0, ξ ∈ S1, x ∈ ∂Oj
πj(x, ξ) = ρj , πi(x+ tξ, ξ) = ρi, νj(x) · ξ > 0, νi(x+ tξ) · ξ < 0

It is a standard fact in the study of chaotic billiards (see for instance [CM00]) that the billiard map
is hyperbolic due to the strict convexity assumption. Ikawa’s condition ensures that the restriction
of the dynamical system to the trapped set has a symbolic representation ([Mor91]).

Spectral gap for hyperbolic open quantum maps. Using this reduction, Theorem A will be
proved once we are able to show that the spectral radius of M(z) is strictly smaller than 1 for
z ∈ D(0, Ch) ∩ {Im z ∈ [−δh, 0]}, for some δ > 0. This will be a consequence of the following
statement, which will be demonstrated in this paper (see Section 2 below for a more precise version).

Theorem B. Let (M(z))z be the family introduced in (1.1), that is a hyperbolic quantum mon-
odromy operator associated with the open Lagrangian relation B. Then, there exist h0 > 0, γ > 0
and τmax > 0 such that the spectral radius of M(z), ρspec(z), satisfies : for all h ≤ h0 and all
z ∈ D(0, Ch),

ρspec(z) ≤ e−γ−τmax Im z

When z ∈ R, the operator M(z) is microlocally unitary near the trapped set and its L2 norm
is essentially 1. Then, we have the trivial bound

ρspec(z) ≤ 1

The bound given by the theorem is a spectral gap since we obtain

ρspec(z) ≤ e−γ < 1
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The dependence of the bound with the parameter z is related to the symbol of the open quantum
map M(z).

The link between open quantum maps and the resonances of open quantum systems has also
been established in [NSZ11] for the case of potential scattering. As a consequence, we will also
obtain a spectral gap in this context. We review this reduction both in obstacle and potential
scattering in Section 2 and show how it implies the spectral gap. This correspondance between
open quantum maps and open quantum systems leads to an heuristics : to a resonance z for the
open quantum systems, it corresponds an eigenvalue e−iτ

z
h of an open quantum map. Here, τ is a

return time associated with the classical dynamics of the open system. In particular, the spectral
gap for open quantum maps given by the theorem heuristically implies that the resonances of the
open systems might satisfy Im z < −hγτ .

On the fractal uncertainty principle. This is a recent tool in harmonic analysis in 1D developed
by Dyatlov and several collaborators. For a large survey on this topic, we refer the reader to
[Dya18]. We do not enter into the details in this introduction and give the precise definitions and
statements in Section 6. We rather explain here the general idea of this principle in the spirit of
our use. Roughly speaking, it says that no function can be concentrated both in frequencies and
positions near a fractal set. Suppose that X,Y ⊂ R are fractal sets. To fix the ideas, let’s say that
X and Y have upper box dimension δX and δY strictly smaller than one. For c > 0, let’s note
X(c) = X + [−c,+c] and the same for Y . Also denote Fh the h-Fourier transform :

Fhu(ξ) =
1

(2πh)1/2

∫
R
e−i

xξ
h u(x)dx

The fractal uncertainty principle then states that there exists β > 0 depending on X and Y (See
Proposition 6.1 for the precise dependence) such that, for h small enough,

||1X(h)Fh1Y (h)||L2(R)→L2(R) ≤ hβ

Figure 4. The fractal uncertainty principle asserts that no state can be microlo-
calized both in frequencies (in blue) and positions (in red) near fractal sets.

Actually, one can change the scales and look for the sets X(hαX ) and Y (hαY ) where αX and αY
are positive exponents. The result will stay true as soon as theses exponents satisfy a saturation
condition :

αX + αY > 1

It will be a key ingredient in the proof of the main theorem of this paper. It has been successfully
used to show spectral gaps for convex co-compact hyperbolic surfaces ([DZ16], [BD17],[DJ18],
[DZ18]). A discrete version of the fractal uncertainty principle is also the main ingredient of [DJ17]
where the author proved a spectral gap for open quantum maps in a toy model case. Their results
concerning open baker’s map on the torus T2 partly motivates our theorem on open quantum
maps.

The fractal uncertainty principle has also given new results in quantum chaos on negatively
curved compact surfaces. It has first been successfully used for compact hyperbolic surfaces in
[DJ17] where the authors proved that semiclassical measures have full support. The hyperbolic
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case was treated using quantization procedures developed in [DZ16], which allow to have a good
semiclassical calculus for symbols very irregular in the stable direction, but smooth in the unstable
one (or conversely). The existence of such quantization procedures relies on the smoothness of
the horocycle flow. This smoothness is no more possible for general negatively curved surfaces.
However, in [DJN21], the authors bypassed this obstacle and succeeded to extend these results
to the case of negatively curved surfaces. This is mainly from this paper that we borrow the
techniques and we adapt them in our setting.

A model example. To explain the main ideas of the proof of Theorem B, let us show how it
works in an example where the trapped set is the smallest possible : a single point. In this context,
we only need a simpler uncertainty principle. We focus on the case z = 0 in Theorem B and focus
on a single open quantum map.

We consider the hyperbolic map

F : (x, ξ) ∈ R2 7→ (2−1x, 2ξ) ∈ R2

It has a unique hyperbolic fixed point ρ0 = 0 and the stable (resp. unstable) manifold at 0 is given
by {ξ = 0} (resp. {x = 0}). The scaling operator

U : v ∈ L2(R) 7→
√

2v(2x)

is a quantum map quantizing F . To open it, consider a cut-off function χ ∈ C∞c (R2) such that
χ ≡ 1 in B(0, 1/2) and suppχ b B(0, 1) and we consider the open quantum map

M = M(h) = Oph(χ)U

where Oph is in this example (and only in this example) the left quantization :

Oph(χ)u(x) =
1

2πh

∫
R2

χ(x, ξ)ei
(x−y)ξ
h u(y)dydξ

One easily checks that Egorov’s property for U is true without remainder term :

U∗Oph(χ)U = Oph (χ ◦ F ) , U Oph (χ)U∗ = Oph
(
χ ◦ F−1

)
To show a spectral gap for M , we study Mn with

n = n(h) ∼ −3

4

log h

log 2

This time is longer than the Ehrenfest time − log h
log 2 . We write :

Mn = Un Oph (χ ◦ Fn) . . .Oph
(
χ ◦ F 1

)
The formula [Oph(a),Oph(b)] = O(h1−2δ) is valid for a, b symbols in Sδ (we recall the definitions
of symbol classes in section 3) and δ < 1/2. The problem here is that for 1 ≤ k ≤ n, χ ◦ F k are
uniformly in S3/4 : this is not a good symbol class. To bypass this difficulty, we observe that the
symbols χ◦F k are uniformly in S3/8 for k ∈ {−n/2, . . . , n/2}. As a consequence, for j ∈ {1, . . . , n}
we write:[

Oph (χ ◦ Fn) ,Oph
(
χ ◦ F j

)]
= U−n/2

î
Oph

Ä
χ ◦ Fn/2

ä
,Oph

Ä
χ ◦ F j−n/2

äó
Un/2

= U−n/2O
Ä
h1/4
ä
Un/2

= O
Ä
h1/4
ä

where the constants in O are uniform in j and depend only on χ. Applying this formula recursively
to move the term Oph (χ ◦ Fn) to the right, we get that

Mn = Un Oph
(
χ ◦ Fn−1

)
. . .Oph

(
χ ◦ F 1

)
Oph (χ ◦ Fn) +O

Ä
h1/4 log h

ä
Similarly, we can write :

Mn+1 = Oph
(
χ ◦ F−n

)
Oph (χ) . . .Oph

(
χ ◦ F−n+1

)
Un+1 +O

Ä
h1/4 log h

ä
Hence, we have

M2n+1 = AOph (χ ◦ Fn) Oph
(
χ ◦ F−n

)
B +O

Ä
h1/4 log h

ä
with

A = A(h) = Un Oph
(
χ ◦ Fn−1

)
. . .Oph

(
χ ◦ F 1

)
= O(1)
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and
B = B(h) = Oph (χ) . . .Oph

(
χ ◦ F−n+1

)
Un+1 = O(1)

We have the following properties on the supports

suppχ ◦ Fn ⊂ {|ξ| ≤ 2−n} , suppχ ◦ Fn ⊂ {|x| ≤ 2−n}
Assuming that n(h) ≥ − 3

4
log h
log 2 , we observe that

Oph (χ ◦ Fn) = Oph (χ ◦ Fn)1[−h3/4,h3/4](hDx)

Oph
(
χ ◦ F−n

)
= 1[h−3/4,h3/4](x) Oph

(
χ ◦ F−n

)
Finally, we have

M2n+1 = AOph (χ ◦ Fn)1[−h3/4,h3/4](hDx)1[h−3/4,h3/4](x) Oph
(
χ ◦ F−n

)
B +O

Ä
h1/4 log h

ä
This is where we need an uncertainty principle :

||1[−h3/4,h3/4](hDx)1[h−3/4,h3/4](x)||L2→L2 = ||1[−h3/4,h3/4]Fh1[−h3/4,h3/4]||L2→L2

≤ ||1[−h3/4,h3/4]||L∞→L2 × ||Fh||L1→L∞ × ||1[−h3/4,h3/4]||L2→L1

≤ Ch3/8 × h−1/2 × h3/8 = Ch1/4

Here, the bound can be understood as a volume estimate : the box in phase space of size h3/4 is
smaller than a "quantum box". Gathering all the computations together, we see that

||M2n+1||L2→L2 = O
Ä
h1/4 log h

ä
Elevating this to the power 1

2n+1 , we see that for every ε > 0, we can find hε such that for h ≤ hε,

ρ(M) ≤ (1 + ε)2−1/6

Remark. What matters in this example is the strategy we use, and not particularly the bound,
which is in fact not optimal.

Sketch of proof. The strategy presented in this simple model case is the guideline, but its direct
application will encounter major pitfalls that we’ll have to bypass.

• The trapped set being a more complex fractal set, we’ll need the general fractal uncertainty
principle developed by Dyatlov and his collaborators.

• Even in small coordinate charts, the trapped set cannot be written has a product of fractal
sets in the unstable and stable directions. To tackle this difficulty, we build adapted
coordinate charts (see 3.5) in which we straighten the unstable manifolds. The existence of
such coordinate charts is made possible by Theorem 5, in which we prove that the unstable
(and stable) distribution can be extended in a neighborhood of the trapped set to a C1+β

vector field.
• In the model case, there is only one point and hence one unstable Jacobian to consider

which gives the Lyapouvov exponent of the map log J1
u(0) = log 2. Generally, the growth

rate of the unstable Jacobian differs from one point to another (see 4.3) and the choice of the
integer n(h) is not as simple. In fact, we prefer to break the symmetry 2n(h) = n(h)+n(h)
and split 2n(h) into a small logarithmic time N0(h) and a long logarithmic time N1(h) (see
section 4.1). The first one is supposed to be smaller than the Ehrenfest time and allows
us to use semiclassical calculus to handle MN0 . As a matter of fact, the major technical
difficulties concerns the study of MN1 .

• The study of MN1 requires fine microlocal techniques. The trick used in the model case to
have the commutator estimate is no more possible and we have to use propagation results
up to twice the Ehrenfest time. This is what we do in section 4.4 but this study has to be
made locally and we need to split MN1 into a sum of many terms Uq.

• We could use the fractal uncertainty principle to get the decay for single terms MN0Uq.
However, a simple triangle inequality to handle their sum will no more give a decay for
MN0+N1 since the number of terms in the sum grows like a negative power of h. To bypass
this problem, we need a more careful analysis and we gather them into clouds (see 4.7).
These clouds are supposed to interact with a few other ones, so that a Cotlar-Stein type
estimate reduces the study of the norm of the sum, to the norm of each cloud. The elements
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of a single cloud are supposed to be close to each other, so that the fractal uncertainty
principle can be applied to all of them in the same time and gives the required decay for
a single cloud.

Our strategy follows the main lines of the proof of [DJN21]. In particular, their strategy allows
us to apply the fractal uncertainty principle of [BD18] in a case where the unstable foliation is not
smooth (and in fact, a priori defined only in a fractal set). Their strategy relies on the existence of
adapted charts based on C2− regularity of the unstable foliations in negatively curved hyperbolic
surfaces. It is based on results of [HK95] for Anosov flows. We needed to prove the existence of
such adapted charts in this different context. To do so, we prove that the unstable lamination can
be extended into a C1+β foliation (see 3.5). Another aspect which changes from [DJN21] is the
proof of porosity. In their study, the porous sets arise as iteration of artifical "holes" and they
had to control the evolution of such holes. In our context, this study is easier since we already
know that the trapped set has a fractal structure, characterized by its Hausdorff dimension. In
this paper, we will rather use the upper box dimension (but these two dimensions are equal in this
context).

Restrictions. The main restriction of our theorem is that it only applies to quantum maps with
two-dimensional phase space. In terms of open systems, it only concerns problems with physical
space of dimension 2. Several points explain this restriction :

• The fractal uncertainty principle works in dimension 1. In higher dimension, the result is
currently not well understood and the only known cases require strong assumptions on the
fractal sets (See [Dya18], Section 6).

• Our proof strongly relies on the regularity of the stable and unstable laminations.
• The growth of the unstable Jacobian controls the contraction (resp. expansion) rate in the

unique stable (resp. unstable) direction.

Plan of the paper. The paper is organized as follows :
• In Section 2, we present the main theorem of this paper and show how it gives a spectral

gap in some open quantum systems.
• In Section 3, we give some background material in semiclassical analysis (pseudodifferen-

tial operators and Fourier integral operators). We also recall some standard facts about
hyperbolic dynamical systems and give further results. In particular, in Theorem 5, we
show that the unstable and stable distribution have C1+β regularity.

• The proof of Theorem 1 starts in Section 4 where we introduce the main ingredients needed
for the proof and give several technical results.

• In Section 5, we use fine microlocal methods to microlocalize the operators we work with
in small regions where the dynamic is well understood and we reduce the proof of Theorem
1 to a fractal uncertainty principle with the techniques of [DJN21].

• In Section 6, we conclude the proof of this theorem by applying the fractal uncertainty
principle of [BD18], and more precisely, the version stated in [DJN21].

Acknowledgment. The author would like to warmly thank Stéphane Nonnenmacher for his careful
reading and helpful discussions which contributed a lot in the achievement of this work.

2. Main theorem and applications

2.1. Hyperbolic open quantum maps. We introduce the main tools needed to state the main
theorem of this paper. The following long definition is based on the definitions in the works of
Nonnenmacher, Sjöstrand and Zworski in [NSZ11] and [NSZ14] specialized to the 2-dimensional
phase space. Consider open intervals Y1, . . . , YJ of R and set :

Y =

J⊔
j=1

Yj ⊂
J⊔
j=1

R

and consider

U =

J⊔
j=1

Uj ⊂
J⊔
j=1

T ∗Rd ; Uj b T
∗Yj
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The Hilbert space L2(Y ) is the orthogonal sum
⊕J

i=1 L
2(Yi).

Then, we introduce a smooth Lagrangian relation F ⊂ U ×U . It is a disjoint union of symplec-
tomophisms. For j = 1, . . . , J , consider open disjoint subsets D̃ij b Uj , 1 ≤ i ≤ J and similarly,
for i = 1, . . . , J consider open disjoint subsets Ãij b Ui, 1 ≤ j ≤ J . We consider a family of
smooth symplectomorphisms

(2.1) Fij : D̃ij → Fij
Ä
D̃ij

ä
= Ãij

and define the relation F as the disjoint union of the relation Fij , namely,

(ρ′, ρ) ∈ F ⇐⇒ ∃1 ≤ i, j ≤ J, ρ′ = Fij(ρ)

In particular, F and F−1 are single-valued. We will identify F with a smooth map and note by
abuse ρ′ = F (ρ) or ρ = F−1(ρ′) instead of (ρ′, ρ) ∈ F .
We note

πL(F ) = Ã =

J⊔
i=1

J⋃
j=1

Ãij

πR(F ) = ‹D =

J⊔
j=1

J⋃
i=1

D̃ij

We define the outgoing (resp. incoming) tail by T+ := {ρ ∈ U ;F−n(ρ) ∈ U,∀n ∈ N} ( resp.
T− := {ρ ∈ U ;Fn(ρ) ∈ U,∀n ∈ N}). We assume that they are closed subsets of U and that the
trapped set

(2.2) T = T+ ∩ T−
is compact. We note f : T → T the restriction of F to T . For i, j ∈ {1, . . . , J}, we note Ti = T ∩Ui,

Dij = {ρ ∈ Tj ; f(ρ) ∈ Ti} ⊂ D̃ij

and
Aij = {ρ ∈ Ti; f−1(ρ) ∈ Tj} ⊂ Ãij

Remark. F is an open canonical transformation since F (resp. F−1) is defined only in ‹D (resp.
Ã). The sets U \ ‹D (resp. U \ Ã) can be seen as holes in which a point ρ can fall in the future
(resp. in the past).

We then make the following hyperbolic assumption.

(Hyp) T is a hyperbolic set for F

Namely, for every ρ ∈ T , we assume that there exist stable and unstable tangent spaces Es(ρ) and
Eu(ρ) such that :

• dimEs(ρ) = dimEu(ρ) = 1
• TρU = Es(ρ)⊕ Eu(ρ)
• there exist λ > 0, C > 0 such that for every v ∈ E?(ρ) (? stands for u or s) and any n ∈ N,

v ∈ Es(ρ) =⇒ ||dρFn(v)|| ≤ Ce−nλ||v||(2.3)

v ∈ Eu(ρ) =⇒ ||dρF−n(v?)|| ≤ Ce−nλ||v||(2.4)

where || · || is a fixed Riemannian metric on U .
The decomposition of TρU into stable and unstable spaces is assumed to be continuous.

Remark.

- The definition is valid for any Riemannian metric and we can of course suppose that is it
the standard Euclidean metric on R2.

- It is a standard fact (See [Mat68]) that there exists a smooth Riemannian metric on U ,
which is said to be adapted to the dynamics, such that (2.3) and (2.4) hold with C = 1.

- It is known that the map ρ 7→ Eu/s(ρ) is in fact β-Hölder for some β > 0 ([HK95]). We
will show further an improved regularity. This will be an essential property for the proof
of the main theorem.
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The last assumption we’ll make on T is a fractal assumption. To state it, we introduce the map
φu : ρ ∈ T 7→ −log

∣∣∣∣dρF |Eu(ρ)

∣∣∣∣ associated with the bijection f . We suppose that

(Fractal) − γcl := −P
(
− log

∣∣∣∣dρF |Eu(ρ)

∣∣∣∣ , f) > 0

Here, in terms of thermodynamics formalism, P denotes the topological pressure of the map φu.
The norm || · || is associated with any Riemannian metric on U . For instance, a possible formula
for the definition of the pressure is

P (φ) = lim
ε→0

lim sup
n→+∞

1

n
log sup

E

∑
ρ∈E

exp
∑n−1
k=0 φ(fkρ)

where the supremum ranges over all the (n, ε) separated subsets E ⊂ T (E is said to be (n, ε)
separated if for for every ρ, ρ′ ∈ E, there exists k ∈ {0, . . . , n− 1}, d(fk(ρ), fk(ρ′)) > ε).

Remark.
• γcl is the classical decay rate of the dynamical system. It has the following physical

interpretation : fix a point ρ0 ∈ T and consider the set Bm(ρ0, ε) of points ρ ∈ U such that
|F k(ρ)− F k(ρ0)| < ε for 0 ≤ k ≤ m− 1. Then, its Lebesgue measure if of order e−mγcl .

• In Section A.4, we recall arguments showing that T is indeed "fractal". More precisely,
the trace of T along the unstable and stable manifolds (see Lemma 3.4 for the definitions
of these manifolds) have upper-box dimension strictly smaller than one. In fact, Bowen’s
formula (see for instance [Bar08] and referecences given there) gives that this upper-box
dimension corresponds to the Hausdorff dimension dH and it is the unique solution of the
equation

P (sφu, f) = 0, s ∈ R
The Hausdorff dimension of the trapped set is then 2dH .

• This condition has to be compared with the pressure condition P ( 1
2φu) < 0 in [NZ09] which

ensured a spectral gap for chaotic systems. This condition required that T was sufficiently
"thin", i.e. with Hausdorff dimension strictly smaller than one. Our condition allows to
go up to the limit dimH T = 2−.

We then associate to F hyperbolic open quantum maps, which are its quantum counterpart.

Definition 2.1. Fix δ ∈ [0, 1/2). We say that T = T (h) is a semi-classical Fourier integral operator
associated with F , and we note T = T (h) ∈ Iδ(Y × Y, F ′) if : For each couple (i, j) ∈ {1, . . . , J}2,
there exists a semi-classical Fourier integral operator Tij = Tij(h) ∈ Iδ(Yj × Yi, F ′ij) associated
with Fij in the sense of definition 3.3, such that

T = (Tij)1≤i,j≤J :

J⊕
i=1

L2(Yi)→
J⊕
i=1

L2(Yi)

In particular WFh(T ) ⊂ Ã× ‹D. We note I0+(Y × Y, F ′) =
⋂
δ>0 Iδ(Y × Y, F ′).

We will say that T is microlocally unitary near T if the two following conditions hold :
• ||TT ∗|| ≤ 1 +O (hε) for some ε > 0

• there exists a neighborhood Ω ⊂ U of T such that, for every u = (u1, . . . , uJ) ∈
⊕J

j=1 L
2(Yj),

∀j ∈ {1, . . . , J},WFh(uj) ⊂ Ω ∩ Uj =⇒ TT ∗u = u+O(h∞)||u||L2 , T ∗Tu = u+O(h∞)||u||L2

Let us now briefly see what the second condition implies for the components of T ∗T . First focus
on the off-diagonal entries.

(T ∗T )ij =

J∑
k=1

(T ∗)ikTkj =

J∑
k=1

(Tki)
∗Tkj

If k ∈ {1, . . . , J} and i 6= j, (Tki)
∗Tkj = O(h∞) since

WFh(T ∗ki) ⊂ ‹Dki × Ãki ; WFh(Tkj) ⊂ Ãkj × ‹Dkj and Ãkj ∩ Ãki = ∅
As a consequence, the off-diagonal terms are always O(h∞). For the diagonal entries,

(T ∗T )ii =

J∑
k=1

(Tki)
∗Tki
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Each term of this sum is a pseudodifferential operator with wavefront set

WFh(T ∗kiTki) ⊂ ‹Dki

Since the ‹Dki are pairwise disjoint, T ∗T = IdL2(Y ) +O(h∞) microlocally near T if and only if for
all k, i, T ∗kiTki = IdL2(Yi) +O(h∞) microlocally near Dki. The same computations apply to TT ∗.
As a consequence, T is microlocally unitary near T if and only if for all (k, i), Tki is a Fourier
integral operator associated with Fki, microlocally unitary near Dki × Aki (see the paragraphe
below Definition 3.3).

Notations. An element of Scompδ (U) is a J-uple α = (α1, . . . , αJ) where each αj is an element of
Sδcomp(R2) such that ess suppαj ⊂ Uj (this notation is recalled in the next section).
We fix a smooth function ΨY = (Ψ1, . . . ,ΨJ) such that, for 1 ≤ j ≤ J , Ψj ∈ C∞c (Yj , [0, 1]) satisfies
Ψj = 1 on π(Uj) (recall that Uj b T ∗Yj).
For α ∈ Scompδ (U), we also note Oph(α) the diagonal operator valued matrix:

Oph(α) = Diag(Ψ1 Oph(α1)Ψ1, . . . ,ΨJ Oph(αJ)ΨJ) :

J⊕
j=1

L2(Yj)→
J⊕
j=1

L2(Yj)

Note that as operators on L2(R), Oph(αj) and Ψj Oph(αj)Ψj are equal modulo O(h∞).

We can now state the main theorem of this paper, namely a spectral gap for hyperbolic open
quantum maps. We note ρspec(A) the spectral radius of a bounded operator A : L2(Y )→ L2(Y ).

Theorem 1. Suppose that the above assumptions on F (Hyp), (Fractal) are satisfied. Then, there
exists γ > 0 such that the following holds :

Let T = T (h) ∈ I0+(Y × Y, F ′) be a semi-classical Fourier integral operator associated with F
in the sense of definition (2.1) and α ∈ Scompδ (U). Assume that T is microlocally unitary in a
neighborhood of T . Then, there exists h0 > 0 such that

∀0 < h ≤ h0 , ρspec(T (h) Oph(α)) ≤ e−γ ||α||∞

h0 depends on (U,F ), T and semi-norms of α in Sδ.

For applications, we will need the following corollary (it is in fact rather a corollary of the
method used to prove Theorem 1) :

Corollary 1. With the same notations and assumptions as in Theorem 1, if R(h) is a family of
bounded operators on L2(Y ) satisfying ||R(h)|| = O(hη) for some η > 0, then the there exists γ′
depending only on γ and η, such that for 0 < h ≤ h0,

ρspec
(
T (h) Oph(α) +R(h)

)
≤ e−γ

′
||α||∞

Remark.

• If the value h0 depends on T and α, this is not the case of γ which depends on (U,F ).
• This is a spectral gap : it has to be compared with the easy bound we could have

ρspec(T Oph(α)) ≤ ||α||∞ + o(1)

In particular, if α ≡ 1 in a neighborhood of T and |α| ≤ 1 everywhere, ρspec(T (h)) ≤
e−γ < 1.
• T Oph(α) is the way we’ve chosen to write our Fourier integral operator with "gain" (or

absorption depending on the modulus of α) factor α. T Oph(α) transforms a wave packet u0

microlocalized near ρ0 lying in a small neighborhood of T into a wave packet microlocalized
near F (ρ0), with norm essentially changed by a factor |α(ρ0)|.
• The proof will actually show that if η is strictly bigger than some threshold, then γ′ = γ.

Notations. Throughout the paper, the meaning of the constants C can change from line to line but
these constants will only depend on our dynamical system (U,F ). If there is another dependence,
it will be specified.



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 13

2.2. Applications of the theorem. This theorem has applications in the study of open quantum
systems. We refer the reader to [Non11] for a survey on this topic. The spectral gap given by
Theorem 1 will actually give a spectral gap for the resonances of semiclassical operators P (h) in R2,
or for the resonances of the Dirichlet Laplacian in the exterior of strictly convex obstacles satisfying
the Ikawa non-eclipse condition. We refer the reader to the review [Zwo17] for more background
on scattering resonances or to the book [DZ19]. The results we will obtain from Theorem 1 give a
positive answer (in dimension 2) to the Conjecture 3 in [Zwo17], under a fractal assumption.

Scattering by strictly convex obstacles in the plane. As already explained in the introduc-
tion the main problem motivating Theorem 1, is the problem of scattering by obstacles in the plane
R2. It leads to

Theorem 2. Assume that O =
⋃J
i=1Oj where Oj are open, strictly convex connected obstacles

in R2 having smooth boundary and satisfying the Ikawa condition : for i 6= j 6= k, Oi does not
intersect the convex hull of Oj ∪ Ok. Let

Ω = R2 \ O

There exist γ > 0 and λ0 > 1 such that the Dirichlet Laplacian −∆ on L2(Ω) has no scattering
resonance in the region

[λ0,+∞[+i[−γ, 0]

Let us give the arguments to see why Theorem 1 implies this theorem. After a semiclassical
reparametrization, is is enough to show that there exist δ > 0 and h0 > 0 such that P (h) :=
−h2∆− 1 has no resonance in D(0, Ch)∩{Im z ∈ [−δh, 0]}, for any h ≤ h0. As already explained,
the implication relies on [NSZ14] (Theorem 5, Section 6). They prove the existence of a family of

(2.5) (M(z))z∈D(0,Ch) = (M(z, h))

such that

• M(z) = ΠhM(z)Πh + O(hL) where Πh is a finite rank projector, of rank comparable to
h−1, L > 0 is a fixed constant (which can in fact be chosen as big as we want) and M(z)
is described below and satisfies ΠhM(z)Πh = M(z) +O(hL) ;

• M(0) is an open quantum map associated with a Lagrangian relation B presented in the
introduction, which is microlocally unitary near T . B and M(0) play the role of F and T
in Theorem 1 and satisfy its assumptions ;

• M(z) = M(0) Oph

Ä
e
izτ
h

ä
+ O

(
h1−ε) uniformly in D(0, Ch), where ε > 0 can be chosen

arbitrarily close to zero and τ ∈ C∞c (U) is a smooth function (which has to be seen as a
return time) ;

• The resonances of P (h) in D(0, Ch), are the roots, with multiplicities, of the equation

det(I −M(z)) = 0

Hence, to prove the theorem, it is enough to show that the spectral radius of M(z) is strictly
smaller than 1 for z ∈ D(0, Ch)∩ {Im z ∈ [−δh, 0]} for some δ > 0 and for h small enough. To see
that, we write

M(z) = M(0) Oph

Ä
e
izτ
h

ä
+R(h)

with R(h) = O(hη) for any η < min(1, L). We apply Theorem 1 and find some γ′ such that

ρspec(M(z)) ≤ e−γ
′
∣∣∣∣∣∣eizτ/h∣∣∣∣∣∣

∞
≤ e−γ

′
eδτmax , z ∈ D(0, Ch) ∩ {Im z ∈ [−δh, 0]}

where τmax = ||τ ||∞. This ensures a spectral gap of size

δ <
γ′

τmax
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Schrödinger operators. Actually, the obstacles, seen as infinite potential barriers, can be smoothened
with a potential V ∈ C∞c (R2) and we can consider the Schrodinger operators P0(h) = −h2∆+V (x)

Unlike the obstacle problem, a simple rescaling does not allow to pass from energy 1 to any
energy E and the behavior of the classical flow can drastically change from an energy shell to
another. To study the problem at energy E > 0, independent of h, we rather consider

P (h) = P0(h)− E
The resolvent (P (h) − z)−1 continues meromorphically from Im z > 0 to D(0, Ch) (as previously
in the sense that χ(P (h)− z)1χ extends meromorphically with χ ∈ C∞c (R2)) and we are interested
in the existence of a spectral gap.

The classical Hamiltonian flow associated with P (h) is the Hamiltonian flow Φt generated by
p0(x, ξ) = |ξ|2 + V (x) on the energy shell p−1

0 (E). The trapped set is defined as above by

KE := {(x, ξ) ∈ T ∗R2, p0(x, ξ) = E,Φt(x, ξ) stays bounded as t→ ±∞}
We assume that the flow is hyperbolic on KE and that the trapped set is topologically one-
dimensional. Equivalently, we assume that transversely to the flow, KE is zero-dimensional. Under
these assumptions, the authors proved (see Theorem 1 in [NSZ11]) the existence of a family of
monodromy operators associated with a Lagrangian relation FE which is a Poincaré map of the
flow on different Poincaré sections Σ1, . . . ,ΣJ ⊂ p−1

0 (E). The assumption on the dimension of
KE implies that the assumption (Fractal) is satisfied since KE cannot be an attractor ([BR75]).
Hence, Theorem 1 applies and we can prove as done in the case of obstacles

Theorem 3. Under the above assumptions, there exists δ > 0 such that P (h) has no resonances
in

D(0, Ch) ∩ {Im z ∈ [−iδh, 0]}

3. Preliminaries

3.1. Pseudodifferential operators and Weyl quantization. We recall some basic notions and
properties of the Weyl quantization on Rn. We refer the reader to [Zwo12] for the proofs of the
statements and further considerations on semiclassical analysis and quantizations. We start by
defining classes of h-dependent symbols.

Definition 3.1. Let 0 ≤ δ ≤ 1
2 . We say that an h-dependent family a := (a(·;h))0<h61 is in the

class Sδ(T ∗Rn) (or simply Sδ if there is no ambiguity) if for every α ∈ N2n, there exists Cα > 0
such that :

∀0 < h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ;h)| ≤ Cαh−δ|α|

In this paper, we will mostly be concerned with δ < 1/2. We will also use the notation S0+ =⋂
δ>0 Sδ.

We write a = O(hN )Sδ to mean that for every α ∈ N2n, there exists Cα,N such that

∀0 < h ≤ 1, sup
(x,ξ)∈Rn

|∂αa(x, ξ;h)| ≤ Cα,Nh−δ|α|hN

If a = O(hN )Sδ for all N ∈ N , we’ll write a = O(h∞)Sδ . A priori, the constants Cα,N depend on
the symbol a. However, in this paper, we will often make them depend on different parameters
but not directly on a. This will be specified when needed.

For a given symbol a ∈ Sδ(T ∗Rn), we say that a has a compact essential support if there exists
a compact set K such :

∀χ ∈ C∞c (Ω), suppχ ∩K = ∅ =⇒ χa = O(h∞)S(T∗Rn)

(here S stands for the Schwartz space). We note ess supp a ⊂ K and say that a belongs to the
class Scompδ (T ∗Rn). The essential support of a is then the intersection of all such compact K’s. In
particular, the class Scompδ contains all the symbols supported in a h-independent compact set and
these symbols correspond, modulo O(h∞)S(T∗R), to all symbols of Scompδ . For this reason, we will
adopt the following notation : a ∈ Scompδ (Ω) ⇐⇒ ess supp a b Ω.

For a symbol a ∈ Sδ(T ∗Rn), we’ll quantize it using Weyl’s quantization procedure. It is infor-
mally written as :

(Oph(a)u)(x) = (aWu)(x) =
1

(2πh)n

∫
R2n

a
(x+ y

2
, ξ
)
u(y)ei

(x−y)·ξ
h dydξ
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We will note Ψδ(Rn) the corresponding classes of pseudodifferential operators. By definition,
the wavefront set of A = Oph(a) is WFh(A) = ess supp a.

We say that a family u = u(h) ∈ D′(Rn) is h-tempered if for every χ ∈ C∞c (Rn), there exist
C > 0 and N ∈ N such that ||χu||H−Nh ≤ Ch−N . For a h-tempered family u, we say that a point
ρ ∈ T ∗Rn does not belong to the wavefront set of u if there exists a ∈ Scomp(T ∗Rn) such that
a(ρ) 6= 0 and Oph(a)u = O(h∞)S . We note WFh(u) the wavefront set of u.

We say that a family of operators B = B(h) : C∞c (Rn2)→ D′(Rn1) is h-tempered if its Schwartz
kernel KB ∈ D′(Rn1 × Rn2) is h-tempered. We define

WFh
′(B) = {(x, ξ, y,−η) ∈ T ∗Rn1 × T ∗Rn2 , (x, ξ, y, η) ∈WFh(KB)}

Let us now recall standard results in semi-classical analysis concerning the L2-boundedness of
pseudodifferential operator and their composition. We’ll use the following version of Calderon-
Vaillancourt Theorem ([Zwo12], Theorem 4.23).

Theorem 4. There exists Cn > 0 such that the following holds. For every 0 ≤ δ < 1
2 , and

a ∈ Sδ(T ∗Rn), Oph(a) is a bounded operator on L2 and

||Oph(a)||L2(Rn)→L2(Rn) ≤ Cn
∑
|α|≤8n

h|α|/2||∂αa||L∞

As a consequence of the sharp Gärding inequality (see [Zwo12], Theorem 4.32), we also have
the precise estimate of L2 norms of pseudodifferential operator,

Proposition 3.1. Assume that a ∈ Sδ(R2n). Then, there exists Ca depending on a finite number
of semi-norms of a such that :

||Oph(a)||L2→L2 ≤ ||a||∞ + Cah
1
2−δ

We recall that the Weyl quantizations of real symbols are self-adjoint in L2. The composition
of two pseudodifferential operators in Ψδ is still a pseudodifferential operator. More precisely (see
[Zwo12], Theorem 4.11 and 4.18), if a, b ∈ Sδ, Oph(a) ◦ Oph(b) is given by Oph(a#b), where a#b
is the Moyal product of a and b. It is given by

a#b(ρ) = eihA(D)(a⊗ b)|ρ=ρ1=ρ2

where a ⊗ b(ρ1, ρ2) = a(ρ1)b(ρ2), eihA(D) is a Fourier multiplier acting on functions on R4n and,
writing ρi = (xi, ξi),

A(D) =
1

2
(Dξ1 ◦Dx2 −Dx1 ◦Dξ2)

We can estimate the Moyal product by a quadratic stationary phase and get the following expan-
sion: for all N ∈ N,

a#b(ρ) =

N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2

+ rN

where for all α ∈ N2n, there exists Cα, independent of a and b, such that

||∂αrN ||∞ ≤ CαhN ||a⊗ b||C2N+4n+1+|α|

As a consequence of this asymptotic expansion, we have the precise product formula :

Lemma 3.1. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

(3.1) Oph(a) ◦Oph(b) = Oph

(
N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2

)
+RN

where

(3.2) ||RN ||L2(R)→L2(R) ≤ CNhN ||a⊗ b||C2N+12n+1
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Remark. It will be important in the sequel to understand the derivatives of a and b involved in
the k-th term of the previous expansion. A quick recurrence using the precise form of the operator
A(D) shows that A(D)k(a⊗ b)(ρ1, ρ2) is of the form∑

|α|=k,|β|=k

λα,β∂
αa(ρ1)∂βb(ρ2)

This can be rewritten lk
(
dka(ρ1), dkb(ρ2)

)
where lk is a bilinear form on the spaces of k-symmetric

forms on R2n. Of, course, we make use of the the identifications Tρ1T
∗Rn ' Tρ2T

∗Rn ' R2n

As a simple corollary, we get an expression for the commutator of pseudodifferential operators.

Corollary 3.1. For every N ∈ N, there exists CN > 0 such that, for every a, b ∈ Sδ(Rn),

[Oph(a),Oph(b)] = Oph

(
h

i
{a, b}+

N−1∑
k=2

hkLk(dka, dkb)

)
+RN

where
||RN ||L2(R)→L2(R) ≤ CNhN ||a⊗ b||C2N+12n+1

where the Lk are bilinear forms on the spaces of k-symmetric forms on R2n.

3.2. Fourier Integral Operators. We now review some aspects of the theory of Fourier integral
operators. We follow [Zwo12], Chapter 11 and [NSZ14]. We refer the reader to [GS13] for further
details. Finally, we will give the precise definition needed to understand the definition 2.1.

3.2.1. Local symplectomorphisms and their quantization. We momentarily work in dimension n.
Let us note K the set of symplectomorphisms κ : T ∗Rn → T ∗Rn such that the following holds :
there exist continuous and piecewise smooth families of smooth functions (κt)t∈[0,1], (qt)t∈[0,1] such
that :

• ∀t ∈ [0, 1], κt : T ∗Rn → T ∗Rn is a symplectomorphism ;
• κ0 = IdT∗Rn , κ1 = κ ;
• ∀t ∈ [0, 1], κt(0) = 0 ;
• there exists K b T ∗Rn compact such that ∀t ∈ [0, 1], qt : T ∗Rn → R and supp qt ⊂ K ;
• d

dtκt = (κt)
∗
Hqt

If κ ∈ K, we note C = Gr′(κ) = {(x, ξ, y,−η), (x, ξ) = κ(y, η)} the twisted graph of κ. We recall
[Zwo12], Lemma 11.4, which asserts that local symplectomorphisms can be seen as elements of K,
as soon as we have some geometric freedom.

Lemma 3.2. Let U0, U1 be open and precompact subsets of T ∗Rn. Assume that κ : U0 → U1 is a
local symplectomorphism fixing 0 and which extends to V0 c U0 an open star-shaped neighborhood
of 0. Then, there exists κ̃ ∈ K such that κ̃|U0

= κ.

If κ ∈ K and if (qt) denotes the family of smooth functions associated with κ in its definition,
we note Q(t) = Oph(qt). It is a continuous and piecewise smooth family of operators. Then the
Cauchy problem

(3.3)
ß
hDtU(t) + U(t)Q(t) = 0

U(0) = Id

is globally well-posed.
Following [NSZ14], Definition 3.9, we adopt the definition :

Definition 3.2. Fix δ ∈ [0, 1/2). We say that U ∈ Iδ(Rn × Rn;C) if there exist a ∈ Sδ(T ∗Rn)
and a path (κt) from Id to κ satisfying the above assumptions such that U = Oph(a)U(1), where
t 7→ U(t) is the solution of the Cauchy problem (3.3).

The class I0+(R× R, C) is by definition
⋂
δ>0 Iδ(R× R, C).

It is a standard result, known as Egorov’s theorem (see [Zwo12], Theorem 11.1) that if U(t)
solves the Cauchy problem (3.3) and if a ∈ Sδ, then U−1 Oph(a)U is a pseudodifferential operator
in Ψδ and if b = a ◦ κ, then U−1 Oph(a)U −Oph(b) ∈ h1−2δΨδ.
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Remark. Applying Egorov’s theorem and Beal’s theorem, it is possible to show that if (κt)
is a closed path from Id to Id, and U(t) solves (3.3), then U(1) ∈ Ψ0(Rn). In other words,
Iδ(R× R,Gr′(Id)) ⊂ Ψδ(Rn). But the other inclusion is trivial. Hence, this in an equality :

Iδ(Rn × Rn,Gr′(Id)) = Ψδ(Rn)

The notations I(Rn × Rn, C) comes from the fact that the Schwartz kernel of such operators are
Lagrangian distributions associated with C, and in particular have wavefront set included in C.
As a consequence, if T ∈ Iδ(Rn × Rn, C), WFh

′(T ) ⊂ Gr(T ).

Let us state a simple proposition concerning the composition of Fourier integral operators :

Proposition 3.2. Let κ1, κ2 ∈ K and U1 ∈ Iδ(R× R,Gr′(κ1)), U2 ∈ Iδ(R× R,Gr′(κ1)). Then,

U1 ◦ U2 ∈ Iδ(R× R,Gr′(κ1 ◦ κ2))

Proof. Let’s write U1 = Oph(a1)U1(1), U2 = Oph(a2)U2(1) with the obvious notations associated
with the Cauchy problems (3.3) for κ1 and κ2. Egorov’s theorem asserts that U1(1) Oph(a2)U1(1)−1 =
Oph(b2) for some b2 ∈ Sδ and Oph(a1) Oph(b2) = Oph(a1#b2). It is then enough to focus on the
case a1 = a2 = 1. We set

U3(t) :=

ß
U1(2t) for 0 ≤ t ≤ 1/2
U1(1) ◦ U2(2t− 1) for 1/2 ≤ t ≤ 1

It solves the Cauchy problem ß
hDtU3(t) + U3(t)Q3(t) = 0

U(0) = Id

with
Q3(t) :=

ß
2Q1(2t) for 0 ≤ t ≤ 1/2
2Q2(2t− 1) for 1/2 ≤ t ≤ 1

To conclude the proof, it is enough to notice that this Cauchy problem is associated with the path
κ3(t) between κ(0) = Id and κ3(1) = κ1 ◦ κ2 where

κ3(t) :=

ß
κ1(2t) for 0 ≤ t ≤ 1/2
κ1 ◦ κ2(2t− 1) for 1/2 ≤ t ≤ 1

�

3.2.2. Precise version of Egorov’s theorem. We will need a more quantitative version of Egorov’s
theorem, similar to the one in [DJN21] (Lemma A.7). The result does not show that U(1)−1 Oph(a)U(1)
is a pseudodifferential operator (one would need Beal’s theorem to say that) but it gives a precise
estimate on the remainder, depending on the semi-norms of a. We now specialize to the case of
dimension n = 1 but the following result holds in any dimension but changing the constant 15 in
something of the form Mn.

Proposition 3.3. Consider κ ∈ K and note U(t) the solution of (3.3). There exists a family of
differential operators (Dj)j∈N of order j such that for all a ∈ Sδ and all N ∈ N,

(3.4) U(1)−1 Oph(a)U(1) = Oph

Ñ
a ◦ κ+

N−1∑
j=1

hj(Dj+1a) ◦ κ

é
+Oκ

(
hN ||a||C2N+15

)
Proof. We keep the notations introduced previously. Let us first note

A0(t) = U(t) Oph(a ◦ κt)U(t)−1

and compute

U(t)−1∂tA0(t)U(t) = − i
h

[Q(t),Oph(a ◦ κt)] + Oph ({qt, a ◦ κt})

= Oph ({qt, a ◦ κt})−
i

h

Ñ
Oph

Ñ
h

i
{qt, a ◦ κt}+

N∑
j=2

hjLj(d
jqt, d

j(a ◦ κt))

éé
+O

(
hN ||qt ⊗ (a ◦ κt)||C2(N+1)+13

)
= Oph

Ñ
N−1∑
j=1

−ihjLj+1(dj+1qt, d
j+1(a ◦ κt))

é
+Oκt

(
hN ||a||C2N+15

)



18 LUCAS VACOSSIN

We now define by induction a family of functions aj(t), j = 0, . . . , N − 1 by

a0(t) = a ; ak(t) =

k−1∑
m=0

∫ t

0

iLk+1−m
(
dk+1−mqs, d

k+1−m(am(s) ◦ κs)
)
◦ κ−1

s ds

and set Ak(t) = U(t) Oph

Ä∑k
j=0 h

jaj(t) ◦ κt
ä
U(t)−1. We first remark by an easy induction on

k, that ak(t) is of the form Dk+1(t)a where Dk+1(t) is a differential operator of order at most
k + 1, with coefficients depending continuously on t and on (κt)t. We now check by induction the
following :

U(t)−1∂tAk(t)U(t) = −iOph

Ñ
N−1∑
j=k+1

k∑
m=0

hjLj+1−m
(
dj+1−mqt, d

j+1−m(am(t) ◦ κt)
)é

+Oκ
(
hN ||a||C2N+15

)
We’ve already done it for k = 0. Let’s assume that the equality holds for k − 1 and let’s prove it
for k ≥ 1.

U(t)−1∂tAk(t)U(t) = U(t)−1∂tAk−1(t)U(t) + hkU(t)−1∂t Oph (ak(t) ◦ κt)U(t)

Let’s compute the second part of the right hand side.

U(t)−1∂t Oph (ak(t) ◦ κt)U(t)

= − i
h

[Q(t),Oph(ak(t) ◦ κt)] + Oph({qt, ak(t) ◦ κt}) + Oph (∂tak(t) ◦ κt)

= −iOph

(
N−1−k∑
l=1

hjLl+1

(
dl+1qt, d

l+1(ak(t) ◦ κt)
))

+Oκ
(
hN−k||ak(t)||C2(N+1−k)+13

)
+ Oph (∂tak(t) ◦ κt)

We can estimate the remainder by

Oκ
(
hN−k||ak(t)||C2(N+1−k)+13

)
= Oκ

(
hN−k||a||C2(N+1−k)+13+k+1

)
= Oκ

(
hN−k||a||C2N+15

)
We now combine this with the value of

U(t)−1∂tAk−1(t)U(t) = −iOph

Ñ
N−1∑
j=k

k−1∑
m=0

hjLj+1−m
(
dj+1−mqt, d

j+1−m(am(t) ◦ κt)
)é

+Oκ
(
hN ||a||C2N+15

)
By definition of ak(t), the term hk Oph (∂tak(t) ◦ κt) cancels the term corresponding to j = k
in the sum. Moreover, for every j > k, writing j = k + l, l ∈ {1, . . . , N − 1 − k}, the term
hk+lLl+1

(
dl+1qt, d

l+1(ak(t) ◦ κt)
)
, gives the missing term hjLj+1−k

(
dj+1−kqt, d

j+1−k(ak(t) ◦ κt)
)
.

This gives the required equality for Ak(t).
In particular, ∂tAN−1(t) = Oκ

(
hN ||a||C2N+15

)
. We now use the fact that at t = 0, a0(0) =

a, ak(0) = 0, k = 1, . . . , N − 1, U(0) = Id, κ0 = Id, and hence AN−1(0) = Oph(a). Integrating
between 0 and 1, we hence have

AN−1(t)−Oph(a) = Oκ
(
hN ||a||C2N+15

)
Conjugating by U(1), we finally have

U(1)−1 Oph(a)U(1) = Oph(a ◦ κ+

N−1∑
k=1

hkak(1) ◦ κ) +Oκ
(
hN ||a||C2N+15

)
which is the what we wanted, since ak(1) = Dk+1(1)a. �

3.2.3. An important example. Let us focus on a particular case of canonical transformations. Sup-
pose that κ : T ∗Rn → T ∗Rn is a canonical transformation such that

(x, ξ, y, η) ∈ Gr(κ) 7→ (x, η)

is a local diffeomorphism near (x0, ξ0, y0, η0). Then, there exists a phase function ψ ∈ C∞(Rn×Rn),
Ωx,Ωη open sets of Rn and Ω a neighborhood of (x0, ξ0, y0, η0), such that

Gr′(κ) ∩ Ω = {(x, ∂xψ(x, η), ∂ηψ(x, η),−η), x ∈ Ωx, η ∈ Ωη}

One says that ψ generates Gr′(κ). Suppose that that α ∈ Scompδ (Ωx × Ωη). Then, modulo a
smoothing operator O(h∞), the following operator T is an element of Icompδ (Rn × Rn,Gr′(κ)) :
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Tu(x) =
1

(2πh)n

∫
R2n

e
i
h (ψ(x,η)−y·η)α(x, η)u(y)dydη

and if T ∗T = Id microlocally near (y0, η0) then |α(x, η)|2 = |detD2
xηψ(x, η)| + O(h1−2δ)Sδ near

(x0, ξ0, y0, η0). The converse statement holds : microlocally near (x0, ξ0, y0, η0) and modulo O(h∞),
the elements of Iδ(Rn × Rn,Gr′(κ)) can be written under this form.

3.2.4. Lagrangian relations. Recall that the Lagrangian relation F we consider is the union of
local Lagrangian relations Fij ⊂ Ui × Uj . We fix a compact set W ⊂ πL(F ) containing some
neighborhood of T . Our definition will depend on W . Following [NSZ14] (Section 3.4.2), we now
focus on the definition of the elements of Iδ(Y ×Y ;F ′). An element T ∈ Iδ(Y ×Y ;F ′) is a matrix
of operators

T = (Tij)1≤i,j≤J :

J⊕
j=1

L2(Yj)→
J⊕
i=1

L2(Yi)

Each Tij is an element of Iδ(Yi × Yj , F ′ij). Let’s now describe the recipe to construct elements of
Iδ(Yi × Yj , F ′ij). We fix i, j ∈ {1, . . . , J}.

• Fix some small ε > 0 and two open covers of Uj , Uj ⊂
⋃L
l=1 Ωl, Ωl b Ω̃l, with Ω̃l star-

shaped and having diameter smaller than ε. We note L the sets of indices l such that
Ωl ⊂ πR(Fij) = ‹Dij ⊂ Uj and we require (this is possible if ε is small enough)

F−1(W ) ∩ Uj ⊂
⋃
l∈L

Ωl

• Introduce a smooth partition of unity associated with the cover (Ωl), (χl)1≤l≤L ∈ C∞c (Ωl, [0, 1]),
suppχl ⊂ Ωl,

∑
l χl = 1 in a neighborhood of Uj .

• For each l ∈ L, we denote Fl the restriction to Ω̃l of Fij , seen as a symplectomorphism
Fij : ‹Dij ⊂ U → V . By Lemma 3.2, there exists κl ∈ K which coincides with Fl on Ωl.

• We consider Tl = Oph(αi)Ul(1) where Ul(t) is the solution of the Cauchy problem (3.3)
associated with κl and αi ∈ Scompδ (T ∗R).

• We set

(3.5) TR =
∑
l∈L

Tl Oph(χl) : L2(R)→ L2(R)

TR is a globally defined Fourier integral operator. We will note TR ∈ Iδ(R × R, F ′ij). Its
wavefront set is included in Ãij × ‹Dij .

• Finally, we fix cut-off functions (Ψi,Ψj) ∈ C∞c (Yi, [0, 1])× C∞c (Yj , [0, 1]) such that Ψi ≡ 1
on π(Ui) and Ψj ≡ 1 on π(Uj)(here, π : (x, ξ) ∈ T ∗Y· 7→ x ∈ Y· is the natural projection)
and we adopt the following definitions :

Definition 3.3. We say that T : D′(Yj) → C∞(Yi) is a Fourier integral operator in the class
Iδ(Yi × Yj , F ′ij) if there exists TR ∈ Iδ(R× R, F ′) as constructed above such that

• T −ΨiTΨj = O(h∞)D′(Y )→C∞(Z);
• ΨiTΨj = ΨiT

RΨj

For U ′j ⊂ Uj and U ′i = F (U ′j) ⊂ Ui, we say that T (or TR) is microlocally unitary in U ′i × U ′j if
TT ∗ = Id microlocally in U ′i and T ∗T = Id microlocally in U ′j .

Remark. The definition of this class is not canonical since it depends in fact on the compact set
W through the partition of unity.

Another version of Egorov’s theorem. The precise version of Egorov’s theorem in Proposition
3.3 is only stated for globally unitary Fourier integral operator defined using the Cauchy problem
3.3. We extend it here to microlocally unitary and globally defined Fourier integral operators. We
fix i, j ∈ {1, . . . , J}.
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Lemma 3.3. Let T ∈ Iδ(R × R, F ′ij). Suppose that B(ρ, 4ε) ⊂ Uj and that T is microlocally
unitary in Fij(B(ρ, 4ε)) × B(ρ, 4ε). Then, there exists a family (Dk)k∈N of differential operators
of order k, compactly supported in B(ρ, 3ε) such that the following holds : For every N ∈ N and
for all b ∈ C∞c (B(ρ, 2ε)),

T Oph(b) = Oph

(
b ◦ κ−1 +

N−1∑
k=1

hk(Dk+1b) ◦ κ−1

)
T +O

(
hN ||b||C2N+15

)
L2(R)→L2(R)

The constants in O depend on T and F .

Proof. First, introduce some cut-off function χ such that χ ≡ 1 in a neighborhood of B(ρ, 2ε) and
suppχ ⊂ B(ρ, 3ε). Due to these properties and Proposition 3.1, we have

Oph(b) = Oph(χ) Oph(b) Oph(χ) Oph(χ) +O
(
hN ||b||C2N+13

)
L2(R)→L2(R)

Moreover, Oph(χ)T ∗T = Oph(χ) +O(h∞) and hence,

T Oph(b) = T Oph(χ) Oph(b) Oph(χ) Oph(χ)T ∗T+O
(
hN ||b||C2N+13

)
L2→L2+O(h∞)||Oph(b)||L2→L2

The term O(h∞)||Oph(b)||L2→L2 can be absorbed in O
(
hN ||b||C2N+13

)
L2→L2 . Consider κ̃ ∈ K

extending κ|B(ρ,3ε) and construct U = U(1) by solving the Cauchy problem (3.3) associated with κ̃.
Due to the properties on composition of Fourier integral operators (Proposition 3.2), T Oph(χ)U−1

and U Oph(χ)T ∗ are pseudodiffferential operators, and we note them Oph(a1),Oph(a2). Now write

T Oph(b) =
[
T Oph(χ)U−1

]
U Oph(b) Oph(χ)U−1 [U Oph(χ)T ∗]T +O

(
hN ||b||C2N+13

)
L2→L2

= Oph(a1)
[
U Oph(b) Oph(χ)U−1

]
Oph(a2)T +O

(
hN ||b||C2N+13

)
L2→L2

By using the precise version in Proposition 3.3, one can write

U Oph(b) Oph(χ)U−1 = Oph

(
b ◦ κ−1 +

N−1∑
k=1

(Lk+1b) ◦ κ−1

)
+O

(
hN ||b||C2N+15

)
L2→L2

Applying Lemma 3.1, we see that we can write

T Oph(b) = Oph

(
b0 ◦ κ−1 +

N−1∑
k=1

(Dk+1b) ◦ κ−1

)
T +O

(
hN ||b||C2N+15

)
L2→L2

where b0 = a1 × b ◦ κ−1 × a2. T being microlocally unitary in B(ρ, 4ε), the product a1a2 is equal
to 1 in B(ρ, 2ε), and hence, the lemma is proved. �

3.3. Hyperbolic dynamics. We assumed that F is hyperbolic on the trapped set T . As already
mentioned, we can fix an adapted Riemannian metric on U such that the following stronger version
of the hyperbolic estimates are satisfied for some λ0 > 0 : for every ρ ∈ T , n ∈ N,

v ∈ Eu(ρ) =⇒ ||dρF−n(v)|| ≤ e−λ0n||v||(3.6)

v ∈ Es(ρ) =⇒ ||dρFn(v)|| ≤ e−λ0n||v||(3.7)

Notations. We now use the induced Riemannian distance on U and denote it d.
We also use the same notation || · || to denote the subordinate norm on the space of linear maps
between tangent spaces of U , namely, if F (ρ1) = ρ2,

||dρ1
F || = sup

v∈Tρ1U,||v||ρ1=1

||dρ1
F (v)||ρ2

If ρ ∈ T , n ∈ Z, we use this Riemannian metric to define the unstable Jacobian Jun (ρ) and
stable Jacobian Jsn(ρ) at ρ by :

v ∈ Eu(ρ) =⇒ ||dρFn(v)|| = Jun (ρ)||v||(3.8)
v ∈ Es(ρ) =⇒ ||dρFn(v)|| = Jsn(ρ)||v||(3.9)

These Jacobians quantify the local hyperbolicity of the map.
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Notations. Suppose that f and g are some real-valued functions depending on the same family
of parameters P. For instance, for Jun (ρ), P = {n, ρ}. We will note f ∼ g to mean that there exist
constant a C ≥ 1 depending only on (U,F ), but not on P, such that C−1g ≤ f ≤ Cg.
For instance, if we define unstable and stable Jacobian J̃un and J̃sn using another Riemannian metric,
then, for every n ∈ Z and ρ ∈ T ,

J̃un (ρ) ∼ Jun (ρ) ; J̃sn(ρ) ∼ Jsn(ρ)

From the compactness of T , there exist λ1 ≥ λ0 which satisfies

enλ0 ≤ Jun (ρ) ≤ enλ1 and e−nλ1 ≤ Jsn(ρ) ≤ e−nλ0 ; n ∈ N, ρ ∈ T(3.10)

enλ0 ≤ Js−n(ρ) ≤ enλ1 and e−nλ1 ≤ Ju−n(ρ) ≤ e−nλ0 ; n ∈ N, ρ ∈ T(3.11)

We cite here standard facts about the stable and unstable manifolds (see for instance [HK95],
Chapter 6).

Lemma 3.4. For any ρ ∈ T , there exist local stable and unstable manifolds Ws(ρ),Wu(ρ) ⊂ U
satisfying, for some ε1 > 0 (only depending on F ) (? will denote a letter in {u, s} and the use of
± with ? has to be read with the convention u→ −, s→ +) )

(1) Ws(ρ),Wu(ρ) are C∞-embedded curves, with the C∞ norms of the embedding uniformly
bounded in ρ.

(2) the boundary of W?(ρ) do not intersect B(ρ, ε1) 1

(3) Ws(ρ) ∩Wu(ρ) = {ρ}, TρW?(ρ) = E?(ρ)
(4) F±(W?(ρ)) ⊂W? (F (ρ)).
(5) For each ρ′ ∈W?(ρ), d(F±n(ρ), F±n(ρ′))→ 0.
(6) Let θ > 0 satisfying e−λ0 < θ < 1. If ρ′ ∈ U satisfies d(F±i(ρ), F±i(ρ′)) ≤ ε1 for all

i = 0, . . . , n then d (ρ′,W?(ρ)) ≤ Cθnε1 for some C > 0.
(7) If ρ, ρ′ ∈ T satisfy d(ρ, ρ′) ≤ ε1, then Wu(ρ) ∩Ws(ρ

′) consists of exactly one point in T .

Since we work with the local unstable and stable manifolds, we may assume that W?(ρ) ⊂
B(ρ, 2ε1).

For our purpose, we will need a more precise version of these results. The following lemmas are
an adaptation of Lemma 2.1 in [DJN21] to our setting.

Lemma 3.5. There exists a constant C > 0 depending only on (U,F ), such that for all ρ, ρ′ ∈ U ,
(1) if ρ ∈ T and ρ′ ∈Ws(ρ) then

(3.12) d (Fn(ρ), Fn(ρ′)) ≤ CJsn(ρ)d(ρ, ρ′) , ∀n ∈ N
(2) if ρ ∈ T and ρ′ ∈Wu(ρ) then

(3.13) d
(
F−n(ρ), F−n(ρ′)

)
≤ CJu−n(ρ)d(ρ, ρ′) , ∀n ∈ N

Proof. We prove (1). (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T , ρ′ ∈
Ws(ρ). Since Tρ(Ws(ρ)) = Es(ρ) and dρF (Es(ρ)) = Es(F (ρ)), the Taylor development of F along
Ws(ρ) gives :

(3.14) d(F (ρ), F (ρ′)) ≤ Js1 (ρ)d(ρ, ρ′) + Cd(ρ, ρ′)2 ≤ Js1 (ρ)d(ρ, ρ′)(1 + Cd(ρ, ρ′))

since Js1 ≥ C−1. Applying this inequality with F k(ρ) and F k(ρ′) instead of ρ and ρ′, and recalling
that, by lemma 3.4, d(F k(ρ), F k(ρ′)) ≤ Cθkd(ρ, ρ′), we can write,

(3.15) d(F k+1(ρ), F k+1(ρ′)) ≤ Js1 (F k(ρ))d(F k(ρ), F k(ρ′))(1 + Cθk)

By this last inequality and the chain rule, we have

(3.16) d(Fn(ρ), Fn(ρ′)) ≤ Jsn(ρ)d(ρ, ρ′)

n−1∏
k=0

(1 + Cθk) ≤ CJsn(ρ)d(ρ, ρ′)

�

The following lemma gives a stronger version of (6) in Lemma 3.4.

1in other words, there exists a smooth curve γ : [−δ, δ]→ U such that B(ρ, ε1) ∩W?(ρ) = Im γ, with γ(0) = ρ :
it means that the size of the (un)stable manifolds is bounded from below uniformly.
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Figure 5. Framework for the proof of Lemma 3.6

Lemma 3.6. There exist C > 0 and ε1 > 0, depending only on (U,F ), such that for all ρ, ρ′ ∈ U
and n ∈ N :

(1) if ρ ∈ T and d
(
F i(ρ), F i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n} then

(3.17) d (ρ′,Ws(ρ)) ≤ C

Jun (ρ)

and

(3.18) ||dρ′Fn|| ≤ CJun (ρ)

(2) if ρ ∈ T and d
(
F−i(ρ), F−i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n} then

(3.19) d (ρ′,Wu(ρ)) ≤ C

Js−n(ρ)

and

(3.20) ||dρ′F−n|| ≤ CJs−n(ρ)

Proof. We prove (1). (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T and
ρ′ ∈ U such that d(F i(ρ), F i(ρ′)) ≤ ε1 for 0 ≤ i ≤ n with ε1 to be determined. Denote ρk = F k(ρ).
The first condition on ε1 is that it is smaller than the one of lemma 3.4 so that we ensure the
folowing estimates : for k ∈ {0, . . . , n}

d
(
F k(ρ′),Ws(F

k(ρ))
)
≤ Cθn−kε1(3.21)

d
(
F k(ρ′),Ws(F

k(ρ))
)
≤ Cθkε1(3.22)

We will use coordinates charts κk : ρ̂ ∈ Uk 7→ (uk, sk) ∈ Vk adapted to the dynamical system (see
[HK95], Theorem 6.2.3, the explanations below and Theorem 6.2.8 for the existence of this chart).
More precisely, we want these charts to satisfy

• κk(ρk) = (0, 0)

• κk (Ws(ρk) ∩ Uk) = {(0, s), s ∈ R} ∩ Vk
• κk (Wu(ρk) ∩ Uk) = {(u, 0), u ∈ R} ∩ Vk
• For ρ̂ ∈ Uk, |uk| ∼ d(ρ̂,Ws(ρk)); |sk| ∼ d(ρ̂,Wu(ρk)); |sk|2 + |uk|2 ∼ d(ρk, ρ̂)2.
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• (κk)0≤k≤n are uniformly bounded in the CN topology for all N , with constant indepen-
dant of ρ0 and n. In particular, we may assume that ε1 is chosen small enough so that
B(ρk, ε1) ⊂ Uk for all 0 ≤ k ≤ n.

• Up to changing the metric we work with (which is not problematic), we may assume that
the restrictions of dκk(ρ) to Es(ρ) and Eu(ρ) are isometries for the metrics | · |s and | · |u.

If we note ‹Fk = κk ◦ F ◦ κ−1
k−1, we can check that in this pair of coordinates charts, the action of

F−1 is given by

(3.23) ‹F−1
k (uk, sk) = (±Ju−1(ρk)uk + αk(uk, sk),±Js−1(ρk)sk + βk(uk, sk))

where αk, βk are smooth functions, uniformly bounded in k for the C2 topology and such that
αk(0, sk) = 0, βk(uk, 0) = 0, dαk(0, 0) = 0, dβk(0, 0) = 0.
With these properties, one can check that

(3.24) αk(uk, sk) ≤ C|uk| ||(uk, sk)||
Let’s now denote ρ′k = F k(ρ′) and (uk, sk) = κk(ρ′k). By (3.21), (3.22), (3.23), (3.24), we can write

|uk−1| ≤ Ju−1(ρk))|uk|+ C|uk|||(uk, sk)||

≤ Ju−1(F k(ρ))|uk|
Ä
1 + Cε1(θk1 + θn−k1 )

ä
≤ Ju−1(F k(ρ))|uk|

Ä
1 + Cε1θ

min(k,n−k)
ä

Then, using the chain rule, one has

(3.25) d(ρ′,Ws(ρ)) ≤ C|u0| ≤ CJu−n(Fn(ρ))

n−1∏
k=0

Ä
1 + Cε1θ

min(k,n−k)
ä

Finally, we can estimate
n∏
k=0

Ä
1 + Cε1θ

min(k,n−k)
ä
≤
dn/2e∏
k=0

(
1 + Cε1θ

k
)2 ≤ C

which gives

(3.26) d(ρ′,Ws(ρ)) ≤ CJu−n(Fn(ρ)) =
C

Jun (ρ)

This proves (3.17).
To prove (3.18), we first construct a metric which simplifies the computations. If ρ ∈ T , we pick

v?(ρ) ∈ E?(ρ)2 such that ||v?(ρ)|| = 1. There exists a Riemannian metric | · | on T such that for
every ρ ∈ T , (vu(ρ), vs(ρ)) is an orthonormal basis of TρU . This metric is γ-Hölder in ρ ∈ T since
stable and unstable distributions are γ-Hölder for some γ ∈ (0, 1).
If ρ ∈ T and n ∈ Z, we note J̃u/sn (ρ) ∈ R the numbers such that

dρ(F
n)(vu(ρ)) = J̃un (ρ)vu(Fn(ρ)) ; dρ(F

n)(vs(ρ)) = J̃sn(ρ)vs(F
n(ρ))

As already observed, |J̃un (ρ)| ∼ Jun (ρ), for all n (with constants independent of n). We can also as-
sume that |J̃u1 (ρ)| > |J̃s1 (ρ)| for all ρ. In the orthonormal basis (vu(ρ), vs(ρ)) and (vu(Fn(ρ), vs(F

n(ρ))),
dρF

n has the form Ç
J̃un (ρ) 0

0 J̃sn(ρ)

å
Due to the ortonormality of these basis, we have that for the subordinate norms, ||dρFn|| = |J̃un (ρ)|.
Hence, the chain rule implies the following equality for this particular Riemannian metric defined
on T :

(3.27) ∀ρ ∈ T , ||dρ(Fn)|| = |J̃un (ρ)| =
n−1∏
i=0

|J̃u1 (F i (ρ)) | =
n−1∏
i=0

||dF i(ρ)F ||

We now claim that we can extend | · | to a relatively compact neighborhood V of T such that
ρ ∈ V 7→ | · |ρ is still γ-Hölder. To do so, it is enough to extend the coefficients of the metric in

2Here, we are not concerned by the orientation. It is simply a matter of direction.
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a coordinate chart in a γ−Hölder way, which is possible (for instance, in virtue of Corollary 1 in
[McS34]), which still defines a non-degenerate 2-form in a sufficiently small neighborhood of T .
We now aim at proving (3.18) for this particular metric. (3.18) will hold in the general case since
two continuous metric are always uniformly equivalent in a compact neighborhood of T .
In the following, we assume that ε1 is small enough so that ρ belongs to the neighborhood of T in
which | · | is defined. Since ρ 7→ ||dρF ||TρU→TF (ρ)U is γ-Hölder (in the following, we will drop the
subscript in the norm) we have, for all i ∈ {0, . . . , n}

(3.28)
∣∣∣ ||dF i(ρ′)F || − ||dF i(ρ)F || ∣∣∣ ≤ Cd(F i(ρ′), F i(ρ))γ ≤ Cε1θ

γmin(i,n−i)

Using the chain rule and the submultiplicativity of || · ||, we have

(3.29) ||dρ′Fn|| ≤
n∏
i=0

||dF i(ρ′)F || ≤
n∏
i=0

||dF i(ρ)F ||
Ä
1 + Cε1θ

γmin(i,n−i)
ä

Eventually, by (3.27) and the fact that
∏n
i=0

(
1 + Cε1θ

γmin(i,n−i)) is convergent, (3.18) holds. �
As an immediate consequence of this lemma, we get :

Corollary 3.2. There exist C > 0 and ε1 > 0 (depending only on (U,F )) such that for all ρ, ρ′ ∈ T
and n ∈ N :

(1) if d
(
F i(ρ), F i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n} then

(3.30) C−1Jun (ρ) ≤ Jun (ρ′) ≤ CJun (ρ)

(2) if d
(
F−i(ρ), F−i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n} then

(3.31) C−1Js−n(ρ) ≤ Js−n(ρ′) ≤ CJs−n(ρ)

Proof. This is a consequence of the previous lemma and of the fact that uniformly in ρ and n ∈ N,

||dρFn|| ∼ Jun (ρ)

||dρF−n|| ∼ Js−n(ρ)

�

3.4. Regularity of the invariant splitting. It is known for Anosov diffeomorphisms that stable
and unstable distributions are in fact C2−ε in dimension 2 (see [HK90]). For our purpose, we need
to extend this result to our setting, where the hyperbolic invariant set T is not the full phase
space, but a fractal subset of it. In fact, we will show that one can extend the stable and unstable
distributions to an open neighborhood of T and that theses extensions are C1,β for some β > 0.
Actually, since what happens outside a fixed neighborhood of T is irrelevant (one can always use
cut-offs), we will prove the following theorem which might be of independent interest.

Theorem 5. Let us denote G1(U) the Grassmanian bundle of 1-plane in TU . There exists β > 0
and sections Eu, Es : U → G1(U) such that :

• For every ρ ∈ T , Eu(ρ) (resp. Es(ρ)) is the unstable (resp. stable) distribution at ρ ;
• Eu and Es have regularity C1,β

Remark. It is likely that one can improve this regularity using the method of [HK90]. Our proof
relies on the techniques of [HP69]. In fact, in [HK95] 19.1.d, the authors show how one can obtain
C1 regularity of the map ρ ∈ T 7→ Eu(ρ) and explains how to prove C1,β regularity. Their notion
of differentiability on the set T (which is clearly not open in our case) relies on the existence of
linear approximations. Here, we choose to show a slightly different version of this regularity by
proving that ρ ∈ T 7→ Eu(ρ) can be obtained as the restriction of a C1,β map defined in an open
neighborhood of T .

3.4.1. Proof of the C1,β regularity.
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Preliminaries. We recall that T is an invariant hyperbolic set for F . Hence, there exists a
continuous splitting of TT U , into stable and unstable spaces ρ ∈ T 7→ Es(ρ), ρ ∈ T 7→ Eu(ρ). We
use a continuous Riemannian metric on TT U such that dρF is a contraction from Es(ρ)→ Es(F (ρ))
and expanding from Eu(ρ)→ Eu(F (ρ)), and making Eu(ρ) and Es(ρ) orthogonal.

Let ρ ∈ T 7→ eu(ρ) ∈ TU and ρ ∈ T 7→ es(ρ) ∈ TU be two continuous sections 3 such that, for
every ρ ∈ T ,

• eu(ρ) spans Eu(ρ),
• es(ρ) spans Es(ρ),
• ||eu(ρ)|| = 1, ||es(ρ)|| = 1

The matrix representation of dρF 4 in theses basis is

dρF =

Ç
J̃u(ρ) 0

0 J̃s(ρ)

å
with ν := supρ∈T max

ï(∣∣∣J̃u(ρ)
∣∣∣)−1

,
∣∣∣J̃s(ρ)

∣∣∣ò < 1.

We can extend eu and es to U to continuous functions, still denoted eu and es. Let us consider
smooth vector fields vu and vs on U approximating eu and es and a smooth Riemannian metric
approximating the one considered above. By slightly modifying this vector fields, we can assume
that for this new metric, (vu(ρ), vs(ρ)) is an orthonormal basis for all ρ ∈ U . In these new basis,
we now write

dρF =

Å
a(ρ) b(ρ)
c(ρ) d(ρ)

ã
We assume that vu and vs are sufficiently close to eu and es to ensure that, for some η > 0 small
enough,

sup
ρ∈T

max (|b(ρ)|, |c(ρ)|) ≤ η

sup
ρ∈T
|d(ρ)| ≤ ν + η ≤ 1− 4η

inf
ρ∈T
|a(ρ)| ≥ ν−1 − η ≥ 1 + 4η

We consider an open neighborhood Ω of T such that the following holds :

sup
ρ∈Ω

max (|b(ρ)|, |c(ρ)|) ≤ 2η

sup
ρ∈Ω
|d(ρ)| ≤ ν + 2η ≤ 1− 3η

inf
ρ∈Ω
|a(ρ)| ≥ ν−1 − 2η ≥ 1 + 3η

Our method relies on different uses of the Contraction Map Theorem. We state the Fiber
Contraction Theorem of [HP69] (Section 1), which will be used further. We recall that a fixed
point x0 of a continuous map f : X → X is said to be attractive if for every x ∈ X, fn(x)→ x0.

Theorem 6. Fiber Contraction Theorem
Let (X, d) be a metric space and h : X → X a map having an attractive fixed point x0. Let us
consider Y another metric space and a family of maps (gx : Y → Y )x∈X and denote by H the map

H : (x, y) ∈ X × Y 7→ (h(x), gx(y)) ∈ X × Y
Assume that

• H is continuous ;
• For all x ∈ X, lim supn→+∞ L

(
ghn(x)

)
< 1 where L

(
ghn(x)

)
denotes the best Lipschitz

constant for ghn(x) ;
• y0 is an attractive fixed point for gx0

.

3Note that there is no problem of orientation to construct such global sections. Indeed, T is totally disconnected
and hence, one can cover T by a disjoint union of open sets small enough so that it is possible to construct local
sections in each such sets. Since these open sets are disjoint, these local sections allow us to build a global continuous
section.

4The definition of J̃u/s may differ from the one of Ju/s
1 above since we don’t work a priori with the same metric.
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Then (x0, y0) is an attractive fixed point for H.

In the following, we study the regularity of the unstable distribution. The same holds for the
stable distribution by changing the roles of F−1 and F .

Eu is a fixed point of a contraction. By our assumption on vu and vs, there exists a continuous
function λ : U → R such that

Reu(ρ) = R(vu(ρ) + λ(ρ)vs(ρ))

Hence, we will represent the extension of the unstable distribution by a continuous map λ : Ω→ R.
Our aim is to show that we can find λ regular enough such that for ρ ∈ T ,

Eu(ρ) = R(vu(ρ) + λ(ρ)vs(ρ))

To do so, we will start by constructing λ as a fixed point of a contraction in a nice space. This
contraction will be related to invariance properties of the unstable distribution.
First of all, if ρ′ = F (ρ) ∈ Ω ∩ F (Ω), and if v = vu(ρ) + λvs(ρ), dρF maps v to

w =
(
a(ρ) + λb(ρ)

)
vu(ρ′) +

(
c(ρ) + λd(ρ)

)
vs(ρ

′)

Hence, the line of TρU represented by λ is sent to the line represented by t(ρ, λ) in Tρ′U where

(3.32) t(ρ, λ) =
λd(ρ) + c(ρ)

a(ρ) + λb(ρ)

Set Ω1 = Ω ∩ F (Ω) and let us consider a cut-off function χ ∈ C∞c (Ω1) such that 0 ≤ χ ≤ 1 and
χ ≡ 1 in a neighborhood of T . Let us introduce the complete metric space

X = {λ ∈ C(Ω,R), ||λ||∞ ≤ 1}
and consider the map T : X → X defined, for λ ∈ X and ρ′ ∈ Ω,

(3.33) (Tλ)(ρ′) = χ(ρ′)t
(
F−1(ρ′), λ

(
F−1(ρ′)

))
To see that this is well defined, first note that F−1 is well defined on suppχ and F−1(suppχ) ⊂ Ω.
It is clear that if λ ∈ X, Tλ is continuous. To see that ||Tλ||∞ ≤ 1, it is enough to note that if
ρ ∈ Ω and |λ| ≤ 1,

|t(ρ, λ)| ≤ |d(ρ)|+ |c(ρ)|
|a(ρ)| − |b(ρ)|

≤ 1− 3η + 2η

1 + 3η − 2η
≤ 1− η

1 + η
< 1

Let us now prove the following

Proposition 3.4.
• T is a contraction.
• If λu denotes its unique fixed point, then, for every ρ ∈ T , Eu(ρ) = R

(
vu(ρ)+λu(ρ)vs(ρ)

)
Proof. Let λ, µ ∈ X. If ρ′ ∈ Ω\suppχ, we have Tµ(ρ′) = Tλ(ρ′) = 0. Now assume that ρ′ ∈ suppχ
and write ρ′ = F (ρ) with ρ ∈ Ω.

|Tλ(ρ′)− Tµ(ρ′)| = |χ(ρ′)||t(ρ, λ(ρ))− t(ρ, µ(ρ))| ≤ |t(ρ, λ(ρ))− t(ρ, µ(ρ))|
The map λ ∈ [−1, 1] 7→ t(ρ, λ) is smooth, so that we can write

||Tλ− Tµ||∞ ≤ sup
ρ′∈suppχ

|Tλ(ρ′)− Tµ(ρ′)| ≤ sup
Ω×[−1,1]

|∂λt| × ||λ− µ||∞

It is then enough to show that supΩ×[−1,1] |∂λt| < 1. For (ρ, λ) ∈ Ω× [−1, 1], we have

(3.34) ∂λt(ρ, λ) =
d(ρ)

a(ρ) + λb(ρ)
− b(ρ)

λd(ρ) + c(ρ)

(a(ρ)) + λb(ρ))
2

Hence, we can control

|∂λt(ρ, λ)| ≤ 1− 3η

1 + η
+ η

1− η
(1 + η)

2 = κη < 1

if η is small enough. This demonstrates that T is a contraction.
As a consequence, T has a unique fixed point, λu. We note v(ρ) = vu(ρ) +λu(ρ)vs(ρ). We want

to show that v(ρ) ∈ Reu(ρ) for ρ ∈ T (recall that eu : U → TU is continuous and that eu(ρ) spans
Eu(ρ) if ρ ∈ T ). Since χ = 1 on T , we see by definition of T that for every ρ ∈ T ,
(3.35) dρF (v(ρ)) ∈ Rv(F (ρ))
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If vu is sufficiently close to eu, we can find a continuous and bounded function µ such that

Rv(x) = R (eu(x) + µ(x)es(x))

From (3.35), if ρ′ = F (ρ) ∈ T ,

dρF
(
eu(ρ) + µ(ρ)es(ρ)

)
= J̃u1 (ρ)

Ç
eu(ρ′) + µ(ρ)

J̃s1 (ρ)

J̃u1 (ρ)
es(ρ

′)

å
∈ R

(
eu(ρ′) + µ(ρ′)es(ρ

′)
)

This implies the equality

(3.36) µ(ρ′) = µ(ρ)
J̃s1 (ρ)

J̃u1 (ρ)

This equality implies that µ = 0 on T and hence, v = eu on T , as expected. �

Remark. As long as ρ′ ∈ {χ = 1}, the vector field v(ρ′) = vu(ρ′) + λ(ρ′)vs(ρ
′) is invariant by dF .

When ρ′ ∈ Wu(ρ) ∩ {χ = 1} for some ρ ∈ T , we will see below that the direction given by v(ρ′)
coincides with the tangent space to Wu(ρ), namely Tρ′Wu(ρ) = Rv(ρ′). When ρ′ 6∈

⋃
ρ∈T Wu(ρ),

there exists n ∈ N such that F−n(ρ′) 6∈ suppχ. Hence, λu(ρ′) is given by an explicit expression
obtained by iterating the fixed point formula.

Differentiability of λu. We go on by showing that λ is C1 by adapting the method of [HP69].
We now introduce the Banach space Y of bounded continuous sections α : Ω→ T ∗Ω. We will use
the norm on T ∗Ω adapted to the metric on TΩ, namely if α ∈ Y ,

||α||Y = sup
ρ∈Ω

sup
v∈TρΩ,v 6=0

|α(ρ)(v)|
||v||TρΩ

For λ ∈ X, let us introduce the map Gλ : Y → Y , defined as follows. For α ∈ Y and ρ′ ∈ Ω,

(Gλα) (ρ′) =χ(ρ′)
[
dρt (ρ, λ(ρ)) + ∂λt (ρ, λ(ρ))α (ρ)

]
◦ (dρF )

−1
+ t (ρ, λ(ρ)) dρ′χ(3.37)

with ρ = F−1(ρ′), which is well defined since ρ ∈ Ω if ρ′ ∈ supp(χ). Gλ is constructed to satisfy :
for λ ∈ X, if λ is C1, then the following relation holds :

(3.38) Gλ(dλ) = d (Tλ)

Let us first state the key tool to show the differentiability of λu.

Proposition 3.5. For every λ ∈ X, Gλ is a contraction with Lipschitz constant Lλ satisfying

sup
λ∈X

Lλ < 1

Before proving it, let us show how it leads us to

Proposition 3.6. λu is C1.

Proof. We use the Contraction Fiber Theorem. Let αu be the unique fixed point of Gλu . The map

H : (λ, α) ∈ X × Y 7→ (Tλ,Gλα) ∈ X × Y

is continuous and the previous proposition shows that for every λ ∈ X, supn L (GTnλ) < 1. The
Contraction Fiber Theorem implies that (λu, αu) is an attractive fixed point for H.
Let λ ∈ X be C1. Hence, Hn(λ, dλ)→ (λu, αu). But Hn(λ, dλ) = (Tnλ, αn) with

αn = GTn−1λ ◦ · · · ◦Gλdλ

It is clear that if λ ∈ C1, so is Tλ and an iterative use of (3.38) implies that αn = d (Tnλ). This
shows that λu is C1 and dλu = αu. �

Let us now prove Proposition 3.5.
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Proof. Let λ ∈ X and fix α, β ∈ Y . It is of course enough to control ||Gλα(ρ′) − Gλβ(ρ′)|| for
ρ′ ∈ supp(χ) since both Gλα and Gλβ vanishes outside. Let us fix ρ′ = F (ρ) ∈ supp(χ).
Gλα(ρ′)−Gλβ(ρ′) is given by

χ(ρ′)∂λt(ρ, λ(ρ))[α(ρ)− β(ρ)] ◦ (dρF )−1

so it is enough to control ∂λt(ρ, λ(ρ))γ(ρ) ◦ (dρF )−1 for γ = α− β. With the precise expression of
∂λt(ρ, λ(ρ)) given by (3.34), we can estimate

|∂λt(ρ, λ(ρ))| = |d(ρ)|
|a(ρ) + λ(ρ)b(ρ)|

+Oν(η) =
|d(ρ)|
|a(ρ)|

+Oν(η)

(By the notation Oν(η), we mean that this term is bounded by Cη where C is a constant depending
only on ν and (F,U)).
Moreover, we have ||(dρF )−1|| = max

Ä
1

a(ρ) ,
1
d(ρ)

ä
+Oν(η) = 1

d(ρ) +Oν(η). Hence,

||∂λt(ρ, λ(ρ))γ(ρ) ◦ (dρF )−1|| ≤
Å

1

a(ρ)
+Oν(η)

ã
||γ(ρ)|| ≤ (ν +Oν(η)) ||γ||Y

Hence, if η is small enough, the proposition is proved. �

Hölder regularity of αu. In fact, as explained at the end of 19.1.d in [HK95], we can improve
the C1 regularity.

To deal with Hölder regularity of sections α : Ω → T ∗Ω , we will simply evaluate the distance
between α(ρ1) and α(ρ2) for ρ1, ρ2 ∈ Ω using the natural identification T ∗Ω = Ω×(R2)∗, where we
see α(ρ1) as an element of (R2)∗. This allows us to write α(ρ1)−α(ρ2) and compute ||α(ρ1)−α(ρ2)||
where || · || is a norm on (R2)∗. There exists C > 0 such that for every α ∈ Y , supρ∈Ω ||α(ρ)|| ≤
C||α||Y .

Let us introduce µ a Lipschitz constant for F−1 on Ω and an exponent β > 0 such that

(3.39) νµβ < 1

This condition is called a bunching condition in [HK95] (19.1.d). Such a β exists. We will then
show the following, which finally concludes the proof of Theorem 5.

Proposition 3.7. αu is β-Hölder, that is to say, λu is C1,β .

Proof. Let us introduce

Y β := {α ∈ Y ;α is β- Hölder}

Let us consider some ε > 0 to be determined later and we equip Y β with the norm

||α||Y β = ||α||Y + ε||α||β ; ||α||β = sup
ρ1 6=ρ2

||α(ρ1)− α(ρ2)||
d(ρ1, ρ2)β

The map T : X → X defined by (3.33) actually maps X ∩ C1(Ω,R) to X ∩ C1(Ω,R). Moreover,
our previous results have proved that λu is an attractive fixed point for T in X ∩C1(Ω,R), where
X ∩ C1(Ω,R) is now equipped with the C1 norm. For λ ∈ X and α ∈ Y , we can write,

Gλα = γλ + G̃λα

where for ρ′ = F (ρ) ∈ suppχ,

γλ(ρ′) = χ(ρ′)dρt(ρ, λ(ρ)) + t(ρ, λ(ρ))dρ′χ

G̃λα(ρ′) = χ(ρ′)∂λt(ρ, λ(ρ))α(ρ) ◦ (dρF )−1

We state here some obvious facts on γλ and G̃λ
• C1 := supλ∈X ||γλ||∞ < +∞ ;
• if λ ∈ X ∩ C1(Ω,R), γλ is also C1;
• According to Proposition 3.5; G̃λ : Y → Y is a contraction with Lipschitz constant Lλ and
ν1 := supλ∈X Lλ < 1 ;

• if λ ∈ X ∩ C1(Ω,R) and α is β-Hölder, G̃λα is β-Hölder.
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If M > C1

1−ν1
and λ ∈ X ∩ C1(Ω,R), then ||dλ||Y ≤M =⇒ ||d(Tλ)||Y ≤M . Indeed, we have

||d(Tλ)||Y = ||Gλ(dλ)||Y = ||γλ + G̃λdλ||Y ≤ C1 + ν1M ≤M

Hence, we introduce the complete metric space

(3.40) X ′ = {λ ∈ X ∩ C1(Ω,R), ||dλ||Y ≤M}

T (X ′) ⊂ X ′ and λu is an attractive fixed point for (X ′, T ).
We now wish to apply the Fiber Contraction Theorem to

Hβ : (λ, α) ∈ X ′ × Y β 7→ (Tλ,Gλα) ∈ X ′ × Y β

To do so, we need to show that for every λ ∈ X ′, Gλ : Y β → Y β is a contraction and find a
uniform estimate for the Lipschitz constants.

Let’s consider α1, α2 ∈ Y β and set γ = α1−α2. We want to estimate the Y β norm of G̃λγ. We
already know that ||G̃λγ||Y ≤ ν1||γ||Y . Take ρ′1, ρ′2 ∈ Ω and let’s estimate ||G̃λγ(ρ′1)− G̃λγ(ρ′2)||.
We distinguish 3 cases :

- ρ′1, ρ′2 6∈ suppχ : there is nothing to write.
- ρ′1 ∈ suppχ, ρ′2 6∈ Ω∩F (Ω). In this case, d(ρ′1, ρ

′
2) ≥ δ > 0 where δ is the distance between

suppχ and (Ω ∩ F (Ω))
c. Hence,

||G̃λγ(ρ′1)− G̃λ(ρ′2)||
d(ρ′1, ρ

′
2)β

≤ δ−β ||G̃λγ(ρ′1)|| ≤ δ−βC||G̃λγ||Y ≤ ν1δ
−βC||γ||Y

- ρ′1, ρ′2 ∈ Ω∩F (Ω). Let’s write ρ′1 = F (ρ1), ρ′2 = F (ρ2) and note that d(ρ1, ρ2) ≤ µd(ρ′1, ρ
′
2).

G̃λγ(ρ′1)− G̃λγ(ρ′2) = χ(ρ′1)∂λt(ρ1, λ(ρ1))[γ(ρ1)− γ(ρ2)] ◦ (dρ1F )−1 } (1)

+ [χ(ρ′1)∂λt(ρ1, λ(ρ1))− χ(ρ′2)∂λt(ρ2, λ(ρ2))] γ(ρ2) ◦ (dρ1
F )−1 } (2)

+ χ(ρ′2)∂λt(ρ2, λ(ρ2))γ(ρ2) ◦
[
(dρ1F )−1 − (dρ2F )−1

]
} (3)

To handle the last two terms (2) and (3), we notice that ρ′ ∈ Ω ∩ F (Ω) 7→ χ(ρ′)∂λt(ρ, λ(ρ)) is
Lipschitz since λ is C1, with Lipschitz constant which can be chosen uniform for λ ∈ X ′. The
same is true for ρ 7→ dρF

−1. Hence, there exists a uniform constant C > 0 such that

||(2) + (3)|| ≤ Cd(ρ′1, ρ
′
2)β ||γ||Y

To deal with the first term (1), we recall that by previous computations,

|χ(ρ′)∂λt(ρ, λ(ρ))| · ||(dρF )−1|| ≤ ν +Oν(η)

As consequence, we have

||(1)|| ≤ (ν +Oν(η))||γ||βd(ρ1, ρ2)β ≤ (ν +Oν(η))µβ ||γ||βd(ρ′1, ρ
′
2)β

Henceforth, if η is small enough, so that ν2 := (ν +Oν(η))µβ < 1,

||Hλγ||β ≤ ν2||γ||β + C||γ||Y

Eventually,

||G̃λγ||Y β ≤ ν1||γ||Y + ε (ν2||γ||β + C||γ||Y )

≤ (ν1 + εC) ||γ||Y + ν2ε||γ||β
≤ ν3||γ||Y β

where ν3 = max (ν1 + εC, ν2) < 1 if ε is small enough.
The Fiber Contraction Theorem applies and says that (λu, αu) is an attractive fixed point

for Hβ . We conclude as previously : consider λ ∈ C1,β(Ω,R) ∩ X ′ so that (λ, dλ) ∈ X ′ × Y β .
Hn
β (λ, dλ) = (Tnλ, dTnλ)→ (λu, αu) in X ′ × Y β . That ensures that αu is β-Hölder. �
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3.4.2. Regularity of the stable and unstable leaves. Once we’ve extended the unstable distribution
to a an open neighborhood of T , we take advantage of the fact that these distribution are 1-
dimensional to integrate the vector field defined by their unit vector.

We set Eu(ρ) = R(vu(ρ)+λu(ρ)vs(ρ)). Recall that in a compact neighborhood of T , the relation
dρF (Eu(ρ)) = Eu(F (ρ)) is valid due to the definition of λu as the fixed point of T defined in (3.33).
T ∗U is equipped with a smooth Riemannian metric such that dF−1 is a contraction on Eu(ρ) for
ρ ∈ T and hence, in a compact neighborhood of T , this is also true. We can consider the vector
field

ρ ∈ U 7→ eu(ρ)

where eu(ρ) is a unit vector spanning Eu(ρ). By our previous result, this vector field is C1,β

and if ρ lies in a sufficiently small neighborhood of T , dρ(F−1)(eu(ρ)) = J̃u(ρ)eu(F−1(ρ)) where
|J̃u(ρ)| ≤ ν < 1.

We denote by ϕtu(ρ) the flow generated by eu(ρ) and we will show that one can identify the
unstable manifolds and the flow lines of eu in a small neighborhood of T .

Proposition 3.8. There exists t0 such that for every ρ ∈ T , {ϕtu(ρ), |t| ≤ t0} ⊂Wu(ρ)

Proof. Consider t0 is sufficiently small such that |J̃u(ϕtu(ρ))| ≤ ν < 1 for ρ ∈ T , t ∈ [−t0, t0]. For
(t, ρ) ∈ R× U , set µ(t, ρ) =

∫ t
0
J̃u(ϕsu(ρ))ds and we claim that for t0 small enough, if |t| ≤ t0,

F−1(ϕtu(ρ)) = ϕµ(t,ρ)
u (F−1(ρ))

Indeed, in t = 0, both are equal to F−1(ρ) and a quick computation shows that both satisfy the
ODE

d

dt
Y (t) = Ju(ϕtu(ρ))eu(Y (t))

As a consequence, by induction, we see that one can write for n ∈ N,

F−n(ϕtu(ρ)) = ϕµn(t,ρ)
u (F−n(ρ))

where µn is defined by induction by µn+1(t, ρ) = µ(µn(t, ρ), F−n(ρ)). Hence, if |t| ≤ t0 and ρ ∈ T ,
we see that µn(t, ρ) stays in [−t0, t0] and moreover |µn(t, ρ)| ≤ νn|t|. We then see that if |t| ≤ t0
and ρ ∈ T ,

d(F−n(ϕtu(ρ)), F−n(ρ)) = d(ϕµn(t,ρ)
u (F−n(ρ)), F−n(ρ)) ≤ C|µn(t, ρ)| ≤ Cνn

This shows that ϕtu(ρ) belongs to the global unstable manifold at ρ, and hence, if t0 is small
enough, ϕtu(ρ) belongs to the local manifold Wu(ρ) and t0 can be chosen uniformly with respect
to ρ ∈ T . �

Since the regularity of the unstable distributions implies the same regularity for the flow ϕtu
(see Lemma A.1 in the Appendix), we deduce that, up to reducing the size of the local unstable
manifolds, these local unstable manifolds Wu(ρ) depend C1,β on the base point ρ ∈ T . We’ll
also use this proposition to show the same regularity for holonomy maps. Suppose that ε0 is small
enough. We know that if ρ1, ρ2 ∈ T satisfy d(ρ1, ρ2) ≤ ε0, thenWu(ρ2)∩Ws(ρ1) consists of exactly
one point. Let’s note it Hu

ρ1
(ρ2).

Finally, we define the holonomy map

Hu
ρ1,ρ2

: ρ3 ∈Ws(ρ2) ∩ T 7→ Hu
ρ1

(ρ3) ∈Ws(ρ1) ∩ T

Lemma 3.7. If ε0 is small enough, for every ρ1 ∈ T , the map

Hu
ρ1

: T ∩B(ρ1, ε0)→Ws(ρ1) ∩ T

is the restriction of a map H̃u
ρ1

: B(ρ1, ε0)→Ws(ρ1) which is C1,β .

Proof. Let ρ1 ∈ T . As in the proof of Lemma 3.6, consider a smooth chart κ : U1 → V1 ⊂ R2 ,
ρ1 ∈ U1, 0 ∈ V1 such that :

• κ(ρ1) = (0, 0)
• κ (Ws(ρ1) ∩ U1) = {(0, s), s ∈ R} ∩ V1

• κ (Wu(ρ1) ∩ U1) = {(u, 0), u ∈ R} ∩ V1

• dρ1
κ(eu(ρ1)) = (1, 0).
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We now work in this chart V1 and note Φt = κ ◦ ϕtu ◦ κ−1 the flow in this chart, well defined for t
small enough. Consider the map

ψ(u, s) = Φu(0, s)

ψ is C1,β and d0ψ = I2. By the Inverse Function Theorem, ψ is a local diffeomorphism between
neighborhoods of 0 :

ψ : V2 → V ′2

Since d(u,s)

(
ψ−1

)
=
(
dψ−1(u,s)ψ

)−1, ψ−1 is C1,β . We now consider

κ0 = ψ−1 ◦ κ : κ−1(V2) := U2 → V ′2

and observe that :
• κ0(Ws(ρ1) ∩ U2) = {(0, s), s ∈ R} ∩ V ′2 ;
• κ0 ◦ ϕtu ◦ κ−1

0 (u, s)) = (u+ t, s). In other words κ0 rectifies the unstable manifolds.
Armed with theses facts, we define

H̃u
ρ1

: U2 →Ws(ρ1) ; H̃u
ρ1

= κ−1
0 ◦ πs ◦ κ0

where πs(u, s) = (0, s). H̃u
ρ1

is C1,β . We assume that B(0, ε0) ⊂ U1. Let us check that H̃u
ρ1

extends the holonomy map in B(ρ1, ε0) (if ε0 is small enough). Let ρ2 ∈ T ∩ B(ρ1, ε0) and note
ρ′2 = H̃u

ρ1
(ρ2). By definition of H̃u

ρ1
, ρ′2 can be written ρ′2 = ϕtu(ρ1) and hence, if ε0 is small enough,

ρ′2 ∈Wu(ρ1). Since, ρ′2 ∈Ws(ρ2), we see that ρ′2 = Hu
ρ1

(ρ2). �

Note that by compactness, ε0 can be chosen uniformly in ρ1 ∈ T and the C1,β norms of H̃u
ρ1

are uniform. As a corollary, we get the following :

Corollary 3.3. Suppose that ε0 is small enough. Then, the holonomy maps, defined for ρ1, ρ2 ∈ T
with d(ρ1, ρ2) ≤ ε0,

Hu
ρ1,ρ2

: Ws(ρ2) ∩ T →Ws(ρ1) ∩ T
are the restrictions of C1,β : H̃u

ρ1,ρ2
: Ws(ρ1)→Ws(ρ2) with C1,β norms uniform in ρ1, ρ2.

3.5. Adapted charts. We construct charts in which the unstable manifolds are close to horizontal
lines. These charts will be used at different places and their existence relies on the C1+β regularity
of the unstable distribution.

Weak version. We start with a weak version of these charts.

Lemma 3.8. Suppose that C > 0 is a fixed global constant and ε0 is chosen small enough. For
every ρ0 ∈ T , there exists a canonical transformation

κ0 : U ′ρ0
→ V ′ρ0

⊂ R2

satisfying (we note (y, η) the variable in R2) :
(1) B(ρ0, Cε0) ⊂ U ′ρ0

;
(2) κ0(ρ0) = 0 , dρ0

κ0(Eu(ρ0)) = R× {0}; dρ0
κ0(Es(x)) = {0} × R ;
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(3) The image of the unstable manifold Wu(ρ0) ∩ U ′ρ0
is exactly {(y, 0), y ∈ R} ∩ V ′ρ0

.
Moreover, for every N , the CN norms of κ0 are bounded uniformly with respect to ρ0 ∈ T .

Remark. The difference with the charts used in the proof of Lemma 3.6 is that we require κ0 to
be a smooth canonical transformation.

Proof. Wu(ρ0) is a C∞ manifold, hence there exists a C∞ defining function η defined in a neigh-
borhood ρ0 : namely dρ0

η 6= 0 and Wu(ρ0) = {η = 0} locally near ρ0. Darboux’s theorem gives a
function y defined in a neighborhood of ρ0 such that (y, η) forms a system of symplectic coordi-
nates. We can assume that y(ρ0) = 0. If κ(ρ) = (y, η), the third point is satisfied by assumption
on η and we need to ensure that dρ0

κ(Es(ρ0)) = {0} × R by modifying η in a symplectic way.
Assume that dρ0

κ(Es(ρ0)) = Rt(a, 1). The sympletic matrix

A =

Å
1 −a
0 1

ã
maps the basis (t(1, 0), t(a, 1)) to the canonical basis of R2 and we can set κ0 := A ◦ κ which is the
required canonical transformation, defined in a small neighborhood U ′ρ0

of ρ0.
We can ensure that B(ρ0, Cε0) ⊂ U ′ρ0

for ε0 small enough and the uniformity of the CN norms of
κ thanks to the compactness of T and the fact that the unstable distribution depends continuously
on ρ0 ∈ T . �

Straightened version. We now straighten the unstable manifolds in a stronger version of the
previous charts. The construction and the use of these charts is similar to [DJN21] (Lemma 2.3).

Lemma 3.9. Suppose that ε0 is chosen small enough. For every ρ0 ∈ T there exists a canonical
transformation

κ = κρ0
: Uρ0

⊂ U → Vρ0
⊂ R2

satisfying (we note (y, η) the variable in R2) :
(1) B(ρ0, 2ε0) ⊂ Uρ0

;
(2) κ(ρ0) = 0 , dρ0

κ(Eu(ρ0)) = R× {0}; dρ0
κ(Es(ρ0)) = {0} × R

(3) The images of the unstable manifolds Wu(ρ), ρ ∈ Uρ0 ∩ T , are described by

(3.41) κ (Wu(ρ) ∩ Uρ0) =
{(
y, g(y, ζ(ρ))

)
, y ∈ Ω

}
where Ω ⊂ R is an open set, ζ : Uρ0

→ R is C1+β , g : Ω × I → R is C1+β (where I is a
neighborhood of ζ(Uρ0

)) and they satisfy
(i) ζ is constant on the unstable manifolds ;
(ii) ζ(ρ0) = 0, g(y, 0) = 0 ;
(iii) g(0, ζ) = ζ ;
(iv) ∂ζg(y, 0) = 1

The derivatives of κρ0
and the C1+β norms of g, ζ are bounded uniformly in ρ0.

Remark. The most important condition, which will be used later on, is the last one : it makes
the unstable manifolds very close to horizontal lines. The model situation we expect is when the
unstable distribution is constant and horizontal.

Proof. Around a point ρ0 ∈ T , we work in the charts given by Lemma 3.8 : κ0 : U ′ρ0
→ V ′ρ0

. We
recall that the unstable distribution is given by the restriction of a C1+β vector field eu. If U ′ρ0

is
a sufficiently small neighborhood of ρ0, we can write, for ρ ∈ U ′ρ0

,

(3.42) dρκ0(eu(ρ)) ∈ Rẽu(ρ) with ẽu(ρ) = t(1, f0(ρ))

where f0 : U ′ρ0
→ R is a C1+β function which is nothing but the slope of the unstable direction in

the chart κ0. In the (y, η) variable, we still note f0(ρ) = f0(y, η) and we observe that due to the
assumption on κ0, we have

f0(y, 0) = 0 , (y, 0) ∈ V ′ρ0

We consider Φt(y, η) the flow generated by the vector field ẽu. Due to the form of ẽu, we can write,

Φt(y, η) = (y + t, Zt(y, η))
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The reparametrization made in (3.42) does not change the flow lines of the vector field (κ0)∗eu.
In particular, in virtue of Proposition 3.8, they coincide locally with the unstable manifolds. More
precisely, if we set,

g0(y, η) := Zy(0, η)

then, for (0, η) = κ0(ρ) ∈ κ0(T ∩Ws(ρ0)),

κ0

(
Wu(ρ)

)
∩ {|y| < y0} =

{(
y, g0(y, η)

)
, |y| < y0

}
for some y0 small enough (which can be chosen uniformly in ρ0). To define ζ, we go back up the
flow : suppose that ρ ∈ U ′ρ0

and write κ0(ρ) = (y, η) and assume |y| < y0. We set

ζ(ρ) := Z−y(y, η)

To say it differently, κ0(Wu(ρ) intersects the axis {y = 0} at (0, ζ(ρ)).

Figure 6. The definitions of g0 and ζ use the flow generated by ẽu.

ζ and g0 are C1+β , their C1+β norms depend uniformly on ρ0 and they satisfy :
• By definition, ζ is constant on the flow lines, and hence, on the unstable manifolds Wu(ρ)

if ρ ∈ T ∩ U ′ρ0
∩ {|y| < y0} ;

• ζ(ρ0) = 0 ;
• Since f0(y, 0) = 0, Zy(0, 0) = 0 and hence g0(y, 0) = 0 ;
• Since Z0(0, η) = η, g0(0, η) = η.

However, at this stage, the last condition (∂ζg0(y, 0) = 1) is not satisfied by g0 and we need to
modify the chart. To do so, we’ll make use of the following lemma, which is proved in the appendix
A.2.

Lemma 3.10. The map y ∈ {|y| < y0} 7→ ∂ηf0(y, 0) is smooth, with CN norms bounded uniformly
in ρ0.

We first show that this lemma implies that y ∈ {|y| < y0} 7→ ∂ηg0(y, 0) is smooth. Indeed, due
to the C1+β regularity of Eu, (t, y, η) 7→ Zt(y, η) is C1 and satisfies :

d

dt
∂ηZ

t(y, η) = ∂ηf0

(
y + t, Zt(y, η)

)
Specifying in (y, η) = (0, 0), we have

d

dt
∂ηZ

t(0, 0) = ∂ηf0(t, 0)

This exactly says that y 7→ ∂ηg0(y, 0) is C1 and has ∂ηf0(y, 0) as derivative with respect to y and
hence y 7→ ∂ηg0(y, 0) is smooth, as required.
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Due to the relation g0(0, η) = η, we have ∂ηg0(0, 0) = 1. As a consequence, if y0 is small enough,
we can assume that ∂ηg0(y, 0) > 0 for |y| < y0 and consider the smooth diffeomorphism defined in
{|y| < y0}

ψ : y 7→
∫ y

0

∂ηg0(s, 0)ds

We then use the canonical transformation

Ψ : (y, η) 7→
Å
ψ(y),

η

ψ′(y)

ã
We finally consider the chart κρ0 = Ψ ◦ κ0 defined in Uρ0 = U ′ρ0

∩ {|y| < y0} and if ε0 is small
enough, we can ensure that B(ρ0, 2ε0) ⊂ Uρ0

. In this chart, the graph of g0(·, ζ) is sent to the
graph of the function

g : y ∈ Ω := ψ ((−y0, y0)) 7→ g0(ψ−1(y), ζ)

ψ′ (ψ−1(y))

We eventually check that
• g(y, 0) = 0 since g0(y, 0) = 0 ;
• g(0, ζ) = ζ since ψ(0) = 0, ψ′(0) = 1 and g(0, ζ) = ζ ;
• ∂ηg(y, 0) = 1;
• The C1+β norm of g is bounded uniformly in ρ0 ;
• The CN norms of κρ0

are bounded uniformly in ρ0.
�

4. Construction of a refined quantum partition

We start the proof of Theorem 1. We consider T = T (h) ∈ I0+(Y × Y, F ′) a semi-classical
Fourier integral operator associated with F , microlocally unitary in a neighborhood of T , and a
symbol α ∈ S0+(U). We want to show a bound for the spectral radius of M(h) = T (h) Oph(α),
independent of h.

4.1. Numerology. We’ll use the standard fact :

||Mn||L2→L2 ≤ ρ =⇒ ρspec(M) ≤ ρ1/n

The trivial lemma which follows reduces the theorem to the study of ||Mn|| with n = n(h) ∼
δ| log h|.

Lemma 4.1. Let δ > 0 and N(h) ∈ N satisfy N(h) ∼ δ| log h|. Suppose that there exists h0 > 0
and γ > 0 such that

(4.1) ∀0 < h < h0 , ||M(h)N(h)|| ≤ hγ ||α||N(h)
∞

Then, for every ε > 0, there exists hε such that, for h ≤ hε,

ρspec(M(h)) ≤ e−
γ
δ+ε||α||∞

Proof. It suffices to observe that under the assumption (4.1), we have ρspec(M(h)) ≤ e
γ log h
N(h) ||α||∞

and use the equivalence for N(h). �

Remark. If we use the bound ||M || ≤ ||α||∞ + O(h1/2−ε), one get the obvious bound ||MN || ≤
||α||N∞(1 + o(1)). Hence, (4.1) is a decay bound.

The proof of Theorem 1 is then reduced to the proof of the following proposition.

Proposition 4.1. There exists δ > 0, a family of integer N(h) ∼ δ| log(h)| and γ > 0 such that,
for h small enough, (4.1) holds.

Actually, this proposition is enough to show Corollary 1 concerning perturbed operators, in
virtue of

Corollary 4.1. Suppose that R(h) : L2(Y ) → L2(Y ) is a family of bounded operators such that
R(h) = O(hη) for some η > 0. Then, there exists γ′ = γ′(γ, η) such that for h small enough,∣∣∣∣∣∣(M(h) +R(h))N(h)

∣∣∣∣∣∣ ≤ hγ′ ||α||N(h)
∞
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Proof. We write

(M +R)N = MN +
∑

ε∈{0,1}N
ε 6=(1,...,1)

(ε1M + (1− ε1)R) . . . (εNM + (1− εN )R)

Using this, we can estimate∣∣∣∣(M +R)N
∣∣∣∣ ≤ hγ ||α||N∞ +

Ä
(||M ||+ ||R||)N − ||M ||N

ä
≤ hγ ||α||N∞ +N ||R|| (||M ||+ ||R||)N−1

≤ hγ ||α||N∞ + C| log h|hη||α||N−1
∞ (1 +O(hη))

= O((hγ + hη−)||α||N∞)

This gives the desired bound for any γ′ < min(γ, η). �

Actually, the precise value of N(h) we’ll use is rather explicit and we now describe it. We set

(4.2) b =
1

1 + β

where β is the one appearing in Theorem 5 concerning the regularity of the unstable distribution.
We now choose δ0 ∈ (0, 1

2 ) such that

(4.3) b + δ0 < 1

For instance, let us set

δ0 =
1− b

2
=

β

2(1 + β)

Recalling the definitions of the exponent λ0 ≤ λ1 in (3.10) and (3.11), we introduce the following
notations

(4.4) N(h) = N0(h) +N1(h) ; N0(h) =

°
δ0
λ1
| log(h)|

§
; N1(h) =

°
1

λ0
| log(h)|

§
N0(h) (resp. N1(h)) corresponds to a short (resp. long) logarithmic time. We will omit the
dependence on h in the following.

To be complete with the numerology, we introduce another number τ < 1 such that

(4.5) b < τ < 1 and δ0
λ0

λ1
+ τ > 1

The meaning of these conditions will be clear in the core of the proof and we won’t miss to recall
where they are used. For instance, we set

(4.6) τ = 1− λ0

λ1

1− b

4

An important remark. If two operators M1(h) and M2(h) are equal modulo O(h∞), this is also
the case for M1(h)N(h) and M2(h)N(h) as long as

- N(h) = O(log h).
- M1(h),M2(h) = O(h−K) for some K.

This will be widely used in the following. In particular, recall that we work with operators acting
on L2(Y ) but these operators take the form M1(h) = ΨYM2(h)ΨY where ΨY ∈ C∞c (Y, [0, 1]) and
M2(h) is a bounded operator on

⊕J
j=1 L

2(R) such that M2(h) = ΨYM2(h)ΨY + O(h∞)L2 . As a
consequence, modulo O(h∞), it is enough to focus on M2(h)N(h). For this reason, from now on
and even if we keep the same notation, we work with

M(h) = T (h) Oph(α) :

J⊕
j=1

L2(R)→
J⊕
j=1

L2(R)

where T (h) = (Tij(h)) with Tij ∈ I0+(R× R, F ′ij) and

Oph(α) = Diag(Oph(α1), . . . ,Oph(αJ))
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Figure 7. The partition (Vq)q∈A∞ is made by small neighborhoods of T (small
purple disks) and a big open set included in U ′.

4.2. Microlocal partition of unity and notations. We consider some ε0 > 0, which is supposed
small enough to satisfy all the assumptions which will appear in the following.
We consider a cover of T by a finite number of balls of radius ε0 :

T ⊂
Q⋃
q=1

B(ρq, ε0) ; ρq ∈ T

and we assume that for all q ∈ {1, . . . , Q}, there exists jq, lq,mq ∈ {1, . . . , J} such that

B(ρq, 2ε0) ⊂ Ãjqlq ∩ ‹Dmqjq ⊂ Ujq
We also assume that T is microlocally unitary in B(ρq, 4ε0). We then note

(4.7) Vq = B(ρq, 2ε0)

We complete this cover with

(4.8) V∞ = U ′ \
Q⋃
q=1

B(ρq, ε0)

U ′ b U is an open set such thatWFh(M) b U ′ × U ′. We note U ′j the component of U ′ inside Uj .
We note A = {1, . . . , Q} and A∞ = A ∪ {∞}.

We then consider a partition of unity associated with the cover V1, . . . ,VQ,V∞, namely a family
of smooth functions χq ∈ C∞c (U), for q ∈ A∞ such that :

• suppχq ⊂ Vq
• 0 ≤ χq ≤ 1
• 1 =

∑
q∈A∞ χq in

⋃
q∈A∞ Vq

More precisely, if q ∈ A, χq ∈ C∞(Ujq ) and for every j ∈ {1, . . . , J}, there exists bj ∈ C∞c (Uj) such
that on U ′j , 1 = bj +

∑
q∈A,jq=j χq. Thus, χ∞ =

∑J
j=1 bj .

We can then quantize these symbols so as to get a pseudodifferential partition of unity. More
precisely, to respect the matrix structure, we may write this quantization in a diagonal operator
valued matrix, still denoted Oph :

• for q ∈ A, Aq = Oph(χq) is the diagonal matrix Diag(0, . . . ,Oph(χq), 0, . . . , 0) where the
block Oph(χq) is in the jq-ith position ;

• Oph(χ∞) = Diag(Oph(b1), . . . ,Oph(bJ)).
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The family (Aq)q∈A∞ satisfies the following properties :

(4.9)
∑
q∈A∞

Aq = Id microlocally in U ′ ; ∀q ∈ A∞, ||Aq|| ≤ 1 +O(h1/2)

Since M =
∑
q∈A∞MAq +O(h∞), we may write

Mn =
∑

q∈An∞

Uq +O(h∞)

where for q = q0 . . . qn−1 ∈ An∞,

(4.10) Uq := MAqn−1
. . .MAq0

For q = q0 . . . , qn−1 ∈ An∞, we also define a family of refined neighborhoods, forming a refined
cover of T ,

(4.11) V−q =

n−1⋂
i=0

F−i (Vqi) ; V+
q = Fn

(
V−q
)

=

n−1⋂
i=0

Fn−i (Vqi)

This definition imply that a point ρ ∈ V−q lies in Vqi at time i (i.e F i(ρ) ∈ Vqi) for 0 ≤ i ≤ n − 1

and a point ρ ∈ V+
q lies in Vqn−i at time −i, for 1 ≤ i ≤ n. Roughly speaking, we expect that

each operator Uq acts from V−q to V+
q and is negligible (in some sense to be specified later on)

elsewhere. Combining (4.9) and the bound on M , the following bound is valid (for any ε > 0) :

(4.12) ||Uq||L2→L2 ≤
Ä
||α||∞ +O(h1/2−ε)

än
As soon as |n| ≤ C0| log h|, we have ||Uq||L2→L2 ≤ C||α||n∞, for some C depending on C0 and a
finite number of semi-norms of α.

Reduction to words in A. We can find a uniform T0 ∈ N such that if ρ ∈ V∞, there exists
k ∈ {−T0, . . . , T0} such that F k(ρ) "falls" in the hole. By standard properties of the Fourier
integral operators, each component (MT0)ij of MT0 is a Fourier integral operator associated with
the component (FT0)ij of FT0 . In particular, WFh

′(MT0) ⊂ Gr′(FT0).

Let us studyM2T0+N(h). If q = q0 . . . qN−1 ∈ AN∞ and if there exists an index i ∈ {0, . . . , N−1}
such that qi =∞, one can isolate this index i and trap Aqi between two Fourier integral operators
M1,M2, belonging to a finite family of FIO associated with FT0 , so that we can write

MT0UqM
T0 = B1M1A∞M2B2

where B1, B2 satisfy the L2-bound :

||B1|| × ||B2|| ≤ (||α||∞ +O(h1/4))N−1 = O(h−K)

for some integer K. Since,

WFh
′(M1A∞M2) ⊂ {

(
FT0(ρ), F−T0(ρ)

)
; ρ ∈WFh(A∞)} = ∅

we have M1A∞M2 = O(h∞), with constants that can be chosen independent of q. Hence, the
same is true for MT0UqM

T0 . |AN | is bounded by a negative power of h. So, we can write :

MN+2T0 =
∑

q∈AN∞

MT0UqM
T0

=
∑

q∈AN
MT0UqM

T0 +O(h∞)

=MT0

Ñ∑
q∈AN

Uq

é
MT0 +O(h∞)
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We can then replace M by

(4.13) M =
∑
q∈A

MAq = M(Id−A∞) +O(h∞)L2→L2

A decay bound

(4.14) ||M(h)N(h)|| ≤ hγ ||α||N(h)
∞

will imply the required decay bound (4.1) for M with N(h) replaced by N(h) + 2T0. We are hence
reduced to prove the decay bound (4.14).

4.3. Local Jabobian.
A first definition. Following [DJN21], we introduce local unstable and stable Jacobians and we
then state several properties. For n ∈ N∗ and q ∈ An, let us define its local stable and unstable
Jacobian.

(4.15) J−q := inf
ρ∈T ∩V−q

Jun (ρ) , J+
q := inf

ρ∈T ∩V+
q

Js−n(ρ)

By the chain rule, we have for ρ ∈ T ∩ V−q ,

Jun (ρ) =

n−1∏
i=0

Ju1
(
F i(ρ)

)
A similar formula is true for ρ ∈ T ∩ V+

q :

Js−n(ρ) =

n−1∏
i=0

(
Js1
(
F i−n(ρ)

))−1
=

n−1∏
i=0

Js−1

(
F−i(ρ)

)
Hence, we’ve got the basic estimates :

T ∩ V−q 6= ∅ =⇒ eλ0n ≤ J−q ≤ eλ1n(4.16)

T ∩ V+
q 6= ∅ =⇒ eλ0n ≤ J+

q ≤ eλ1n(4.17)

If q = q0 . . . qn−1 and q− = q0 . . . qn−2, then V−q ⊂ V−q− and thus

(4.18) J−q ≥ eλ0J−q−

Similarly, if q+ = q1 . . . qn−1, V+
q ⊂ V+

q+
and

(4.19) J+
q ≥ eλ0J+

q+

As a consequence of Corollary 3.2, if ε0 is small enough, the local stable and unstable Jacobians
give the expansion rate of the flow at every point of T ∩ V±q . If T ∩ V±q 6= ∅,

∀ρ ∈ T ∩ V−q , Jun (ρ) ∼ J−q(4.20)

∀ρ ∈ T ∩ V+
q , J

s
−n(ρ) ∼ J+

q(4.21)

This definition is slightly not satisfactory since J±q = +∞ as soon as V±q ∩ T = ∅. However,
when V±q 6= ∅, this set can still stay relevant. For this purpose, we will give a definition of local
stable and unstable Jacobian for such words with help of the Shadowing Lemma ([HK95] , Section
18.1).
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Enlarged definition. Let n ∈ N and q = q0 . . . qn−1 ∈ An. We focus on V−q , with the case of V+
q

handled similarly by considering F−1 instead of F .
If V−q ∩ T 6= ∅, we keep the definition given in 4.15. Assume now that V−q 6= ∅ but V−q ∩ T = ∅.

Fix ρ ∈ V−q . By definition of Vqi , for i ∈ {0, . . . , n− 1}, we have d(ρi, F
i(ρ)) ≤ 2ε0. Hence,

d(F (ρi), ρi+1) ≤ d(F (ρi), F
i+1(ρ)) + d(F i+1(ρ), ρi+1) ≤ Cε0

for a constant C only depending on F . That is to say, (ρ0, . . . , ρn−1) is a Cε0 pseudo orbit. Assume
that δ0 > 0 is a small fixed parameter. In virtue of the shadowing lemma, if ε0 is sufficiently small,
(ρ0, . . . , ρn−1) is δ0 shadowed by an orbit of F : there exists ρ′ ∈ T such that for i ∈ {0, . . . , n−1},
d(ρi, F (ρ′)) ≤ δ0. Consequently, d(F i(ρ), F i(ρ′)) ≤ δ0 + Cε0. If ρ2 is another point in V−q , for
i = 0, . . . , n − 1, d(F i(ρ2), F i(ρ′)) ≤ 2ε0 + Cε0 + δ0. For convenience, set ε2 = 2ε0 + δ0 + Cε0

and note that ε2 can be arbitrarily small depending on ε0. As a consequence, we have proven the
following

Lemma 4.2. If V−q 6= ∅, there exists ρ′ ∈ T such that ∀i ∈ {0, . . . , n − 1} and ρ ∈ V−q ,
d(F i(ρ), F i(ρ′)) ≤ ε2.

Fix any ρ′ satisfying the conclusions of this lemma and we arbitrarily set

(4.22) J−q = Jun (ρ′)

If ρ′1 is another point satisfying this conclusion, we have d(F i(ρ′), F i(ρ′1)) ≤ 2ε2 for i ∈ {0, . . . , n−1}
and in virtue of Corollary (3.2),

Jun (ρ′) ∼ Jun (ρ′1)

Hence, up to global multiplicative constants, the definition of this unstable Jacobian is independent
of the choice of ρ′. Notice that if V−q ∩ T 6= ∅, any ρ′ ∈ T ∩ V−q satisfies the conclusions of Lemma
4.2 and J−q ∼ Jun (ρ′).

To define J+
q , we can argue similarly and show that there exists ρ′ satisfying d(F i(ρ′), F i(ρ)) ≤ ε2

for i ∈ {−n, . . . ,−1} and ρ ∈ V+
q . We can assume that this is the same ε2 as before and we set

J+
q = Js−n(ρ′) for any ρ′.

Behavior of the local Jacobian. The following three lemmas are crucial to understand the
behavior of the evolution of points in the sets V±q . The first one gives estimates to handle these
quantities.

Lemma 4.3. Let n ∈ N and q,p in An. If ε0 is chosen small enough, then the following holds
1) V+

q 6= ∅ ⇐⇒ V−q 6= ∅ and in that case J−q ∼ J+
q .

2) If two propagated neighborhoods intersects, the local Jacobians are comparable :

(4.23) V±q ∩ V±p 6= ∅ =⇒ J±q ∼ J±p
3) If q can be written as the concatenation of q1 and q2 of lengths n1 and n2 such that

n1 + n2 = n and if V±q 6= ∅, then

(4.24) J±q ∼ J±q1
J±q2

Notations. The constants in ∼ are independent of ρ and n. They depend on F but also on the
partition (Vq)q. In the following, we’ll be lead to use constants with the same kind of dependence.
These constants will be allowed to depend also on the partition of unity (χq)q and onM . Constants
with such dependence will be called global constants.

Proof. 1) The equivalence is obvious. From the fact that F is a volume-preserving canonical
transformation, we have for some C > 0,

∀ρ ∈ T ,∀n ∈ N, C−1 ≤ Jun (ρ)Jsn(ρ) ≤ C

and we write Jun (ρ) ∼ Jsn(ρ)−1. From F−n ◦Fn(ρ) = ρ, we also get Jsn(ρ)−1 = Js−n(Fn(ρ)).
Eventually, if ρ′ ∈ T satisfies d(F i(ρ), F i(ρ′) ≤ ε2 for i ∈ {0, . . . , n − 1} and ρ ∈ V−q ,
Fn(ρ′) = ρ+ satisfies d(F i(ρ), F i(ρ+)) ≤ ε2 for i ∈ {−n, . . . ,−1} and ρ ∈ V+

q . Hence

J+
q ∼ Js−n(ρ+) ∼ Jun (ρ′) ∼ J−q

Thanks to this first point, it is enough to show the remaining point only for −.
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Figure 8. Evolution of the set V−q (the red hatched set) at time 0 and n−1. The
points ρi, F i(ρ′) are represented at these times, so as the balls B(F i(ρ′), ε2) and
B(F i(ρ′), δ0) (their boundaries are the blue dotted lines). We’ve also represented
the stable (resp. unstable) manifold at F i(ρ′) to show the directions in which F
contracts (resp. expands).
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2) Pick ρq ∈ T (resp. ρp) satisying the conclusions of lemma 4.2 for V−q (resp. V−p ).
d(F i(ρq), F i(ρp)) ≤ 2ε2 and hence, in virtue of Corollary 3.2, Jun (ρq) ∼ Jun (ρp). This gives
2).

3) Pick ρ ∈ T satisfying the conclusions of lemma 4.2 for V−q .
By the chain rule, Jun (ρ) = Jun2

(Fn1(ρ)) Jun1
(ρ). Remark that

V−q = V−q1
∩ F−n1

(
V−q2

)
Hence, ρ satisfies the conclusions of Lemma 4.2 for q1 with ε2 and the same is true for
Fn1(ρ) and q2. It follows that J−q1

∼ Jun1
(ρ) and J−q2

∼ Jun2
(Fn1(ρ)). This gives 3).

�

Remark. The first point of the previous lemma shows that we could consider only one of the
two quantities. Nevertheless, we prefer keeping trace of it. The reason is that a priori J+ and
J− support two different kind of information : J+

q controls the growth of Fn whereas J−q controls
the growth of F−n. The fact that the two dynamics (in the past and in the future) have similar
behaviors is a consequence of the fact that F is volume-preserving.

The next lemmas relate the local Jacobian to the expansion rates of the flow in the V±q . It will
be important in our semiclassical study of operators microlocally supported in V±q .

Lemma 4.4. Control of expansion rate by unstable Jacobian. If ε0 is small enough, there
exists a global constant C > 0 satisfying the following inequalities.
For every n ∈ N∗ and q ∈ An such that V−q 6= ∅ we have :

sup
ρ∈V−q

||dρFn|| ≤ CJ−q(4.25)

sup
ρ∈V+

q

||dρF−n|| ≤ CJ+
q(4.26)

Proof. This is a consequence of (3.18). Indeed, if V−q 6= ∅ and if ρ′ ∈ T satisfies the conclusions
of lemma 4.2, for every ρ ∈ V−q , ||dρFn|| ≤ CJun (ρ) with C a global constant depending only on
ε2. �

This third lemma emphasizes that V−q lies in a small neighborhood of a stable manifold and V+
q

lies in a small neighborhood of an unstable manifold, with the size of this neighborhood controlled
by the local Jacobian. It is a direct consequence of Lemma 3.6.

Lemma 4.5. Localization of the V±q . There exists a global constant C > 0 such that for all
n ∈ N and q ∈ An,

(1) If V−q 6= ∅ and if ρ′ ∈ T satisfies the conclusion of lemma 4.2, then, for all ρ ∈ V−q ,

(4.27) d (ρ,Ws(ρ
′)) ≤ C

J−q

(2) If V+
q 6= ∅ and if ρ′ ∈ T satisfies the conclusion of lemma 4.2 in the future (namely,

d(F i(ρ), F i(ρ′)) ≤ ε2 for all ρ ∈ V+
q and i ∈ {−n, . . . ,−1}), then for all ρ ∈ V+

q ,

(4.28) d (ρ,Wu(ρ′)) ≤ C

J+
q

4.4. Propagation up to local Ehrenfest time. In this section, we show that under some control
of the local Jacobian defined above, one can handle the operators Uq and prove the existence of
symbols a±q (in exotic classes Sδ) such that

Uq = Oph
(
a+
q

)
T |q| +O(h∞)(4.29)

Uq = T |q|Oph
(
a−q
)

+O(h∞)(4.30)

with symbols a±q supported in V±q . We recall that Uq = MAqn−1
. . .MAq0 with M = T Oph(α).

Let us state the precise statement we will prove.

Proposition 4.2. Fix 0 < δ < δ1 <
1
2 and C0 > 0.
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(1) For every n ∈ N and for all q ∈ An satisfying

(4.31) J+
q ≤ C0h

−δ

there exists a+
q ∈ ||α||n∞S

comp
δ1

such that

(4.32) Uq = Oph
(
a+
q

)
Tn +O(h∞)L2→L2

and

(4.33) supp a+
q ⊂ V+

q

(2) For every n ∈ N and for all q ∈ An satisfying

(4.34) J−q ≤ C0h
−δ

there exists a−q ∈ ||α||n∞S
comp
δ1

such that

(4.35) Uq = Tn Oph
(
a−q
)

+O(h∞)L2→L2

(4.36) supp a−q ⊂ V−q

Remark.
• The implied constants appearing in the O(h∞) are quasi-global : they have the same

dependence as global constants but depend also on C0, δ, δ1. What is important is that
they are independent of n and q as soon as the assumption (4.31) is satisfied.

• (4.31) implies that V+
q 6= ∅. In particular, if q satisfies this assumption, there exists a

sequence (i0, . . . , in) such that for all p ∈ {0, . . . , n− 1},Vqp ⊂ ‹Dip+1,ip ⊂ Uip
• In fact, supp a+

q ⊂ F
(
Vqn−1

)
⊂ Uin . Hence, the operator Oph

(
a+
q

)
acting on

⊕J
i=1 L

2(R)

is the diagonal matrix Diag(0, . . . ,Oph
(
a+
q

)
, . . . , 0).

• The symbol a+
q has an asymptotic expansion in power of h. The principal symbol is given

by

(4.37)
(
a+
q

)
0

=

n∏
p=1

aqn−p ◦ F−p

where aq = χq ×α. Note that if the functions aqn−p ◦F−p are not necessarily well defined,
the product is well defined thanks to the assumptions on the supports of χq, namely
suppχq b Vq. Indeed, such a symbol can be constructed inductively as the n-th term bn
of the sequence of functions b1 = aq0 ◦ F−1 and bi+1 is obtained from ai by the following

bi+1 = (aqi × ai) ◦ F−1

If we assume that supp bi b V+
q0...qi−1

, then supp(aqi × bi) b F−1
(
V+
q0...qi

)
. This property

allows us to define bi+1 and supp bi+1 b V+
q0...qi .

• The same hols for a−q with principal symbol

(4.38)
(
a−q
)

0
=

n−1∏
p=0

aqp ◦ F p

• Our proof follows the sketch of proof of [DJN21] (Section 5) and [Riv10] (Section 7).

In the end of this section, we focus on proving this proposition. We only prove the first point.
The second point can be proved similarly by using the same techniques.
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4.4.1. Iterative construction of the symbols. Let us start by a lemma combining the precise versions
of the expansion of the Moyal product (Lemma 3.1) and of Egorov theorem (Proposition 3.3). This
lemma is the key ingredient for the iterative formulas below.

Lemma 4.6. Let q ∈ A and let a ∈ Scompδ1
such that supp a b Uj for some j ∈ {1, . . . , J}. Then,

there exists a family of differential operators Lk,q of order 2k, with smooth coefficients compactly
supported in Vq, such that for every N ∈ N, we have the following expansion

(4.39) MAq Oph(a) = Oph

(
N−1∑
k=0

hk(Lk,qa) ◦ F−1

)
T +O

(
||a||C2N+15hN

)
L2→L2

Moreover, one has L0,q = χq × α := aq.

Remark.
• Again, since supp a ⊂ Uj , Oph(a) is a diagonal matrix with only one non-zero block equal

to Oph(a).
• Recall that we’ve supposed that Vq ⊂ ‹Dmqjq . As a consequence, the symbols

a
(k)
1 := Lk,qa ◦ F−1

are equal to Lk,qa ◦
(
Fmqjq

)−1 and are supported in Umq : Oph(a
(k)
1 ) is still a diagonal

matrix.

Proof. Let us first work at the order of operators L2(R)→ L2(R) and let us study :

Mmqjq Oph(χq) Oph(a) = Tmqjq Oph(αjq ) Oph(χq) Oph(a)

Using Lemma 3.1, we write

Oph(χq) Oph(a) = Oph

(
N−1∑
k=0

ikhk

k!
A(D)k(χq ⊗ a)|ρ=ρ1=ρ2

)
+O

(
hN ||χq ⊗ a||C2N+13

)
the principal term of the expansion being χqa. Set aq,k(ρ) = A(D)k(χq ⊗ a)|ρ=ρ1=ρ2 and use
Lemma 3.1 to write

Oph(αjq ) Oph(χq) Oph(a) = =
∑

k1+k2<N

ik1+k2hk1+k2

k1!k2!
Oph

(
A(D)k2(αjq ⊗ aq,k1

)|ρ=ρ1=ρ2

)
+O

(
hN ||a||C2N+13

)
The principal term in the expansion is αjqχqa. We note that

a 7→
∑

k1+k2=k

A(D)k2(αjq ⊗ aq,k1
)|ρ=ρ1=ρ2

is a differential operator of order 2k. Using the precise version of Egorov theorem in Lemma 3.3,
we see that for any b with supp(b) ⊂ Vq,

Tmqjq Oph(b) = Oph

(
b ◦ (Fmqjq )

−1 +

N−1∑
k=1

hk(Dkb) ◦ (Fmqjq )
−1

)
+O

(
hN ||b||C2N+15

)
where Dk are differential of order 2k compactly supported in Vq. Applying this to the previous
expansion, we see that we can write :

Tmqjq Oph(αjq ) Oph(χq) Oph(a) = Oph

(
(αjqχqa) ◦ F−1 +

N−1∑
k=1

kk(Lk,qa) ◦ F−1

)
+O

(
hN ||a||C2N+15

)
We now come to the entire matrix operator. Note that the matrix M Oph(χq) Oph(a) is of the

form Ö
0 . . . M1jq Oph(χq) . . . 0
...

...
...

...
...

0 . . . MJjq Oph(χq) . . . 0

è
Oph(a)
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Recall that WFh(Oph(χq)) ⊂ ‹Dmqjq and WFh
′(Mmqjq ) ⊂ Gr′(Fmqjq ). Hence, for m 6= mq,

Mmjq Oph(χq) = O(h∞) and the previous matrix can be written
0 . . . O(h∞) . . . 0
...

...
...

...
...

0 . . . Mmqjq Oph(χq) . . . 0
...

...
...

...
...

0 . . . O(h∞) . . . 0

Oph(a) =


0 . . . 0 . . . 0
...

...
...

...
...

0 . . . Mmqjq Oph(χq) Oph(a) . . . 0
...

...
...

...
...

0 . . . 0 . . . 0

+O(h∞)||Oph(a)||L2

With constant in O(h∞) depending on χq,M and ||Oph(a)||L2→L2 = O(||a||C8). Let’s note

a
(k)
1 = Lk,qa ◦ F−1

and observe that supp(a
(k)
1 ) ⊂ F (suppχq) b Ãmqjq . Consider a cut-off function χ̃q such that

χ̃q ≡ 1 in a neighborhood of F (suppχq) and supp χ̃q ⊂ Ãmqjq . Using Lemma 3.1 and the support
properties of χ̃q, one has

Oph(a
(k)
1 ) = Oph(a

(k)
1 ) Oph(χ̃q)+O

Ä
hN−k||a(k)

1 ||C2(N−k)+13

ä
= Oph(a

(k)
1 ) Oph(χ̃q)+O

(
hN−k||a||C2N+13

)
Then, one can write Oph(a

(k)
1 )T on the form

0 . . . 0
...

...
...

Oph(a
(k)
1 ) Oph(χ̃q)Tmq1 . . . Oph(a

(k)
1 ) Oph(χ̃q)TmqJ

...
...

...
0 . . . 0

+O
(
hN−k||a||C2N+13

)

and for j 6= jq,Oph(χ̃q)Tmqj = O(h∞). We can conclude that

Oph(a
(k)
1 )T =



0 . . . . . . . . . 0
... . . . . . . . . .

...
0 . . . Oph(a

(k)
1 ) Oph(χ̃q)Tmqjq . . . 0

... . . . . . . . . .
...

0 . . . . . . . . . 0

+O(h∞)||Oph(a
(k)
1 )||L2→L2 +O

(
hN−k||a||C2N+13

)

=



0 . . . . . . . . . 0
... . . . . . . . . .

...
0 . . . Oph(a

(k)
1 )Tmqjq . . . 0

... . . . . . . . . .
...

0 . . . . . . . . . 0

+O
(
hN−k||a||C2N+13

)

Combining this with the version obtained with Mmqjq , we get (4.39). �

Let us now start the iterative construction of the symbols. Fix N ∈ N which can be taken
arbitrarily large. Recall that we want to write

(4.40) Uq = Oph
(
a+
q

)
T |q| +O(h∞)L2→L2

Note Ur = Uq0...qr−1
. We want to write

(4.41) Ur = Oph

(
N−1∑
k=0

hka(k)
r

)
T r +R(N)

r

We start by writing

(4.42) U1 = Oph

(
N−1∑
k=0

hka
(k)
1

)
T +R

(N)
1
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which is possible in virtue of (4.39). To pass form Ur to Ur+1, we have the relation

Ur+1 = MAqrUr =

N−1∑
k=0

hkMAqr Oph

Ä
a(k)
r

ä
T r +MAqrR

(N)
r

So, we will construct inductively our symbols by setting

(4.43) a
(k)
r+1 =

k∑
p=0

Ä
Lp,qra

(k−p)
r

ä
◦
(
Fir+1,ir

)−1

and

(4.44) R
(N)
r+1 = MAqrR

(N)
r +

N−1∑
k=0

O
Ä
||a(k)

r ||C2(N−k)+15

ä
The O encompasses the remainder terms in Lemma 4.39. The constants in the O only depend on
M and the χq, q ∈ A, but not on q.

To make this construction work, we will have to prove that the symbols a(k)
r lie in a good symbol

class Scompδ1
.

Before reaching this step, let us just note that by induction one sees that :
•

(4.45) ||R(N)
r || ≤ CNhN

(
1 +

N−1∑
k=0

r−1∑
l=0

||a(k)
l ||C2(N−k)+15

)
with CN depending on N , M and the aq, but neither on r nor q.

• Since Lp,qr has coefficient supported in Vqr , we see by induction that supp a
(k)
r+1 ⊂ V+

q0...qr
as announced.

• a(0)
r+1 =

∏r+1
p=1 aqr+1−p ◦ F−p

4.4.2. Control of the symbols. We aim at estimating the semi-norms ||a(k)
r ||Cm for k < N , 1 ≤ r ≤ n

and m ∈ N. We will show the following :

Proposition 4.3. For every r ∈ {1, . . . , n}, k ∈ {0, . . . , N − 1} and m ∈ N, there exists C(k,m),
such that with Γk,m = (k + 1)(m+ k + 1),

(4.46) ||a(k)
r ||Cm ≤ C(k,m)rΓk,m

Ä
J+
q0...qr−1

ä2k+m
||α||r∞

Remark.
• What is important in this result is the way in which the bound depends on r and q. Up

to the term rΓk,m , which is supposed to behave like O
(
| log h|Γk,m

)
, the significant part of

the estimate is that we can control the symbols by the local Jacobian.
• Since supp a

(k)
r ⊂ V+

q0...qr−1
, we need to focus on points ρ ∈ V+

q0...qr−1
.

• Our method is very close to the ones developed in [Riv10] and [DJN21]. However, we’ve
changed a few things at the cost of being less precise on the exponent Γk,m. Our aim was
to treat our problem as if we wanted to control the product of r triangular matrices.

Let us pick ρ ∈ V+
q0...qr−1

. With (4.43), one sees that if k,m ∈ N, dma(k)
r+1 depends on

dm
′
a

(k′)
r (F−1(ρ)) for several m′, k′. Before going deeper in the analysis of this dependence, let

us note two obvious facts :
• This dependence is linear, with coefficients smoothly depending on ρ.
• If dma(k)

r+1 depends effectively on dm
′
a

(k′)
r (F−1(ρ)), then k′ ≤ k and 2k′ +m′ ≤ 2k +m.

Precise analysis of the dependence. That being said, let us pickm0, k0 ∈ N. SetN0 = 2k0+m0

and consider the (column) vector

(4.47) Ar(ρ) :=
Ä
dma(k)

r (ρ)
ä
k≤k0,2k+m≤N0

∈
⊕

k≤k0,2k+m≤N0

SmT ∗ρU
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Figure 9. The starting point (k0,m0) is represented by a diamond. The set I
corresponds to the couple (k,m) ∈ N2 in the region under the dotted lines k = k0

and 2k + m = N0. We’ve represented a family of arrows starting from a point
γ1 ∈ I. The dotted arrows points toward β such that γ2 ≺ γ1. The big red arrows
points toward points γ2 such that P (r)

γ1γ2 = 0.

Here SmT ∗ρU is the spaces of m-linear symmetric form on TρU . To define a norm on the fibers
SmT ∗ρU , we can use for f ∈ SmT ∗ρU ,

(4.48) ||f ||m,ρ = sup
v1,...,vm∈TρU

f(v1, . . . , vm)

||v1||ρ . . . ||vm||ρ

where ||v||ρ for v ∈ TρU is the norm induced by the Riemannian metric used to define Ju1 in 3.8.
Note that for any fixed neighborhood of T , there exists a global constant C > 0 such that for each
a ∈ C∞c (U) supported in this neighborhood, one has

C−1||a||Cm ≤ sup
m′≤m

sup
ρ∈U
||dm

′
a||m′,ρ ≤ C||a||Cm

We will denote by γ1, γ2, etc. elements of I := I(k0,m0) = {(k,m) ∈ N2, k ≤ k0, 2k + m ≤ N0}.
We equip I with the lexicographic order ≺ and note #I := Γk0,m0

(see Figure 9). We order the
indices of Ar(ρ) with ≺. Ar(ρ) depends linearly on Ar−1(F−1(ρ)) and this dependence can be
made explicit by a matrix

P (r)(ρ) =
Ä
P (r)
γ1γ2

(ρ)
ä
γ1,γ2∈I

, where P (r)
γ1γ2

(ρ) ∈ L
(
Sm

′
T ∗F−1(ρ)U, S

mT ∗ρU
)
} if γ1 = (k,m), γ2 = (k′,m′)

so that

(4.49) Ar(ρ) = P (r)(ρ) Ar−1

(
F−1(ρ)

)
Notations. If γ1 = (k,m), γ2 = (m′, k′), ρ, ρ′ ∈ U and if A : Sm

′
T ∗ρ′U → SmT ∗ρU is a linear

operator, we will note
|| · ||γ1,ρ,γ2,ρ′

its subordinate norm for the norms defined by (4.48).

Analyzing (4.43), it turns out that if γ1 = (k,m), γ2 = (k′,m′) ∈ I, then
• if k′ > k, P (r)

γ1γ2(ρ) = 0 ;
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• if k = k′, the contribution to dma(k)
r (ρ) of a(k)

r−1 comes from

dm
Ä
(aqr−1

a
(k)
r−1) ◦ F−1

ä
(ρ)

= aqr−1

(
F−1(ρ)

)
× dm

Ä
a

(k)
r−1 ◦ F−1

ä
(ρ) + (derivatives of order stricly less than m for a(k)

r−1)

= aqr−1

(
F−1(ρ)

)
×
(
tdF−1(ρ)

)⊗m
dma

(k)
r−1

(
F−1(ρ)

)
+ (idem)

In particular, if γ1 = (k,m) ≺ γ2 = (k,m′) doesn’t hold, we see that P (r)
γ1γ2(ρ) = 0.

• If k′ < k, we can have P (r)
γ1γ2(ρ) 6= 0 with m′ > m. But, the use of the lexicographic order

ensures that γ1 ≺ γ2 in that case.
Hence, P (r)(ρ) is a lower triangular matrix and the diagonal coefficients for the index γ1 = (k,m)

are given by

(4.50) P (r)
γ1γ1

(ρ) : f ∈ SmT ∗F−1(ρ)U 7→ aqr−1

(
F−1(ρ)

)
×
(
tdF−1(ρ)

)⊗m
f ∈ SmT ∗ρU

Iterating (4.49), we have

Ar(ρ) = P (r)(ρ)P (r−1)
(
F−1(ρ)

)
. . . P (2)

Ä
F−(r−2)(ρ)

ä
A1

(
F 1−r(ρ)

)
For γ ∈ I, we note

Er(γ) = {−→γ = (γ1, . . . , γr) ∈ Ir; γr = γ, γi ≺ γi+1}

The triangular property of P allows us to write :

Figure 10. We’ve represented the reduction of an element −→γ ∈ Er(k0,m0), i.e,
the arrows between γi and γi+1 when γi 6= γi+1. During the descent, the value of
m can only increase when k decreases strictly.

(Ar(ρ))γ =
∑

−→γ ∈Er(γ)

P (r)
γrγr−1

(ρ) . . . P (2)
γ2γ1

Ä
F−(r−2)(ρ)

ä (
A1

(
F 1−r(ρ)

))
γ1
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Control of individual terms. Let us fix γ = (k,m) and pick −→γ ∈ Er(γ). We wish to analyze
the operator

P−→γ (ρ) := P (r)
γrγr−1

(ρ) . . . P (2)
γ2γ1

Ä
F−(r−2)(ρ)

ä
First of all, #{i ∈ {1, . . . , r − 1}, γi+1 6= γi} ≤ Γk0,m0

. So let us write

{i ∈ {1, . . . , r − 1}, γi+1 6= γi} = {t1 < · · · < td}

with d ≤ Γk0,m0
. We can set td+1 = r, t0 = 0 and we can rewrite
−→γ = (β1, . . . , β1︸ ︷︷ ︸

t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd, . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

)

For p ∈ {1, . . . , d+ 1}, we introduce the operator

Dp(ρ) = P
(tp)
βpβp

Ä
F−(r−tp)(ρ)

ä
. . . P

(tp−1+2)
βpβp

Ä
F−(r−tp−1−2)(ρ)

ä
and for p ∈ {1, . . . , d}

Tp(ρ) = P
tp+1
βp+1βp

Ä
F−(r−tp−1)(ρ)

ä
so that we can write

P−→γ (ρ) = Dd+1(ρ)Td(ρ)Dd(ρ) . . . T1(ρ)D1(ρ)

For p ∈ {1, . . . , d+ 1}, if βp = (k,m), we can see that

Dp(ρ) =

 tp−1∏
j=tp−1+1

aqj ◦ F−(r−j)(ρ)

[ÄtdF−1
Ä
F−(r−tp)(ρ)

ää⊗m
◦ · · · ◦

Ä
tdF−1

Ä
F−(r−tp−1−2)(ρ)

ää⊗m]
=

 tp−1∏
j=tp−1+1

aqj ◦ F−(r−j)(ρ)

 ÄtdF−(tp−tp−1−1)
Ä
F−(r−tp)(ρ)

ää⊗m
We introduce the word

qp = qtp−1
. . . qtp−1

and set ρp = F−(r−tp)(ρ), ρ′p = F−(tp−tp−1−1)(ρp). To estimate the subordinate norm of Dp(ρ), we
use Lemma 4.4. Since ρ ∈ V+

q , ρp ∈ V+
qp

and we have

||Dp(ρ)||βp,ρp,βp,ρ′p ≤

∣∣∣∣∣∣
tp−1∏

j=tp−1+1

aqj ◦ F−(r−j)(ρ)

∣∣∣∣∣∣ sup
ρp∈V+

qp

||dF−(tp−tp−1−1)(ρp)||m

≤
Ä
CJ+

qp

äm ∣∣∣∣∣∣ tp−1∏
j=tp−1+1

aqj ◦ F−(r−j)(ρ)

∣∣∣∣∣∣
≤ Ck0,m0

Ä
J+
qp

äN0

∣∣∣∣∣∣
tp−1∏

j=tp−1+1

aqj ◦ F−(r−j)(ρ)

∣∣∣∣∣∣
To estimate the norms of Tp(ρ), we simply note that they depend smoothly on ρp which lies in

a compact set, so we can bound them by a uniform constant C1. This is not a problem since they
appear d times in P−→γ with d ≤ Γk0,m0 . Consequently, we can estimate ||P−→γ (ρ)||γ,ρ,γ1,F−(r−1)(ρ),

(4.51) ||P−→γ (ρ)||γ,ρ,γ1,F−(r−1)(ρ) ≤ Ck0,m0

Ä
J+
q1
. . . J+

qd+1

äN0 |aq,−→γ (ρ)| ≤ Ck0,m0

(
J+
q

)N0 |aq,−→γ (ρ)|

where

(4.52) aq,−→γ =

d+1∏
p=1

tp−1∏
j=tp−1+1

aqj ◦ F−(r−j)

Here, the last inequality holds by applying d times (4.24), with d ≤ Γk0,m0
, once we’ve noted that

q = q1 . . .qd+1
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Finally, if γ1 = (k1,m1), to estimate ||
(
A1

(
F 1−r(ρ)

))
γ1
||m1,F 1−r(ρ), we simply note that it depends

smoothly on F 1−r(ρ), so that we can bound it by a uniform constant. Hence, we have

(4.53) ||P−→γ (ρ)A1

(
F 1−r(ρ)

)
||m,ρ ≤ Ck0,m0

(
J+
q

)N0 |aq,−→γ (ρ)|

Cardinality of Er(γ). The bound we will provide is far from being optimal but it will turn out to
be enough for our purpose. To count the number of elements in Er(γ), we remark that it is similar
than counting the number of decreasing sequences of length r starting from γ. This number is
smaller than the number of increasing sequences of length r in {1, . . . ,Γk0,m0

} . Recalling that the
number of sequences u1 ≤ u2 ≤ · · · ≤ ur satisfying u1 = 1 and ur = b is equal to

(
b+r−2
r−2

)
, one can

estimate

(4.54) #Er(γ) ≤
Γk0,m0∑
b=1

Ç
b+ r − 2

r − 2

å
≤ Γk0,m0(r − 1)Γk0,m0

Finally, we can compute explicitly Γk0,m0 and we find Γk0,m0 = (k0 + 1)(m0 + 1 + k0).

Conclusion. We finally combine (4.54) and (4.53) to prove Proposition 4.3. Recall that |aq| =
|α|χq ≤ ||α||∞.

sup
ρ∈Vq0...qr−1

||dm0a(k0)
r ||m0,ρ = sup

ρ∈Vq0...qr−1

|| (Ar(ρ))(k0,m0) ||m0,ρ

≤
∑

−→γ ∈Er(k0,m0)

||P−→γ (ρ)A1

(
F 1−r(ρ)

)
||m0,ρ

≤ Γk0,m0
rΓk0,m0Ck0,m0

(
J+
q

)N0 |aq,−→γ (ρ)|

≤ Ck0,m0
rΓk0,m0

(
J+
q

)N0 ||α||r∞
Finally, we get as expected

||a(k0)
r ||Cm0 ≤ Ck0,m0

rΓk0,m0

(
J+
q

)N0 ||α||r∞
4.4.3. End of proof of proposition 4.2. Armed with these estimates, we are now able to conclude
the proof of Proposition 4.2 under the assumptions (4.31). Assume that this assumption is satisfied
and construct inductively the symbols a(k)

r with the formula (4.43). Since J+
q ≤ Ch−δ, it implies

that n = O(log h). Hence, we have for r ≤ n,

||a(k)
r ||Cm ≤ Ck,mh−δmh−2kδ| log h|Γk,m ||α||r∞ ≤ Ck,mh−δ1mh−2kδ1 ||α||r∞

The symbol h2δ1ka
(k)
r lies in ||α||r∞S

comp
δ1

(T ∗R). Using Borel’s theorem with the parameter h′ =

h1−2δ1 , we can construct a symbol

a+
q0...qr−1

∼
∞∑
k=0

(h′)kh2δ1ka(k)
r =

∞∑
k=0

hka(k)
r ∈ ||α||r∞S

comp
δ1

that is, for every N ∈ N,

a+
q0...qr−1

−
N−1∑
k=0

hka(k)
r = O

Ä
h(1−2δ1)N ||α||r∞

ä
By construction of the a(k)

r , for every N ∈ N, we have

U+
q −Oph(a+

q )T |q| = R(N)
n +O

Ä
h(1−2δ1)||α||r∞

ä
Fix some K ≥ 0 such that min(1, ||α||n∞) = O(h−K), so that ||α||r∞ = O(k−K). With (4.45) and
our estimates, we can control

||R(N)
n || ≤ CNhN

Ä
1 + | log h|Γk,m+1h−δ(2N+15)h−K

ä
≤ CNh−15δ1+N(1−2δ1)−K

Since we can choose N as large as we want, we have finally proved that

U+
q −Oph(a+

q )T |q| = O(h∞)

�
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4.4.4. Norm of sums over many words. We’ll make use of the tools and notations developed in
this subsection to prove the following proposition. To state it, we introduce the notations

(4.55) Q(n, τ, C0) := {q ∈ An; J+
q ≤ C0h

−τ}

Proposition 4.4. There exists C = C(C0, τ) such that for every Q ⊂ Q(n, τ, C0), the following
bound holds :

(4.56)

∣∣∣∣∣∣
∣∣∣∣∣∣∑q∈QUq

∣∣∣∣∣∣
∣∣∣∣∣∣
L2→L2

≤ C||α||n| log h|

Proof. Throughout the proof, we’ll denote by C quasi-global constants, i.e. constants depending
on C0, τ and the same other parameters as global constants. We will also be lead to use a constant
C1: it has the same dependence.

Step 1: First note that since J+
q ≤ C0h

−τ , n satisfies the bound n = O(log h).

Step 2 : If q ∈ Q(n, τ, C0), denote by l(q) = l the largest integer such that

J+
q0...ql−1

≤ h−τ/2

Since Jq0...ql > h−τ/2, J+
q0...ql−1

> Ch−τ/2 and hence

J+
ql...qn−1

≤ C h−τ

J+
q0...ql−1

≤ C1h
−τ/2

We can then write q = sr with s ∈ Q(l, τ/2, 1), r ∈ Q(n− l, τ/2, C1). It follows that we can write

∑
q∈Q

Uq =

n∑
l=1

∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs

with Fl(s, r) = 1sr∈Q. It is then enough to show the bound

(4.57) max
1≤l≤n

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
s∈Q(l,τ/2,1)

r∈Q(n−l,τ/2,C1)

Fl(s, r)UrUs

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤ C||α||

n
∞

In the following, we fix some 1 ≤ l ≤ n and we’ll simply note
∑

s,r to alleviate the notations. Note
that the number of terms in the sum is bounded by

|Q(l, τ/2, 1)×Q(n− l, τ/2, C1)| ≤ |A|l × |A|n−l ≤ |A|n ≤ h−Q

where Q = C log |A|.

Step 3: We fix some large N ∈ N and δ1 ∈ (τ/2, 1/2). Recall that we can write,

Us =

(
Oph

(
N−1∑
k=0

hka(k)
s

)
+OL2→L2

Ä
h(1−2δ1)N−15δ1 ||α||l∞

ä)
T l

Ur = Tn−l

(
Oph

(
N−1∑
k=0

hka(k)
r

)
+OL2→L2

Ä
h(1−2δ1)N−15δ1 ||α||n−l∞

ä)
with bounds on a(k)

s and a(k)
r given by Proposition 4.2.

We then use the formula for the composition of operators in Ψcomp
δ1

(T ∗R) (Lemma 3.1) and for
simplicity, we note Lk(a, b)(ρ) = ik

k! (A(D))k(a⊗ b)(ρ, ρ). For 0 ≤ k ≤ N − 1, we set

as,r,k =
∑

j+k−+k+=k

Lj
Ä
a(k−)
r , a(k+)

s

ä
Note that if j + k− + k+ ≥ N ,
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||a(k−)
r ⊗ a(k+)

s ||C2j+13 ≤ Cj sup
m++m−=2j+13

||a(k−)
r ||Cm− ||a(k+)

s ||Cm+

≤ Cj,k−,k+h
−(2k−+m−)δ1h−(2k−+m+)δ1 ||α||n∞

≤ Cj,k−,k+
h−2δ1(j+k−+k+)−13δ1 ||α||n∞

≤ Cj,k−,k+h
−2δ1N−13δ1 ||α||n∞

and henceforth,

O
Ä
hj+k−+k+ ||a(k−)

r ⊗ a(k+)
s ||C2j+13

ä
= O

Ä
h(1−2δ1)N−15δ1 ||α||n∞

ä
As a consequence, we can write

UrUs = Tn−l

(
Oph

(
N−1∑
k=0

hkas,r,k

))
T l +OL2→L2

Ä
h(1−2δ1)N−15δ1 ||α||n∞

ä
It follows that

∑
s,r

UrUs = Tn−l

(
Oph

(
N−1∑
k=0

hka(k)

))
T l +OL2→L2

Ä
h(1−2δ1)N−15δ1−Q||α||n∞

ä
where

(4.58) a(k) =
∑
s,r

F (s, r)as,r,k

Suppose that N has been chosen such that

(1− 2δ1)N > 15δ1 +Q

The remainder term is thus controlled by the desired bound since it is of order O(||α||n∞).

Step 4: C0 norm of a(0).

a(0) =
∑
s,r

F (s, r)a(0)
s a(0)

r

where, in virtue of (4.37) and (4.38),

a(0)
s =

l∏
p=1

asl−p ◦ F−p ; a(0)
r =

n−l−1∏
p=0

arp ◦ F p

As a consequence, we can estimate

|a(0)| ≤
∑
s,r

|a(0)
s ||a(0)

r |

≤
l∏

p=1

Ñ∑
q∈A
|aq|

é
◦ F−p ×

n−l−1∏
p=0

Ñ∑
q∈A
|aq|

é
◦ F p

≤ ||α||n∞

Step 5 : Cm norms of a(k). We will show the following : there exists constants Ck,m (depending
only on C0, δ1, τ and m, k) such that for all 0 ≤ k ≤ N − 1 and m ∈ N,

(4.59) ||a(k)||Cm ≤ Ck,mh−(2k+m)δ1 ||α||n∞
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Let’s compute :

||a(k)||Cm ≤
∑
s,r

||as,r,k||Cm

≤
∑
s,r

∑
j+k++k−=k

∣∣∣∣∣∣Lj Äa(k−)
r , a(k+)

s

ä∣∣∣∣∣∣
Cm

≤
∑
s,r

∑
j+k++k−=k

∣∣∣∣∣∣a(k−)
r ⊗ a(k+)

s

∣∣∣∣∣∣
C2j+m

≤
∑
s,r

∑
j+k++k−=k

m++m−≤m+2j

∣∣∣∣∣∣a(k−)
r

∣∣∣∣∣∣
Cm−

∣∣∣∣∣∣a(k+)
s

∣∣∣∣∣∣
Cm+

and hence

(4.60) ||a(k)||Cm ≤ Ck,m sup
j+k++k−=k

m++m−≤m+2j

∑
s,r

∣∣∣∣∣∣a(k−)
r

∣∣∣∣∣∣
Cm−

∣∣∣∣∣∣a(k+)
s

∣∣∣∣∣∣
Cm+

Let us fix j, k+, k−,m+,m− satisfying j + k+ + k− = k,m− +m+ ≤ m+ 2j and let us estimate∑
s

∣∣∣∣∣∣a(k+)
s

∣∣∣∣∣∣
Cm+

×
∑
r

∣∣∣∣∣∣a(k−)
r

∣∣∣∣∣∣
Cm−

We estimate the sum over s. The same kind of estimates will hold for r with the same methods. We
reuse the tools developed in the last subsections. Namely, we set N+ = 2k+ +m+, γ+ = (k+,m+),
I = I(γ+) and

(As(ρ)) =
Ä
dma(k)

s

ä
k≤k+,2k+m≤N+

We have shown that there exists a global constant C > 0 such that

||a(k+)
s ||Cm+ ≤ sup

ρ
||As(ρ)|| ≤ C

∑
−→γ ∈El(γ+)

∣∣∣∣P−→γ (ρ)
∣∣∣∣

≤
∑

−→γ ∈El(γ+)

CN+,k+

(
J+
s

)N+ |as,−→γ (ρ)|

≤ CN+,k+h
−τN+/2

∑
−→γ ∈El(γ+)

|as,−→γ (ρ)|

where CN+,k+ depends on C0, τ,N+, k+ and global parameters. We hence have to estimate∑
s

∑
−→γ ∈El(γ+)

|as,−→γ (ρ)|

Fix −→γ ∈ El(α+) and write it

−→γ = (β1, . . . , β1︸ ︷︷ ︸
t1

, β2, . . . , β2︸ ︷︷ ︸
t2−t1

, . . . , βd, . . . , βd︸ ︷︷ ︸
td−td−1

, βd+1, . . . , βd+1︸ ︷︷ ︸
td+1−td

) where d ≤ Γk+,m+

and recall that

as,−→γ =

d+1∏
p=1

tp−1∏
j=tp−1+1

asj ◦ F−(l−j)

When one sums over s ∈ Al, the values of s at the indices ti, 1 ≤ i ≤ d do not play a role and we
write :
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∑
s

|as,−→γ | =
∑
st1∈A

· · ·
∑
std∈A

d+1∏
p=1

tp−1∏
j=tp−1+1

(∑
s∈A
|as|

)
◦ F−(l−j)

≤ |A|d sup
ρ

(∑
s∈A
|as|

)l
≤ KΓk+,m+ ||α||l∞ ≤ Ck+,m+

||α||l∞
As a consequence,∑

s

∑
−→γ ∈El(γ+)

|as,−→γ | ≤ #El(γ+)Ck+,m+ ||α||l∞ ≤ Ck+,m+(l − 1)Γk+,m+ ||α||l∞

which gives∑
s

∣∣∣∣∣∣a(k+)
s

∣∣∣∣∣∣
Cm+

≤ Ck+,m+
h−τN+/2(l − 1)Γk+,m+ ||α||l∞ ≤ Ck+,m+

h−δ1N+ ||α||l∞

where the last inequality (with a different value of Ck+,m+
) follows from the fact that l = O(log h)

and δ1 > τ
2 . The same kind of estimates holds for the sum over r :∑

r

∣∣∣∣∣∣a(k−)
r

∣∣∣∣∣∣
Cm−

≤ Ck−,m−h−δ1N− ||α||n−l∞

Eventually, using (4.60), we get (4.59) since

N+ +N− = 2k+ +m+ + 2k− +m− ≤ 2(k+ + k− + j) +m = 2k +m

Step 6 : Conclusion. We can conclude the proof of the Proposition 4.4. The bound (4.59) shows
that for 0 ≤ k ≤ N − 1, a(k) ∈ h−2kδ1 ||α||n∞S

comp
δ1

and thus
∑N−1
k=0 hka(k) ∈ Scompδ1

||α||n∞. From the
L2-boundedness of pseudodifferential operators with symbol in Sδ1 ,∣∣∣∣∣
∣∣∣∣∣Oph

(
N−1∑
k=0

hka(k)

)∣∣∣∣∣
∣∣∣∣∣ ≤

N−1∑
k=0

∑
m≤M

hk+m/2||a(k)||Cm ≤
N−1∑
k=0

∑
m≤M

Ck,mh
(k+2m)(1/2−δ1)||α||n∞ ≤ C||α||n∞

where C depends only on C0, τ, δ1. Since ||T || ≤ 1, we get∣∣∣∣∣∣
∣∣∣∣∣∣∑s,r F (s, r)UrUs

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ C||α||n∞

which concludes the proof of Proposition 4.4. �

4.5. Manipulations of the Uq.

4.5.1. First consequences. We now make use of Proposition 4.2 to deduce several important facts.
We go on following [DJN21]. In the whole subsection, we fix 0 ≤ δ < δ1 <

1
2 and C0 > 0. We

denote A→ =
⋃
n∈NAn.

Remark. The constants in O(h∞) depend on p and q only through C0, δ, δ1, not on the precise
value of p and q. It will always be the case in the following and we won’t precise it anymore. As
already done, all the quasi-global constants (i.e. depending on global parameters and C0, δ, τ, δ1)
will be noted by the letter C.

Lemma 4.7. Let q,p ∈ A→ satisfying V+
q ∩ V−p = ∅ and max(J+

q , J
−
p ) ≤ C0h

−δ. Then

UpUq = O(h∞)L2→L2

Proof. In virtue of Proposition 4.2, we can write

Up = T |p|Oph(a−p ) +O(h∞)

Uq = Oph(a+
q )T |q| +O(h∞)

With a+
q ∈ ||α||

|q|
∞ S

comp
δ1

, a−p ∈ ||α||
|p|
∞ Scompδ1

and supp a−p ⊂ V−p , supp a+
q ⊂ V+

q . Since V+
q ∩V−p = ∅,

Oph(a−p ) Oph(a+
q ) = O(h∞) as a consequence of the composition of two symbols of Sδ1 . The

constants in O(h∞) depend on semi-norms of these symbols, themselves depending on C0, τ, δ1.
Since Tn = O(1), the result is proved. �
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Lemma 4.7 will have interesting consequences, starting with the following lemma which enables
use to get rid (that is to say to control by O(h∞)) of words q where V±q = ∅, under some assump-
tions. In particular, it can be applied without trouble to words of "small" lengths N ≤ 1

2λ1
| log h|,

what could also be deduced from applying Egorov’s theorem up to the global Ehrenfest time
1

2λ1
| log h|.

Lemma 4.8. Let q ∈ A→ such that n = |q| ≤ C0| log h| and assume that V−q = ∅. We suppose
that one of the above assumptions is satisfied :

(i) If m = max{k ∈ {1, . . . , n},V−q0...qk−1
6= ∅}, J−q0...qm−1

≤ C0h
−2δ.

(ii) If m = min{k ∈ {0, . . . , n− 1},V−qm...qn−1
6= ∅}, J−qm...qn−1

≤ C0h
−2δ.

Then, Uq = O(h∞).

Proof. We prove this lemma under assumption (i). This is similar under (ii). We note m =
max{k ∈ {1, . . . , n},V−q0...qm−1

6= ∅} and assume J−q0...qm−1
≤ C0h

−2δ. Due to (4.12), it is enough to
show that Uq0...qm = O(h∞). Let us denote l = max{k ∈ {1, . . . ,m}, J−q0...ql−1

≤ h−δ} and notice
that l < m (if h is small enough). By maximality of l, it is clear that J−q0...ql ≥ h

−δ. According to
the third point of Lemma 4.3,

J−ql+1...qm−1
∼
J−q0...qm−1

J−q0...ql
≤ Ch−δ

Set p = ql . . . qm. We distinguish now between two cases
ä V−p 6= ∅ : We set r = q0 . . . ql−1. It follows that

max(J−p , J
−
r ) ≤ Ch−δ

Moreover,
V−p ∩ V+

r = F l
(
V−q0...qm

)
= ∅

By Lemma 4.7, UpUr = Uq0...qm = O(h∞).
ä V−p = ∅ : This time, we have max(J−ql...qm−1

, J−qm) ≤ Ch−δ and V−qm ∩ V
+
ql...qm−1

= ∅.
According to Lemma 4.7, Uql...qm = UqmUql...qm−1

= O(h∞). It follows that Uq0...qm =
O(h∞).

�

4.5.2. Orthogonality of the Uq. We now focus on terms UqU
∗
p and U∗qUp when V+

q and V+
p are

disjoint, under growth conditions of the Jacobian. The following result shows that the operators
Uq and Up are (up to O(h∞)) orthogonal. These estimates will turn out to be important to apply
Cotlar-Stein type estimates.

Proposition 4.5. Assume that q,p ∈ A→ are two words of same length |q| = |p| = n satisfying
V+
q ∩ V+

p = ∅ and max(J+
q , J

+
p ) ≤ C0h

−2δ. Then,

UqU
∗
p = O(h∞)

U∗qUp = O(h∞)

Before proving it, we need the following lemma, whose proof relies on the iterative construction
of the symbols a±q .

Lemma 4.9. Assume that q,p ∈ A→ are two words of same length |q| = |p| = n satisfying
max(J+

q , J
+
p ) ≤ C0h

−δ. Then,

UqU
∗
p = Oph(a+

q ) Oph(a+
p )∗ +O(h∞)

U∗qUp = Oph(a−q )∗Oph(a−p ) +O(h∞)

Proof. (of the lemma) We prove the first equality. The second one could be treated similarly.
Recall the construction procedure of the subsection 4.4. We adopt the same notations. We will
show by induction on r ∈ {0, . . . , n− 1} that :

Vr := Uq0...qr−1
U∗p0...pr−1

= Oph(a+
q0...qr−1

) Oph(a+
p0...pr−1

)∗ +O(h∞)

The case r = 1 follows from

MAq0A
∗
p0
M∗ = Oph(a+

q0)TT ∗Oph(a+
p0

)∗ +O(h∞) = Oph(a+
q0) Oph(a+

p0
)∗ +O(h∞)
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where we use the fact that TT ∗ = I +O(h∞) microlocally in V+
p0
, Assume that the assumption is

satisfied for r, namely :

Vr = Oph(a+
q0...qr−1

) Oph(a+
p0...pr−1

) +O(h∞)

and let’s prove it for r + 1.

Vr+1 = MAqrVrA
∗
prM

∗

= MAqr Oph(a+
q0...qr−1

) Oph(a+
p0...pr−1

)∗A∗prM
∗r +O(h∞)

= Oph(a+
q0...qr )TT

∗Oph(a+
p0...pr )

∗ +O(h∞)

= Oph(a+
q0...qr ) Oph(a+

p0...pr )
∗ +O(h∞)

The last equality follows from TT ∗ = I +O(h∞) microlocally in V+
pr and the one before is due to

the recursive construction of the symbols a+
q0...qr in the subsection 4.4.

�

Proof. (of the proposition) Let us begin with the first equality. Consider the largest integer l such
that

max(J+
q0...ql−1

, J+
p0...pl−1

) ≤ h−δ

We set q← = q0 . . . ql−1 and q→ = ql . . . qn−1, and the same notations for p. We obviously have :

UqU
∗
p = Uq→Uq←U

∗
p←U

∗
p→

We then consider two cases,

ä V+
q← ∩ V

+
p← = ∅ : we may write

Uq←U
∗
p← = T l Oph(a−q←) Oph(a−q←)∗T l +O(h∞)

Since, V−q← ∩ V
−
p← = ∅, we can use the composition formula in Scompδ1

to conclude that
Oph(a−q←) Oph(a−q←)∗ = O(h∞), which gives the desire result, recalling that Uq = O(1).

ä V+
q← ∩ V

+
p← 6= ∅ : in this case, we use the previous lemma and we can write

Uq←U
∗
p← = Oph(a+

q←) Oph(a+
p←)∗ +O(h∞)

In virtue of the second point of Lemma 4.3, J+
q← ∼ J+

p← . Moreover, by maximality of l,
either J+

q←ql
> h−δ or J+

p←pl
> h−δ. But

J+
q←ql

∼ J+
q←

Hence, J+
q← ∼ h

−δ. Using now the third point of Lemma 4.3, we conclude that

J+
q→ ∼ J

+
p→ ∼ h

−δ

This estimate allows us to write

UqU
∗
p = Tn−l Oph(a−q→) Oph(a+

q←) Oph(a+
p←)∗Oph(a−p→)∗(T ∗)n−l +O(h∞)

with all the symbols in h−MScompδ1
for some M > 0. To conclude, we use the composition

formula in this symbol class, noting that

V+
q← ∩ V

−
q→ ∩ V

+
p← ∩ V

−
p→ = F l

(
V−q ∩ V−p

)
= ∅

To deal with the second equality, we consider the smallest integer l such that :

max(J+
ql...qn−1

, J+
pl...pn−1

) ≤ h−δ

As before, we write q← = q0 . . . ql−1 and q→ = ql . . . qn−1, and the same notations for p. We
obviously have :

U∗qUp = U∗q←U
∗
q→Up→Up←

We distinguish the cases V+
q→ ∩ V

+
p→ = ∅ or not and argue similarly. �
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4.6. Reduction to sub-words with precise growth of their Jacobian. Recall that we are
interested in a decay bound for ||MN0+N1 || where M = M(Id−A∞) =

∑
q∈AMAq. For this

purpose, we decompose MN1 =
∑

q∈AN1 Uq.
If q ∈ AN1 , either V+

q = ∅, and in this case J+
q = +∞, or V+

q 6= ∅, which implies that
J+
q ≥ eλ1N1 ≥ h−1 � h−τ . In both cases, the following integer is well defined :

(4.61) n(q) = max{k ∈ {1, N1}, J+
qN1−k...qN1−1

≤ h−τ}

We then set qτ = qN1−n(q)−1 . . . qN1−1. The case Vqτ = ∅ is irrelevant. Indeed, if q ∈ AN1 and if
Vqτ = ∅, then Uq = O(h∞), as an obvious consequence of Lemma 4.8. Then, we set

(4.62) Q = {q ∈ AN1 ,Vqτ 6= ∅}

so that, due to the fact that |AN1 | = O(h−M ), for some M > 0, we have

MN1 =
∑
q∈Q

Uq +O(h∞)

We partition Q in function of the length of qτ and the value of qN1−1. Namely, we set

Q0(n, a) = {q ∈ Q; |qτ | = n, qN1−1 = a}
We finally set Q(n, a) = {qτ ,q ∈ Q0(n, a)} which is simply the set of words q ∈ An such that
qn−1 = a and J+

q1...qn−1
≤ h−τ < J+

q . Note that every word q ∈ Q0(n, a) can be written in the
form q = rp with p ∈ Q(n, a) and r ∈ AN1−n. We deduce that, modulo O(h∞),

MN1 =

N1∑
n=1

∑
a∈A

∑
q∈Q0(n,a)

Uq

=

N1∑
n=1

∑
a∈A

∑
p∈Q(n,a)

r∈AN1−n

UpUr

=

N1∑
n=1

∑
a∈A

Ñ ∑
q∈Q(n,a)

Uq

é
MN1−n

As a consequence, we get

(4.63) ||MN0+N1 || ≤ CN1|A| sup
1≤n≤N1
a∈A

||MN0UQ(n,a)|| (||α||∞)
N1−n

where we’ve noted

(4.64) UQ(n,a) =
∑

q∈Q(n,a)

Uq

Since N1 = O(log h), the proof of (4.14) is the reduced to prove :

Proposition 4.6. There exists γ > 0 such that, for h small enough, we have

(4.65) sup
1≤n≤N1
a∈A

||MN0UQ(n,a)||
||α||n+N0∞

≤ hγ

4.7. Partition into clouds. We fix 1 ≤ n ≤ N1 and a ∈ A. We aim at gathering pieces of
MN0UQ(n,a) into clouds and we want these clouds to interact (with a meaning we will define further)
with only a finite and uniform number of other clouds, so that the global norm of ||MN0UQ(n,a)||
can be deduced from a uniform bound for each cloud.

Recall that δ0 and τ (see (4.2), (4.3) and (4.5)) have be chosen such that

b + δ0 < 1 ; b < τ

We start by defining a notion of closeness between two words q,p ∈ Q(n, a). We choose ε2 as
in Lemma 4.2.
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Figure 11. Two words q,p ∈ Q(n, a) are close to each other if V+
q and V+

p lie in
the hb-neighborhood of the same unstable leaves, as stated in Definition 4.1.

Definition 4.1. Let q,p ∈ Q(n, a). We say that these two words are close to each other if there
exists ρ0 ∈ T ∩ F (Va(ε2)) such that :

∀ρ ∈ V+
q ∪ V+

p , d(ρ,Wu(ρ0)) ≤ hb

Otherwise, we say that q and p are far from each other.

Remark. By definition of V+
q , if q ∈ Q(n, a) and if ρ ∈ V+

q , ρ does not lie in Va, but F−1(ρ)
does. Hence, we work with F (Va) instead of Va. Moreover, the set F (Va(ε2)) is chosen to fit well
in the computations below and in particular in the proof of Lemma 4.10. We could replace it by
V+
a (Cε2), where C is any Lipschitz constant for F .

The important fact on words far from each other is that the associated operator MN0Uq are
almost orthogonal :

Proposition 4.7. Assume that q,p ∈ Q(n, a) are far from each other. Then,(
MN0Uq

)∗ (
MN0Up

)
= O(h∞)(4.66) (

MN0Uq

) (
MN0Uq

)∗
= O(h∞)(4.67)

We will need the following lemma.

Lemma 4.10. If q,p ∈ Q(n, a) are far from each other, there exist words p1,q1,p2,q2 such that
- |p1| = |q1|, |p2| = |q2| ;
- q = q1q2,p = p1p2 ;
- V+

q2
∩ V+

p2
= ∅;

- max(J+
q2
, J+

p2
) ≤ Ch−b (for some global constant C > 0).

In particular, V+
q ∩ V+

p = ∅

Let’s momentarily admit it and prove the proposition.

Proof. (of the proposition). Fix q,p ∈ Q(n, a) far from each other. Since V+
q ∩ V+

p = ∅, UqU
∗
p =

O(h∞) in virtue of Proposition 4.5. Hence, using the polynomial bounrds ||MN0 || = O(h−M ) (for
some M > 0), we have (

MN0Uq

) (
MN0Up

)∗
= O(h∞)

To prove the first point, we write(
MN0Uq

)∗ (
MN0Up

)
=

∑
s,t∈AN0

U?q1
U∗q2

U∗s UtUp2Up1

Hence, it is enough to show that U∗q2
U∗s UtUp2 = O(h∞) uniformly in s, t. To do so, we note that

V+
q2s ∩ V

+
p2t
⊂ FN0

(
V+
q2
∩ V+

p2

)
= ∅

J+
q2s ≤ CJ

+
s J

+
q2
≤ Ceλ1N0h−b ≤ Ch−(δ0+b)

J+
p2t
≤ Ch−(δ0+b)

and apply Proposition 4.5, with δ = δ0+b
2 < 1/2 (here we use the condition (4.3)). �

We now prove the lemma.
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Proof. (of the lemma) Consider q,p ∈ Q(n, a) far from each other. Consider the smallest integer
m such that V+

qm...qn−1
∩V+

pm...pn−1
6= ∅. We will show that m > 0 and set p2 = pm−1 . . . pn−1,q2 =

qm−1 . . . qn−1. Pick ρ ∈ V+
qm...qn−1

∩V+
pm...pn−1

. By choice of ε2 after Lemma 4.2, there exists ρ0 ∈ T
such that d(F−i(ρ), F−i(ρ0)) ≤ ε2 for i ∈ {1, . . . , n−m}. In particular, d(F−1(ρ), F−1(ρ0)) ≤ ε2

and F−1(ρ) ∈ Va, so that ρ0 ∈ F (Va(ε2)). Since, q,p are far from each other, there exists
ρ1 ∈ V+

q ∪ V+
p such that d(ρ1,Wu(ρ0)) > hb (otherwise, it would contradict the definition 4.1).

Suppose for instance that ρ1 ∈ V+
q ⊂ V+

qm...qn−1
. Hence, d(F−i(ρ0), F−i(ρ1)) ≤ 2ε0 + ε2 for

i ∈ {1, . . . , n−m}. From (3.17), d(ρ1,Wu(ρ0)) ≤ C (Jn−ms (ρ0))
−1 and hence, Jn−ms (ρ0) ≤ Ch−b.

But, Jn−ms (ρ0) ∼ J+
pm...pn−1

∼ J+
qm...qn−1

, which gives

max
Ä
J+
pm...pn−1

, J+
qm...qn−1

ä
≤ Ch−b

Since min(J+
q , J

+
p ) > h−τ � h−b (here we use (4.5)), we cannot have m = 0 (if h small enough).

Thus, we can set p2 = pm−1 . . . pn−1, q2 = qm−1 . . . qn−1 which satisfy the required properties by
minimality of m. �

We now decompose UQ(n,a) into a sum of operators, each of them corresponding to a cloud of
words. In the following, we’ll use the term cloud to mean a subset Q ⊂ Q(n, a) and we’ll adopt
the notation

V+
Q =

⋃
q∈Q
V+
q

and the definition :

Definition 4.2. We say that two cloudsQ1,Q2 do not interact if for all couples (q1,q2) ∈ Q1×Q2,
q1 and q2 are far from each other.

The existence of such a decomposition follows from the key proposition :

Proposition 4.8. Suppose ε0 is small enough.
There exists a partition of Q(n, a) into clouds Q1, . . . ,Qr and a global constant C > 0 such

that, for i = 1, . . . , r,
i) there exists ρi ∈ T such that for all ρ ∈ V+

Qi , d(ρ,Wu(ρi)) ≤ Chb ;
ii) if Qi interacts with exactly ci clouds, then ci ≤ C.

Remark. Actually, r and the clouds Qi depend on n and a. We do not write this dependence
explicitly here to make the notations lighter. The second point is relevant since a priori, the only
obvious bound on r = r(n, a) is |r| ≤ |A|n, where n = O(log h).

Proof. Keeping in mind that for all q ∈ Q(n, a), V+
q ⊂ V+

a , we fix ρa ∈ V+
a . If ε0 is small enough,

V+
a do not intersect the boundaries of Ws(ρa) and Wu(ρa).
For q ∈ Q(n, a), there exists ρq ∈ T such that d(F−i(ρ), F−i(ρq)) ≤ ε2 for all ρ ∈ V+

q and for
i = 1, . . . , n, according to Lemma 4.2 and since J+

q ∼ hτ ,

d(ρ,Wu(ρq)) ≤ Ch−τ

d(ρa, ρq) ≤ C(ε2 + ε0) and hence, if ε0 is small enough, zq := Hu
ρa(ρq) (here, Hu

ρa : B(ρa, ε
′
0) →

Ws(ρa)) is the unstable holonomy map defined before Lemma 3.7) is well defined, and depends
Lipschitz-continuously on ρq (with global Lipschitz constant).

Next, consider a maximal subset {z1, . . . , zr} ⊂ {zq,q ∈ Q(n, a)} which is hb separated. By
maximality, for every q ∈ Q(n, a), there exists i ∈ {1, . . . , r} such that |zi − zq| ≤ hb and we use
these zi to partition Q(n, a) into clouds Qi where for i ∈ {1, . . . , r}, |zi − zq| ≤ hb for all q ∈ Qi.
We now show that this partition satisfies the required properties.

Let i ∈ {1, . . . , r}, q ∈ Qi and ρ ∈ V+
q . By local uniqueness of the unstable leaves, we may

assume that ε0 is small enough so that Wu(ρq) ∩ V+
a = Wu(zq) ∩ V+

a . Hence,

d(ρ,Wu(zq)) ≤ Ch−τ

Since the unstable leaves depend Lipschitz-continuously on ρ ∈ T , we have

d(ρ,Wu(zi)) ≤ C|zi − zq|+ Cd(ρ,Wu(zq)) ≤ Chb + Chτ ≤ Chb

This gives i).



SPECTRAL GAP FOR OBSTACLE SCATTERING IN DIMENSION 2 59

Figure 12. We gather the 6 small sets Vq into 3 clouds corresponding to z1, z2

and z3. Here, Q1 = {q1},Q2 = {q2,q3,q4},Q3 = {q5,q6}. The clouds Q1 and
Q2 interact. The dotted lines draw tubes of width Chb around the unstable leaves
Wu(zi). The sets Vq have width of order hτ .

To show ii), suppose that Qi and Qj interact. Then, there exists (q,p) ∈ Qi ×Qj and ρ0 ∈ T
such that for all ρ ∈ V+

q ∪V+
p , d(ρ,Wu(ρ0)) ≤ hb. It follows that d(zq,Wu(ρ0)) ≤ Chτ +hb ≤ Chb

and if we note z0 = Hu
ρa(ρ0) the unique point in Wu(ρ0)∩Ws(ρa) then |z0− zq| ≤ Chb. The same

is true for p and we have |zq − zp| ≤ Chb and eventually, |zi − zj | ≤ Chb. Since z1, . . . , zr are
hb separated, we see after rescaling that the number of j such that Qi and Qj interact is smaller
than the maximal number of points in B(0, C) which are 1-separated (one can for instance bound
it by (2C + 1)2, but what matters is that it is a global constant). �

This partition into clouds allows us to decompose MN0UQ(n,a) into a sum of operators

(4.68) Bi = MN0UQi =
∑
q∈Qi

MN0Uq ; MN0UQ(n,a) =

r∑
i=1

Bi

The use of Cotlar-Stein theorem ([Zwo12]), Theorem C.5) reduces the control of the sum by the
control of individual clouds :

Lemma 4.11. With the above notations, there exists a global constant C > 0 such that

(4.69) ||MN0UQ(n,a)|| ≤ C sup
1≤i≤r

||Bi||+O(h∞)

Proof. Cotlar-Stein theorem reduces to control

max
i

∑
j

||B∗iBj ||1/2

max
i

∑
j

||BjB∗i ||1/2

Fix i ∈ {1, . . . , r}.
If Qi and Qj do not interact, ||B∗iBj ||1/2 (resp. ||BjB∗i ||1/2) is a sum of terms of the form(
MN0Uq

)∗ (
MN0Up

)
(resp.

(
MN0Uq

) (
MN0Up

)∗) where p and q are far from each other. In
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virtue of Proposition 4.5, these terms are uniformly O(h∞) and since the number of terms in the
sum grows at most polynomially with h, we can gather all these terms in a single uniform O(h∞).
As a consequence, we have∑

j

||B∗iBj ||1/2 ≤
∑

Qi and Qj interact

||B∗iBj ||1/2 +O(h∞)

≤
∑

Qi and Qj interact

max
k
||Bk||+O(h∞)

≤ C max
k
||Bk||+O(h∞)

and the same holds for the second sum. This gives the desired inequalities. �

The proof of (4.14) and, as a consequence, of Proposition 4.1 is then reduced to the proof of

Proposition 4.9. There exists γ > 0 such that the following holds for h small enough. Assume
that Q ⊂ Q(n, a) satisfies, for some global constant C > 0,

∃ρ0 ∈ T , ∀ρ ∈ V+
Q , d(ρ,Wu(ρ0)) ≤ Chb

where b = 1
1+β is defined in (4.2). Then,

||MN0UQ||
||α||N0+n

∞
≤ hγ

5. Reduction to a fractal uncertainty principle via microlocalization properties

In this section, we reduce the proof of Proposition 4.9 to a fractal uncertainty principle. To
do so, we aim at showing microlocalization properties of the operators involved. The disymmetry
between N0 and N1 in the decomposition N = N0 + N1 will appear clearly in this section. Since
N0 is below the Ehrenfest time, we can actually use semiclassical tools. By contrast, things are
more complicated for operators Uq, with q ∈ Q(n, a) and we’ll use methods of propagation of
Lagrangian leaves. These methods are inspired by [AN07b], [AN07a] and [NZ09] and are also used
in [DJN21].

5.1. Microlocalziation of MN0 . We first state a microlocalization result for MN0 . This is the
easiest one to obtain since N0 is below the Ehrenfest time. We recall the definition of T− the set
of the future trapped points

T− =
⋂
n∈N

F−n (U)

and focus on T loc
− := T− ∩T (4ε0). T− is laminated by the weak global stable leaves. Hence, if ε0 is

small enough, ensuring that the boundaries of the local stable leaves Ws(ρ), ρ ∈ T do not intersect
T (4ε0), we have

T loc
− ⊂

⋃
ρ∈T

Ws(ρ)

When q ∈ AN0 and V−q 6= ∅,V−q lies in a O
(
hδ0

λ0
λ1

)
neighborhood of a stable leaves, as stated in

the following lemma. In the following, we write

(5.1) δ2 = δ0
λ0

λ1

We recall that we have defined b in (4.2) and τ in (4.6) such that α < τ < 1 and δ2 + τ > 1 (see
4.5). Moreover, N0 = d δ0λ1

| log h|e.

Lemma 5.1. There exists a global constant C2 > 0 such that for all q ∈ AN0 satisfying V−q 6= ∅,

d
(
V−q , T loc

−
)
≤ C2h

δ2

Remark. In the end of this section, the use of C2 will always refer to the constant appearing in
this lemma. On other places, we keep our convention on global constants, noting them always C.
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Proof. We already know by Lemma 4.5 that there exists C > 0 such that if V−q 6= ∅, there exists
ρ0 ∈ T such that

d
(
V−q ,Ws(ρ0)

)
≤ C

J−q

But J−q ≥ eλ0N0 ≥ C−1h−δ0
λ0
λ1 . Finally, d(V−q , T loc

− ) ≤ Chδ2 , as required. �

The following lemma allows us to construct symbols in nice symbol classes with supports in hδ
neighborhood. Its proof can be found in [DZ16] (Lemma 3.3).

Lemma 5.2. Let ε > 0 and δ ∈ [0, 1
2 [. Let V0(h) ⊂ V1(h) ⊂ Rd be sets depending on h and

assume that for 0 ≤ h ≤ 1, d(V0(h), V1(h)c) > εhδ. Then, there exist a family χh ∈ C∞c (Rd) such
that, for all h ≤ 1,

• χh = 1 on V0(h) ;
• suppχ ⊂ V1(h).
• For every α ∈ Nd, there exists Cα depending only on ε such that for all x ∈ Rd and for all

0 < h ≤ 1,
|∂αχh(x)| ≤ Cαh−δ|α|

Applying this lemma with V0(h) = T loc−
(
2C2h

δ2
)
, V1(h) = T loc−

(
4C2h

δ2
)
with ε = 2C2, we

consider a family of smooth cut-offs χh ∈ Scompδ2
and we can consider it as an element of Scompδ2

(U)

since (at least for h small enough) the support of χh is included in U . We are now ready to state
the microlocalization property of MN0 .

Proposition 5.1.

(5.2) MN0 = MN0 Oph(χh) +O(h∞)L2(Y )→L2(Y )

Proof. We need to show that MN0(Oph(1 − χh)) = O(h∞). To do so, we decompose MN0 =∑
q∈AN0 Uq. Since the number of terms in this sum grows polynomially with h, it is enough to

show that
∀q ∈ AN0 , Uq(Oph(1− χh)) = O(h∞)

with bounds uniform in q. We then consider two cases :
ä V−q = ∅ : Lemma 4.8 applies. Indeed, if m ≤ N0 and V−q0...qm−1

6= ∅, we have

J−q0...qm−1
≤ emλ1 ≤ eN0λ1 ≤ Ch−δ0

Hence, Uq = O(h∞), with global constants in the O(h∞).
ä V−q 6= ∅ : We apply Proposition 4.2. Since J−q ≤ Ceλ1N0 ≤ Ch−δ0 , we take some δ1 ∈]δ0,

1
2 [

(in particular, δ2 < δ1) and we can write Uq = TN0 Oph(a−q )+O(h∞) with a−q ∈ S
comp
δ1

(U)

and supp a−q ⊂ V−q . Noticing that χh = 1 on V−q ⊂ T loc−
(
2C2h

δ2
)
, the composition formula

in Scompδ1
implies that Oph(a−q ) Oph(1 − χh) = O(h∞). Since the seminorms of a−q are

uniformly bounded in q, the constants appearing in O(h∞) are uniform in q.
This concludes the proof. �

5.2. Propagation of Lagrangian leaves and Lagrangian states. So as to study the mi-
crolocalization of Uq, we’ll use the same strategy as in [DJN21], themselves inspired by [AN07b],
[AN07a] and [NZ09]. We cannot show that Uq is a Fourier integral operator since the propaga-
tion goes behind the Ehrenfest time. Instead, we show a weaker result which will be enough for
our purpose. The idea is to decompose a state u in a sum of Lagrangian states associated with
Lagrangian leaves almost parallel to unstable leaves, what we will call horizontal leaves (because
we will consider them in charts where the unstable leaves are close to be horizontal). Studying
the precise behavior of these states, we can get fine information on the microlocalization of Uqu.
Roughly speaking, we’ll show that if u is a Lagrangian state associated with an original horizontal
Lagrangian Lq0,θ ⊂ Vq0 , then Uqu is a Lagrangian state associated with the piece of the evolved
Lagrangian Fn (Lq0,θ) inside V+

q .
To define "horizontal" Lagrangian leaves, we need to work in adapted coordinate charts in

which the notion of horizontality (thinking Wu(ρ) as the reference) makes sens. For this purpose,
for q ∈ A, we consider charts centered around the points ρq, associated with the fixed macroscopic
partition of T by the Vq = B(ρq, 2ε0). First, we consider symplectic maps
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κq : Wq ⊂ Ukq → Vq ⊂ R2

satisfying (we note (x, ξ) the variable in U and (y, η) in R2) :
(1) B(ρq, Cε0) ⊂Wq for some global constant C � 2;
(2) κ(ρq) = 0 , dκ(ρq)(Eu(ρq)) = R× {0}; dκ(ρq)(Es(ρq)) = {0} × R ;
(3) The image of the unstable leave Wu(ρq) is exactly {(y, 0), y ∈ R} ∩ Ṽq.
Theses charts are for instance given by Lemma 3.8 (at this stage, the strong straightening

property is not necessary). In these adapted charts where Wu(ρq) coincides with R × {0}, the
horizontal Lagrangian leaves will be the of the form

(5.3) Cθ := {(y, θ), y ∈ R}

Finally, we fix unit vectors on Eu(ρq) and Es(ρq), eu(ρq) and es(ρq), used to defined the unstable
and stable Jacobians in section 3.3. Let’s write

dκq(eu(ρq)) = (λq,u, 0) ; dκq(es(ρq)) = (0, λq,s)

Note Dq =

Å
λq,u 0

0 λq,s

ã
. We dilate the chart κ̃q and define

κ̃q : ρ ∈Wq 7→ Dqκq(ρ) ∈ Ṽq := Dq (Vq)

5.2.1. Horizontal Lagrangian and their evolution. Let us fix a word q ∈ An and let us define

(5.4) Lq0,θ = κ−1
q0 (Cθ ∩ Vq0) ∩ Vq0

Then, let’s define inductively

(5.5) Lq0...qj ,θ = F
(
Lq0...qj−1,θ

)
∩ Vqj

which allows to define Lq,θ. One can check that

(5.6) Lq,θ = F−1
(
V+
q

)
∩ Fn−1 (Lq0,θ)

The term F−1 comes from the definition of V+
q :

ρ ∈ V+
q ⇐⇒ ∀1 ≤ i ≤ n, F−i(ρ) ∈ Vqn−i

Finally, let’s define

Cq,θ = κqn−1
(Lq,θ)(5.7)

We first focus on one step of the iterative process.
In Ṽq ⊂ R2, we use the notations B̃q(0, r) for the cube]− r, r×]− r, r[ . We keep the subscript

q to keep trace of the chart in which this cube is supposed to live. Finally, we set

Bq(0, r) = D−1
q

Ä
B̃q(0, r)

ä
⊂ Vq

Bq(0, r) is simply a rectangle centered at zero with size only depending on q (this is also a ball
for some norm in R2). The advantage of B̃q and κ̃q compared with Bq and κq will appear below.
However, κ̃q is not symplectic, and for further use, it is not possible to use κ̃q as a symplectic
change of coordinates.

Let q, p ∈ A and suppose that Vq∩F−1(Vp) 6= ∅. As a consequence there exists a global constant
C ′ > 0 such that d(F (ρq), ρp) ≤ C ′ε0 and if C in (1) of Lemma 3.8 is large enough, we can assume
that for some global constant C1 > 0,

(5.8) κq (Vq) ⊂ Bq(0, C1ε0) ⊂ Vq κp ◦ F ◦ κ−1
q (Bq(0, C1ε0)) ⊂ Vp

The following map is hence well defined

τp,q := κp ◦ F ◦ κ−1
q : Bq(0, C1ε0)→ τp,q(Bq(0, C1ε0)) ⊂ Vp

τp,q is nothing but the writing of F between the charts Vq and Vp. Note that since the number
of possible transitions is finite, we can assume that C1 is uniform for all q, p ∈ A such that
Vq ∩ F−1(Vp) 6= ∅.

We also adopt the following definitions and notations :
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Definition 5.1. Let Gq :] − C1ε0, C1ε0[→] − C1ε0, C1ε0[ be a smooth map. It represents the
horizontal Lagrangian

LGq := D−1
q

(
{(y,Gq(y), y ∈]− C1ε0, C1ε0[}

)
⊂ Bq(0, C1ε0) ⊂ Vq

We say that such a Lagrangian lies in the γ-unstable cone if

||G′q||∞ ≤ γ
and we note Gq ∈ Cuq (C1ε0, γ).

Remark. This is where the use of κ̃q and B̃q turns out to be useful : to represent horizontal
Lagrangian in Vq, we use the cube B̃q(0, C1ε0) ⊂ Ṽq of fixed size.

With this definition, we show in the following lemma an invariance property of the γ-unstable
cones :

Lemma 5.3. There exist global constants C > 0, C1 > 0 such that if ε0 is sufficiently small, then
the following holds.

For every Gq ∈ Cuq (C1ε0, Cε0), there exists Gp ∈ Cup (C1ε0, Cε0) such that
(i) τp,q

(
LGq

)
∩Bp(0, C1ε0) = LGp ;

(ii) For some global constants Cl, l ≥ 2, ||Gq||Cl ≤ Cl =⇒ ||Gp||Cl ≤ Cl ;
Moreover, let’s define φqp :]− C1ε0, C1ε0[→ R by

yq = φqp(yp) ⇐⇒ (yp, Gp(yp)) = Dp ◦ τpq ◦D−1
q

(
(φqp(yp), Gq ◦ φqp(yp)

)
Then, φpq is smooth contracting diffeomorphism onto its image. In particular, there exists a global
constant ν < 1 such that ||φ′pq||∞ ≤ ν.

Proof. Take C1 large but fixed (with conditions further imposed) and assume that ε0 is small
enough so that (5.8) holds. Let us note λq = Ju1 (ρq) > 1 and µq = Js1 (ρq) < 1 and let us fix some
global ν satisfying

∀q ∈ A,max(λ−1
q , µq) < ν < 1

Recall that eu and es are C1,ε in ρ. We write ∂y and ∂η to denote the unit vector of R× {0} and
{0}×R respectively. We fix a constant C > 0 with conditions imposed further and we assume that
||G′p||∞ ≤ Cε0. We note τ̃ = Dp◦τp,q ◦D−1

q (we drop the subscript for τ̃ to alleviate the notations).
In the computations below, the implied constants in the O are global constants (depending also
on the choices on κq):

* τ̃(0) = κ̃p ◦ F (ρq) = O(ε0);
* dτ̃(0) = dκ̃p(F (ρq)) ◦ dF (ρq) ◦ [dκ̃q(ρq)]

−1 ;
* dτ̃(0)(∂y) = dκ̃p(F (ρq))(λqeu(F (ρq))) = λq (dκ̃p(ρp) +O(ε0)) (eu(ρp) +O(ε0)) = λq∂y +
O(ε0), where we use the Lipschitz regularity of ρ 7→ eu(ρ) in the second equality ;

* Similarly, dτ̃(0)(∂η) = µq∂η +O(ε0);
(this is here that we use the renormalization of κq into κ̃q). Eventually, we use the fact that
τ̃ − τ̃(0)− dτ̃(0) = O(C1ε0)C1(B(0,C1ε0)) and we get that

(5.9) τ̃(y, η) = (λqy + yr(y, η), µqη + ηr(y, η)), (y, η) ∈ B̃q(0, C1ε0)

where yr(y, η) and ηr(y, η) are O(C1ε0)C1 . Before going further, let us show that we can fix C1

such that

(5.10) (y, η) ∈ B̃q(0, C1ε0) =⇒ |µqη + ηr(y, η))| ≤ C1ε0

To do so, let us note that in fact τ̃ − τ̃(0)− dτ̃(0) = O
(
(C1ε0)2

)
C0(B(0,C1ε0))

and hence if (y, η) ∈
B̃q(0, C1ε0) we have :

|ηr(y, η)| = O(ε0) +O
(
(C1ε0)2

)
C0(B(0,C1ε0))

≤ C ′ε0

(
1 + C2

1ε0

)
Assume that C1 is large enough such that νC1 + C ′ < C1

ν+1
2 . If (y, η) ∈ B̃q(0, C1ε0), we have

|µqη + ηr(y, η))| ≤ νC1ε0 + C ′ε0

(
1 + C2

1ε0

)
≤
Å
C1
ν + 1

2
+ C2

1ε0

ã
ε0

This fixes C1. Since C1 is now a global fixed parameter, we can remove it from the O in the
estimates. If ε0 is small enough, depending on our choice of C1, (5.10) holds.



64 LUCAS VACOSSIN

To write the image of the leaf as a graph, we observe that, if ε0 is small enough (depending only
on global parameters) the map

ψ : y ∈]− C1ε0, C1ε0[7→ λqy + yr(y,Gq(y))

is expanding and we can impose |ψ′| ≥ ν−1. In particular, Imψ contains an interval of size
2ν−1C1ε0. Moreover, ψ(0) = yr(0, Gq(0)) ≤ ||yr||C1 |Gq(y)| = O(ε2

0). We claim that if ε0 is small
enough, Imψ contains ]− C1ε0, C1ε0[. Indeed, it suffices to have

ν−1C1ε0 − |ψ(0)| ≥ C1ε0

But we have
C1ε0 + |ψ(0)| ≤ C1ε0(1 +O(ε0)) ≤ C1ε0ν

−1

if 1 + O(ε0) ≤ ν−1, condition that can be satisfied if ε0 is small enough. Hence, φ := φpq =

ψ−1
|]−C1ε0,C1ε0[ is well defined and we set

(5.11) Gp(y) = µqGq(φ(y)) + ηr

(
φ(y), Gq(φ(y))

)
, y ∈]− C1ε0, C1ε0[

By definition, it is clear that τp,q
(
LGq

)
∩Bp(0, C1ε0) = LGp and (y,Gp(y)) = τ̃

(
φ(y), Gq(φ(y))

)
.

φ is obviously a smooth contracting diffeomorhpism and ||φ′|| ≤ 1
inf |ψ′(y)| ≤ ν. Moreover, due to

(5.10), |Gp(y)| ≤ C1ε0. To prove that Gp ∈ Cup (C1ε0, Cε0), we compute :

G′p(y) = µqG
′
q(φ(y))× φ′(y) +

(
∂yηr + ∂ηηr ×G′q(φ(y))

)
φ′(y)

|G′p(y)| ≤ ν2Cε0 +O(ε0(1 + Cε0))ν ≤ [ν2C + νC ′(1 + Cε0)]ε0

for some global C ′ > 0. If we assume ν2 + ε0C
′ν < 1, which is possible if ε0 is small enough, then

we can choose C large enough satisfying

C ×
(
ν2 + νC ′ε0

)
+ νC ′ ≤ C

This ensures that ||G′p||∞ ≤ Cε0.
Finally, we prove (ii) by induction on l : the case l = 1 is done. Assume that there exists a

constant Cl such that ||Gq||Cl ≤ Cl =⇒ ||Gp||Cl ≤ Cl. We want to find a constant Cl+1 fitting
for the Cl+1 norm. Using (5.11), we see by induction that the (l + 1) derivatives of Gp has the
form

G(l+1)
p (y) = φ′(y)l+1 ×G(l+1)

q (y)×
(

1 + ∂ηηr(y, φ(y))
)

+ Py
Ä
Gq(y), . . . , G(l)

q (y)
ä

where Py(τ0, . . . , τl) is a polynomial with smooth coefficients in y. Hence, there exists a constant
M(Cl) such that for y ∈]− C1ε0, C1ε0[,

∣∣∣Py ÄGq(y), . . . , G
(l)
q (y)

ä∣∣∣ ≤M(Cl). Since∣∣∣φ′(y)l+1
(

1 + ∂ηηr(y, φ(y))
)∣∣∣ ≤ ν(1 + ε0C

′) := ν1

if ε0 is small enough ensuring that ν1 < 1, we can take

Cl+1 = max

Å
Cl,

M(Cl)

1− ν1

ã
Indeed, with such a constant, assuming that ||Gq||Cl+1 ≤ Cl+1, we have

|G(l+1)
p (y)| ≤ Cl+1ν1 +M(Cl) ≤ Cl+1

�

Armed with this lemma, we can now iterate the process and get the following proposition
describing the evolution of the Lagrangian Cq,θ.

Proposition 5.2. Assume that ε0 is small enough. Then, for every n ∈ N∗, q ∈ An , and θ ∈ R,
there exists an open subset Iq,θ ⊂ R and a smooth map Gq,θ such that :

• Cq,θ =
{

(y,Gq,θ(y)), y ∈ Iq,θ
}

;
• ||G′q,θ||∞ ≤ Cε0 for some global constant C;
• For every l ≥ 2, ||Gq,θ||Cl ≤ Cl for some global Cl;
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• If φq,θ : Iq,θ → R is defined by

κqn−1
◦ Fn−1 ◦ κ−1

q0 (φq,θ(y), θ) = (y,Gq,θ(y))

Then, for some global constants C > 0 and 0 < ν < 1, ||φ′q,θ|| ≤ Cνn−1 .

Proof. Assume that Lq,θ 6= ∅, otherwise, there is nothing to prove. In particular, we can restrict
our attention to small θ, |θ| ≤ C1ε0. As a consequence, for every i ∈ {1, . . . , n}, F (Vqi−1)∩Vqi 6= ∅.
Hence, we can consider the maps τi := τqi,qi−1

and since we assume that κqi (Vqi) ⊂ Bqi(0, C1ε0),

Cq0...qi,θ = τi
(
Cq0...qi−1,θ

)
∩ κqi(Vqi)

We start with a constant function G0 ∈ Cu0 (C1ε0, 0) such that LG0
= Cθ (it suffices to take

G0 = λq0,sθ) and we inductively apply the previous lemma to show the existence of a family
Gj ∈ Cuqj (C1ε0, Cε0), 0 ≤ j ≤ n− 1, such that

(i) τi (LGi) ∩Bqi(0, C1ε0) = LGi+1
;

(ii) ||Gi||Cl ≤ Cl;
(iii) If we define φi :]− C1ε0, C1ε0[→]− C1ε0, C1ε0[ by

(y,Gi(y)) = Dqi ◦ τi ◦D−1
qi−1

(
φi(y), Gi−1 ◦ φi(y)

)
then there exists ν < 1 such that ||φ′i||∞ ≤ ν.

(iv) Cq0...qi,θ is an open subset of LGi .
We have

LGn−1
= D−1

qn−1

(
{(y,Gn−1(y)), y ∈]− C1ε0, C1ε0[}

)
This can be also written

LGn−1
=
¶Ä
y, λ−1

qn−1,sGn−1(λqn−1,uy)
ä
, |y| < λ−1

qn−1,uC1ε0

©
It suffices to consider

Gq,θ(y) = λ−1
qn−1,sGn−1(λqn−1,uy)

Iq,θ =
{
y ∈]− λ−1

qn−1,uC1ε0, λ
−1
qn−1,uC1ε0[, (y,Gq,θ(y)) ∈ Cq,θ

}
φq,θ(y) = λ−1

q1,uφ1 ◦ · · · ◦ φn−1(λqn−1,uy)

�

5.2.2. Evolution of Lagrangian states. Once we’ve studied the evolution of the Lagrangian leaves
starting from Cθ, we can study the evolution of the corresponding Lagrangian states. In our case,
since the leaves stay rather horizontal, the form of the Lagrangian states we’ll consider is the
simplest :

a(x)eiψ(x)/h

where a is an amplitude and ψ a generating phase function. It is associated with the Lagrangian,

L = {(y, ψ′(y)), y ∈ supp a}
For q ∈ A, we quantize κq. Remind that we denoted kq the integer such that Vq b Ukq . There

exist Fourier integral operators Bq, B′q ∈ I
comp
0 (κq)× Icomp0 (κ−1

q ),

Bq : L2(Ykq )→ L2(R);

B′q : L2(R)→ L2(Ykq )

such that they quantize κq in a neighborhood of κq
(
Vq
)
×Vq. Moreover, we impose that WFh(BqB

′
q)

is a compact subset of R2. We will still denoted Bq and B′q the operators

Bq = (0, . . . , Bq︸︷︷︸
kq

, . . . , 0) : L2(Y )→ L2(R) ; B′q = t(0, . . . , B′q︸︷︷︸
kq

, . . . , 0) : L2(R)→ L2(Y )

If supp(cq) ⊂ Vq and if C denotes the operator valued matrix with only one non zero entry Oph(cq)
in position (kq, kq), then as operators L2(Y )→ L2(Y ),

B′qBqC = C +O(h∞) ; CB′qBq = C +O(h∞)

The proposition we aim at proving in the following :
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Proposition 5.3. Fix C0 > 0. For every n ∈ N,q ∈ An and θ ∈ R satisfying

(5.12) n ≤ C0| log h| ; |θ| ≤ C0

and for every N ∈ N, there exists a symbol aq,θ,N ∈ C∞c (Iq,θ) such that :

(i) Uq

Ä
B′q0e

i θ·h
ä

= MAqn−1
B′qn−1

(
ei
ψq
h aq,θ,N

)
+O(hN )L2

(ii) ||aq,θ,N ||Cl ≤ Cl,Nh−C0 logB

(iii) There exists δ > 0 such that d (supp(aq,θ,N ),R \ Iq,N,θ) ≥ δ
where ψq,θ is a primitive of Gq,θ and B > 0 is a global constant.

Remark. • As usual, δ, Cl,N and CN depend only on F,Aq, Bq, B′q, κq and the indices indi-
cated in their notations.

• In other words, the Lagrangian state ei
θ·
h is changed to a Lagrangian state associated with

Cq,θ.

The end of this subsection is devoted to the proof of Proposition 5.3. In the rest of this section,
we fix a constant C0 > 0 and we work with a fixed word q ∈ An with length n ≤ C0| log h| and
a fixed momentun |θ| ≤ C0. From now on and until the end of the proof, the constants below
will always be uniform in q, θ satisfying the previous assumption. They will depend on global
parameters and on C0. If they depend on other parameters, we will specify it with subscripts.
This is also the case for implicit constants in O (such as in O(h∞)).

Preparatory work. We first note the following fact : if Vq ∩F−1(Vp) = ∅, ApMAq = O(h∞). As
a consequence, if Vqi−1

∩ F−1(Vqi) = ∅ for some i, then Uq = O(h∞). In the sequel, it is enough
to consider words q for which Vqi−1

∩ F−1(Vqi) 6= ∅ for 1 ≤ i ≤ n− 1.
We consider symbols ãq such that supp(ãq) ⊂ Vq and ãq ≡ 1 on supp(χq). We denote Ãq =

Oph(ãq) (as usual thought as a diagonal operator valued matrix). The following computations
holds since n = O(log h) and ||MAq|| ≤ ||α||∞ + o(1) uniformly in q :

UqB
′
q0 =MAqn−1

Ãqn−1
MAqn−2

Ãqn−2
. . .MAq1Ãq1MAq0B

′
q0 +O(h∞)

= MAqn−1B
′
qn−1

Bqn−1Ãqn−1M . . .MAq1B
′
q1Bq1Ãq1MAq0B

′
q0 +O(h∞)

We set Tp,q = BpÃpMAqB
′
q and Mq = MAqB

′
q, which allows us to write

UqB
′
q0 = Mqn−1Tqn−1,qn−2 . . . Tq1,q0 +O(h∞)

For p, q ∈ A with Vq ∩F−1(Vp) 6= ∅, Tq,p ∈ Icomp0 (τp,q). Moreover, the previous computations have
shown that τp,q has the form

τp,q(y, η) = (λp,qy + yr(y, η), µp,qη + ηr(y, η)), (y, η) ∈ Bq(0, C1ε0)

where yr(y, η) and ηr(y, η) are O(ε0)C1 . This time, λp,q, µp,q are simply constants uniformly
bounded from below and from above for p, q ∈ A (recall that Bq(0, C1ε0) is a rectangle in R2, built
from the cube B̃q(0, C1ε0) adapted to the definition of the unstable Jacobian). If ε0 small enough,
the projection π : (y, η, x, ξ) ∈ Lq,p 7→ (y, ξ) ∈ R2 is a diffeomorphism onto its image. where

Lq,p =
{

(τq,p(x, ξ), x,−ξ), (x, ξ) ∈ Bq(0, C1ε0)
}

is the twisted graph of τp,q. As a consequence, there exists a smooth phase function Sp,q defined
in an open set Ωp,q of R2, generating Lp,q locally i.e.

Lp,q ∩ τp,q (Bq(0, C1ε0))×Bq(0, C1ε0) =
{

(y, ∂ySp,q(y, ξ), ∂ξSp,q(y, ξ),−ξ), (y, ξ) ∈ Ωq,p

}
Hence, Tp,q can be written in the following form, up to a O(h∞) remainder and for some symbol
αp,q(·;h) ∈ C∞c (Ωp,q):

(5.13) Tp,qu(y) =
1

2πh

∫
R2

e
i
h (Sp,q(y,ξ)−xξ)αp,q(y, ξ;h)u(x)dxdξ

Moreover, due to the operators Ãp and Aq in the definition of Tp,q, we can assume that

(y, ξ) ∈ supp(αp,q) =⇒ (∂ξSp,q(y, ξ), ξ) ∈ κq(supp aq), (y, ∂ySp,q(y, ξ)) ∈ κp(supp ãp)
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In the sequel, we write
Ci = Cq0...qi,θ

and we change the subscripts (qi−1, qi) to i in all the objects T, α, S, τ . Due to the previous results,
we can write Ci =

{
(y,Gi(y)), y ∈ Ii

}
with Ii := Iq0...qi,θ and Gi := Gq0...qi,θ. We also have

projection maps Φi : Ii → R defined by :

τi ◦ · · · ◦ τ1(Φi(y), θ) = (y,Gi(y))

satisfying ||Φ′i||∞ ≤ Cνi < 1. Moreover, if we note the intermediate corresponding projection
φi := Φi ◦ Φ−1

i−1 : Ii → Ii−1, we observe that φi is constructed using the properties of F and Gi−1

(see the proof of Lemma 5.2) and hence, for every l, ||φi||Cl ≤ Cl for some Cl not depending on
q, θ nor i.
For 0 ≤ i ≤ n− 1, we consider a primitive ψi of Gi so that Ci is generated by ψi i.e.

Ci =
{

(y, ψ′i(y), y ∈ Ii
}

The following lemma can be found in [NZ09] (Lemma 4.1). We state it without proof, since it is
the reference but it is a direct application of the stationary phase theorem.

Lemma 5.4. Pick i ∈ {1, . . . , n− 1}.
For any a ∈ C∞c (Ii−1), the application of Ti to the Lagrangian state aei

ψi−1
h associated with Ci−1

gives a Lagrangian state associated with Ci and satisfies

(5.14) Ti

(
aei

ψi−1
h

)
(y) = ei

βi
h ei

ψi(y)

h

Ñ
N−1∑
j=0

bj(y)hj + hNrN (y;h)

é
where, if we note x = φi(y), bj(y) = (Lj,i(x,Dx)a)(x) for some differential operator Lj,i of order
2j with smooth coefficients supported in Ii−1 and βi ∈ R. Moreover, one have :

• b0(y) = αi(y,ξ)
| detD2

y,ξSi(y,ξ)|1/2
|φ′i(y)|1/2 a(x) with ξ = ψ′i−1(x);

• ||bj ||Cl(Ii) ≤ Cl,j ||a||Cl+2j(Ii−1), l ∈ N, 0 ≤ j ≤ N − 1 ;
• ||rN ||Cl(Ii) ≤ CN ||a||Cl+1+2N (Ii−1)

The constants CN and Cl,j depend on τi, αi, ||ψ(m)
i ||∞,Ii .

Remark.

• In particular, in virtue of Proposition 5.2, the constant Cl,j and CN can be chosen uniform
in q, θ as soon as they satisfy the required assumptions. |q| ≤ C0| log h|, θ ≤ C0.

• Without loss of generality, we can replace ψi by βi+ψi (this actually corresponds to fixing
an antiderivative on Ci+1) and hence we can assume that βi = 0.

• The properties on the support of αi imply the following ones on the support of the differ-
ential operators Lj,i :

(5.15) y ∈ suppLj,i =⇒ (y, ψ′i(y)) ∈ κqi(supp ãqi) ∩ τi−1 ◦ κqi−1
(supp aqi−1

)

Iteration formulas and analysis of the symbols. Then, we iterate this lemma starting from
ψ0(x) = x · θ, in the spirit of Proposition 4.1 in [NZ09]. In the sequel, we adopt the following
convention : we note xk the variable in Ik and we naturally denote (xk, xk−1, . . . , x1, x0) the
sequence defined by xi−1 = φi(xi). We also note

βi(xi) =
αi(xi, ξ)

|detD2
xi,ξ

Si(xi, ξ)|1/2
; ξ = ψ′i−1(xi−1)

fi(xi) = β(xi) |φ′i(xi)|
1/2

We fix a constant B > 0 (depending only on F,Aq, Bq, B′q, C0) satisfying for all 1 ≤ i ≤ n− 1,

sup
xi∈Ii

|βi(xi)| ≤ B

||Ti|| ≤ B
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Roughly speaking, B is of order ||α||∞, but in this part, the precise value of B is not relevant.
Finally, note that there exists ν < 1 (again depending only on F,Aq, Bq, B′q) such that |φ′i(xi)| ≤ ν
for xi ∈ Ii. Fix N ∈ N and denote

(5.16) Ñ = 1 + dN + C0 logBe
We iteratively define a sequence of symbols ai,j , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ Ñ − 1 by a0,0 = 1, a0,j = 0

and for 0 ≤ j ≤ Ñ − 1

(5.17) ai,j(xi) =

j∑
p=0

Lj−p,i(ai−1,p)(xi−1)

The following lemma controls the growth of the symbols. The proof is a precise analysis of the
iteration formula (5.17) and is rather technical. We write the detailed proof in the appendix (See
subsection A.3) and refer the reader to [NZ09] (Proposition 4.1), where the author lead the same
analysis (but in the case B = 1).

Lemma 5.5. For all j ∈ {0, . . . , Ñ − 1}, l ∈ N, there exists Cj,l > 0 such that for all i ∈
{0, . . . , n− 1}, one has

(5.18) ||ai,j ||Cl(Ii) ≤ Cj,l
Ä
Bν1/2

äi
(i+ 1)l+3j

Remark. Again, what is important is the fact that Cj,l does not depend on q, n, θ nor i : it
depends on C0 and global parameters.

Control of the remainder. Let us call ri,N (a) the remainder appearing in Lemma 5.4. Define
inductively (Ri,Ñ ) by R0,Ñ = 0 and

(5.19) Ri+1,Ñ = e−
iψi+1
h Ti+1

(
e
iψi
h Ri,Ñ

)
+

Ñ−1∑
j=0

ri+1,Ñ−j(ai,j)

This definition ensures that for all 1 ≤ i ≤ n,

(5.20) Ti . . . T1

(
e
iψ0
h

)
= ei

ψi(y)

h

Ñ
Ñ−1∑
j=0

hjai,j + hÑRi,Ñ

é
Lemma 5.6. There exists CÑ depending only on Ñ , C0 and global parameters such that for all
1 ≤ i ≤ n− 1,

||Ri,Ñ ||L2(R) ≤ CÑB
i

Proof. Recalling that ||Ti||L2→L2 ≤ B and the bound on the remainder in Lemma 5.4, the recursive
definition of Ri,Ñ gives the following bound:

||Ri,Ñ ||L2 ≤ B||Ri−1,Ñ ||L2 +

Ñ−1∑
j=0

CÑ−j ||ai−1,j ||C1+2(Ñ−j)

By induction and using the previous bounds on ||ai,j ||Cl , we get

||RÑ,i||L2 ≤
i−1∑
p=0

Bi−1−p
Ñ−1∑
j=0

CÑ−j ||ap,j ||C1+2(Ñ−j)

≤
i−1∑
p=0

Bi−1−p
N1−1∑
j=0

CÑ−jCÑ−j,0(Bν1/2)p(p+ 1)1+2Ñ+j

≤ CÑB
i
i−1∑
p=0

νp/2(p+ 1)1+3N1

≤ CÑB
i

using that the sum is absolutely convergent. �
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End of proof of Proposition 5.3. We’ve got now all the elements to conclude the proof. We set

aq,θ,N :=

Ñ−1∑
j=0

hjan−1,j

We know that
UqB

′
q0

Ä
ei
θ
h

ä
= Mqn−1

(
ei
ψq·
h aq,θ,N

)
+Mqn−1

(hÑRn−1,Ñ )

Since Mq are uniformly bounded in q and Rn−1,Ñ ≤ CÑBn−1 ≤ CN1
h−C0 logB , we have :

||Mqn−1
(hÑRn−1,Ñ )||L2 ≤ CNhÑ−C0 logB ≤ CNhN

Concerning the bounds on aq,θ,N , we have

||aq,θ,N ||Cl ≤
Ñ−1∑
j=0

hj ||an−1,j ||Cl

≤
Ñ−1∑
j=0

Cj,l
Ä
Bν1/2

än−1
nl+3jhj

≤ Cl,Nnl+3Ñ
Ä
Bν1/2

än−1

≤ Cl,Nh−C0 logBnl+3Ñν
n−1

2

≤ Cl,Nh−C0 logB

where we use the fact that n ≤ C0| log h| and bound nl+3Ñν
n−1

2 by some Cl,Ñ since ν < 1.
Finally, we need to prove the property on the support of aq,θ,N . To do so, let us introduce, for

q ∈ A, an open set Wq satisfying

supp ãq bWq ⊂ Vq
This allows us to define new objects replacing Vq by Wq in the definitions :

W+
q =

n−1⋂
i=0

Fn−i(Wqi) b V+
q

Dq,θ = κqn−1

(
F−1

(
W+

q

)
∩ Fn−1 (Lq0,θ)

)
b Cq,θ

and the associated subinterval Jq,θ b Iq,θ built thanks to Proposition 5.2 such that

Dq,θ =
{

(y,Gq,θ(y)); y ∈ Jq,θ
}

Let us fix δ > 0 small (with further conditions imposed). We will show the following stronger
statement

d (supp(aq,θ,N ),R \ Jq,θ) ≥ δ
Suppose that this is not the case. We can find xn−1 ∈ supp aq,θ,N , yn−1 ∈ Iq,θ \ Jq,θ such that
|xn−1−yn−1| ≤ δ. As already done, we denote by xi (resp. yi) the points defined by xi−1 = φi(xi)
(resp. yi−1 = φi(yi)). Since φi are contractions, we have |xi− yi| ≤ δ for 1 ≤ i ≤ n− 1. If we note

ρi = κ−1
qi (xi, ψ

′
i(xi)) ; ζi = κ−1

qi (yi, ψ
′
i(yi))

we have for some C > 0 : d(ρi, ζi) ≤ Cδ. By definition, one also has

F−i(ρn−1) = ρn−1−i ; F−i(ζn−1) = ζn−1−i

By the support property (5.15) of the operators Lj,i, ρi ∈ supp ãqi for 0 ≤ i ≤ n− 1. Let’s assume
that δ is small enough so that for all q ∈ A,

d
(

supp ãq, (Wq)
c ) ≥ 2Cδ

Hence,
ρi ∈ supp ãqi and d(ρi, ζi) ≤ Cδ =⇒ ζi ∈ Wqi

As a consequence, for all 0 ≤ i ≤ n − 1, F i+1−n(ζn−1) ∈ Wqi , or equivalently ζn−1 ∈ F−1
(
W+

q

)
.

Hence,
(yn−1, ψ

′
n−1(yn−1)) ∈ Cq,θ ∩ κqn−1

(
F−1

(
W+

q

))
⊂ Dq,θ



70 LUCAS VACOSSIN

showing that yn−1 ∈ Jq,θ, and giving a contradiction with yn−1 ∈ Iq,θ \ Jq,θ.

5.3. Microlocalization of UQ. We now fix a cloud Q ⊂ Q(n, a), centered at a point ρ0 ∈ T ,
namely satisfying the condition of Proposition 4.9 :

∀ρ ∈
⋃
q∈Q
V+
q , d(ρ,Wu(ρ0)) ≤ Chb

Let us note

(5.21) UQ =
∑
q∈Q

Uq

and

(5.22) V+
Q =

⋃
q∈Q
V+
q

We fix an adapted chart κ := κρ0
: U0 → V0 around ρ0 as permitted by the Lemma 3.9. We can

assume that V+
a b U0 (if ε0 is small enough and since the local unstable leaf Wu(rho0) is close to

points in V+
a )). We consider a cut-off function χ̃a ∈ C∞c (U0) such that χ̃a ≡ 1 on F (suppχa) and

supp χ̃a ⊂ V+
a . Let us note Ξa = Oph(χ̃a). Since ΞaMAa = MAa + O(h∞), |Q| = O(h−K) and

||Uq|| = O(h−K) for some K > 0, we have

MN0UQ = MN0ΞaUQ +O(h∞)

Let us introduce Fourier integral operators B,B′ quantizing κ in supp(χa) :

B′B = I +O(h∞) microlocally in supp(χa)

Hence :
MN0UQ = MN0ΞaB

′BUQ +O(h∞)

We introduce the following sets :

(5.23) Γ+ = η
(
κ
(
V+
Q
))

; Ω+ = Γ+(hτ )

and for q ∈ Q,

(5.24) Γ+
q = η

(
κ
(
V+
q

))
We will prove in the following lemma that the pieces Uq are microlocalized in thin horizontal

rectangles (see Figure 13).

Lemma 5.7. For every q ∈ Q,

(5.25) 1Γ+
q (hτ ) (hDy)BUq = BUq +O(h∞)L2→L2

with uniform bounds in the O(h∞).

Using the polynomial bounds |Q| = O(h−C) and ||Uq|| = O(h−C)), we immediately deduce the

Proposition 5.4.

(5.26) 1Ω+(hDy)BUQ = BUQ +O(h∞)L2→L2

5.3.1. Proof of Lemma 5.7. We fix a word q = q0 . . . qn−2a ∈ Q. Since WFh(Aq0) is compact, we
can find χ ∈ C∞c (R) such that

Aq0 = Aq0B
′
q0χ(hDy)Bq0 +O(h∞)

Since there is a finite number of symbols in A, we can choose one single χ for all the possible
symbols q0. We are hence reduced to prove that

(5.27) 1R\Γ+
q (hτ )(hDy)BUqB

′
q0︸ ︷︷ ︸

T

χ(hDy) = O(h∞)L2→L2

If u ∈ L2(R), writing

(χ(hDy)u) (y) =
1

(2πh)1/2

∫
R
χ(θ)Fhu(θ)ei

θy
h dθ
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Figure 13. The definition of the sets Γ+
q . They are represented by the blue

segments on the η-axis and are the projections on the η variable of the sets V+
q

(the hached sets). They are of width of order hτ .

we have

T
(
χ(hDy)u

)
=

1

(2πh)1/2

∫
R
χ(θ)Fhu(θ)

Ä
Tei

θ·
h

ä
dθ

Hence,

||T
(
χ(hDy)u

)
||L2 ≤ 1

(2πh)1/2

∫
R
|χ(θ)Fhu(θ)|

∣∣∣∣∣∣Tei θ·h ∣∣∣∣∣∣
L2
dθ

≤ 1

(2πh)1/2

∫
R
|χ(θ)Fhu(θ)| sup

θ∈suppχ

∣∣∣∣∣∣Tei θ·h ∣∣∣∣∣∣
L2

≤ Cχ
h1/2
||Fhu||L2 sup

θ∈suppχ

∣∣∣∣∣∣Tei θ·h ∣∣∣∣∣∣
L2

≤ Cχ
h1/2
||u||L2 sup

θ∈suppχ

∣∣∣∣∣∣Tei θ·h ∣∣∣∣∣∣
L2

As a consequence, we are lead to estimate supθ∈suppχ

∣∣∣∣∣∣Tei θ·h ∣∣∣∣∣∣
L2
. We fix θ ∈ suppχ. Writing that

suppχ ⊂ [−C0, C0] and recalling |q| = n ≤ C0| log h| for some global C0, we are in the framework
of Proposition 5.3.

We fix N ∈ N and we aim at proving that Tei
θ·
h = O(hN ). By Proposition 5.3, there exists

aq,N,θ ∈ C∞c (Iq,θ) such that

UqB
′
q0

Ä
ei
θ·
h

ä
= MAaB

′
a

(
aq,N,θe

i
Φq,θ
h

)
+O(hN )
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Set S := BMAaB
′
a. S is a Fourier integral operator associated with s := κ ◦ F ◦ κ−1

a . Recall that
the definitions and the description of the Lagrangian

Cq,θ = κa
(
F−1

(
V+
q

)
∩ Fn−1 (Lq0,θ)

)
= {(y,Φ′q,θ(y)), y ∈ Iq,θ}

with Φq,θ ∈ C∞(Iq,θ) ; ||Φq,θ||C1 ≤ Cε0 ; ||Φq,θ||Cl ≤ Cl.
Assuming that ε0 is small enough, we can assume that :

• s is well defined on Ba(0, C1ε0) and satisfies the conclusion of Lemma 5.3. As a conse-
quence, the Lagrangian line

s(Cq,θ) = κ
(
V+
q

)
∩ κ ◦ Fn (Lq0,θ)

can be written {(y,Ψ′(y)), y ∈ I} for some open I ⊂ R and some function Ψ ∈ C∞(I)
satisfying

||Ψ||C1 ≤ Cε0 ; ||Ψ||Cl ≤ Cl
with global constants C and Cl.

• S has the form (5.13) with a phase function and a symbol having Cl norms bounded by
global constants (depending on l).

Hence, we can apply Lemma 5.4 to see that there exists b ∈ C∞c (I) such that

S
(
aq,N,θe

i
Φq,θ
h

)
= bei

Ψ
h +O(hN )L2

b satisfies the same type of bounds as aq,N,θ, namely :

||b||Cl ≤ Cl,Nh−C0 logB

Moreover, since d(supp aq,N,θ,R \ Iq,θ) ≥ δ, there exists δ′ > 0 such that d(supp b,R \ I) ≥ δ′. The
constants Cl,N and δ′ are global constants. Since N is arbitrary, to conclude the proof of Lemma
5.7, it remains to show that

(5.28) 1R\Γ+
q (hτ )(hDy)

Ä
bei

Ψ
h

ä
= O(hN )

To do so, we make use of the fine Fourier localization statement from Proposition 2.7 in [DJN21].
We state it for convenience but refer the reader to the quoted paper for the proof.

Proposition 5.5. Let U ⊂ Rn open, K ⊂ U compact, Φ ∈ C∞(U) and a ∈ C∞c (U) with
supp a ⊂ K. Assume that there is a constant C0 and constants CN , N ∈ N∗ such that :

vol(K) ≤ C0(5.29)

d(K,Rn \ U) ≥ C−1
0(5.30)

max
0<|α|≤N

sup
U
|∂αΦ| ≤ CN ;N ≥ 1(5.31)

max
0≤|α|≤N

sup
U
|∂αa| ≤ CN ;N ≥ 1(5.32)

(5.33)

Finally, assume that the projection of the Lagrangian {(x,Φ′(x)), x ∈ U} on the momentum
variable has a diameter of order hτ , namely :

(5.34) diam(ΩΦ) ≤ C0h
τ where ΩΦ = {Φ′(x), x ∈ U}

Define the Lagrangian state

(5.35) u(x) = a(x)ei
Φ(x)
h ∈ C∞c (U) ⊂ C∞c (Rn)

Then, for every N ≥ 1, there exists C ′N such that

(5.36) ||1Rn\ΩΦ(hτ )u|| ≤ C ′NhN

C ′N depends on τ, n,N,C0, CN ′ for some N ′(n,N, τ).
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When U = I, K = supp b, a = hC0 logBb , Φ = Ψ, the assumptions (5.29) to (5.32) are satisfied
for some global constants C0, CN . In this case,

ΩΨ = {Ψ′(y), y ∈ I} = η
(
κ
(
V+
q

)
∩ κ ◦ Fn (Lq0,θ)

)
Since ΩΨ ⊂ Γ+

q , to prove (5.28), it is enough to prove it with Γ+
q replaced by ΩΨ and to apply the

last proposition, it remains to check that the last point (5.34) is satisfied. Since who can do more,
can do less, we will show that

diam
(
Γ+
q

)
≤ C0h

τ

This is where the strong assumption on the adapted charts will play a role. To insist on this role,
we state the following lemma :

Lemma 5.8. Let C0 > 0. Assume that ρ1 ∈ T ∩ Uρ0
satisfies d(ρ1,Wu(ρ0)) ≤ C0h

b. If ρ2 ∈
Wu(ρ1), then for some global constant C > 0,

(5.37) |η(κ(ρ1))− η(κ(ρ2))| ≤ CC1+β
0 h

Proof. Recall that the chart (κ, Uρ0) is the one centered at ρ0, given by Lemma 3.9. In this chart,
κ(Wu(ρ1)) is almost horizontal : we have

κ(Wu(ρ1)) = {y, g(y, ζ(ρ1)), y ∈ Ω}

where Ω is some open bounded set of R, with g and ζ satisfying the properties of Lemma 3.9. Hence,
to prove the lemma, it is enough to estimate |g(y, ζ(ρ1))− g(0, ζ(ρ1))|, y ∈ Ω. Since ζ(ρ0) = 0 and
ζ is Lipschitz, |ζ(ρ1)| ≤ C0h

b. Indeed, if ρ′0 ∈Wu(ρ0) satisfies d(ρ′0, ρ1) ≤ 2C0h
b,

|ζ(ρ1)| = |ζ(ρ1)− ζ(ρ′0)| ≤ Cd(ρ1, ρ
′
0) ≤ CC0h

b

Then, we have

|g(y, ζ(ρ1))− g(0, ζ(ρ1))| = |g(y, ζ(ρ1))− g(y, 0)− ∂ζg(y, 0)ζ(ρ1)|

=

∣∣∣∣∣
∫ ζ(ρ1)

0

(∂ζg(y, ζ)− ∂ζg(y, 0)) dζ

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ζ(ρ1)

0

Cζβdζ

∣∣∣∣∣
≤ Cζ(ρ1)1+β ≤ CC1+β

0 hb(1+β)

In the first equality, we’ve used the facts that g(0, ζ) = ζ, ∂ζg(y, 0) = 1 and g(y, 0) = 0. This
concludes the proof since, by definition (see (4.2)), b(1 + β) = 1. �

Remark. This lemma explains our definition of b.

From this lemma, we can deduce (5.34). Indeed, recall that there exists ρq ∈ T such that
V+
q ⊂Wu(ρq)(Chτ ). If ρ1, ρ2 ∈ V+

q , there exists ρ′1, ρ′2 ∈Wu(ρq) such that

d(ρi, ρ
′
i) ≤ Chτ ; i = 1, 2

Hence, one can estimate

|η(κ(ρ1))− η(κ(ρ2))| ≤ |η(κ(ρ1))− η(κ(ρ′1))|︸ ︷︷ ︸
≤Chτ

+ |η(κ(ρ′1))− η(κ(ρ′2))|︸ ︷︷ ︸
≤Ch

+ |η(κ(ρ2))− η(κ(ρ′2))|︸ ︷︷ ︸
≤Chτ

The inequality in the middle is a consequence of the previous lemma. Indeed, ρ′1, ρ′2 ∈ Wu(ρ′1)
where (recall that τ > b)

d(ρ′1,Wu(ρ0)) ≤ d(ρ1, ρ
′
1) + d(ρ1,Wu(ρ0)) ≤ Chτ + Chb ≤ 2Chb
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5.4. Reduction to a fractal uncertainty principle. We go on the work started in the last
subsection and we keep the same notations. In virtue of Proposition 5.1 and Proposition 5.4, we
can write

(5.38) MN0UQ = MN0B′BOph(χh)ΞaB
′1Ω+(hDy)BUQ +O(h∞)L2→L2

where
• χh ∈ Scompδ2

, χh ≡ 1 on T loc− (2C2h
δ2) and suppχh ∈ T loc− (4C2h

δ2) (see Proposition 5.1 and
before);

• Ξa = Oph(χ̃a) where χ̃a ∈ C∞c (U0) is a cut-off function such that χ̃a ≡ 1 on F (suppχa)
and supp χ̃a ⊂ V+

a (see the beginning of subsection 5.3) ;
• Ω+ = η

(
κ
(
V+
Q
) )(

hτ
)
(see 5.23 and Proposition 5.4).

In Vρ0 , UQ is microlocalized in a region {|η| ≤ Chb}. To work with symbols in usual symbol
classes, we will rather consider a bigger region {|η| ≤ hδ0}. For this purpose, let us denote

(5.39) Γ− = y
(
κ
(
V+
a ∩ T loc− (4C2h

δ2)
)
∩ {|η| ≤ hδ0}

)
; Ω− = Γ−

(
hδ0
)

Since V+
Q ⊂ Wu(ρ0)(Chb), Ω+ ⊂ [−C0h

b, C0h
b] ⊂ [−hδ0 , hδ0 ] for h small enough. By Lemma 5.2,

there exists χ+(η) := χ+(η;h) ∈ C∞c (R) such that :
• χ+ ≡ 1 on Ω+;
• suppχ+ ⊂ [−hδ0 , hδ0 ] ;
• ∀k ∈ N and η ∈ R, |χ(k)

+ (η)| ≤ Ckh−δ0k for some global constants Ck.
χ+ satisfies :

1Ω+(hDy) = χ+(hDy)1Ω+(hDy)

Let’s now consider the following subset of Γ− :

Γ̃− = y
(
κ
(
V+
a ∩ T loc− (4C2h

δ2)
)
∩ {η ∈ suppχ+}

)
The inclusion Γ̃− ⊂ Γ− comes from the support property of χ+.

Figure 14. The set Ω+ is represented on the η-axis, with the support of the
function χ+. On the y-axis, we project the gray set κ

(
V+
a ∩ T loc− (4C2h

δ2)
)
to

obtain both Γ− and Γ̃− depending on the size of the η-window. The larger set Ω−

is also represented in red.

Using again Lemma 5.2, we construct a family χ−(y) := χ−(y;h) ∈ C∞c (R) such that :
• χ− ≡ 1 on Γ̃−;
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• suppχ− ⊂ Ω− = Γ−(hδ0) ;
• ∀k ∈ N and y ∈ R, |χ(k)

− (y)| ≤ Ckh−δ0k.
and χ− allows to write

χ−(y)1Ω−(y) = χ−(y)

We now claim that

(5.40) MN0UQ = MN0 Oph(χh)ΞaB
′χ−(y)1Ω−(y)1Ω+(hDy)BUQ +O(h∞)L2→L2

Due to the polynomial bounds on ||MN0 || and ||UQ||, it is then enough to show that

Oph(χh)ΞaB
′(1− χ−(y))χ+(hDy) = O(h∞)

Using Egorov’s theorem in Ψδ2(R), we see that Ξ0 := BOph(χh)ΞaB
′ is in Ψδ2(R) and WFh(Ξ0) ⊂

κ(suppχa ∩ suppχh). We now observe that

(y, η) ∈WFh(Ξ0) ∩WFh (1− χ−(y)) ∩WFh (χ+(hDy)) =⇒

(y, η) ∈ κ(suppχa ∩ suppχh), η ∈ suppχ+, y 6∈ Γ̃−,

But the first two conditions imply that y ∈ Γ̃−. Hence,

WFh(Ξ0) ∩WFh (1− χ−(y)) ∩WFh (χ+(hDy)) = ∅

By the composition formulas in Ψδ0(R), Ξ0(1−χ−(y))χ+(hDy) = O(h∞). Note that the constants
in O(h∞) depend on the semi-norms of χ± ,χh and χa. Due to their construction, the semi-norms
of χ± and χh are bounded by global constants. As a consequence, the constants O(h∞) are global
constans.

This proves the claim 5.40. Recalling the bound

||MN0 ||L2→L2 ≤ ||α||N0(1 + o(1)) , ||UQ||L2→L2 ≤ C| log h|||α||N1
∞

we see that the proof of Proposition 4.9 and hence of Proposition 4.1, has been reduced to proving
the following proposition.

Proposition 5.6. With the above notations, There exists γ > 0 and h0 > 0 such that :

(5.41) ∀h ≤ h0, ||1Ω−(y)1Ω+(hDy)||L2→L2 ≤ hγ

Remark. γ and h0 are global : they do not depend on the particular Q ⊂ Q(n, a) satisfying the
conditions of Proposition 4.9, nor on n.

The proof of this proposition is the aim of the next section and relies on a fractal uncertainty
principle.

6. Application of the fractal uncertainty principle

The fractal uncertainty principle, first introduced by Dyatlov-Zahl in [DZ16] and further proved
in full generality by Bourgain-Dyatlov in [BD18], is the key tool for our decay estimate. We’ll use
the slightly more general version proved and used in [DJN21].

6.1. Porous sets. We start by recalling the definition of porous sets and then we state the version
of the fractal uncertainty principle we’ll use.

Definition 6.1. Let ν ∈ (0, 1) and 0 ≤ α0 ≤ α1. We say that a subset Ω ⊂ R is ν-porous on
scales α0 to α1 if for every interval I ⊂ R of size |I| ∈ [α0, α1], there exists a subinterval J ⊂ I of
size |J | = ν|I| such that J ∩ Ω = ∅.

The following simple lemma shows that when one fattens a porous set, one gets another porous
set. For its (very elementary) proof, see [DJN21] (Lemma 2.12).

Lemma 6.1. Let ν ∈ (0, 1) and 0 ≤ α0 < α1. Assume that α2 ∈ (0, ν3α1] and Ω ⊂ R is ν-
porous on scales α0 to α1. Then, the neighborhood Ω(α2) = Ω + [−α2, α2] is ν

3− porous on scale
max(α0,

3
να2) to α1.
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Figure 15. Example of a porous set. Its construction is based on a Cantor-like
set. Red intervals correspond to choices of I, blue ones correspond to J .

The notion of porosity can be related to the different notions of fractal dimensions. Let us
recall the definition of the upper box dimension of a metric space (X, d). We denote by NX(ε) the
minimal number of open balls of radius ε needed to cover X. Then, the upper box dimension of
X is defined by :

(6.1) dimX := lim sup
ε→0

logNX(ε)

− log ε

In particular, if δ > dimX , there exists ε0 > 0 such that for every ε ≤ ε0, NX(ε) ≤ ε−δ. This
observation motivates the following lemma :

Lemma 6.2. Let Ω ⊂ R. Suppose that there exist 0 < δ < 1, C > 0 and ε0 > 0 such that

∀ε ≤ ε0, NΩ(ε) ≤ Cε−δ

Then, there exists ν = ν(δ, ε0, C) such that Ω is ν-porous on scale 0 to 1.

Remark. The proof will give an explicit value of ν. This quantitative statement will be important
in the sequel to ensure the same porosity for all the sets Wu/s(ρ0) ∩ T .

Proof. Let us set T = bmax
Ä
(6ε0)−1, (6δC)

1
1−δ
ä
c + 1 and ν = (3T )−1. We will show that Ω is

ν-porous on scale 0 to 1. Let I ⊂ R be an interval of size |I| ∈ (0, 1]. Cut I into 3T consecutive
closed intervals of size ν: J0, . . . , J3T−1. We argue by contradiction and assume that each of these
intervals does intersect Ω. Let us show that

(6.2) NΩ(ν/2) ≥ T

Assume that U1, . . . , Uk is a family of open intervals of size ν covering Ω. For i = 0, . . . , T−1, there
exists xi ∈ J3i+1 and ji ∈ {1, . . . , k} such that xi ∈ Uji . It follows that Uji ⊂ J3i ∪ J3i+1 ∪ J3i+2

and hence i 6= l =⇒ Uji ∩ Ujl = ∅. The map i ∈ {0, . . . , T − 1} 7→ ji ∈ {1, . . . , k} is one-to-one,
and it gives (6.2). Since T ≥ 1

6ε0
, ν/2 ≤ ε0. As a consequence ,

T ≤ N(ν/2) ≤ C(6T )δ

which implies T 1−δ ≤ C6δ. This contradicts the definition of T . �

In the appendix A.5, we give a result in the other way, namely, porous sets down to scale 0 have
an upper box dimension strictly smaller than one.

For further use, we also record the easy lemma :

Lemma 6.3. Assume that (X, d), (Y, d′) are metric spaces and f : X → Y is C-Lipschitz. Then,
for every ε > 0,

Nf(X)(ε) ≤ NX(ε/C)

In particular, if NX(ε) ≤ Cδ1εδ for ε ≤ ε0, then for ε ≤ Cε0, Nf(X)(ε) ≤ (C1C)δε−δ.

6.2. Fractal uncertainty principle. We state here the version of the fractal uncertainty principle
we’ll use. This version is stated in Proposition 2.11 in [DJN21]. The difference with the original
version in [BD18] is that it relaxes the assumption regarding the scales on which the sets are porous.
We refer the reader to the review of Dyatlov [Dya19] to an overview on the fractal uncertainty
principle with other references and applications.

Proposition 6.1. Fractal uncertainty principle. Fix numbers γ±0 , γ
±
1 such that

0 ≤ γ±1 < γ±0 ≤ 1, γ+
1 + γ−1 < 1 < γ+

0 + γ−0
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and define
γ := min(γ+

0 , 1− γ
−
1 )−max(γ+

1 , 1− γ
−
0 )

Then for each ν > 0 , there exists β = β(ν) > 0 and C = C(ν) such that the estimate

(6.3) ||1Ω−Fh1Ω+
||L2(R)→L2(R) ≤ Chγβ

holds for all 0 < h ≤ 1 and all h-dependent sets Ω± ⊂ R which are ν-porous on scale hγ
±
0 to hγ

±
1 .

Remark. In the sequel, we will use this result with γ±1 = 0. In this case, the condition on γ±0
becomes γ−0 + γ+

0 > 1 and the exponent γ is γ−0 + γ+
0 − 1. This condition can be interpreted as a

condition of saturation of the standard uncertainty principle : a rectangle of size hγ
+
0 × hγ

−
0 will

be subplanckian.

6.3. Porosity of Ω+ and Ω−. Since we want to apply Proposition 6.1 to prove Proposition 5.6,
we need to show the porosity of the sets Ω± defined in (5.23) and (5.39). The main tool is the
following proposition.

Proposition 6.2. There exist δ ∈ [0, 1[, C > 0 and ε0 > 0 such that for every ρ0 ∈ T , if
X = Wu/s(ρ0) ∩ T ∩ Uρ0

,

NX(ε) ≤ Cε−δ; ∀ε ≤ ε0

Remark. Recall that Wu/s(ρ0) is a local unstable (resp. stable) manifold at ρ0, and in particular
a single smooth curve. Uρ0 is the domain of the chart adapted κρ0 (see 3.9).

Roughly speaking, this proposition says that the upper box dimension of the sets Wu/s(ρ) ∩ T ,
the trace of T along the stable and unstable manifolds, is strictly smaller than one. This condition
on the upper box dimension is a fractal condition. In our case, we need uniform estimates on
the numbers NX(ε) for X = Wu/s(ρ) ∩ T . This uniformity is a consequence of the fact that the
holonomy maps are C1 with uniform C1 bounds (and thus Lipschitz, which is enough to conclude).
This result is clearly linked with Bowen’s formula which has been proved in different contexts and
links the dimension of X with the topological pressure of the map φu = − log |J1

u|. This is where
the assumption Fractal is used. This proposition is proved in the Appendix A.4 where we borrow
the arguments of [Bar08] (Section 4.3) to get the required bounds.

From the Proposition 6.2, we get

Corollary 6.1. There exists ν > 0 such that for every ρ0 ∈ T , the sets y ◦ κ (Wu(ρ0) ∩ T ∩ Uρ0
)

and ζ (Ws(ρ0) ∩ T ∩ Uρ0) are ν-porous on scale 0 to 1.

Proof. The maps y ◦ κ and ζ are C-Lipschitz for a global constant C. As a consequence, the
previous lemma and Lemma 6.3 give

∀ε ≤ ε0/C,NΩ(ε) ≤ Cδε−δ , where Ω = y ◦ κ (Wu(ρ0) ∩ T ∩ Uρ0
) or ζ (Ws(ρ0) ∩ T ∩ Uρ0

)

Applying Lemma 6.2, the ν-porosity is proved for some ν = ν(δ, C, ε0). �

To conclude, we use this corollary to show the porosity of Ω±. We start by studying Ω+.

Lemma 6.4. There exists a global constant C > 0 such that

Ω+ ⊂ ζ (Ws(ρ0) ∩ T ∩ Uρ0
) (Chτ )

Proof. Since Ω+ = Γ+(hτ ), it is enough to show the same statement for Γ+ = η ◦ κρ0

(
V+
Q
)
.

Let ρ ∈ V+
Q . By assumption on Q and ρ0, d(ρ,Wu(ρ0)) ≤ Chb. Since ρ ∈ Vq for some q ∈ Q, there

exists ρ1 ∈ T such that d(ρ,Wu(ρ1)) ≤ C
J+
q (ρ1)

≤ Chτ . Fix ρ2 ∈Wu(ρ1) such that d(ρ, ρ2) ≤ Chτ .

|η ◦ κ(ρ)− ζ(ρ1)| = |η ◦ κ(ρ)− ζ(ρ2)| ≤ |η ◦ κ(ρ)− η ◦ κ(ρ2)|+ |η ◦ κ(ρ2)− ζ(ρ2)|
Since η ◦ κ is Lipschitz, we can control the first term by

|η ◦ κ(ρ)− η ◦ κ(ρ2)| ≤ Cd(ρ, ρ2) ≤ Chτ

To estimate the second term, the same arguments used after Lemma 5.8 show that

|η ◦ κ(ρ2)− ζ(ρ2)| ≤ diam
[
η ◦ κ (Wu(ρ2) ∩ Uρ0

)
]
≤ Ch

It gives |η ◦κ(ρ)− ζ(ρ1)| ≤ Chτ . To conclude, note that there exists a unique point ρ′1 ∈Ws(ρ0)∩
Wu(ρ1) and ζ(ρ1) = ζ(ρ′1). �
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As a simple corollary of this lemma and of Lemma 6.1, we get

Corollary 6.2. Ω+ is ν/3-porous on scale 3
νCh

τ to 1.

We now turn to the study of Ω−. We can state and prove similar results with different scales of
porosity. Recall that δ2 = λ0

λ1
δ0.

Lemma 6.5. There exists a global constant C > 0 such that

Ω− ⊂ y ◦ κ (Wu(ρ0) ∩ T ∩ Uρ0
) (Chδ2)

Proof. Since Ω− = Γ−(hδ0) with δ0 > δ2, it is enough to prove if for

Γ− = y ◦ κ
(
V+
a ∩ T loc−

(
4C2h

δ2
)
∩ {|η| ≤ hδ0}

)
Recall that T loc− ⊂

⋃
ρ∈T Ws(ρ). Since in V+

a , all the local stable leaves intersect Wu(ρ0), we have

V+
a ∩ T loc− (4C2h

δ2) ⊂
⋃

ρ∈Wu(ρ0)∩T

Ws(ρ)(4C2h
δ2)

Fix ρ ∈ Wu(ρ0) ∩ T . Since dκ(Es(ρ0)) = R∂η, if ε0 is small enough, we can write κ(Ws(ρ)) =
{(Gρ(η), η), η ∈ O} where O is some open subset of R and Gρ : O → R is C∞. In particular, it is
Lipschitz with a global Lipschitz constant C. If |η| ≤ hδ0 , |Gρ(η) − Gρ(0)| ≤ Chδ0 . Recall that
κ(Wu(ρ0)∩Uρ0

) ⊂ R× {0} and hence, Gρ(0) = y ◦ κ(ρ). As a consequence, if ρ1 ∈Ws(ρ)∩ {|η| ≤
hδ0}, writing κ(ρ1) = (Gρ(η), η), we have

|y ◦ κ(ρ1)− y ◦ κ(ρ)| = |Gρ(η)−Gρ(0)| ≤ Chδ0

Then, if ρ2 ∈Ws(ρ)(4C2h
δ2), since κ is Lipschitz with global Lipschitz constant ,

|y ◦ κ(ρ2)− y ◦ κ(ρ)| ≤ Chδ2 + Chδ0 ≤ Chδ2

This shows that y ◦ κ(ρ2) ∈ y ◦ κ(Wu(ρ0) ∩ T )(Chδ2) and concludes the proof. �

As a corollary, using Lemma 6.1, we get

Corollary 6.3. Ω− is ν/3-porous on scale 3
νCh

δ2 to 1.

We can now prove the last Proposition 5.6 needed to end the proof of Proposition 4.1. This is
a consequence of the porosity of Ω± and the fractal uncertainty principle. To apply Proposition
6.1, we need to ensure that the scale condition is satisfied, that is to say

δ2 + τ > 1

which has been supposed when defining τ in (4.5) and (4.6). Proposition 4.1 then comes with any
0 < γ < (δ2 + τ − 1)β(ν/3).
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Appendix A.

A.1. Holder regularity for flows.

Lemma A.1. Let U ⊂ Rn be open and Y : U → Rn be a complete C1+β vector field. We note
φt(x) the flow generated by Y . Then, for any T ∈ R and K ⊂ U compact, the map

(t, x) ∈ [−T, T ]×K 7→ φt(x)

is C1+β .

Proof. We fix T,K as in the statement. We’ll use the same constants C,C ′ at different places,
with different meaning. In addition to Y , they will depend on T,K .

Since Y is C1, Cauchy-Lipschitz theorem gives the local existence and uniqueness of the flow.
It is standard that the flow is also C1 and satisfies

(A.1) ∂tdφ
t(x) = dY (φt(x)) ◦ dφt(x)

Let’s note At(x) = dφt(x) and Ξ(t, x) = dY (φt(x)). The assumption on Y implies that Ξ is β-
Hölder.
Fix (t0, x0), (t1, x1) ∈ [−T, T ] × K and let’s estimate ||At1(x1) − At0(x0)||. We split it into two
pieces and control it with the triangle inequality :

||At1(x1)−At0(x0)|| ≤ ||At1(x1)−At0(x1)||+ ||At0(x1)−At0(x0)||
It is not hard to control the first term of the right hand side using (A.1) since

||At1(x1)−At0(x1)|| =
∣∣∣∣∣
∣∣∣∣∣
∫ t1

t0

Ξ(s, x1) ◦As(x1)ds

∣∣∣∣∣
∣∣∣∣∣ ≤ C|t1 − t0|

To estimate the second term, we estimate

||∂t(At(x1)−At(x0))|| ≤ || (Ξ(t, x1)− Ξ(t, x0)) ◦At(x1) + Ξ(t, x0) ◦ (At(x1)−At(x0))||

≤ Cd(x0, x1)β + C ′||At(x1)−At(x0)||
By Gronwall’s lemma,

||At0(x1)−At0(x0)|| ≤ Cd(x0, x1)βeC
′t0 ≤ Cd(x0, x1)β

This concludes the proof. �

A.2. Proof of Lemma 3.10. We give the missing proof of Lemma 3.10 and widely use the
notations of the subsection 3.5. Its proof uses the construction of eu in the proof of Theorem 5. It
is inspired by techniques usually used to show the unstable manifold’s theorem (see for instance
[Dya18]). In fact, the smoothness of y 7→ f0(y, 0) is a direct consequence of the smoothness of the
unstable manifold Wu(ρ0). It was not clear for us if it was possible to easily deduce from this the
required smoothness of y 7→ ∂ηf0(y, 0). This is why we decided to give a proof of this proposition.
It uses the fact that eu has been constructed to satisfy RdρF (eu(ρ)) = Reu(F (ρ)) for ρ in a small
neighborhood of T . To show the lemma, we need information along all the orbit of ρ0. For this
purpose, we introduce the following, for m ∈ Z,

• ρm = Fm(ρ0) ;
• κm : Um → Vm ⊂ R2 the chart given by Lemma 3.8 centered at ρm and we assume that the

relation RdρF (eu(ρ)) = Reu(F (ρ)) holds for ρ ∈ Um. We will note (ym, ηm) the variable
in Vm ;

• Gm = κm+1 ◦ F ◦ κ−1
m : Vm → Vm+1 ;

• A reparametrization of the vector field (κm)∗eu : R(κm)∗eu = Rem where em(ym, ηm) =
t(1, sm(ym, ηm)) where sm is a slope function which is known to be C1+β .

Note that sm(ym, 0) = 0 due to the fact that κm(Wu(ρm)) ⊂ R×{0}. The hyperbolicity assumption
on F and the properties of κm allow us to write

Gm(ym, ηm) =
(
λmym + αm(ym, ηm), µmηm + βm(ym, ηm)

)
where

• For some ν < 1, 0 ≤ |µm| ≤ ν, |λm| ≥ ν−1 for all m ∈ N ;
• αm(0, 0) = βm(0, 0) = 0;
• βm(ym, 0) = 0 for (ym, 0) ∈ Vm
• dαm(0, 0) = dβm(0, 0) = 0 ;
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• We can assume that Um are sufficiently small neighborhoods of ρm so that βm, αm =
O(δ0)C1(Um) for some small δ0 > 0.

The property dρF (eu(ρ)) ∈ Reu(F (ρ)) implies that d(ym,ηm)Gm
(
em(ym, ηm))

)
∈ Rem+1

(
Gm(ym, ηm)

)
.

As a consequence, the transformation of the slopes gives an equation satisfied by the family of slopes
(sm)m∈Z :

(A.2) sm+1 (Gm(ym, ηm)) = Qm
(
ym, ηm, sm(ym, ηm)

)
where Qm is the smooth function

Qm(ym, ηm, s) =
s×

(
µm + ∂ηmβm(ym, ηm)

)
+ ∂ymβm(ym, ηm)

λm + ∂ymαm(ym, ηm) + s× ∂ηmαm(ym, ηm)

Writing Gm(ym, ηm) = (ym+1, ηm+1), we deduce by differentiation of (A.2) with respect to
ηm+1: (we omit the point of evaluation of the maps involved in the right hand side to alleviate the
line)

(A.3) ∂ηm+1sm+1(ym+1, ηm+1) = ∂ymQm × ∂ηm+1ym + ∂ηmQm × ∂ηm+1ηm

+ ∂sQm ×
(
∂ymsm × ∂ηm+1ym + ∂ηmsm × ∂ηm+1ηm

)
This last equation gives the transformation of vertical derivative of the slope. We now evaluate this
identity at the point (ym+1, 0). In the following lines, when the variable ym and ym+1 appear in
the same equation, we implicitly assume that they are related by (ym+1, 0) = Gm(ym, 0), namely
ym+1 = λmym + αm(ym, 0). We remark that due to the fact that βm(ym, 0) = 0, Qm(ym, 0, 0) = 0
and the first term of the right hand side vanishes. The term ∂ymsm also vanishes at (ym, 0). We
will note

σm(ym) = ∂ηmsm(ym, 0)

hm(ym) = ∂ηmQm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0)

cm(ym) = ∂sQm(ym, 0, 0)× ∂ηm+1ηm(ym+1, 0)

These notations allow us to rewrite (A.3) at (ym+1, 0) :

(A.4) σm+1(ym+1) = hm(ym) + cm(ym)× σm(ym)

We observe that |∂ηm+1ηm(ym, 0)| = |µ−1
m +O(δ0)C0 | and after some computations, we see that

∂sQm(ym, 0, 0) =
µm
λm

+O(δ0)C0

As a consequence,

(A.5) |cm(ym)| = |λ−1
m |+O(δ0)C0 ≤ ν1

where, if δ0 is small enough, we can fix ν1 < 1. Moreover, cm and hm are smooth functions and their
CN norms are bounded uniformly in m, and actually by global constants depending only on F .
Furthermore, ym 7→ ym+1 is given by ym 7→ λmy+αm(ym, 0) and is an expanding diffeomorphism
provided δ0 is small enough.

We fix some small ε such that (−ε, ε) × {0} ⊂ Um for all m. Let’s note I = (−ε, ε). We will
make use of the Fiber Contraction Theorem to show that ym ∈ I 7→ σm(ym) is smooth for every
m, with uniform CN norms. For this purpose, let us introduce the following notations :

• C0 ≤ C1 ≤ . . . CN ≤ . . . a family of constant which will be specified in the sequel ;
• The complete metric space XN = {γ ∈ CN (I); ||γ||Ck ≤ Ck, 0 ≤ k ≤ N} equipped with

the CN norm ;
• The auxiliary metric space Xaux

N = {γ ∈ C0(I); ||γ||∞ ≤ CN} equipped with the C0 norm
;

• The complete metric space EN = (XN )
Z equipped with the metric

d(γ1, γ2) = sup
m∈Z
||(γ1)m − (γ2)m||CN

• Its auxiliary counterpart EauxN = (Xaux
N )

Z equipped with the metric

d(γ1, γ2) = sup
m∈Z
||(γ1)m − (γ2)m||C0
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For γ ∈ EN , let’s define Tγ with the formula (A.4) :

(Tγ)m+1(ym+1) = (hm + cmγm) (ym)

Since ym 7→ ym+1 is expanding, we see that ym+1 ∈ I =⇒ ym ∈ I. Hence, (Tγ)m+1 is well
defined on I. Our aim is to show by induction on N that for every N ∈ N, σ := (σm)m∈Z is in EN
and is an attractive fixed point of T : EN → EN .

We start with the case N = 0. We need to check that T (E0) ⊂ E0. It will be the case as soon
as

C0ν1 + sup
m
||hm||∞ ≤ C0

For instance, take C0 = 2 supm ||hm||∞
1−ν1

. Due to the fact that ||cm||C0(I) ≤ ν1, T is a contraction
with contraction rate ν1 and hence T : E0 → E0 has a unique attractive fixed point. This fixed
point is necessarily σ since σ satisfies (A.4).

Arguing by induction, we assume that σ ∈ EN , T (EN ) ⊂ EN and σ is an attractive fixed point
for T and we want to show that the same is true for N + 1. For this purpose, suppose that γ ∈ EN
is of class CN+1. Analyzing the formula defining T , we see that can can write, for m ∈ Z,

(A.6) (Tγ)(N+1)
m (ym+1) = h(N+1)

m (ym) + cm(ym)×
Å
∂ym+1

∂ym
(ym)

ã−N−1

× γ(N+1)
m (ym)

+RN,m
Ä
ym, γm(ym), . . . , γ(N)

m (ym)
ä

where RN,m : I × [−C0, C0] × · · · × [−CN , CN ] → R is a polynomial in the last N + 1 variables
with smooth coefficients in ym, uniformly bounded in m. As a consequence, there exists a global
constant C ′N+1 such that

sup
m

sup
I×[−C0,C0]×···×[−CN ,CN ]

|RN,m(ym, τ0, . . . , τN )| ≤ C ′N+1

We can then choose CN+1 ≥ CN such that

sup
m
||hm||CN+1 + C ′N+1 + ν1CN+1 ≤ CN+1

which ensures that T : EN+1 → EN+1. We now wish to use the Fiber Contraction Theorem
(Theorem 6). If γ ∈ EN , we define the map Sγ : EauxN+1 → EauxN+1 by

(Sγθ)m+1 (ym+1) = h(N+1)
m (ym)+cm(ym)×

Å
∂ym+1

∂ym
(ym)

ã−N−1

×θm(ym)+RN,m
(
ym, γm(ym), . . . , γNm(ym)

)
Due to the choice of CN+1, we see that Sγ is well defined and since we have∣∣∣∣∂ym+1

∂ym
(ym)

∣∣∣∣ ≥ 1

and ||cm||C0(I) ≤ ν1, Sγ is a contraction with contraction rate ν1, for every γ ∈ EN . In particular,
the map Sσ has a unique fixed point σN+1 ∈ EauxN+1.

The Fiber Contraction Theorem (Theorem 6) applies to the continuous map

TN : (γ, θ) ∈ EN × EauxN+1 7→ (Tγ, Sγθ) ∈ EN × EauxN+1

and (σ, σN+1) is an attractive fixed point of TN in EN × EauxN+1.
In particular, if γ ∈ EN+1, then γ̃ := (γ, γ(N+1)) ∈ EN × EauxN+1 and

lim
p→+∞

T pN γ̃ = (σ, σN+1) in EN × EauxN+1

However, by definition of Sγ ,

T pN γ̃ =
Ä
T pγ, (T pγ)

(N+1)
ä

Hence, for every fixed m, (T pγ)m converges to σm in XN and (T pγ)
(N+1)
m converges uniformly on I

to σN+1. This proves that σ is CN+1 and σ(N+1) = σN+1. We conclude that σ ∈ EN+1 is then an
attractive fixed point of T : EN+1 → EN+1, which proves the induction and concludes the proof
of Lemma 3.10.
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A.3. Proof of Lemma 5.5. We give the missing proof of Lemma 5.5. The proof is a precise
analysis of the iteration formula (5.17). We adopt the notations introduced for Lemma 5.5. We
argue by induction on J to show the property PJ :" the bound (5.18) is valid for all j ≤ J and for
all 1 ≤ i ≤ n− 1, l ∈ N with some constants Cj,l".

1. Base case. Let us start with P0. The iteration formula (5.17) implies that

ai,0(xi) =

i∏
l=1

fl(xl)

Hence, the bound ||ai,0||C0 ≤
(
Bν1/2

)i
is obvious and we can set C0,0 = 1. We now argue by

induction on i and prove the property P0,i:"the bound (5.18) is valid for j = 0, i and for all l ∈ N
for some constants Cj,l".Theses bounds are trivially true for i = 0 and are direct consequences of
Lemma 5.4 for i = 1. Suppose that the property holds for i − 1 for some i ≥ 1 and let’s show it
for i.

1.1. Case l = 1. Let us first deal with l = 1 and compute the derivative of ai,0, using the formula
: ai,0(xi) = fi(xi)ai−1,0(xi−1).

a′i,0(xi) = f ′(xi)ai−1,0(xi−1) + fi(xi)a
′
i−1,0(xi−1)

Å
∂xi−1

∂xi

ã
We use the (weak) bound

∣∣∣∂xi−1

∂xi

∣∣∣ ≤ 1 and the property P0,i−1 to show that :

||ai,0||C1 ≤ C
Ä
Bν1/2

äi−1
+ C0,1

Ä
Bν1/2

ä
×
Ä
Bν1/2

äi−1
i ≤ C0,1

Ä
Bν1/2

äi
(i+ 1)

assuming that C0,1 > C
(
Bν1/2

)−1
.

1.2. General case for l > 0. We now come back to the general case l > 0. By using the formula
ai,0(xi) = fi(xi)ai−1,0(xi−1), one sees that we can write a(l)

i,0 on the form :

a
(l)
i,0(xi) = fi(xi)a

(l)
i−1,0(xi−1)

Å
∂xi−1

∂xi

ãl
+O (||ai−1,0||Cl−1)

The constants appearing in the O depend on Cl norms of fi and φi, which, by assumption are
controlled by some uniform C ′l . Hence, using the assumption P0,i−1,

|a(l)
i,0(xi)| ≤

Ä
Bν1/2

ä
||ai−1,0||Cl

Å
∂xi−1

∂xi

ãl
+ C ′l ||ai−1,0||Cl−1

≤ C0,l

Ä
Bν1/2

ä Ä
Bν1/2

äi−1
il + C ′lC0,l−1

Ä
Bν1/2

äi−1
il−1

≤ C0,l

Ä
Bν1/2

äi
(i+ 1)l

assuming that C0,l is chosen bigger than 1
lC
′
lC0,l−1

(
Bν1/2

)−1
. As a consequence, we can build con-

stants satisfying these conditions by defining inductively C0,l = max
Ä
C0,l−1,

1
lC
′
lC0,l−1

(
Bν1/2

)−1ä
.

This ends the proof of P0,i and hence of P0.

2. Induction step. We now assume that Pj−1 is true for some j ≥ 1 and aim at proving Pj .
Again, we do it by induction on i by proving the properties Pj,i : "the bound (5.18) is true for j,i
and all l ∈ N ". Theses bounds are trivially true for i = 0 and are direct consequences of Lemma
5.4 for i = 1. Suppose that the property holds for i− 1 for some i ≥ 2 and let’s show it for i.

2.1. Case l = 0. Let’s start with l = 0. The iteration formula shows that

ai,j(xi) = fi(xi)ai−1,j(xi−1) +

j−1∑
p=0

Lj−p,i(ai−1,p)(xi−1)

By Lemma 5.4, there exists constants C ′p,m > 0 such that

||Lp,ia||Cm(Ii) ≤ C
′
p,m||a||C2p+m(Ii−1)
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Hence, assuming that (5.18) holds for ai−1,j with l = 0.

||ai,j ||∞ ≤ Cj,0
Ä
Bν1/2

ä Ä
Bν1/2

äi−1
i3j +

j−1∑
p=0

C ′j−p,0||ai−1,p||C2(j−p)

≤ Cj,0
Ä
Bν1/2

äi
i3j +

j−1∑
p=0

C ′j−p,0Cp,2(j−p)
Ä
Bν1/2

äi−1
i2(j−p)+3p

≤ Cj,0
Ä
Bν1/2

äi
i3j + i2j

Ä
Bν1/2

äi−1
j−1∑
p=0

C ′j−p,0Cp,2(j−p)i
p

≤ Cj,0
Ä
Bν1/2

äi
i3j + i2j

Ä
Bν1/2

äi−1
ñ

sup
0≤p≤j−1

C ′j−p,0Cp,2(j−p)

ô
ij − 1

i− 1

≤ Cj,0
Ä
Bν1/2

äi
i3j + i3j−1

Ä
Bν1/2

äi−1
ñ

sup
0≤p≤j−1

C ′j−p,0Cp,2(j−p)

ô
C̃j where

ij − 1

i− 1
≤ C̃jij−1

≤ Cj,0
Ä
Bν1/2

äi
(i+ 1)3j

assuming that Cj,0 is chosen bigger than Kj := 1
3j

(
Bν1/2

)−1 [
sup0≤p≤j−1 C

′
j−p,0Cp,2(j−p)

]
C̃j . As

a consequence, the bounds hold for l = 0 and i, j if we set Cj,0 = max(1,Kj).

2.2. Case l > 0. Consider now l > 0. As already done, one can write

a
(l)
i,j(xi) = fi(xi)a

(l)
i−1,j(xi−1)

Å
∂xi−1

∂xi

ãl
+O (||ai−1,j ||Cl−1) +

j−1∑
p=0

(Lj−p,i(ai−1,p))
(l)

(xi−1)

As usual, the constants in O depend on l, j but not on i and we note C ′′l,j the constant in this O.
Hence, we can control :

||a(l)
i,j ||∞ ≤ Cj,l

Ä
Bν1/2

ä Ä
Bν1/2

äi−1
il+3j + C ′′l,jCj,l−1

Ä
Bν1/2

äi−1
il+3j−1 +

j−1∑
p=0

||Lj−p,i(ai−1,p)||Cl

≤ Cj,l
Ä
Bν1/2

äi
il+3j + C ′′l,jCj,l−1

Ä
Bν1/2

äi−1
il+3j−1 +

j−1∑
p=0

C ′j−p,l||ai−1,p||Cl+2(j−p)

≤ Cj,l
Ä
Bν1/2

äi
il+3j + C ′′l,jCj,l−1

Ä
Bν1/2

äi−1
il+3j−1 +

j−1∑
p=0

C ′j−p,lCp,l+2(j−p)
Ä
Bν1/2

äi−1
il+2(j−p)+3p

≤ Cj,l
Ä
Bν1/2

äià
il+3j + il+3j−1 1

Cj,l

Ä
Bν1/2

ä−1
Ç
C ′′l,jCj,l−1 + sup

0≤p≤j−1
C ′j−p,lCp,l+2(j−p)C̃j

å
︸ ︷︷ ︸

C̃j,l

í
≤ Cj,l

Ä
Bν1/2

äi
(i+ 1)l+3j

if Cj,l ≥ C̃j,l. Eventually, we define by induction on l the constants Cj,l by setting Cj,l =

max
Ä
Cj,l−1, C̃j,l

ä
, achieving the proof of Pj . This concludes the proof of the lemma.

A.4. Upper-box dimension for hyperbolic set. This subsection is devoted to the proof of
Proposition 6.2. We will simply recall some arguments which lead to give an upper bound to the
upper box dimension. We borrow this arguments from [Bar08] (Section 4.3) and refer the reader
to this book for the definitions and properties of topological pressure (definition 2.3.1), Markov
partition (definition 4.2.6) and other references on this theory.

We’ll show that the pressure condition (Fractal) implies Proposition 6.2. We prove it for the
unstable manifolds. The proof is similar in the case of stable manifolds by changing F into F−1.
We first begin by fixing a Markov partition for T with diameter at most η0. This is possible in
virtue of Theorem 18.7.3 in [HK95]. We note R1, . . . , Rp ⊂ T this Markov partition. Here, η0 is
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smaller than the diameter of the local stable and unstable manifolds and the holonomy maps Hu/s
ρ,ρ′

are well defined for d(ρ, ρ′) ≤ η0 :

H
u/s
ρ,ρ′ : Ws/u(ρ)→Ws/u(ρ′), ζ 7→ the unique point in Wu(ζ) ∩Ws(ρ

′)

Due to our results on the regularity of the stable and unstable distributions, these maps are
Lipschitz with global Lipschitz constants. In particular, if an inequality of the kind

NWu(ρ)∩T (ε) ≤ Cε−δ

holds for some ρ, it holds for ρ′ if d(ρ, ρ′) ≤ η0 with C replaced by KδC where K is a Lipschitz
constant for the holonomy maps. We fix (ρ1, . . . , ρp) in (R1, . . . , Rp) and we set V =

⋃p
i=1Wu(ρi)∩

Ri. It is then enough to show that

dimV < 1

Indeed, if dimV < 1, for δ ∈ (dimV, 1), there exists ε0 > 0 such that

∀ε ≤ ε0, NV (ε) ≤ ε−δ

and we conclude the proof of Proposition A.4 with the above considerations on the holonomy maps.
δ := dimV satisfies the equation P (δφu) = 0. We will actually show that P (δφu) ≥ 0. Since

s 7→ P (sφu) is strictly decreasing and has a unique root, the assumption P (φu) < 0 will give δ < 1.
We will note

Ri0,...,in =

n⋂
k=0

F−i(Rik) ; Vi0,...,in = Ri0,...,in ∩ V

the elements of the refined partition at time n. Similarly to the definitions of J+
q , we will note

Ji0,...,in = inf{Jnu (ρ), ρ ∈ Ri0,...,in}

and write

cn(s) =
∑

i0,...,in

J−si0,...,in =
∑

i0,...,in

exp max
Ri0,...,in

(
s

n−1∑
k=0

φu ◦ F k
)

(the last equality follows from the chain rule). Properties of Markov partitions ensure that

P (sφu) = lim
n→∞

1

n
log cn(s)

Fix s > δ. Hence, there exists ε1 such that ∀ε ≤ ε1, NV (ε) ≤ ε−s.
Fix n ∈ N∗. By writing V =

⋃
i0,...,in

Vi0,...,in we have

NV (ε) ≤
∑

i0,...,in

NVi0,...,in (ε)

Note that
Fn(Vi0,...,in) ⊂Wu(Fn(ρi0)) ∩Rin

and
Hs
Fn(ρi0 ),ρin

(Fn(Vi0,...,in)) ⊂ Vin
Hence, if we cover Vin byN sets of diameter at most ε, U1, . . . , UN , the sets F−n◦Hs

ρin ,F
n(ρi0 )(Ui), 1 ≤

i ≤ N cover Vi0,...,in and have diameters at most KεJ−1
i0,...,in

. Hence,

NVin (ε) ≥ NVi0,...,in (KεJ−1
i0,...,in

)

which gives
NV (ε) ≤

∑
i0,...,in

NVin (εK−1Ji0,...,in)

As a consequence, if ε < ε1KJ
−1
n , where Jn = supi0,...,in Ji0,...,in , we have

NV (ε) ≤
∑

i0,...,in

KsJ−si0,...,inε
−s = Ksε−scn(s)

By iterating this process, we see that for all m ∈ N, if ε < ε1(KJ−1
n )m,

NV (ε) ≤ ε−sKmscn(s)m
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Hence,
logNV (ε)

− log ε
≤ s+m

log(Kscn(s))

− log ε
≤ s+m

log(Kscn(s))

− log
(
ε1(KJ−1

n )m
)

We then take the lim sup as ε→ 0 first and then pass to the limit as m→ +∞ and find that

dimV ≤ s+
logKscn(s)

− logKJ−1
n

Then, we pass to the limit s→ δ and find that log(Kδcn(δ)) ≥ 0. Hence,

P (δφu) = lim
n→∞

1

n
log cn(δ) ≥ lim

n→∞

−δ logK

n
= 0

This ends the proof of the required inequality and gives that dimV < 1.

A.5. From porosity to upper box dimension. We have shown that sets with upper box di-
mension stricly smaller than one are porous. In this appendix, we show a result in the other way,
namely, porous sets down to scale 0 have an upper box dimension strictly smaller than one. The
following lemma gives a quantitative version of this statement. This is not useful for our use (we
only needed the first implication) but we found that it could be of independent interest. Our proof
is based on the proof of Lemma 5.4 in [DJ18]. We adopt the same notations as in 6.1.

Lemma A.2. Let M ∈ N, ν > 0, α1 > 0. Let X ⊂ [−M,M ] be a closed set and assume that
X is ν-porous on scale 0 to α1. Then, there exists C = C(ν, α1,M) > 0, ε0 = ε0(ν, α1,M) and
δ = δ(ν) ∈ [0, 1) such that

∀ε ≤ ε0 ; NX(ε) ≤ Cε−δ

In particular,
dimX ≤ δ

Proof. We note L = d 2
ν e and k0 the unique integer such that

L−k0 ≤ α1 < L−k0+1

We will note Im,k = [mL−k, (m+ 1)L−k] for k ∈ N,m ∈ Z.
We now show by induction on k ≥ k0 that there exists Yk ⊂ Z such that :

(A.7) #Yk ≤ 2MLk0(L− 1)k−k0 ; Ω ⊂
⋃
m∈Yk

Im,k

namely, at each level k ≥ k0, one new interval Im,k does not intersect Ω.
The case k = k0 is trivial since we simply cover Ω by the intervals Im,k0 , for MLk0 ≤ m < MLk0 .
We now assume that the result is proved for k ≥ k0 and we prove it for k + 1. Fix m ∈ Yk. We
write I =

⋃L−1
j=0 ImL+j,k+1. We claim that among the intervals ImL+j,k+1, at least one does not

intersect Ω. Indeed, since |I| ≤ L−k0 ≤ α1, the porosity of Ω implies the existence of an interval
J ⊂ I of size ν|I| = νL−k ≥ 2L−k−1 such that J ∩Ω = ∅. Since |J | ≥ 2L−k−1, J contains at least
one of the intervals ImL+j,k+1. We note this index jm. We now set

Yk+1 =
⋃
m∈Yk

{mL+ j, j ∈ {0, . . . , L1} \ jm}

By the property of jm, Ω ⊂
⋃
m∈Yk+1

Im,k+1 and #Yk+1 ≤ (L− 1)#Yk ≤ (L− 1)k+1−k02MLk0 .
We now consider ε ≤ 1

2L
−k0 and write k the unique integer such that

L−k ≤ 2ε < L−k+1 i.e. k =

°− log(2ε)

logL

§
Since we can cover Ω by 2MLk0(L − 1)k−k0 closed intervals of size L−k, we can cover Ω by
4MLk0(L− 1)k−k0 open intervals of size 2ε. Hence,

NΩ(ε) ≤ 4MLk0(L− 1)k−k0 ≤ 4M

Å
L

L− 1

ãk0

(L− 1)−
log(2ε)
logL +1 ≤ Cε−δ

with δ = log(L−1)
logL ∈ [0, 1) and C = 4M

Ä
L
L−1

äk0

(L− 1)1− log 2
logL . �
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I0,k0

I0,k0+1 I1,k0+1

I3,k0+2

. . .

I4,k0+2 I5,k0+2

. . .

I2,k0+1

I6,k0+2

. . .

I7,k0+2

. . .

I8,k0+2

Figure 16. It illustrates the tree structure of the family of intervals Ik,m with
L = 3. The porosity allows us to withdraw at least one child to any parent. The
missing children are drawn in red.
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