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Abstract

A generalized line tension model has been developed to estimate the criti-
cal resolved shear stress in precipitation hardened alloys. The model is based
in previous line tension models for regular arrays of either impenetrable or
shearable spherical precipitates that were expanded to take into account the
effect of the elastic mismatch between the matrix and the precipitates. The
model parameters are calibrated from dislocation dynamics simulations that
covered a wide range of precipitate diameters and spacing as well as of the
mismatch in elastic constants. This model is extended to deal with random
arrays of monodisperse spherical precipitates by changing the geometrical
parameters of the model by the averaged ones corresponding to the random
distributions. The model predictions were in good agreement with the criti-
cal resolved shear stresses obtained from dislocation dynamics simulations of
random spherical precipitates distributions for both impenetrable and shear-
able precipitates, providing a fast and accurate tool to predict precipitate
strengthening in metallic alloys.
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1. Introduction

Precipitation hardening is one of the most effective strategies to increase
the yield strength of metals, and it is always present in high strength alloys
(Ardell, 1985; Kelly and Nicholson, 1971; Martin, 1998). Precipitation hard-
ening is achieved by the dispersion in the metallic matrix of second phases
or precipitates (with average size in the range of a few nm to 1 µm) that hin-
der dislocation motion. The efficiency of precipitation hardening is known
to depend on geometrical factors (size, shape, volume fraction and spatial
distribution of the precipitates) and on the actual mechanisms of disloca-
tion/precipitate interactions (either dislocation looping or shearing), which
are also affected by the differences in elastic constants between the matrix
and the precipitate, misfit strains, etc. (Nembach, 1997).

Due to the importance of this mechanism, modeling of precipitation
hardening has been a very active area of research by means of analytical
or numerical approaches. The latter generally involve complex simulations
based on molecular mechanics for the case of very small precipitates (<
10 nm) (Singh and Warner, 2010; Bonny et al., 2011; Saroukhani et al.,
2016; Esteban-Manzanares et al., 2019a,b,c) or dislocation dynamics (DD)
for larger ones (Xiang and Srolovitz, 2006; Mohles et al., 1999; Mohles, 2001;
Monnet et al., 2011; Queyreau et al., 2010). DD simulations have become
more accurate in recent years, as the most relevant mechanisms controlling
dislocation/precipitate interactions (elastic mismatch, coherency strains, ac-
tual shape and spatial distribution of the precipitates, etc.) were included
in the simulation framework (Takahashi and Ghoniem, 2008; Takahashi and
Terada, 2011; Lehtinen et al., 2016; Bocchini and Dunand, 2018; Santos-
Güemes et al., 2018; Santos-Güemes et al., 2020; Santos-Güemes et al., 2021;
Hu and Curtin, 2021).

Nevertheless, numerical predictions of the critical resolved shear stress
(CRSS) to overcome the precipitates using either molecular mechanics or
dislocation dynamics require a large computational effort. It would be very
convenient to have analytical expressions that can provide fast and accurate
estimations of the CRSS for actual metallic alloys also taking into account
the most relevant mechanisms of dislocation/precipitate interactions. This
type of approaches were pioneered by Orowan Orowan (1948), who developed
a line tension model to study precipitation hardening in the case of a square
array of impenetrable circular precipitates on the glide plane. The CRSS was
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expressed as

τOrowan
c = β

Gb

L
(1)

where β is a prefactor that depends on the dislocation line tension (and that
is assumed equal to 1 if the line tension is independent of the dislocation
character (Nembach, 1997; Martin, 1998)), G the shear modulus of the ma-
trix, b the modulus of the Burgers vector and L the inter-precipitate distance
(Orowan, 1948). This model was refined by Brown (Brown, 1964) and Bacon
(Bacon, 1967) to take into account the effect of the dislocation self-stress,
that reduces the CRSS required to bypass the precipitates due to the attrac-
tion between opposite dislocation segments bowing around the precipitate.
They provided an expression for the CRSS (the so-called Bacon, Kocks and
Scattergood (BKS) model) by fitting the results of DD simulations, which
reads (Bacon et al., 1973):

τBKS
c = A

Gb

L

[
ln

(
D̄

b

)
+B

]
(2)

where A is a constant that depends on the dislocation character, D̄ the
harmonic mean of L and the precipitate diameter D, D̄ = (D−1 + L−1)−1,
and B = 0.7 is a constant to fit the model predictions to the results provided
by DD simulations.

These expressions were further extended to deal with random distribu-
tions of spherical precipitates (Foreman and Makin, 1966; Kocks, 1966) and
Bacon et al. (Bacon et al., 1973) proposed the following expression for the
CRSS including the effect of the dislocation arms interactions for random
distributions of spherical precipitates (Nembach, 1997):

τBKS,rand
c =

1

2π
√

1− ν
Gb

〈L〉

[
ln
(
2D̄/b

)]3/2

[ln (〈L〉/b)]1/2
(3)

where 〈L〉 stands for the average inter-precipitate distance and the constant
1/(2π

√
1− ν) is the geometric mean of the constant A for edge and screw

dislocations. Further investigations extended these results to other precipi-
tate geometries (disks, rods) which appear in different alloys (Nie et al., 1996;
Nie and Muddle, 1998; Nie, 2003; Nie and Muddle, 2008).
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L

FP

2θc

Figure 1: Schematic of a dislocation bowing around two point-like obstacles separated by
a distance L. The dislocation exerts a force on the obstacles that increases as the angle θ
between the dislocation arms decreases. The dislocation is sheared when this force reaches
FP , the precipitate strength.

Shearable precipitates were considered initially as point-like obstacles of
finite strength. The precipitate strength was characterized by the maximum
force that the obstacle can withstand before shearing, that is related to the
angle formed by the dislocation arms around the precipitates (Fig. 1). Friedel
calculated the CRSS for a random distribution of point-like obstacles that
can be sheared by dislocations as (Friedel, 1964)

τ sh,randc =
Gb

〈L〉
ln(〈L〉/b)

2π
(cos(θc))

3/2 (4)

where θc is the critical angle that defines the precipitate strength, FP . This
model was valid under the assumption of weak precipitates, θc > 45◦) (Fore-
man and Makin, 1966).

Nevertheless, the approximation based on point-like obstacles cannot be
extended to finite-size precipitates. Shearable finite-size precipitates were
analyzed by Monnet (Monnet, 2018) through the introduction of a friction
stress to dislocation motion, τP , that hinders the movement of the dislocation
segments within the precipitate. The strength of the precipitate is then
controlled by τP , that accounts for the contributions of chemical, stacking
fault and antiphase boundary energies (in the case of ordered precipitates)
as well as from other sources of resistance to precipitate shearing (Peierls
stress) (Nembach, 1997). Thus, the CRSS for a regular square distribution
of spherical precipitates with diameter D in the slip plane is obtained from
the mechanical equilibrium between the dislocation driving force due to the
applied shear stress and the resistance to precipitate shearing and it is given
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Lctc

FP=τPbD

Figure 2: Schematic of a dislocation bowing around two finite size spherical obstacles of
diameter D in the slip plane separated by a distance L. The maximum force that the
precipitate can withstand is related to the friction stress in the precipitate, τP , according
to FP = τP bD.

by (Fig. 2):

τ shc =
τPD

Lctc

(5)

where Lctc is the centre-to-centre distance between precipitates along the
dislocation line.

These analytical expressions –based on line tension models– do not take
into account important factors that may change the CRSS, such as the elastic
mismatch between the matrix and the precipitates. Moreover, the influence
of the elastic mismatch may be different in the case of impenetrable or shear-
able precipitates (Takahashi and Ghoniem, 2008). In addition, there are no
analytical models that allow to determine accurately the effect of different
parameters (precipitate size, volume fraction, strength) on the CRSS for
both shearable and impenetrable precipitate distributions. This information
will be very useful to design precipitate hardened alloys with optimum prop-
erties that are usually found in the regions where precipitate shearing and
precipitate looping co-exist (Bellón et al., 2020).

Santos-Güemes et al. (Santos-Güemes et al., 2020; Santos-Güemes et al.,
2021) presented recently a multiscale DD framework that included the most
important physical mechanisms that control dislocation/precipitate inter-
actions, such as precipitate size, shape and spatial distribution, coherency
strains and elastic mismatch. This strategy was successfully applied to two
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different Al-Cu alloys containing either impenetrable (Santos-Güemes et al.,
2020) or shearable precipitates (Santos-Güemes et al., 2021), and the pre-
dictions of the CRSS were in excellent agreement with experimental results
obtained from micropillar compression tests of single crystals oriented for
single slip. In this investigation, this simulation strategy is used to carry out
a parametrical study of the effect of precipitate diameter and spacing on the
CRSS for a regular array of spherical precipitates. Shearable and impenetra-
ble precipitates are considered in the simulations and the effect of the elastic
mismatch is accounted for with precipitates that are either stiffer or more
compliant than the matrix. This information is used to develop a novel line
tension model that is able to predict accurately the results of the DD simu-
lations in all cases. Afterwards, the model is extended to deal with random
distributions of spherical obstacles and its predictions are validated against
new DD simulations. As a result, a novel generalized line tension model is
presented that can take into account the effect of precipitate size, volume
fraction and strength as well as of the elastic mismatch between matrix and
precipitates on the CRSS for random precipitate distributions.

2. Dislocation dynamics framework

The dislocation dynamics framework in Santos-Güemes et al. (2021) was
used in this investigation. Only the main features are presented below for the
sake of completion and more details can be found in Santos-Güemes et al.
(2021) and Kohnert and Capolungo (2021).

The dislocation lines are discretized into straight segments separated by
nodes. The velocity of node i in a glide plane is given by

vi =


[Fg

i − F
fric
i (Fg

i /|F
g
i |)]/B if |Fg

i | > F fric
i

0 if |Fg
i | ≤ F fric

i

(6)

where Fg
i is the projection of the nodal force, Fi, on the glide plane (charac-

terized by the slip plane normal n) according to

Fg
i = Fi − (Fi · n)n. (7)

6



The force on node i was computed from the forces acting on its adjacent
segments as

Fi =
∑
j

fij (8)

where fij is the force acting on the segment ij (limited by nodes i and j),
which is computed according to

fij =

∫ xj

xi

Ni(x)fpkij (x)dx (9)

where Ni is the interpolation function associated with node i and fpkij is the
Peach-Koehler force given by

fpkij (x) =
(
σ(x) · bij

)
× t̂ij (10)

where σ(x) is the stress tensor at point x, bij is the Burgers vector of the
segment ij and t̂ij the unit vector parallel to the dislocation line.

F fric
i in eq. (6) is a force threshold for dislocation glide. It is included in

the nodes of the dislocation line within a shearable precipitate and represents
the resistance to shearing of the precipitate. It can be determined from eqs.
(8) to (10) by assuming that the Peach-Koehler force in each dislocation
segment that accounts for the precipitate resistance to shearing, fpk,P

ij , is
given by

fpk,P
ij = τP b (11)

where τP stands for the threshold shear stress necessary to shear the pre-
cipitates. It should be noted that the Burgers vector b and the viscous drag
coefficient B in eq. (6) were assumed to be the same in the matrix and in
the precipitate. The values for Al were used in these simulations, following
(Cho et al., 2017; Santos-Güemes et al., 2018).

The stress field within the cubic simulation domain V , that determines
dislocation slip through the Peach-Koehler force (eq. (10)), was computed
using an efficient FFT algorithm to solve the mechanical equilibrium equa-
tions with periodic boundary conditions
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σ(x) = C(x) : [ε(x)− εp(x)], ∀x ∈ V
div(σ(x)) = 0 x ∈ V
σ · n opposite on opposite sides of ∂V
1
V

∫
V
ε(x) = E

(12)

where C denotes the fourth order elasticity tensor, ε the total strain, εp the
plastic strain and ∂V stands for the boundaries of domain V with normal
n and E is the imposed macroscopic strain. Note that the elasticity tensor
is spatially dependent on the position x, and therefore it may be different
if x is located in the matrix or in a precipitate. The plastic strain εp was
obtained from the Field Dislocation Mechanics method (Djaka et al., 2017;
Santos-Güemes et al., 2021; Kohnert and Capolungo, 2021). Details of the
FFT resolution can be found in Bertin and Capolungo (2018).

3. Simulation details

DD simulations were carried out using a cubic domain of 405 x 405 x
405 nm with periodic boundary conditions, which was discretized with a
grid of 64 x 64 x 64 voxels. Both initial edge and screw dislocations were
considered (Fig. 3). The axes of the cubic domain were aligned with the
[112], [110] and [111] directions of the α-Al fcc lattice for the case of a single
straight edge dislocation (111)[110] (Fig. 3a). In the case of a straight screw
dislocation (111)[110], the axes of the cubic domain were aligned with the
[110], [112] and [111] directions (Fig. 3b). A shear strain rate of 5 · 104s−1

parallel to the (111) plane in the [110] direction was applied to the simulation
domain (Fig. 3). The initial configuration with a single straight dislocation
in the box corresponds to a density of 6 · 1012m−2. Previous studies have
shown that the CRSS obtained from these DD simulations is independent of
the strain rate for this dislocation/precipitate configuration when the strain
rate is equal to or lower than 5 · 104s−1 (Santos-Güemes et al., 2018) and is
equivalent to the one found under quasi-static conditions. The CRSS in the
simulations corresponds to the peak stress in the shear stress - strain curve,
that is, the stress that is required for the dislocation to glide through the
entire simulation domain.

The properties of Al were chosen for the matrix. Thus, it was isotropic,
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[110]

[112][110]
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Lctc = 405 nm

[111]

τxz
(b)

b

X

Y

Z

b
Lctc = 405 nm

Figure 3: Initial configuration of the simulation domain including a spherical precipitate.
(a) Initial edge dislocation and (b) initial screw dislocation. A slip plane section is shown
below for both cases. The slip plane intersects the precipitate in the middle.

with a shear modulus GM = 26.175 GPa, a Poisson ratio ν = 0.3 and Burgers
vector b = 0.286 nm oriented along the [110] direction. The shear modulus
of the precipitate was varied proportionally to the shear modulus of the
matrix according to GP = aGM . Thus, a = 1 corresponds to homogeneous
materials, whereas a > 1 stands for stiffer precipitates and a < 1 for more
compliant precipitates. The size of the spherical precipitate in the simulation
domain was also varied and, hence, the distance between precipitates was
changed accordingly. Different sets of simulations were performed considering
impenetrable precipitates and shearable precipitates, and the effect of the
elastic heterogeneity was analyzed in both cases.

4. Impenetrable precipitates

4.1. Homogeneous

The interaction of a dislocation with a regular square distribution of im-
penetrable spherical precipitates with the same elastic constants as the ma-
trix was studied first. Spherical precipitates impenetrable to dislocations and
with different diameters were introduced in the simulation domain, and they
interacted with edge or screw dislocations. Two stress-strain curves obtained
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a) b)

Figure 4: Shear stress - strain curve of the interaction of a dislocation with a precipitate
of D = 82 nm with the same elastic constants as the matrix. (a) Edge dislocation. (b)
Screw dislocation. A snapshot of the critical configuration at the CRSS is shown in each
case.

from the simulations with a precipitate of D = 82 nm are depicted in Fig.
4, one for an edge dislocation (a) and another for a screw dislocation (b).
A snapshot of the dislocation bowing around the precipitate in the critical
configuration is also included in both cases. It can be observed that the edge
dislocation (Fig. 4a) tends to be aligned with the vertical direction, whereas
the screw dislocation (Fig. 4b) tends to be aligned with the horizontal axis,
that coincides with the direction of the Burgers vector in each case.

This configuration has been widely studied using line tension models. In
particular, the BKS model, eq. (2), - that includes the effect of the self-
stress of the dislocation - is considered as the most accurate one (Queyreau
et al., 2010). The CRSSs obtained from the DD simulations are compared
with the predictions of eq. (2) in Fig. 5 as function of either the precipitate
diameter (Fig. 5a) or the distance between precipitates (Fig. 5b). The
prefactor A in eq. (2) depends on the dislocation line tension (and, hence,
on the dislocation character) and A = 1.1/(2π) for edge dislocations and A =
1/(2π(1−ν)) for screw dislocations because line tension of screw dislocations
is larger than that of edge dislocations. ν stands for the Poisson’s ratio of the
metallic matrix. Thus, the CRSS for screw dislocations are larger than that
for edge dislocations for a given precipitate size. Furthermore, the difference
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of the line tension favours the alignment of dislocation segments parallel to
the Burgers vector (screw character) rather than perpendicular to it (edge
character), and this influences the shape of the bowing out of the dislocation
around the precipitate. The results in Fig. 5 show very good agreement
between the BKS model and the DD simulations. Thus, the BKS model is
able to capture the abrupt reduction of the CRSS for small precipitates due
to the attraction between opposite dislocation arms. On the contrary, the
attraction of opposite dislocation arms plays a minor role on the CRSS in
the case of large precipitates.
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Figure 5: Predictions of the CRSS according to the BKS model (solid lines), eq. (2), and
to DD simulations (circles) for edge and screw dislocations with a constant Lctc (= L+D)
of 405 nm. The CRSS is given as a function of (a) the precipitate diameter D and (b) the
inter-precipitate spacing L.

4.2. Heterogeneous

DD simulations were performed with different values of the shear modulus
of the precipitate, GP , while the Poisson’s ratio was kept constant. Simu-
lations were performed in the range 1

3
GM < GP < 3GM , which covers the

elastic mismatch between matrices and precipitates in most alloys of tech-
nological interest. The presence of an elastic heterogeneity in the simulation
domain leads to a modification in the stress field, particularly in the region
close to the precipitate, that affects the movement of the dislocation line.
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a) b)

Figure 6: Shear stress - strain curves of the interaction of a dislocation with a precipitate
with D = 82 nm. The elastic constants of the precipitate are either twice the elastic
constants of the matrix (blue lines) or half (red lines). A snapshot of the configuration
when the dislocation is approaching the precipitate, indicating the effect of the image
stresses, is shown in each case. (a) Edge dislocation. (b) Screw dislocation.

This modification is the result of two interactions: the stress field of the dis-
location with the precipitate and the external load with the heterogeneous
phase. According to the literature, the influence of the former (that results
in the image stresses) is larger than the latter one Szajewski et al. (2021).
Both contributions are directly taken into account in the computation of the
mechanical fields described in the previous section.

The stress-strain curves from simulations with a precipitate of D = 82
nm stiffer than the matrix (GP = 2GM , blue lines) and a precipitate more
compliant than the matrix (GP = (1/2)GM , red lines) are plotted in Fig. 6.
The effect of the image stresses can be clearly observed when the dislocation
approaches the precipitate (see snapshots included in Fig. 6). Stiffer precip-
itates result in a repulsion of the dislocation line, increasing the shear stress
required to move the dislocation towards the precipitate. On the contrary,
softer precipitates attract the dislocation line, leading to a small reduction
in the shear stress until the dislocation touches the precipitate. The at-
traction/repulsion of the dislocation continues during the bowing out of the
dislocation around the precipitate, resulting in larger values of the CRSS for
stiff precipitates than for soft precipitates for a given precipitate diameter.
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It was found that the effect of elastic heterogeneity can be accounted for
in the BKS model assuming that the effect of the image stresses is equivalent
to a modification of the interprecipitate distance L. Therefore, an effective
distance, Leff , is introduced in eq. (2), leading to

τ imp
c =

GMb

Leff

A

[
ln

(
D̄

b

)
+B

]
(13)

where

Leff = L

(
1− D

L
α

)
(14)

and α is a factor that depends on the shear moduli of the matrix and the
precipitate, GM and GP , respectively, according to

α = sign(∆G)
9

20

(
1−min

(
GP

GM
,
GM

GP

))3/2

(15)

where ∆G = GP − GM . This phenomenological expression is valid for edge
and screw dislocations and was selected to represent accurately the DD re-
sults in a wide range of elastic mismatches, keeping a relatively simple form.
Obviously, the form of the original BKS model, eq. (2) is recovered when
GM = GP . The predictions of the CRSS from the DD simulations and from
the modified BKS model, eq. (13), are shown in Figs. 7 and 8 for edge and
screw dislocations, respectively, for different values of GP and they are in
close agreement.

The image stresses arising due to heterogeneity pushed the dislocation
away from the precipitate in the case of stiffer precipitates, reducing the
effective inter-precipitate distance. On the contrary, the image stresses at-
tracted the dislocation towards the precipitate when it was more compliant,
increasing the value of Leff . These mechanisms lead to an increase in the
CRSS for stiffer precipitates and to a reduction in the CRSS for more compli-
ant precipitates. The modified version of the BKS model is able to reproduce
the results of the DD simulations for initial edge and screw dislocations inter-
acting with a heterogeneous precipitate, both in the case of stiffer and more
compliant precipitates. It can be observed that the effect of the elastic het-
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Figure 7: Comparison of the predictions of the CRSS for impenetrable and heterogeneous
precipitates according to eq. (13) (solid lines), with the results of DD simulations for edge
dislocations with a constant Lctc (= L+D) of 405 nm. The different colours represent the
different elastic constants of the precipitate with respect to the matrix (GP = aGM ). The
CRSS is given as a function of (a) the precipitate diameter D and (b) the inter-precipitate
spacing L.

erogeneity increases with the elastic mismatch and the size of the precipitate,
being negligible for small precipitates.

5. Shearable precipitates

5.1. Homogeneous

The CRSS to cut a shearable and homogeneous precipitate can be deter-
mined from the mechanical equilibrium between the driving force associated
with the applied shear stress on the glide plane and the resistance of the
precipitate to shearing according to eq. (5) (Monnet, 2018). This expres-
sion only includes information about geometrical parameters and the friction
stress in the precipitate but it does not incorporate information about the
elastic properties or the dislocation character. Therefore, the CRSS predicted
is the same for edge and screw dislocations.

The shear stress-strain curves obtained from DD simulations of the inter-
action of an edge and a screw dislocation with a shearable precipitate of D
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Figure 8: Comparison of the predictions of the CRSS for impenetrable and heterogeneous
precipitates according to eq. (13) (solid lines), with the results of DD simulations for screw
dislocations with a constant Lctc(= L+D) of 405 nm. The different colours represent the
different elastic constants of the precipitate with respect to the matrix (GP = aGM ). The
CRSS is given as a function of (a) the precipitate diameter D and (b) the inter-precipitate
spacing L.

= 82 nm and τP = 100 MPa are plotted in Figs. 9a and b, respectively. The
snapshots of the critical configuration are also plotted for each case. The
CRSS is the same in both cases, even though the shapes of the dislocation
line shearing the precipitate are different due to the differences in line ten-
sion. This result confirms that the dislocation character does not influence
the CRSS in the case of shearable and homogeneous precipitates.

DD simulations were performed to assess the validity of eq. (5) to esti-
mate the effect of the precipitate diameter and friction stress in the CRSS.
The CRSSs predicted by the simulations are plotted in Fig. 10a and b as a
function of D/Lctc for edge and screw dislocations, respectively. The predic-
tions of the CRSS from eq. (5) for sherable precipitates and from eq. (2)
for impenetrable precipitates are also plotted in these figures. The agree-
ment in the prediction of the CRSS between DD and line tension models is
very good and confirms that the CRSS of shearable precipitates is propor-
tional to the friction stress and to the precipitate diameter. Furthermore, the
DD simulations show the transition between the shearable and impenetrable
regimes that is captured by the intersection between the analytical models
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a) b)

Figure 9: Shear stress - strain curves of the interaction of a dislocation with a shearable
precipitate of D = 82 nm with the same elastic constants as the matrix. The friction
stress of the precipitate is τP = 100 MPa. A snapshot of the critical configuration at the
CRSS is shown in each case. Green dislocation segments are located in the matrix while
red segments are within the precipitate. (a) Edge dislocation. (b) Screw dislocation.

for impenetrable and shearable precipitates. Thus, shearable precipitates be-
have as impenetrable ones if the friction stress and/or the diameter are high
enough. The dislocation is not able to shear completely the precipitate that
is finally overcome by the formation of an Orowan loop.

It should be noted that the CRSS in these simulations refers to the maxi-
mum shear stress required to overcome the precipitate by the first dislocation.
If the first dislocation shears the precipitate, subsequent dislocations (that
appear in the simulations due to the periodic boundary conditions) also shear
the precipitate leading to the same value of the CRSS. However, an Orowan
loop is formed around the precipitate if the first dislocation cannot shear
the precipitate. The next dislocation that approaches the precipitate is re-
pelled by the Orowan loop and, thus, the CRSS to overcome the precipitate
increases, leading to strain hardening. This process is repeated with sub-
sequent dislocations, leading to the formation of a dislocation pile-up until
the driving force in the inner loop is large enough to overcome τP and the
precipitate is sheared. This behavior is in agreement with experimental evi-
dence in θ′ precipitates in Al-Cu alloys (Kaira et al., 2018) or β′1 precipitates
in Mg-Zn alloys (Alizadeh and LLorca, 2020). In both cases, the precipitates
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a) b)

Figure 10: Comparison of the predictions of the CRSS for shearable and homogeneous
precipitates according to eq. (5) (solid lines) with the results of DD simulations for different
values of τP . The dashed black line represents the case of impenetrable precipitates. (a)
Edge dislocation. (b) Screw dislocation.

are initially impenetrable to dislocations but they are finally sheared due to
the formation of dislocation pile-ups after enough deformation is applied.

5.2. Heterogeneous

The influence of the elastic mismatch between the precipitate and the
matrix on the CRSS for shearable precipitates is more complex than for im-
penetrable ones because it depends on whether the dislocation segments are
inside or outside the precipitate. When the dislocation line is outside the
precipitate, the dislocation is repelled by precipitates that are stiffer than
the matrix and attracted by those that are more compliant than the matrix.
When the dislocation line is inside the precipitate, the driving force for dis-
location slip increases (with respect to that in the matrix) if the precipitate
is stiffer than the matrix and decreases in the opposite case. The influence
of these mechanisms on the CRSS can be firstly assessed by analyzing the
interaction of a dislocation with a shearable precipitate whose friction stress
is τP = 0. In this case, the propagation of the dislocation within the precip-
itate is only controlled by the image stresses due to the heterogeneity. The
shear stress-strain curves resulting form the interaction of an edge dislocation
with a shearable precipitate of D = 82 nm and τP = 0 are plotted in Figs.
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11a and b when the precipitate is stiffer or more compliant than the matrix,
respectively. The initial shape of the shear stress-strain curve is identical to
the one found for impenetrable precipitates: the dislocation line is attracted
by the more compliant precipitate and repelled by the stiffer one. However,
the dislocation/precipitate interactions in both cases are different when the
dislocation begins to shear the precipitate. In the case of a softer precipi-
tate (Fig. 11a), the dislocation penetrates the precipitate until a minimum is
reached in the stress-strain curve because the driving force on the dislocation
segments within the precipitate (red segments in Fig. 11a) is reduced due to
the lower shear modulus of the precipitate. Thus, the applied shear stress
has to be increased to shear completely the precipitate. On the contrary,
most of the hardening provided by the stiffer precipitate is attained before
the dislocation penetrates the precipitate because of the repulsion induced by
the image stresses (Fig. 11b). When the dislocation starts shearing the pre-
cipitate, the driving force on the dislocation segments within the precipitate
increases due to the larger modulus and the applied shear stress necessary
to shear the precipitate decreases. Thus, the CRSS is attained right after
precipitate shearing has started.

Hence, the elastic mismatch between matrix and precipitate always leads
to an increase in the CRSS (as compared with the homogeneous case) when
the dislocation shears the precipitate, regardless of whether the precipitate
shear modulus is larger or smaller than that of the matrix. It should be
noted that the dislocation will shear the precipitate without any hardening
in the simulations presented in Fig. 11 if the matrix and precipitate have
the same shear modulus. The linear relationship between the CRSS and
the elastic mismatch in the case of shearable precipitates is a result of the
elastic effects that control the dislocation/precipitate interactions. In the
case GP < GM , precipitate shearing is controlled by the Peach-Koehler force
on the dislocation segments inside the precipitate, which is proportional to
GP/GM . In the case GP > GM , the CRSS is determined by the repulsive
image stresses on the dislocation line as it approaches the precipitate. These
image stresses are also proportional to GP/GM .

DD simulations were performed assuming a regular square array of precip-
itates stiffer and more compliant than the matrix and with different diameters
in the slip plane. The strain rate was reduced to 104s−1 in the simulations
with lower values of the CRSS (small precipitates without friction) in order to
avoid strain rate effects. In addition, it was checked again that the influence
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Figure 11: Shear stress - strain curves of the interaction of an edge dislocation with a
shearable precipitate of D = 82 nm whose elastic constants are different from those of the
matrix. The friction stress to shear the precipitate is τP = 0. Snapshots of the evolution
of the dislocation are shown in each case. Green dislocation segments are located in the
matrix and red segments are inside the precipitate. (a) GP = 0.5GM (b) GP = 2GM .

of the strain rate (5 · 104s−1) was negligible in the simulations with larger
precipitates or higher friction stresses. The CRSSs obtained from the DD
simulations are plotted in Figs. 12a) and b) for edge and screw dislocations,
respectively, as a function of GP/GM for four different precipitate diameters.
The dependence of the CRSS with the elastic mismatch, ∆G = GP − GM ,
the precipitate diameter D and the centre-to-centre distance between precip-
itates Lctc could be expressed as

τ shc = K1|∆G|
(
D

Lctc

)K2

(16)

where K1 and K2 are constants that depend on the dislocation character
and on whether the precipitate is stiffer or more compliant than the matrix.
These parameters are given in table 1. The predictions of the CRSS according
to eq. (16) are plotted in Figs. 12a and b for edge and screw dislocations,
respectively, as a function of GP/GM for four different precipitate diameters
and they are in good agreement with the DD results.
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Figure 12: CRSS to shear precipitates without friction stress. The results obtained from
DD simulations (circles) are compared with the predictions of eq. (16) (solid lines) for dif-
ferent precipitate sizes and elastic mismatch. (a) Edge dislocation. (b) Screw dislocation.

K1 K2 K3

Edge 1.7 · 10−3 1.3 0.5
Screw 1.25 · 10−3 1 1

(a) GP > GM

K1 K2 K3

Edge 1.25 · 10−3 0.9 0.4
Screw 1.25 · 10−3 0.7 0.4

(b) GP < GM

Table 1: Values of the constants K1, K2 and K3 in eq. (16) and (17) for edge and screw
dislocations.

In order to check that the constants K1 and K2 were independent of the
particular elastic constants used so far for the matrix, new simulations were
performed in which the value of GM was increased by a factor of two (GM

= 52.35 GPa), and the values of GP were increased accordingly. Simulations
were carried out with two different precipitate sizes and an initial edge dis-
location. The CRSS obtained from the DD simulations and the predictions
of eq. (16) are plotted in Fig. 13. The agreement of the new DD simulations
with eq. (16) was also very good, regardless of the shear modulus of the
matrix and, thus, the values of K1 and K2 in eq. (16) can be considered
independent of the elastic constants.

A general model of precipitate shearing by dislocations has to include the
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Figure 13: CRSS to shear precipitates without friction stress for a matrix with GM =
52.35 GPa. The results obtained from DD simulations (circles) are compared with the
predictions of eq. (16) (solid lines) for different precipitate sizes and elastic mismatch.
The initial dislocation character was edge.

effects of the friction stress and of the image stresses due to elastic hetero-
geneity. However, direct superposition of the models for the friction stress,
eq. (5), and for the image stresses, eq. (16), is not valid because the elastic
mismatch modifies the influence of the former mechanism. Therefore, a pref-
actor depending on the shear modulus of the matrix and the precipitate, that
modulates the effect of the friction stress, is required to capture the complex
shearing of the precipitate in presence of elastic mismatch. This objective
can be accomplished with the following expression

τ shc = K1|∆G|
(
D

Lctc

)K2

+

(
GM

GP

)K3

τP
D

Lctc

(17)

where the first term accounts for the effect of the image stresses on the CRSS
(eq. (16)) and the second term is identical to eq. (5) but includes a prefactor
that depends on the ratio between matrix and precipitate elastic constants.
The constants K1 and K2 in eq. (17) are those from eq. (16) (that can be
found in table 1), and the constant K3 modulates the influence of the elastic
mismatch on the friction stress. K3 depends on whether the precipitate is
stiffer or more compliant than the matrix and on the dislocation character
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and the values for each case can also be found in table 1. K3 was determined
for each case by fitting the predictions of the CRSS obtained with eq. (17)
to the results obtained with a regular square array of spherical precipitates
with different diameters D, center-to-center spacing Lctc, elastic mismatch
∆G and friction stress τP for either edge or screw dislocations. Eq. (17) is,
thus, a line tension model of precipitate shearing by dislocations that recovers
the particular models when the medium is homogeneous (GP = GM ,∆G = 0,
eq. (5)) or the friction stress in the precipitate is null (τP = 0, eq. (16)).
The validation of the model with τP 6= 0 is presented below.

6. Generalized line tension

The line tension models developed above account for the by-pass of the
precipitates by either shearing or the formation of an Orowan loop. When
both mechanisms are possible (because the precipitates can be sheared by
dislocations), the CRSS will be given by the lowest value necessary to over-
come the precipitate as given by the line tension model for impenetrable
precipitates, eq. (13), and the line tension model for shearable precipitates,
eq. (17):

τc = min(τ imp
c , τ shc ) (18)

and the equations of each of the models have been summarized in table 2 for
the sake of clarity. The CRSSs obtained with this generalized line tension
model are compared with those determined by means of DD in Figs. 14-17.
Each figure includes the results obtained with either edge or screw disloca-
tions for one magnitude of the elastic mismatch (GP/GM = 1/3, 1/2, 2 and
3) and the CRSS is plotted as a function of D/Lctc for different values of the
friction stress of the precipitate. Obviously, τP = ∞ stands for impenetra-
ble precipitates. The impenetrable regime is represented by a dashed black
line, corresponding to eq. (13), while the generalized line tension model pre-
dictions for shearable precipitates, eq. (17), are shown by solid lines whose
colour depends on the friction stress of the precipitate. The agreement be-
tween DD simulations and the generalized line tension model is very good.
Furthermore, the generalized model is able to capture the transition between
the impenetrable and shearable regimes.

22
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Figure 14: Comparison of the predictions of the CRSS with the generalized model, eq.
(18), with the results of DD simulations. (a) Edge dislocation. (b) Screw dislocation. The
dashed black line represents the model predictions for impenetrable precipitates while the
solid lines stand for the results for shearable precipitates. The DD results are plotted as
open circles. GP /GM = 1/3.

a) b)

Figure 15: Comparison of the predictions of the CRSS with the generalized model, eq.
(18), with the results of DD simulations. (a) Edge dislocation. (b) Screw dislocation. The
dashed black line represents the model predictions for impenetrable precipitates while the
solid lines stand for the results for shearable precipitates. The DD results are plotted as
open circles. GP /GM = 1/2.
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Figure 16: Comparison of the predictions of the CRSS with the generalized model, eq.
(18), with the results of DD simulations. (a) Edge dislocation. (b) Screw dislocation. The
dashed black line represents the model predictions for impenetrable precipitates while the
solid lines stand for the results for shearable precipitates. The DD results are plotted as
open circles. GP /GM = 2.

a) b)

Figure 17: Comparison of the predictions of the CRSS with the generalized model, eq.
(18), with the results of DD simulations. (a) Edge dislocation. (b) Screw dislocation. The
dashed black line represents the model predictions for impenetrable precipitates while the
solid lines stand for the results for shearable precipitates. The DD results are plotted as
open circles. GP /GM = 3.
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Shearable Impenetrable

GM = GP τ shc = τP D
Lctc

τ imp
c = GM b

L
A
[
ln
(

D̄
b

)
+B

]
GM 6= GP τ shc = K1|∆G|

(
D

Lctc

)K2

+
(

GM

GP

)K3

τP D
Lctc

τ imp
c = GM b

Leff
A
[
ln
(

D̄
b

)
+B

]
Table 2: Summary of the expressions of the line tension models to predict the CRSS of a
regular square array of spherical precipitates. See text for details.

7. Strengthening of random precipitate distributions

The generalized line tension model developed above provides accurate
results for the CRSS in the case of a regular square array of spherical pre-
cipitates in the slip plane. Nevertheless, precipitate distributions in metallic
alloys are usually random and it is interesting to extend the results of the
generalized line tension model to this scenario. A simple approach to ex-
tend the generalized line tension model to random precipitate distributions
is based on the modification of the geometrical parameters of the model.

Regarding the precipitate diameter D, it should be noticed that the slip
plane may intersect the precipitate at any height in a random distribution.
Thus, the ”planar diameter” (understood as the mean diameter of the cir-
cular intersection between the slip plane and the spherical precipitate) may
range from 0 (no intersection) to D (intersection at the centre of the sphere).
For the case of a random distribution of spherical precipitates of constant
diameter D, the mean planar diameter is given by (Nembach, 1997):

〈D〉 =
π

4
D. (19)

The average inter-precipitate distance 〈L〉 can be computed as:

〈L〉 = 〈Lctc〉 − 〈D〉 (20)

where 〈Lctc〉 is the average center-to-center distance between precipitates,
which is equal to the square lattice spacing in the case of a regular square
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array. The average 〈Lctc〉 in the case of a random distribution of spherical
precipitates with constant diameter D is given by (Nembach, 1997):

〈Lctc〉 =
D

2

√
2π

3f
(21)

where f stands for the precipitate volume fraction.

Finally, the average effective distance, 〈Leff〉 is given by

〈Leff〉 = 〈L〉
(

1− 〈D〉
〈L〉

α

)
(22)

while 〈D〉 stands for the average harmonic mean of 〈L〉 and the mean planar
diameter 〈D〉, and it is expressed as

〈D〉 =

(
1

〈D〉
+

1

〈L〉

)−1

. (23)

Based on these ”averaged” geometrical descriptors, new expressions for
the CRSS in the case of either impenetrable or shearable precipitates can
be obtained. In the case of impenetrable precipitates, the starting point is
the BKS model for a random distribution of precipitates given by eq. (3).
This model can be easily modified to account for the elastic heterogeneity by
replacing 〈L〉 by the effective inter-precipitate distance 〈Leff〉 leading to

τBKS,rand
c = A

Gb

〈Leff〉

[
ln
(

2〈D〉/b
)]3/2

[ln (〈Leff〉/b)]1/2
(24)

where D̄ has been replaced by 〈D〉 to account for the random precipitate
distribution and the constant A depends on the dislocation character.

As in eq. (3), the constant A can be replaced by the geometric mean of
A for edge and screw dislocations, leading to

τBKS,rand
c =

1

2π
√

1− ν
Gb

〈Leff〉

[
ln
(

2〈D〉/b
)]3/2

[ln (〈Leff〉/b)]1/2
(25)
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Figure 18: Cubic simulation domain containing 12 spherical precipitates of D = 82 nm.
The initial edge dislocation line is represented by a straight black line.

which gives the CRSS for mixture of edge and screw dislocations in the
presence of a random distribution of impenetrable, spherical precipitates.

In the case of shearable precipitates, the generalized line tension model
(eq. (17)) was simply modified by replacing D and Lctc by the correspond-
ing average planar diameter 〈D〉 and average center-to-center spacing 〈Lctc〉,
respectively. Thus, the generalized line tension model for a random arrange-
ment of shearable precipitates is given by:

τ sh,randc = K1|∆G|
(
〈D〉
〈Lctc〉

)K2

+

(
GM

GP

)K3

τP
〈D〉
〈Lctc〉

(26)

where 〈D〉 and 〈Lctc〉 are given by eq. (19) and (21) respectively. The
constants K1, K2 and K3 in eq. (26) are the same ones used for the regular
square array of precipitates given in Table 1. It should be noticed that they
are different for edge and screw dislocations and also depend on whether the
precipitate is stiffer than the matrix or viceversa.

In order to validate eqs. (24) and (26), new DD simulations were carried
out to determine the CRSS to overcome a random distribution of spherical
precipitates. The periodic simulation domain of 405 x 405 x 405 nm3 included
12 spherical precipitates randomly distributed. Two different precipitate di-
ameters were used in the simulations (D = 82 nm and 70 nm), leading to two
different precipitate volume fractions (f = 5.3% and 3.2%). 10 different pre-
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cipitate realizations were generated for each precipitate diameter (or volume
fraction) and simulations for each realization were performed assuming that
the domain contained either an edge or screw straight dislocation segment.
An example of the domain with 12 precipitates of 82 nm in diameter and an
edge dislocation line is shown in Fig. 18. The orientations of the domains
are equivalent to the ones in Fig. 3 and a shear strain rate of 5 · 104s−1 was
applied to drive the dislocation motion. Three simulations were carried out
for each precipitate distribution, assuming that the precipitates were either
impenetrable to dislocations or could be sheared. In the latter case, two
different values of the friction stress τP (either 50 MPa or 100 MPa) were
used. Moreover, simulations were performed assuming that GP = GM or
GP = 2GM .

The average values (and the corresponding standard deviations) of the
CRSS obtained from 10 DD simulations with a initial edge dislocation are
plotted in Figs. 19a and b as a function of the precipitate volume fraction
when GP = GM or GP = 2GM , respectively. Similarly, results corresponding
to an initial screw dislocations are shown in Figs. 20a and b. The predictions
of eqs. (24) and (26) for random distributions of impenetrable and shearable
spherical precipitates, respectively, are plotted as solid lines in these figures.
The agreement between the generalized line tension models and the results
of the DD simulations is very good, particularly for shearable precipitates.
In the case of impenetrable precipitates, the predictions of eq. (24) are also
excellent for the case of edge dislocations and overestimate slightly the DD
results for screw dislocations.

It is worth noting that the expression for the CRSS of shearable precipi-
tates is a function of 〈D̄〉/〈Lctc〉, which -according to eqs. (19) and (21)- only
depends on the precipitate volume fraction f and not on other geometrical
parameters. Thus, the CRSS for a random distribution of spherical shearable
precipitates can be expressed as

τ sh,randc = K1|∆G|

(√
3πf

8

)K2

+

(
GM

GP

)K3

τP
√

3πf

8
. (27)

In order to confirm this result, 10 different random distributions of spher-
ical precipitates with different diameters (D = 27, 45 and 66 nm) and the
same precipitate volume fraction (2%) were generated in a domain with the
same dimensions as above. Obviously, the total number of precipitates in the
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Figure 19: Comparison of the predictions of the CRSS with the generalized line tension
model for edge dislocations and random precipitate distributions, eqs. (24) and (26), with
the results of DD simulations for different precipitate volume fractions. The average values
from the DD simulations are indicated by open circles, along with the error bars indicating
the standard deviation. The model predictions are plotted as solid lines. (a) GP = GM

(b) GP = 2GM

distributions decreased as the precipitate diameter increased to keep constant
the volume fraction. DD simulations were carried out using the same condi-
tions indicated at the beginning of this section. Homogeneous precipitates,
GP = GM , were considered in all cases. The average values and standard
deviation of the CRSS obtained from the simulations are plotted as a func-
tion of the precipitate diameter D in Fig. 21. They include the results of
the simulations carried out with either an initial edge or screw dislocation.
Therefore, the average values and standard deviations in Fig. 21 were ob-
tained from 20 DD simulations, 10 with an initial edge dislocation and 10
with an initial screw dislocation. One set of simulations was carried out as-
suming that the precipitates were impenetrable to dislocations and two other
sets of simulations assumed shearable precipitates with τP = 50 MPa and
100 MPa.

The predictions of eqs. (25) and (27) for random distributions of impen-
etrable and shearable spherical precipitates, respectively, are also plotted as
solid lines in Fig. 21. The agreement between the generalized line tension
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Figure 20: Comparison of the predictions of the CRSS with the generalized line tension
model for screw dislocations and random precipitate distributions, eqs. (24) and (26),
with the results of DD simulations for different precipitate volume fractions. The average
values from the DD simulations are indicated by open circles, along with the error bars
indicating the standard deviation. The model predictions are plotted as solid lines. (a)
GP = GM (b) GP = 2GM

model and the results of the DD simulations for shearable precipitates is ex-
cellent and confirms that the CRSS only depends on the precipitate volume
fraction in this case. It should be noted that the predictions of the CRSS for
shearable precipitates in eq. (27) are independent of the dislocation charac-
ter when GP = GM . In the case of heterogeneous shearable precipitates, the
constants of the model (eq. 27) depend on the dislocation character, and a
weighted average may be required.

It is worth noting that the dispersion of the CRSSs obtained from the
DD simulations for different precipitate distributions mainly depends on τP

(Figs. 19, 20 and 21). Weak precipitates are not significant obstacles to
dislocation motion and they are overcome with small bow outs, leading to
similar CRSSs regardless of the precipitate spatial distribution. On the con-
trary, impenetrable precipitates have to be overcome by the formation of
dislocation loops that modify the shape of the dislocation line and, thus, the
actual precipitate distribution determines up to a large extent the CRSS.

Finally, it should be noted that eqs. (25) and (26) have been developed
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Figure 21: Comparison of the predictions of the CRSS with the generalized line tension
tension model for a constant precipitate volume fraction (f = 2%) with the results of
DD simulations for random precipitate distributions. The average values from the DD
simulations are plotted as open circles, along with the error bars indicating the standard
deviation. The model predictions are included as solid lines for impenetrable (eq. (25))
and shearable precipitates (eq. (27))

for monodisperse spherical precipitate distributions. It is likely that eq. (26)
can also provide accurate results in the case of shearable precipitates with
different shape and/or spatial distribution in so far τP is reduced. However,
this may not be the case for impenetrable precipitates and the extension of
this strategy to random distributions of precipitates with other geometries
(such as disks, plates or rods) will be the objective of further investigations.

8. Concluding remarks

A generalized line tension model has been developed to estimate the CRSS
in precipitation hardened alloys. The model is based in previous line ten-
sion models for regular arrays of either impenetrable or shearable spherical
precipitates that were expanded to take into account the effect of the elas-
tic mismatch between the matrix and the precipitates. The parameters of
the generalized line tension model were calibrated from dislocation dynamics
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simulations that covered a wide range of precipitate diameters and spacing
as well as of the elastic constant mismatch. It was found that the CRSS
increased with the ratio of the precipitate/matrix shear moduli in the case of
impenetrable precipitates while differences between the shear modulus of the
matrix and the precipitate always led to an increase in the CRSS for shear-
able precipitates, regardless of whether the precipitate was stiffer or more
compliant than the matrix.

The generalized line tension model for regular arrays of spherical precip-
itates was extended to deal with random arrays of monodisperse spherical
precipitates by changing the geometrical parameters of the model by the aver-
aged ones corresponding to the random distributions. The model predictions
were in good agreement with the CRSSs obtained from dislocation dynamics
simulations of random spherical precipitates distributions for both impene-
trable and shearable precipitates. In the latter case, it was demonstrated that
the CRSS was only a function of the precipitate volume fraction and indepen-
dent of other geometrical parameters. The generalized line tension opens the
way to carry out fast and accurate predictions of precipitate strengthening in
metallic alloys taking into account the geometrical factors that characterize
the precipitate distribution as well as the properties of matrix and precip-
itates (elastic constants, friction stress to shear the precipitate). Further
extensions of the model should be aimed at including random distribution of
precipitates with other geometries (such as disks, plates or rods) as well as
other mechanisms that influence dislocation/precipitate interactions, such as
the coherency strains.
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