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Abstract

This paper considers the problem of online optimization where the objective function is time-varying. In particular, we extend
coordinate descent type algorithms to the online case, where the objective function varies after a finite number of iterations
of the algorithm. Instead of solving the problem exactly at each time step, we only apply a finite number of iterations at
each time step. Commonly used notions of regret are used to measure the performance of the online algorithm. Moreover,
coordinate descent algorithms with different updating rules are considered, including both deterministic and stochastic rules
that are developed in the literature of classical offline optimization. A thorough regret analysis is given for each case. Finally,
numerical simulations are provided to illustrate the theoretical results.
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1 Introduction

Online learning [29], resource allocation [9], demand re-
sponse in power systems [14], and localization of moving
targets [2] are just a few examples where online convex
optimization (OCO) has been applied. In the problem
setup of OCO, the objective functions are time-varying
and are not available to the decision maker a priori.
At each time instance, after an update of the decision
variable, new information of the latest cost function is
made available to the decision maker. The objective of
the decision maker is to minimize the objective function
over time. One commonly used performance measure of
an online optimization algorithm is the notion of regret
which measures the suboptimality of the algorithm com-
pared to the outcome generated by the best decision at
each time step.

⋆ This paper was not presented at any conference. This work
was supported by the Australian Research Council under
the Discovery Projects DP170104099, DP210102454, and the
Australian Government, via grant AUSMURIB000001 as-
sociated with ONR MURI grant N00014-19-1-2571. Corre-
sponding author Y. Lin.

Email addresses: y.lin2@tue.nl (Yankai Lin),
iman.shames@anu.edu.au (Iman Shames),
dnesic@unimelb.edu.au (Dragan Nesic).

In the seminal work of [41], the method of online gra-
dient descent is proposed for OCO problems, where at
each time step the decision maker performs one gradi-
ent descent step using the latest available information. A
static regret upper bound that is sublinear in T is proved,
where T is the length of the horizon. Under stronger as-
sumptions on the cost functions such as strong convexity,
an improved logarithmic regret bound can be achieved
[10, 11, 23]. If future information is available, it can be
used to further improve the performance of the online
optimization algorithm in terms of regret bounds. The
work [15] introduces an additional predictive step fol-
lowing the algorithm developed in [41], if certain condi-
tions on the estimated gradient and descent direction are
met. Similar algorithms have also been extended to cases
where zeroth order [6,26,30,32,36] and second order [16]
oracles are used instead of (sub)gradients. The works
[6, 36] on bandit feedback consider the situation where
there are time-varying inequality constraints. In such
cases the algorithms proposed in [41] will be hard to im-
plement because of the high computational resource de-
mand of the projection operation. This motivates recent
research on online optimization algorithms with time-
varying constraints including the primal-dual algorithm
proposed in [13, 37], a modified saddle-point method
given in [9]. Other algorithms are also proposed to han-
dle stochastic constraints [38] and cover continuous-time

Preprint submitted to Automatica 26 April 2024

http://arxiv.org/abs/2201.10017v2


applications [27]. In the case where only the values rather
than the exact form of the cost function at are revealed
to the decision maker, bandit feedback based online al-
gorithms [6, 36] can be used to solve the problem, other
methods such as forward gradient [22] have also been
proposed recently to deal with the issue. The need for
applications in large-scale systems has also led to ex-
tensive research on distributed OCO. Distributed online
algorithms that achieve sublinear regret bound for con-
vex optimization problems with static constraints can
be found in [12, 28, 33]. For instance, [28] proposes a
distributed version of the dynamic mirror descent algo-
rithm which is a generalization of the classical gradient
descent methods suitable for high-dimensional optimiza-
tion problems. The work [19] proposes distributed on-
line primal-dual algorithms for optimization problems
with static coupled inequality constraints while the work
[35] studies distributed online convex optimization with
time-varying inequality constraints in the discrete-time
setting. For a more detailed documentation of recent ad-
vances of online optimization, we refer the readers to the
survey paper [17].

To the best of our knowledge, Coordinate descent [31], as
an important class of optimization algorithms, is not suf-
ficiently analyzed by researchers in the online optimiza-
tion community. In coordinate descent algorithms, most
components of the decision variable are fixed during one
iteration while the cost function is minimized with re-
spect to the remaining components of the decision vari-
able. The resulting problem is lower-dimensional and of-
ten much easier to solve. Thus, coordinate descent algo-
rithms have great potential in applications such as ma-
chine learning, where iteration with full gradient infor-
mation is computationally expensive. In [24], it is shown
that for huge scale problems, coordinate descent can
be very efficient. Another situation where one may find
coordinate descent useful is dual decomposition based
methods for distributed optimization, see [21] and ref-
erences therein. Specifically, the dual problem of multi-
agent optimal consensus results in a sum of functions
with very loose coupling between the dual variables. Cal-
culation of a component of the gradient of the dual func-
tion only involves computations and communications of
a pair of agents (or processors). Moreover, it can also
be implemented in a parallel fashion as shown in [3].
Therefore, sufficient effort has been made recently by re-
searchers to develop theoretical performance guarantees
of various coordinate descent algorithms [31]. In this pa-
per, we aim to extend this appealing algorithm to solve
OCO problems by providing an in-depth regret analy-
sis for different types of online coordinate descent algo-
rithms.

The main contributions of the paper can be summarized
as follows. First, we extend the coordinate descent algo-
rithms considered in [31] to the online case and provide
their regret analysis. To the best of our knowledge, this
is the first attempt to look at possibilities of using coor-

dinate descent methods to solve OCO problems. Second,
we provide an in-depth regret analysis of various coor-
dinate descent algorithms with different rules, such as
cyclic updating rules and random updating rules. Specif-
ically, we consider both random and deterministic online
coordinate descent algorithms under assumptions com-
monly used in the literature. In particular, most exist-
ing literature on OCO are based on extensions of offline
algorithms that monotonically reduce the distance from
the decision variable to the set of solutions at each it-
eration. An example is the well-known online gradient
descent [11, 41]. However, offline deterministic coordi-
nate descent algorithm, although has provable conver-
gence properties to the set of solutions, does not neces-
sarily result in an updated variable that is closer to the
set of solutions at each iteration. We overcome this is-
sue by using predictive like updates at each time which
are detailed in Section 5. Lastly, we show that the regret
bounds achieved by our online coordinate descent algo-
rithms are comparable to those achieved by the literature
on centralized full-gradient based online algorithms.

We summarize the theoretical upper bounds of regrets
we prove in Theorem 1 to Theorem 7 for Algorithms 1,
4, 5 in the following table.

Table 1
Regret bounds proved in the paper with CT =

∑T

t=1
|x∗

t −
x∗

t−1|, CT,2 =
∑T

t=1
|x∗

t − x∗

t−1|2 and C stands for convex
cases SC stands for strongly convex cases.

Rs
T ,C Rs

T ,SC Rd
T ,C Rd

T ,SC

Alg. 1 O(
√
T ) O(log T ) O(

√
CTT ) O(CT )

Alg. 2,4 O(
√
T ) O(log T ) O(

√
CTT ) O(CT,2)

Alg. 3,5 O(
√
T ) O(log T ) O(

√
CTT ) O(CT,2)

Gradient
Method

O(
√
T )

[41]
O(log T )
[11]

O(
√
CTT )

[7]
O(CT )
[28]
O(CT,2)
[8]

The regret bounds summarized in Table 1 are consis-
tent with regret bounds of full-gradient based online
optimization algorithms proved in the existing litera-
ture [7,11,23,29] under similar settings. Our dynamic re-
gret bounds for strongly convex functions proved in The-
orems 6 and 7 might need multiple updates at each time
t. This setup is also adopted in some existing works in-
cluding [8,40] to achieve less conservative regret bounds.
It should also be noted that, although the online al-
gorithms with different update rules share the regret
bounds with the same order, the exact coefficient for the
regret bounds may still be different.

The rest of paper is organized as follows. The problem
formulation is presented in Section 2. The online coordi-
nate descent algorithm considered in this paper is given
in Section 3. Regret bounds for random online coordi-
nate descent algorithms are given in Section 4 followed
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by regret bounds for deterministic online coordinate de-
scent algorithms in Section 5. The numerical simulation
is given in Section 6. Finally the results presented in this
paper is summarized in Section 7.

Notation: Let R be the set of real numbers and R
n be

the n-dimensional Euclidean space, R≥0 (resp. R>0) be
the set of non-negative (resp. positive) real numbers. For
x, y ∈ R

n, 〈x, y〉 denotes the inner product in R
n. The

set of non-negative (resp. positive) integers is denoted
by Z≥0 (resp. Z>0). Furthermore, | · | denotes the Eu-
clidean norm of a vector x ∈ R

n. The matrix In is used to
denote the n-dimensional identity matrix and n will be
omitted when the dimension is clear. For a given vector
x, x(i) denotes the i-th component of x, xi denotes the
value of x at time i, and x(i),j denotes the value of the
i-th component of x at time j. All random variables con-
sidered in this paper are defined on a probability space
(Ω,F ,P), where Ω is the sample space, the σ-field F is
the set of events and P is the probability measure defined
on (Ω,F).

2 Problem formulation

We consider the following optimization problem

min
x∈Θ

ft(x), (1)

where ft : Rn → R is the convex cost function at time
t, x ∈ R

n is the decision variable, and Θ ⊆ R
n is the

non-empty closed convex constraint set. For simplicity,
we assume ft is continuously differentiable for any t ∈
Z≥0. Moreover, let the decision variable xt at any given
time t be partitioned as xt = [xT

(1),t, x
T
(2),t, . . . , x

T
(P ),t],

x(p),t ∈ R
np ,

∑P

p=1 np = n. The P components of the
vector are assigned to P individual processors. For any
integer p ∈ {1, . . . P}, the processor p is responsible for
updating its own “local” decision variable x(p),t [3].

Denote the minimizer of ft(x) at time t by x∗
t ∈ Θ.

We use a notion of regret to measure processors’ ability
to track x∗

t . Regret refers to a quantity that measures
the overall difference between the cost incurred by an
algorithm and the cost at the best possible point from
an offline view up to a horizon T . Two notions of regret
commonly considered in the literature are static regret
and dynamic regret. The static regret is defined as:

Rs
T : =

T
∑

t=1

ft(xt)−min
x

T
∑

t=1

ft(x)

=

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x
∗),

(2)

where x∗ := arg min
x∈Θ

∑T

t=1 ft(x) for a given T , the sub-

script T is omitted for convenience. On the other hand,

the dynamic regret is defined as

Rd
T :=

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x
∗
t ). (3)

Remark 1 Static regret is a useful performance met-
ric in applications such as static parameter estimation,
where the variable of interest is static. However, if the
variable of interest evolves over time (e.g. tracking mov-
ing targets), the notion of dynamic regret makes more
sense than its static counterpart. It can be seen from (2)
and (3) that regret captures the accumulation of errors
due to the fact that optimization problems are not solved
exactly at each step. If the regret is sublinear in T , then
the average accumulated errorRs

T /T (orRd
T /T ) will con-

verge to 0 as T → ∞. This further implies that xt con-
verges to x∗ (or x∗

t ). Although being the more appropriate
performance metric in most applications, dynamic regret
does not have a provable bound sublinear in T in general.
To obtain a sublinear regret bound, additional regularity
assumptions such as bounded variation of environment
are typically required, see [28] for example.

If stochastic algorithms are considered, similar notions
of regrets can be defined via expectations.

Rs
T :=

T
∑

t=1

E[ft(xt)]−min
x

T
∑

t=1

ft(x). (4)

Rd
T :=

T
∑

t=1

E[ft(xt)]−
T
∑

t=1

ft(x
∗
t ). (5)

With some abuse of notation, Rs
T and Rd

T are used for
both random and deterministic cases. However, this
would not lead to confusion since it should be clear
whether an algorithm is stochastic or not.

3 Online coordinate descent algorithms

We construct our online block coordinate descent algo-
rithms following the setup in [31]. At time t, we select a
component of xt to update. The updating component at
time t is denoted by it. If the i-th component is updat-
ing, then updating equation for component i is given by

x(i),t+1 = x(i),t − αt[∇(i)ft(xt)], (6)

where αt is the stepsize at time t and ∇(i)ft(xt) is the
i-th component of the gradient of f evaluated at xt at
time t. For any p 6= it, we have

x(p),t+1 = x(p),t. (7)

Then xt+1 is projected onto Θ. We define the matrix
Ut = diag(U(1),t, U(2),t, . . . , U(P ),t). For any t ∈ Z≥0 and
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1 ≤ p ≤ P , U(p),t ∈ {Inp
, 0np
}, where Inp

and 0np
denote

identity and zero matrices of dimension np, respectively.
Then the updates of the coordinate descent algorithm
at time t can be written as

xt+1 = ΠΘ(xt − αtUt[∇ft(xt)]), (8)

where ΠΘ(·) denotes projection on Θ which is well de-
fined by closedness and convexity of Θ. The following
non-expansive property of the projection operator will
be used extensively throughout the paper.

Lemma 1 [4, Proposition 3.2.1] Let Θ be a non-empty
closed convex set. We have |ΠΘ(x) − ΠΘ(y)| ≤ |x − y|,
for any x, y ∈ R

n.

In this paper, we consider the following three commonly
used schemes of selecting the updating component it.

• The random coordinate descent algorithm. In this
case, it is selected randomly with equal probability,
independently of the selections made at previous
iterations.
• The cyclic coordinate descent algorithm. In this

case, the updating component it is selected in a pre-
determined cyclic fashion: it+1 = (it mod P ) + 1.
• The coordinate descent algorithm with Gauss-

Southwell Rule. In this case, the updating component
it is selected as it ∈ arg maxi |∇(i)ft(xt)|.

In the paper, we consider the case where only one co-
ordinate is allowed to change per iteration. The results
on random coordinate descent can be extended to other
cases where probabilities of selections are unequal with
potentially overlapping components [20], such as the ran-
dom sleep scheme [34]. Intuitively speaking, if for any t
the expectation of the update direction takes the form
Γ∇ft(x) for a given positive definite diagonal matrix Γ,
then the analysis in this work can be applied with mild
modifications. Our analysis for deterministic cases can
not be trivially extended to cover overlapping compo-
nents. We aim to address this topic in future research.

Remark 2 A substantial review of variants of coordi-
nate descent algorithms can be found in [4, Section 6.5.1].
The cyclic selection of coordinates is normally assumed
to ensure convergence of the algorithm. On the other
hand, the use of an irregular order is then considered by
researchers to accelerate convergence. Particularly, it is
shown in [31] that randomization leads to faster conver-
gence in terms of expectation. Obviously, this is not guar-
anteed for each instance of the algorithm. The Gauss-
Southwell method leads to faster convergence at the cost
of extra computations and evaluations of gradients dur-
ing the selection of coordinates which can be an issue in
large-scale problems [25].

4 Regret bounds for online coordinate descent
algorithms with random coordinate selection
rules

The online random coordinate descent algorithm con-
sidered in this section is given in Algorithm 1.

Algorithm 1 Online random coordinate descent algo-
rithm

1: Initialization: x0 ∈ Θ.
2: Coordinate Selection: At time t, it = p with prob-

ability 1
P

where p ∈ {1, 2, . . . , P}.
3: Update: For i = it:

x(i),t+1 ← x(i),t − αt[∇(i)ft(xt)].

For all i 6= it:

x(i),t+1 ← x(i),t.

4: Projection: For xt+1 ← ΠΘ(xt+1).
5: Set t← t + 1 and go to Step 2.

4.1 Static regret for convex functions

Before we state the main results, we first list the assump-
tions.

Assumption 1 For any given t ∈ Z>0, x ∈ Θ and

x∗ := arg min
x∈Θ

∑T
t=1 ft(x), the following inequalities hold

uniformly in t and T for problem (1),

(i) |∇ft(x)| ≤ G,
(ii) |xt − x∗| ≤ R,

where xt is the decision variable at time t.

Remark 3 Item (ii) of Assumption 1 can be ensured if
the constraint set Θ is bounded. Moreover, when Θ is
bounded, item (i) of Assumption 1 holds in many cases
including linear regression and logistic regression [5]. By
[29, Lemma 2.6], Assumption 1 (i) implies that ft is
also Lipschitz continuous uniformly in t over Θ. These
assumptions are quite standard in the literature on online
optimization [5–7,15,17,18,28,37,39].

Before we state the first main result of the paper, we
first present the so-called doubling trick scheme stepsize
rule which is introduced in [29, Section 2.3.1].

Definition 1 (Doubling trick scheme) A stepsize
sequence {αt} is said to be chosen by the doubling trick
scheme, if for q = 0, 1, . . . , ⌈log2 T ⌉ + 1, αt = 1√

2q
in

each period of 2q iterations t = 2q, 2q + 1, . . . , 2q+1 − 1.
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Remark 4 The doubling trick scheme of stepsize
choices is particularly useful when stepsizes of type
√

1/T are needed to achieve a desirable regret bound.
Since in applications it is often unrealistic to know
the horizon T in advance, by using the doubling trick
scheme, regret bounds of the same order can be achieved
without explicit knowledge of T . The same trick will be
used extensively throughout the paper to derive regret
bounds. It should also be noted that, the doubling trick
scheme in general does not result a better regret bound
in terms orders compared to other stepsize rules [41].

The following result states that, under Assumption 1, if
the stepsize at each iteration is chosen by the doubling
trick scheme, there is an upper bound for the static regret
defined in (4). Moreover, the upper bound has the order

of O(
√
T ) for convex costs.

Theorem 1 Suppose Assumption 1 holds. Furthermore,
if the stepsize is chosen according to Definition 1. Then,
the static regret (4) achieved by Algorithm 1 satisfies

Rs
T ≤ (B1 + B2)

√
T , (9)

where B1 = PR2

2 and B2 =
√
2G2

2(
√
2−1)

.

PROOF. From (8) and Lemma 1, we have

|xt+1 − x|2 ≤ |xt − αtUt[∇ft(xt)]− x|2 = |xt − x|2

− 2αt[Ut∇ft(xt)]
T (xt − x) + α2

t |Ut∇ft(xt)|2

for any x ∈ Θ. Given xt, denote the σ-field containing
past data of Algorithm 1 up to time t by Ft. Then, by
convexity of ft, we have

E[|xt+1 − x|2|Ft] ≤

|xt − x|2 − 2αt

P
[∇ft(xt)]

T (xt − x) +
α2
t

P
|∇ft(xt)|2

≤ |xt − x|2 − 2αt

P
(ft(xt)− ft(x)) +

α2
t

P
|∇ft(xt)|2.

(10)

Substituting x∗ := arg min
x∈Θ

∑T
t=1 ft(x) in to (10), taking

total expectations using E[E[x|Ft]|Ft−1] = E[x|Ft−1] for
Ft−1 ⊂ Ft, and rearranging (10) leads to

E[ft(xt)− ft(x
∗)]

≤ P

2αt

(E[|xt − x∗|2]− E[|xt+1 − x∗|2]) +
αt

2
|∇ft(xt)|2.

(11)

Note that

Rs
T ≤

T
∑

t=1

P

2αt

(E[|xt − x∗|2]− E[|xt+1 − x∗|2])

+
T
∑

t=1

αt

2
|∇ft(xt)|2.

(12)

Due to Assumption 1 the gradient of ft is uniformly
bounded by G and |xt−x∗| is upper bounded uniformly
by R. Consequently,

T
∑

t=1

P

2αt

(E[|xt − x∗|2]− E[|xt+1 − x∗|2]) =

P

2α1
E[|x1 − x∗|2]− P

2αT

E[|xT+1 − x∗|2]

+

T
∑

t=2

(
P

2αt

− P

2αt−1
)E[|xt − x∗|2]

≤ PR2

2α1
+ R2

T
∑

t=2

(
P

2αt

− P

2αt−1
)

=
PR2

2αT

≤ PR2

2

√
T := B1

√
T .

(13)

In the last inequality of (13), the property αT ≥ 1/
√
T

is used, which is a direct consequence of the definition
of the stepsize rule. On the other hand, the remaining
term in (12) can be upper bounded as follows

T
∑

t=1

αt

2
|∇ft(xt)|2 ≤

T
∑

t=1

αt

G2

2
.

To derive the regret bound, we again use the properties
of the doubling trick scheme. First, we set the horizon to
be some known constant T ∗ and the stepsize is chosen
as the constant 1√

T∗
. Then it is obvious that

T∗

∑

t=1

αt

2
|∇ft(xt)|2 ≤

T∗

∑

t=1

αt

G2

2
≤ G2

2

√
T ∗. (14)

Since for q = 0, 1, . . . , ⌈log2 T ⌉ + 1, αt = 1√
2q

in each

period of 2q iterations t = 2q, 2q + 1, . . . , 2q+1− 1. That

5



is T ∗ = 2q. Then we can sum (14) up over any given T as

T
∑

t=1

αt

2
|∇ft(xt)|2 ≤

⌈log2 T⌉
∑

q=0

√
2q

G2

2

=
G2

2

1−
√

2
⌈log2 T⌉+1

1−
√

2

≤ G2

2

1−
√

2T

1−
√

2

≤
√

2G2

2(
√

2− 1)

√
T := B2

√
T .

(15)

Thus, the proof is complete. ✷

Remark 5 In Theorem 1, the differentiability of ft is
in fact never used. Thus the results apply to the case
where subgradients are used when ft is not differentiable
for some t as long as item 1 of Assumption 1 is satisfied
by the subgradients used in the iterations. Moreover, the
regret bound established in Theorem 1 is of the same order
as the one established in [29] for online gradient descent
under the same assumptions.

4.2 Static regret for strongly convex functions

In this part, we show that if the cost functions are
strongly convex, then we can achieve an improved static
regret bound for the online random coordinate descent
algorithms.

Assumption 2 For any t ∈ Z≥0, the function ft is uni-
formly µ-strongly convex, i.e., there exists µ > 0 such that
the following inequality holds for any t ∈ Z≥0, x, y ∈ R

n

ft(y) ≥ ft(x) +∇ft(x)T (y − x) +
µ

2
|y − x|2. (16)

Theorem 2 Suppose Assumptions 1 (i) and 2 hold. Fur-
thermore, if the stepsize is chosen as αt = P

µt
. Then, the

static regret (4) achieved by Algorithm 1 satisfies

Rs
T ≤

PG2

2µ
(1 + logT ). (17)

PROOF. Similar to (10), given xt, we have the follow-

ing relationship for any x ∈ Θ,

E[|xt+1 − x|2|Ft] ≤

|xt − x|2 − 2αt

P
[∇ft(xt)]

T (xt − x) +
α2
t

P
|∇ft(xt)|2

≤ |xt − x|2 − 2αt

P
(ft(xt)− ft(x)) − αtµ

P
|xt − x|2

+
α2
t

P 2
|∇ft(xt)|2 = (1− αtµ

P
)|xt − x|2

− 2αt

P
(ft(xt)− ft(x)) +

α2
t

P
|∇ft(xt)|2.

(18)

By substituting x∗ to (18) and rearranging the terms,
we have the following inequality

E[ft(xt)− ft(x
∗)] ≤ P

2αt

(E[|xt − x∗|2]− E[|xt+1 − x∗|2])

− µ

2
E[|xt − x∗|2] +

αt

2
|∇ft(xt)|2.

Since the gradient of ft is uniformly bounded by G, the
following inequality holds

Rs
T ≤

T
∑

t=1

[

P

2αt

(E[|xt − x∗|2]− E[|xt+1 − x∗|2])

]

−
T
∑

t=1

µ

2
E[|xt − x∗|2] +

T
∑

t=1

αt

2
|∇ft(xt)|2.

(19)

By choosing αt = P
µt

, we have the following relationship

Rs
T ≤ 0 +

T
∑

t=2

(
P

2αt

− P

2αt−1
− µ

2
)E[|xt − x∗|2]

− µT

2
E[|xT+1 − x∗|2] +

T
∑

t=1

αtG
2

2

≤ 0 +

T
∑

t=1

αtG
2

2
≤ PG2

2µ
(1 + logT ),

(20)

where the second inequality follows by expanding the
sum. Thus, the proof is complete. ✷

By making the extra assumption of strong convexity,
the sublinear static regret bound of order O(

√
T ) estab-

lished in Theorem 1 is improved to be of order O(log T )
which is consistent with the regret bound for online gra-
dient descent algorithms under the same assumptions
established in [11].
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4.3 Dynamic regret for convex functions

Now, we provide an upper bound of the dynamic regret of
the online coordinate descent algorithm. First, we define
the following measure of variations of the problem (1)
which is commonly used in the literature [23, 28]

CT :=

T
∑

t=1

|x∗
t − x∗

t−1|, (21)

where x∗
t is a solution to the optimization problem at

time t and x∗
0 can be arbitrary constant. The term CT

captures the accumulated variations of optimal points
at two consecutive time instances over time. If the cost
functions are general convex functions and an upper
bound of CT is known, the following results can be
stated.

Theorem 3 Suppose Assumption 1 holds. Furthermore,

if the stepsize is chosen as αt =
√

CT

T
, the dynamic regret

(5) achieved by Algorithm 1 satisfies

Rd
T ≤ (

5R2

2
√
CT

+ RP
√

CT )
√
T +

√
CTG

2

2

√
T .

PROOF. Substituting x∗
t in (10) for any t ≥ 2, yields

E[ft(xt)− ft(x
∗
t )] ≤ P

2αt

(E[|xt − x∗
t |2]− E[|xt+1 − x∗

t |2])

+
αt

2
|∇ft(xt)|2.

Furthermore,

T
∑

t=1

(|xt − x∗
t |2 − |xt+1 − x∗

t |2) ≤

|x1 − x∗
1|2 +

T
∑

t=2

(|xt − x∗
t |2 − |xt − x∗

t−1|2)

= |x1 − x∗
1|2 +

T
∑

t=2

2xT
t (x∗

t−1 − x∗
t ) +

T
∑

t=2

(|x∗
t |2 − |x∗

t−1|2)

≤ |x1 − x∗
1|2 + |x∗

T |2 + 2

T
∑

t=2

2|xt||x∗
t−1 − x∗

t |

≤ 5R2 + 2RCT .
(22)

Then,

Rd
T ≤

P

2αt

(5R2 + 2RCT ) +
αt

2
G2T.

Choosing the stepsize to be
√

CT

T
leads to

Rd
T ≤ (

5R2

2
√
CT

+ RP
√

CT )
√
T +

√
CTG

2

2

√
T .

✷

Remark 6 As discussed in Remark 4, the choice of step-

size
√

CT

T
can be replaced by the doubling trick scheme

(see Definition 1) to derive a regret bound of the same
order. Moreover, the exact value of CT is also not nec-
essary to derive the regret bound given in Theorem 3. If

CT is not available, a stepsize of the same order of
√

CT

T

can be used with constant factor errors. We refer read-
ers to [7, Theorem 1] for a more detailed discussion on

how to implement stepsizes of the form
√

CT

T
and ob-

tain an upper bound of CT in practice using limited in-
formation. The inclusion of CT in the dynamic regret
bound is common in existing literature [7,28,37]. As ar-
gued in [7], if CT is sublinear in T , then the overall dy-
namic regret bound in Theorem 3 will be sublinear in T ,
which is desired and consistent with the dynamic regret
bounds established in [7] for full-gradient based online
algorithms. To see this, if the variation of minimizers
decreases with the order 1/t, then CT = O(log T ) and
Rd

T ≤ O(
√
T logT ). Similarly, if the variation of mini-

mizers decreases with the order 1/tq with 0 < q < 1, then

CT = O(T 1−q) andRd
T ≤ O(T 1− q

2 ). In the worst case, by

Assumption 1, we have CT ≤ RT and Rd
T ≤ O(

√
RT ).

Thus, Rd
T /T ≤ O(

√
R), which means the correspond-

ing online algorithm incurs a steady-state tracking error.
Moreover, the error decreases with the constant bound on
the variation of minimizers.

4.4 Dynamic regret for strongly convex functions

Now, we consider the dynamic regret of the online ran-
dom coordinate descent algorithm for strongly convex
functions. As before, we considerµ-strongly convex func-
tions. In addition, we will make the following assumption
commonly seen in online optimization literature [18,23].

Assumption 3 For any t ∈ Z≥0, the gradient of ft is
uniformly Lipschitz continuous, i.e., there exists L > 0
such that the following inequality holds for any t ∈ Z≥0,
x, y ∈ R

n

|∇ft(x) −∇ft(y)| ≤ L|x− y|. (23)

It is shown in [4, Proposition 6.1.2] that under the same
conditions stated in Assumption 3, (23) is equivalent to

ft(y) ≤ ft(x) +∇ft(x)T (y − x) +
L

2
|y − x|2. (24)
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The main result regarding the dynamic regret bound of
Algorithm 1 for strongly convex functions with Lipschitz
gradients is stated as follows.

Theorem 4 Suppose ∇ft(x∗
t ) = 0 for any t ∈ Z≥0, As-

sumption 1 (i) and Assumptions 2-3 hold. If the step-
size is chosen as αt = α ≤ 2

µ+L
, the dynamic regret (5)

achieved by Algorithm 1 satisfies

Rd
T ≤

G

e
(CT + C1),

where e = 1 −
√

1− 2α
P

µL
µ+L

, CT =
∑T

t=1 |x∗
t − x∗

t−1|,
and C1 = |x1 − x∗

1| − |x∗
1 − x∗

0|.

PROOF. From (16) and (23), the following inequality
holds [4, Proposition 6.1.9] for any t ∈ Z≥0, x, y ∈ R

n

(∇ft(x)−∇ft(y))T (x− y) ≥
µL

µ + L
|x− y|2 +

1

µ + L
|∇ft(x)−∇ft(y)|2. (25)

Then, using Lemma 1, we have |xt+1 − x∗
t |2 ≤ |xt −

αUt∇ft(xt)−x∗
t |2. Next, we take the conditional expec-

tation given past history up to time t,

E[|xt+1 − x∗
t |2|Ft] ≤ −

2α

P
(∇ft(xt)−∇ft(x∗

t ))T (xt − x∗
t )

+ |xt − x∗
t |2 + α2

E[|Ut∇ft(xt)|2|Ft].
(26)

The last term in (26) can be upper bounded using the
following inequality

E[|Ut∇ft(xt)|2|Ft]≤
1

P
|∇ft(xt)−∇ft(x∗

t )|2. (27)

The inequality (27) comes from the fact that

E[|Ut∇ft(xt)|2|Ft] = |∇ft(xt)|2/P.

Combining (25), (26) and (27), we have for any t ∈ Z≥0

E[|xt+1 − x∗
t |2|Ft] ≤ (1− 2α

P

µL

µ + L
)|xt − x∗

t |2

+ (
α2

P
− 2α

P

1

µ + L
)|∇ft(xt)−∇ft(x∗

t )|2

≤(1 − 2α

P

µL

µ + L
)|xt − x∗

t |2,

(28)

where the last inequality comes from the constant step-
size choice α ≤ 2/(µ + L). By Jensen’s inequality, we
have

E|xt+1 − x∗
t |Ft| ≤

√

1− 2α

P

µL

µ + L
|xt − x∗

t |. (29)

Note that
√

1− 2α
P

µL
µ+L

< 1. Thus, there exists 0 < e <

1 such that
√

1− 2α
P

µL
µ+L

= 1− e.

Assumption 1 (i) implies |ft(x) − ft(y)| ≤ G|x − y| for
any t ∈ Z≥0 and any x, y ∈ Θ. As a result, the stochastic

dynamic regret is bounded as Rd
T ≤ GE[

∑T

t=1 |xt−x∗
t |].

Moreover, we have

|xt+1 − x∗
t+1| ≤ |xt+1 − x∗

t |+ |x∗
t − x∗

t+1|. (30)

Now taking total expectations, using (29) and summing
up both sides of (30) from t = 1 to t = T − 1 yields

Rd
T /G ≤ |x1−x∗

1|+(1−e)Rd
T /G+

T
∑

t=1

|x∗
t −x∗

t+1|. (31)

Rearranging (31) leads to

Rd
T ≤

G

e
(CT + C1).

✷

Remark 7 By assuming uniform strong convexity and
uniform Lipschitz continuity of gradients of ft, Theorem
4 improves the order of the theoretical dynamic regret
bound from O(

√
CTT ) in Theorem 3 to O(CT ), which

is consistent with results shown in [23] for full-gradient
based online algorithms. This means if problem (1) does
not change over time i.e. ft = f for any t, CT = 0 and
the regret grows at a rate O(1) which is consistent with
the convergence result of coordinate descent algorithms
in the offline setting [31]. As item (ii) of Assumption 1
is not required for proving Theorem 4, the regret bound is
applicable to unconstrained problems with bounded gra-
dients.

5 Regret bounds for online coordinate descent
algorithms with deterministic coordinate se-
lection rules

We consider two deterministic online coordinate descent
algorithms in this section and they are given in Algo-
rithms 2 and 3, respectively.

Note that both Algorithms 2 and 3 are deterministic and
update a component of the decision variable. We can
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Algorithm 2 Online cyclic coordinate descent algo-
rithm

1: Initialization: x0, i0.
2: Select Coordinate: it ← (it−1 mod P ) + 1.
3: Update: For i = it:

x(i),t+1 ← x(i),t − αt[∇(i)ft(xt)].

For all i 6= it:

x(i),t+1 ← x(i),t.

4: Projection: xt+1 ← ΠΘ(xt+1).
5: Set t← t + 1 and go to Step 2.

Algorithm 3 Online coordinate descent algorithm with
Gauss-Southwell Rule

1: Initialization: x0 ∈ Θ.
2: Select Coordinate: it ← arg maxi |∇(i)ft(xt)|.
3: Update: For i = it:

x(i),t+1 ← x(i),t − αt[∇(i)ft(xt)].

For all i 6= it:

x(i),t+1 ← x(i),t.

4: Projection: xt+1 ← ΠΘ(xt+1).
5: Set t← t + 1 and go to Step 2.

therefore relate the regrets achievable by Algorithms 2
and 3 to regret achievable by the online projected gra-
dient descent algorithm which takes the form

xt+1 = ΠΘ(xt − αt∇ft(xt)). (32)

It can be easily seen that Algorithms 2 and 3 take the
following form

xt+1 = ΠΘ(xt − αt(∇ft(xt) + νt)), (33)

where the vector νt := ∇(it)ft(xt) − ∇ft(xt) with

∇(it)ft(xt) ∈ R
n denotes the vector such that its it-th

component is ∇(it)ft(xt) while all other entries are 0.
It captures the effect of the components of the gradient
that are not updating. We use R̄s

T and R̄d
T to denote

the static and dynamic regrets of the online projected
gradient descent algorithm respectively. Then, we can
have the following result.

Proposition 1 Suppose Assumption 1 holds, then the
static regret Rs

T and dynamic regret Rd
T of iterations (33)

satisfy the following two relationships.

(1) Rs
T ≤ R̄s

T + G2
∑T

t=1 αt.

(2) Rd
T ≤ R̄d

T + G2
∑T

t=1 αt.

PROOF. By the definitions of regrets in (2) and (3),
it is obvious that Rs

T − R̄s
T = Rd

T − R̄d
T . Thus, if one of

the two items is proved, so is the other item. Since As-
sumption 1 holds, from (2) and Lemma 1, we know that

Rs
T −R̄s

T ≤
∑T

t=1 G|αtν| ≤ G2
∑T

t=1 |αt| = G2
∑T

t=1 αt.
Thus the proof is complete. ✷

By using Proposition 1, we can establish regret bounds
for Algorithms 2 and 3 using known regret bounds for
online gradient descent algorithms. Moreover, if the re-
gret bounds for online gradient descent are sublinear in T

and
∑T

t=1 αt is also sublinear in T , then the established
regret bounds for Algorithms 2 and 3 will be sublinear.

5.1 Static regret for convex functions

The following static regret bound of online projected
gradient descent algorithm is proved in [41, Theorem 1].

Lemma 2 Suppose Assumption 1 holds. Furthermore,

if the stepsize is chosen as αt =
√

1
t
, then the static

regret of online projected gradient descent iterations (32)
satisfy

R̄s
T ≤

R2
√
T

2
+ (
√
T − 1

2
)G2.

The following result on static regret bounds of Algo-
rithms 2 and 3 is a direct corollary of Proposition 1 and
Lemma 2.

Corollary 1 Suppose Assumption 1 holds. Further-

more, if the stepsize is chosen as αt =
√

1
t
, then the

static regrets of Algorithms 2 and 3 satisfy

Rs
T ≤

R2
√
T

2
+ (
√
T − 1

2
)G2 + 2G2

√
T .

PROOF. Since αt =
√

1
t
, we have

T
∑

t=1

αt = 1 +

T
∑

t=2

αt

≤ 1 +

∫ T

s=1

1√
s
ds

= 2
√
T .

The conclusion follows as a result of Proposition 1 and
Lemma 2. ✷

9



5.2 Static regret for strongly convex functions

The static regret bound in Lemma 2 is improved in [11,
Theorem 1] under the assumption of strong convexity.

Lemma 3 Suppose Assumptions 1 and 2 hold. Further-
more, if the stepsize is chosen as αt = 1

µt
, then the static

regret of online projected gradient descent algorithm (32)
satisfies

R̄s
T ≤

G2

2µ
(1 + logT ).

The following result on static regret bounds of Algo-
rithms 2 and 3 for strongly convex functions is a direct
corollary of Proposition 1 and Lemma 3.

Corollary 2 Suppose Assumptions 1 and 2 hold. Fur-
thermore, if the stepsize is chosen as αt = 1

µt
, then the

static regrets of Algorithms 2 and 3 satisfy

Rs
T ≤

3G2

2µ
(1 + log T ).

PROOF. Since αt = 1
µt

, we have

T
∑

t=1

αt = 1 +

T
∑

t=2

αt

≤ 1 +

∫ T

s=1

1

µs
ds

= 1 + logT.

The conclusion follows as a result of Proposition 1 and
Lemma 3. ✷

5.3 Dynamic regret for convex functions

We can adapt the proof of Theorem 3 to the determin-
istic case to derive a dynamic regret bound for convex
functions which is given in the following result.

Proposition 2 Suppose Assumption 1 holds. Further-

more, if the stepsize is chosen as αt =
√

CT

T
, the dynamic

regret achieved by the online gradient descent algorithm
(32) satisfies

R̄d
T ≤ (

5R2

2
√
CT

+ R
√

CT )
√
T +

√
CTG

2

2

√
T .

PROOF. From (32) and Lemma 1, we have

|xt+1 − x|2 ≤ |xt − αt∇ft(xt)− x|2

= |xt − x|2 − 2αt∇ft(xt)
T (xt − x) + α2

t |∇ft(xt)|2
(34)

for any x ∈ Θ. Substituting x∗
t to (34) results in the

following inequality for any t ≥ 2

ft(xt)− ft(x
∗
t ) ≤

1

2αt

(|xt − x∗
t |2 − |xt+1 − x∗

t |2) +
αt

2
|∇ft(xt)|2.

Note that, the inequality (22) still holds in this case
Thus, we have

R̄d
T ≤

1

2αt

(5R2 + 2RCT ) +
αt

2
G2T.

If we set the stepsize to be
√

CT

T
, we have

R̄d
T ≤ (

5R2

2
√
CT

+ R
√

CT )
√
T +

√
CTG

2

2

√
T .

✷

Using Propositions 1 and 2, we can state the following
result on dynamic regret bounds of Algorithms 2 and 3.

Corollary 3 Suppose Assumption 1 holds. Further-

more, if the stepsize is chosen as αt =
√

CT

T
, then the

dynamic regrets of Algorithms 2 and 3 satisfy

Rd
T ≤

R2
√
T

2
+ (
√
T − 1

2
)G2 + 2G2

√

CTT .

PROOF. Since αt =
√

CT

T
, we have

∑T

t=1 αt =
√
CTT . The conclusion follows as a result of Proposi-

tions 1 and 2. ✷

As discussed in Remark 6, the stepsize choice αt =
√

CT

T

can be made independent of T by using the doubling
trick scheme.

5.4 Dynamic regret for strongly convex functions

Note that when the cost functions are strongly convex
and constant stepsizes are used, the result in Proposition
1 only gives a dynamic regret bound that is linear in
T . Therefore, we aim to establish better dynamic regret
bounds for Algorithms 2 and 3. In this subsection, we
will make the following assumption on the problem (1).
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Assumption 4 The gradient of ft is block-wise Lips-
chitz continuous uniformly in t, i.e., for any 1 ≤ i ≤ P ,
there exists Li > 0 such that the following inequality
holds for any t ∈ Z≥0, x ∈ R

n, and u ∈ R
ni

|∇(i)ft(x + Hiu)−∇(i)ft(x)| ≤ Li|u|, (35)

where Hi ∈ R
n×ni is such that [H1 H2 · · ·HP ] = In.

We denote the largest Li for 1 ≤ i ≤ P by Lmax :=
max{L1, · · · , LP }. By further assuming∇ft(x∗

t ) = 0 for
any t ∈ Z≥0, the dynamic regret bounds can be derived
without Assumption 1. Therefore, they are applicable to
unconstrained problems with unbounded gradients. Be-
fore analyzing the regrets, we define the following mea-
sure of variations of the problem (1) which is first intro-
duced in [40],

CT,2 :=

T
∑

t=1

|x∗
t − x∗

t−1|2. (36)

Remark 8 Compared to CT , CT,2 can be significantly
smaller if the variation of minimizers is small. Following
the discussion in Remark 6, if the variation of minimizers
decreases with the order 1/tq with 1/2 < q ≤ 1, then CT,2

is finite while CT grows to∞ with a rate sublinear in T .
Similarly, if 0 < q < 1/2, then CT,2 = O(T 1−2q), CT =
O(T 1−q).

Theorem 5 Suppose ∇ft(x∗
t ) = 0 for any t ∈ Z≥0

and Assumptions 2-4 hold. Furthermore, we assume the
number of blocks P satisfies P < 1

B3Lmax
with B3 :=

1
µ
− 1

2L > 0. If the stepsize is chosen such that αt = α ∈
(1−

√
1−B3PLmax

Lmax
, 1+

√
1−B3PLmax

Lmax
). Then, the dynamic re-

gret (5) achieved by Algorithm 3 satisfies

Rd
T ≤

L

B4
(CT,2 + C2),

where B4 = 1
2 −

√

L( 1
µ
− 2α−α2Lmax

2P ) > 0 and C2 =

|x1 − x∗
1|2 − 2|x∗

1 − x∗
0|2.

PROOF. Let {yt} denote the sequence of real vectors
such that yt+1 = xt − αtUt[∇ft(xt)], where the value
of Ut follows the coordinate selection rule in Algorithm
3. The variable yt ∈ R

n stores the value of the deci-
sion variable xt before projection, i.e., xt = ΠΘ(yt). By
the block descent lemma [1, Lemma 3.2] and the fact
that Lmax ≥ Li for all i, we have ft(yt+1) ≤ ft(xt) +
α2Lmax

2 |∇(i)ft(xt)|2 − α|∇(i)ft(xt)|2. That is

ft(xt)− ft(yt+1) ≥ (α − α2Lmax

2
)|∇(i)ft(xt)|2, (37)

From (37) and it ∈ arg maxi |∇(i)ft(xt)|:

ft(xt)− ft(yt+1) ≥ (α− α2Lmax

2
)|∇(i)ft(xt)|2

≥ 1

P
(α− α2Lmax

2
)|∇ft(xt)|2,

(38)

Since ∇ft(x∗
t ) = 0 for any t ∈ Z≥0, minimizing both

sides of (16) with respect to y, we have ft(xt)−ft(x
∗
t ) ≤

1
2µ |∇ft(xt)|2 for any xt ∈ Θ (known as the Polyak-

 Lojasiewicz condition). Then, by (38), we have

ft(xt)− ft(x
∗
t )−(ft(yt+1)− ft(x

∗
t )) ≥ Ā|∇ft(xt)|2

≥ 2µĀ(ft(xt)− ft(x
∗
t )),

where Ā = 1
P

(α− α2Lmax

2 ). Consequently,

ft(yt+1)− ft(x
∗
t ) ≤ (1− 2µĀ)(ft(xt)− ft(x

∗
t )). (39)

By the fact that∇ft(x∗
t ) = 0 and Assumption 3, we have

ft(xt)− ft(x
∗
t ) ≤ L

2 |xt − x∗
t |2 and hence

µ

2
|xt − x∗

t |2 ≤ ft(xt)− ft(x
∗
t ) ≤ L

2
|xt − x∗

t |2. (40)

By (39) and (40), the following inequality holds as a
result of Lemma 1

|xt+1−x∗
t |2 ≤ |yt+1−x∗

t |2 ≤
L

µ
(1−2µĀ)|xt−x∗

t |2. (41)

Next we show that L
µ

(1−2µĀ) < 1
2 under the stated as-

sumptions. Since Ā = 1
P

(α − α2Lmax

2 ), it can be shown

that L
µ

(1 − 2µĀ) < 1
2 is equivalent to Lmaxα

2 − 2α +

B3P < 0 after some algebraic manipulations. When
P < 1

B3Lmax
we have 4 − 4B3PLmax > 0 and the set of

solutions to the inequality Lmaxα
2−2α+B3P < 0 with

respect to α is non-empty. Moreover the solution is given

by 1−
√
1−B3PLmax

Lmax
< α < 1+

√
1−B3PLmax

Lmax
. Therefore, the

listed conditions in the statement of the theorem ensures
that L

µ
(1− 2µĀ) < 1

2 . Thus, (41) implies

|xt+1 − x∗
t |2 ≤

1

2
|xt − x∗

t |2 −B4|xt − x∗
t |2, (42)

with B4 = 1
2 − L

µ
(1− 2µĀ) > 0.

Note that

|xt+1 − x∗
t+1|2 ≤ 2|xt+1 − x∗

t |2 + 2|x∗
t − x∗

t+1|2. (43)
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The deterministic dynamic regret (3) can be upper
bounded as follows

Rd
T =

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x
∗
t )

(24)

≤
T
∑

t=1

∇ft(x∗
t )T (xt − x∗

t ) +
L

2
|xt − x∗

t |2

=
L

2

T
∑

t=1

|xt − x∗
t |2.

(44)

From (42), we have the following relationship by sum-
ming up both sides of (43) from t = 1 to t = T − 1,

T
∑

t=1

|xt − x∗
t |2 − |x1 − x∗

1|2

≤ (1 − 2B4)

T
∑

t=1

|xt − x∗
t |2 + 2CT,2 − 2|x∗

1 − x∗
0|2.

(45)

Since B4 > 0, (45) implies leads to Rd
T ≤ L

2

∑T

t=1 |xt −
x∗
t |2 ≤ L

B4
(CT,2 + C2). ✷

Remark 9 Note that in Theorem 5, we introduce an up-
per bound that depends on the number of components P
which increases to∞ as B3 decreases to 0. This is mainly
a result of conservatism introduced in the derivation of
(41). However, we manage to improve the regret bound
in Theorem 4 from O(CT ) to O(CT,2) following the dis-
cussion in Remark 8. The bound is also valid for uncon-
strained OCO problems that are not covered by Theorem
1-4.

The following two theorems give dynamic regret bounds
without assuming an upper bound on the number of
components P . However, at each time t, potentially mul-
tiple offline steps are needed to guarantee desirable re-
gret bounds.

The modified algorithms are in Algorithm 4.

It can be seen that in Algorithms 4 and 5, at each time
t, k updates are performed where k is an integer to be
chosen. In Algorithms 2 and 3, however, only one step is
performed at each time t.

Theorem 6 Suppose ∇ft(x∗
t ) = 0 for any t ∈ Z≥0 and

Assumptions 2-4 hold and the stepsize is chosen such
that αt = α < 2

Lmax
. Let k be an integer such that B5 :=

L
µ

(1−2µA)
k+1−P

P (1+αLmax)2P−2 < 1/2 holds, then the

Algorithm 4 Online cyclic coordinate descent algo-
rithm

1: Initialization:x0 ∈ Θ, i0, κ and some integer k ≥ 1.
2: Update: At time t, κ← 1, iκ−1 ← it−1, x̂κ−1 ← xt.
3: Select Coordinate: iκ ← (iκ−1 mod P ) + 1.
4: Update: For i = iκ, such that κ ≤ k:

x̂(i),κ ← x̂(i),κ−1 − αt[∇(i)ft(x̂κ−1)].

For all i 6= iκ, such that κ ≤ k:

x̂(i),κ ← x̂(i),κ−1.

5: For κ < k, set κ← κ + 1 and go to Step 3.
6: For κ ≥ k, set t← t+1, it = ik, xt+1 ← ΠΘ(x̂k) and

go to Step 2.

Algorithm 5 Online coordinate descent algorithm with
Gauss-Southwell Rule

1: Initialization: x0 ∈ Θ, κ and some integer k ≥ 1.
2: Update: At time t, κ← 1, x̂κ−1 ← xt.
3: Select Coordinate: iκ ← arg maxi |∇(i)ft(xκ−1)|.
4: Update: For i = iκ, such that κ ≤ k:

x̂(i),κ ← x̂(i),κ−1 − αt[∇(i)ft(x̂κ−1)].

For all i 6= iκ, such that κ ≤ k:

x̂(i),κ ← x̂(i),κ−1.

5: For κ < k, set κ← κ + 1 and go to Step 3.
6: For κ ≥ k, set t ← t + 1, xt+1 ← ΠΘ(x̂k) and go to

Step 2.

dynamic regret (5) achieved by Algorithm 4 satisfies

Rd
T ≤

L

2− 4B5
(2CT,2 + C2),

where A = (α− α2Lmax

2 )/[2(1 +α2L2P )] and C2 = |x1−
x∗
1|2 − 2|x∗

1 − x∗
0|2.

PROOF. By the block descent lemma [1, Lemma 3.2]
and the fact that Lmax ≥ Li for all i, we have ft(x̂κ+1) ≤
ft(x̂κ) + α2Lmax

2 |∇(i)ft(x̂κ)|2 − α|∇(i)ft(x̂κ)|2 at any t,
for any 0 ≤ κ ≤ k − 1. That is

ft(x̂κ)− ft(x̂κ+1) ≥ (α− α2Lmax

2
)|∇(i)ft(x̂κ)|2,

Summing over all P blocks in a full round where all
components have been updated exactly once leads to

ft(x̂κ)− ft(x̂κ+P ) ≥ (α− α2Lmax

2
)

P
∑

i=1

|∇(i)ft(x̂κ+i)|2.

12



By the update equation and Lipschitz continuity
of the gradient, we have |∇ft(x̂κ) − ∇ft(x̂κ+i)|2 ≤
α2L2

∑i

j=1 |∇(j)ft(x̂κ+j−1)|2. Therefore

|∇(i)ft(x̂κ)|2

≤ (|∇(i)ft(x̂κ)−∇(i)ft(x̂κ+i)|+ |∇(i)ft(x̂κ+i)|)2

≤ 2|∇(i)ft(x̂κ+i)|2 + 2α2L2
i

∑

j=1

|∇(j)ft(x̂κ+j−1)|2.

Summing over P blocks leads to

P
∑

i=1

|∇(i)ft(x̂κ)|2 ≤ 2

P
∑

i=1

(1 + (P − i)α2L2)|∇(i)ft(x̂κ+i)|2

≤ 2(1 + α2PL2)

P
∑

i=1

|∇(i)ft(x̂κ+i)|2.

Therefore,

ft(x̂κ)− ft(x̂κ+P )

≥ (α− α2Lmax

2
)/[2(1 + α2L2P )]|∇ft(x̂κ)|2

:= A|∇ft(x̂κ)|2.

(46)

By Assumption 2, minimizing both sides of (16) with
respect to y, we have ft(x̂κ) − ft(x

∗
t ) ≤ 1

2µ |∇ft(x̂κ)|2.

Then, by (46), we have

ft(x̂κ)− ft(x
∗
t )− (ft(x̂κ+P )− ft(x

∗
t )) ≥ A|∇ft(x̂κ)|2

≥ 2µA(ft(x̂κ)− ft(x
∗
t )),

which further implies,

ft(x̂κ+P )− ft(x
∗
t ) ≤ (1− 2µA)(ft(x̂κ)− ft(x

∗
t )). (47)

By Assumption 3, we have |x̂κ+1 − x∗
t | ≤ (1 +

αLmax)|x̂κ − x∗
t |. For any k ∈ Z≥0, there exist k1 ∈ Z≥0

and k2 ∈ {1, . . . , P − 1} such that k = k1P + k2. Then,
by Assumptions 2 and 3, we have

µ

2
|x− x∗

t |2 ≤ ft(x)− ft(x
∗
t ) ≤ L

2
|x− x∗

t |2, (48)

for any x ∈ R
n. Consequently, (47) and (48) yield

|x̂k − x∗
t |2 = |x̂k1P+k2

− x∗
t |2

≤ 2

µ
(1− 2µA)k1

L

2
|x̂k2
− x∗

t |2

=
L

µ
(1 − 2µA)k1 |x̂k2

− x∗
t |2

≤ L

µ
(1 − 2µA)

k−k2
P (1 + αLmax)2P−2|xt − x∗

t |2

≤ L

µ
(1 − 2µA)

k+1−P

P (1 + αLmax)2P−2|xt − x∗
t |2,

(49)

at any t ∈ Z≥0. Since α < 2/Lmax, we have A > 0
and 0 < 1 − 2µA < 1. Hence there exists k such that

B5 = L
µ

(1− 2µA)
k+1−P

P (1 + αLmax)2P−2 < 1/2. Hence,

by Lemma 1

|xt+1 − x∗
t |2 ≤ |x̂k − x∗

t |2 ≤ B5|xt − x∗
t |2. (50)

By (44), we have Rd
T ≤ L

2

∑T

t=1 |xt − x∗
t |2. Note that

|xt+1 − x∗
t+1|2 ≤ 2|xt+1 − x∗

t |2 + 2|x∗
t − x∗

t+1|2. (51)

Summing up both sides of (51) from t = 1 to t = T − 1
using (50), we have

(1− 2B5)2Rd
T /L ≤ |x1 − x∗

1|2 + 2

T
∑

t=1

|x∗
t − x∗

t+1|2

= 2CT,2 + C2.

Since 2B5 < 1, Rd
T ≤ L

2−4B5
(2CT,2 +C2) follows. ✷

Theorem 7 Suppose ∇ft(x∗
t ) = 0 for any t ∈ Z≥0 and

Assumptions 2-4 hold and the stepsize is chosen such
that αt = α < 2

Lmax
. Let k be an integer such that B6 :=

L
µ

(1 − 2µĀ)
k+1−P

P (1 + αLmax)2P−2 < 1
2 holds, then the

dynamic regret (5) achieved by Algorithm 5 satisfies

Rd
T ≤

L

2− 4B6
(2CT,2 + C2),

where Ā = 1
P

(α− α2Lmax

2 ) and C2 = |x1 − x∗
1|2− 2|x∗

1 −
x∗
0|2.

PROOF. Following similar steps as those in the proof
of Theorem 6 and using (39) and (48) yield

|xt+1 − x∗
t |

≤ L

µ
(1− 2µĀ)

k+1−P

P (1 + αLmax)2P−2|xt − x∗
t |,

(52)

where Ā = 1
P

(α − α2Lmax

2 ) as in the proof of Theorem

5. Since Ā > 0, we know there exists k such that B6 =
L
µ

(1− 2µĀ)
k+1−P

P (1 +αLmax)2P−2 < 1
2 . Hence, we have

|xt+1 − x∗
t |2 ≤ B6|xt − x∗

t |2. (53)

From (53), the following inequality holds by summation
of both sides of (51) from t = 1 to t = T − 1

(1− 2B6)2Rd
T /L ≤ |x1 − x∗

1|2 + 2

T
∑

t=1

|x∗
t − x∗

t+1|2

= 2CT,2 + C2.

13



Since 2B6 < 1, we have Rd
T ≤ L

2−4B6
(2CT,2 +C2). ✷

6 Numerical simulations

First, we study the following unconstrained quadratic
problem

min
x∈R20

1

2
xTQtx− bTx, (54)

where b ∈ R
20 is a randomly generated constant vector,

Qt is a time-varying matrix that is positive definite for
all t ≥ 1. Moreover, all elements of Qt are in the closed
interval [1, 2]. As a result, (54) satisfies Assumptions 2-
4. Next, we discuss Assumption 1 (i) made in Theorem
4. The constant G from Assumption 1 (i) is only used to

show Rd
T ≤ GE[

∑T
t=1 |xt−x∗

t |] such that (31) holds. All
other arguments made in the proof of Theorem 4 are still
true even if G =∞. Thus, every iteration of Algorithm
1 will move xt closer to x∗

t = Q−1
t b expectation-wise,

if the stepsize is small enough. Since in our setup Q−1
t b

is uniformly bounded, the expectation of xt will remain
bounded too. This means xt and the gradient Qtxt − b
must be bounded, almost surely. We choose P = 20
and for each 1 ≤ i ≤ 20, x(i) is a scalar. The horizon
length is T = 5000, and the constant stepsize is chosen as
αt = α = 0.001. Since the static regret is always upper
bounded by the dynamic regret, we only show the plots
for dynamic regrets and their time-averages Rd

T /T .
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Fig. 1. Plots of the dynamic regrets Rd
T and their time-aver-

ages Rd
T /T .

It can be seen from Fig. 1 that when the constant stepsize
is chosen sufficiently small, the regrets in all cases have
sublinear growths and therefore their time-averages go to
0 when T is sufficiently large. This is consistent with our
theoretical results from Theorem 4-7 on strongly convex
functions. In order to see how the variation of the prob-
lem impacts the performance of the algorithms. We add
an extra term of 100I20 such that the matrix Qt is diag-
onally dominant and therefore being less sensitive to t.
We test the online algorithms in this case and the results
are shown in Fig. 2. It can be seen that when problem
(54) varies slowly with respect to time, the curves of the
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Fig. 2. Plots of the dynamic regrets Rd
T and their time-aver-

ages Rd
T /T with slow variation.

regrets in Fig. 2 have a lower growth rate compared to
the regrets shown in Fig. 1.

As expected, the algorithm using full gradient has the
best performance in terms of minimizing the dynamic
regret. Yet, it is worth mentioning that among the three
coordinate descent algorithms considered for this numer-
ical example, Gauss-Southwell rule gives the best per-
formance which is consistent with Remark 2. The extra
information of the component-wise gradient norms en-
ables a better selection of the coordinate to update. An
in-depth theoretical analysis of this problem in an online
setting is left for future work.

Next, we consider the following problem of minimizing
entropy functions online

min
x∈Θ

5
∑

i=1

x(i)

pi,t
ln

x(i)

pi,t
. (55)

The variable x ∈ Θ is decomposed into 5 scalar com-
ponents with the compact constraint set Θ = {x ∈
R

5 | 0.001 ≤ x(i) ≤ 1000, i = 1, 2, 3, 4, 5}. The values
of pi,t are such that each pi,1 is individually and ran-
domly selected from [1, 5]. For t ≥ 2, pi,t is such that
pi,t = pi,t−1 + 1

t−1 for all i. It can be verified that

the above selection ensures that |x∗
t+1 − x∗

t | = 1
t

and
CT = O(log T ). Note that the cost function in (55) is
convex but not strongly convex and hence only Theorem
1 and Theorem 3 apply. We again show the plots of dy-
namics regrets of Algorithms 1-3 and full gradient based
algorithms in Fig. 3 with constant stepsize α = 0.05 and
T = 5000. Moreover, the plot for random coordinate de-
scent is averaged over 1000 runs.

It can be seen from the Fig. 1 to Fig. 3 that, for the
quadratic problem, the dynamic regrets are a lot flat-
ter when t is large. On the other hand, the dynamic
regrets in Fig. 3 still exhibit a significant growth when
t = T = 5000 even if we select the time-varying pa-
rameters to ensure that CT = O(log T ). These findings
are consistent with the improved regret bounds shown
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in Theorems 4-7 for uniformly strongly convex functions
with uniformly Lipschitz gradients.
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Fig. 3. Plots of the dynamic regrets Rd
T and their time-aver-

ages Rd
T /T in the non-strongly convex case.

7 Summary

In this work, we have proposed an online coordinate de-
scent algorithms to deal with optimization problems that
may change over time. Three widely used update rules
of coordinate descent are considered. Under different
assumptions, we have provided different upper bounds
on the regrets of these online algorithms. In particular,
we have verified that the established regret bounds of
these coordinate descent algorithms are of similar or-
ders as those of online gradient descent methods under
same settings. The regret bounds proved in this paper
are summarized in Table 1. Lastly, a numerical example
was given to illustrate our main result. The possibilities
of using coordinates with overlapping components is an
interesting future research direction, especially for the
deterministic case. Another topic of interest is the use
of inaccurate gradient information in online coordinate
descent algorithms.
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[5] Xuanyu Cao and Tamer Başar. Decentralized online convex
optimization with feedback delays. IEEE Transactions on

Automatic Control, 67(6):2889–2904, 2022.

[6] Xuanyu Cao and KJ Ray Liu. Online convex optimization
with time-varying constraints and bandit feedback. IEEE

Transactions on Automatic Control, 64(7):2665–2680, 2019.

[7] Xuanyu Cao, Junshan Zhang, and H Vincent Poor. Online
stochastic optimization with time-varying distributions.
IEEE Transactions on Automatic Control, 66(4):1840–1847,
2021.

[8] Ting-Jui Chang and Shahin Shahrampour. On online
optimization: Dynamic regret analysis of strongly convex and
smooth problems. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, pages 6966–6973, 2021.

[9] Tianyi Chen, Qing Ling, and Georgios B Giannakis. An
online convex optimization approach to proactive network
resource allocation. IEEE Transactions on Signal Processing,
65(24):6350–6364, 2017.

[10] Dan Garber and Elad Hazan. A linearly convergent variant
of the conditional gradient algorithm under strong convexity,
with applications to online and stochastic optimization.
SIAM Journal on Optimization, 26(3):1493–1528, 2016.

[11] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic
regret algorithms for online convex optimization. Machine

Learning, 69(2-3):169–192, 2007.

[12] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi.
Online distributed convex optimization on dynamic networks.
IEEE Transactions on Automatic Control, 61(11):3545–3550,
2016.

[13] Rodolphe Jenatton, Jim Huang, and Cédric Archambeau.
Adaptive algorithms for online convex optimization with
long-term constraints. In International Conference on

Machine Learning, pages 402–411, 2016.

[14] A. Lesage-Landry and J. A. Taylor. Setpoint tracking with
partially observed loads. IEEE Transactions on Power

Systems, 33(5):5615–5627, 2018.

[15] Antoine Lesage-Landry, Iman Shames, and Joshua A
Taylor. Predictive online convex optimization. Automatica,
113:108771, 2020.

[16] Antoine Lesage-Landry, Joshua A Taylor, and Iman
Shames. Second-order online nonconvex optimization. IEEE
Transactions on Automatic Control, 2020.

[17] Xiuxian Li, Lihua Xie, and Na Li. A survey of decentralized
online learning. arXiv preprint arXiv:2205.00473, 2022.

[18] Yingying Li, Guannan Qu, and Na Li. Online optimization
with predictions and switching costs: Fast algorithms and
the fundamental limit. IEEE Transactions on Automatic

Control, 66(10):4761–4768, 2021.

[19] Zhenhong Li, Zhengtao Ding, Junyong Sun, and Zhongkui
Li. Distributed adaptive convex optimization on directed
graphs via continuous-time algorithms. IEEE Transactions

on Automatic Control, 63(5):1434–1441, 2018.

[20] Yankai Lin, Iman Shames, and Dragan Nešić. Asynchronous
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