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We study particle transport through a chain of coupled sites connected to free-fermion reservoirs
at both ends, subjected to a local particle loss. The transport is characterized by calculating the
conductance and particle density in the steady state using the Keldysh formalism for open quantum
systems. Besides a reduction of conductance, we find that transport can remain (almost) unaffected
by the loss for certain values of the chemical potential in the lattice. We show that this “protected”
transport results from the spatial symmetry of single-particle eigenstates. At a finite voltage, the
density profile develops a drop at the lossy site, connected to the onset of non-ballistic transport.

Over the decades, dissipative processes have been con-
sidered a nuisance in quantum systems since they destroy
the essential property – quantum coherence. This usu-
ally has detrimental consequences for applications such
as quantum computing. Recently, this point of view
was revisited and reversed so that dissipative processes
are now employed as a tool to bring quantum systems
into desired states with novel features [1]. For exam-
ple, a dissipative coupling was used to prepare phase-
and number-squeezed states with ultracold atoms [2], a
Tonks-Girardeau gas of molecules [3] and even entangle-
ment among trapped ions [4], while environment-assisted
quantum transport [5–7] was demonstrated using dephas-
ing noise.

Dissipation is usually understood as irreversible energy
loss due to coupling to an environment. Among dissipa-
tive mechanisms, the loss of particles plays an important
role. Experiments with cold atoms offer a platform to
engineer and study particle losses in a controlled way.
One realization was to apply an electron beam to weakly-
interacting bosonic gases [8, 9], paving the way to the
study of new phenomena. Theoretically, the influence
of a localized loss or dephasing has been studied exten-
sively for weakly-interacting bosonic atoms [10, 11] and
the Bose-Hubbard model [12–14]. For fermionic systems,
less is known, and only recently, a local particle loss was
realized in a cold-atom experiment using near-resonant
optical tweezers [15, 16]. Theoretical analyses [17–20]
have shown evidence for a quantum Zeno effect [21, 22]
where the interplay of the interaction and loss pushes the
system to a new steady state with peculiar properties,
different from the equilibrium ones.

Given the striking effects of particle losses when the
system is otherwise in equilibrium, it is important to
understand their consequences in a system which is al-
ready in a non-thermal steady state. Such steady states
occur quite generally when a system is coupled to two
reservoirs at different chemical potentials, leading to the
transport of matter [23–25]. Steady-state transport is
one of most common probes of the properties of quan-
tum systems and has been extensively applied in the
condensed-matter context. In solid-state junctions, a

loss or gain of electrons can be implemented through ad-
ditional leads – this technique was applied to control-
ling supercurrents in Josephson junctions [26–29]. More
recently, particle transport between reservoirs has been
studied in cold-atom experiments [30], where the ef-
fects of local particle losses on transport were also ex-
plored [15]. Understanding the consequences of particle
losses in a nonequilibrium steady state, as opposed to
equilibrium, is thus prompted by recent experiments but
is also interesting from a theoretical point of view. This
novel situation poses new conceptual problems since it
combines two different ways to push the system out of
equilibrium. So far, it has been treated by approximate
methods, such as incorporating an imaginary potential
in the Landauer-Büttiker formula of transport [15], or
describing the reservoirs by Lindblad boundary condi-
tions [31–33]. A full analysis is clearly difficult and yet
little explored.

In this paper, we address the effects of losses on the
transport through a quantum dot or an extended lattice
coupled to two reservoirs. We use a full Keldysh descrip-
tion, allowing for an exact solution. We obtain both the
conductance of the lossy system and the density profile
in presence of losses and a finite voltage. Surprisingly,
the conductance can be robust to losses, which we re-
late to the inversion symmetry in an isolated lattice. We
show that for intermediate to large losses, a voltage drop
occurs across the dissipative defect in contrast to the bal-
listic behavior of a lossless system.

We consider a one-dimensional lattice coupled at both
ends to a free-fermion reservoir and subjected to a lo-
cal particle loss at the center (see Fig. 1). The sys-
tem without the loss is described by the Hamiltonian
H =

∑
i=L,RHi + Hchain + Ht. The subscripts L,R de-

note the left and right reservoirs, respectively, with the
Hamiltonian Hi =

∑
k (εk − µi)ψ†ikψik. Here, k denotes

a quantum number (typically momentum), εk the energy,

and ψ†ik (ψik) the fermionic creation (annihilation) oper-
ator of reservoir i. The chemical potentials µi are in
general different. We assume that the reservoirs have a
constant density of states. The dispersion relation is thus
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FIG. 1: (a) A chain ofM sites is coupled to reservoirs and sub-
jected to a local particle loss with amplitude γ0 on the central
site and γ1 on the neighboring sites. (b) The Fermi distribu-
tion nF (ω) at zero temperature: states up to the chemical
potentials µL,R in the reservoirs are filled. The horizontal
lines within the box in the middle show the eigenenergies of
an isolated lattice. Resonances in transport occur when an
eigenenergy coincides with µL,R in the limit µL − µR → 0.

linear, εk = vF (k− kF ), with the Fermi velocity vF and
Fermi momentum kF . We set ~ = 1 for simplicity.

The lattice is described by

Hchain = ε
l∑

m=−l
d†mdm − τ

l−1∑

m=−l

(
d†m+1dm + H.c.

)
, (1)

where dm is the fermionic annihilation operator acting
on site m and τ is the tunneling amplitude within the
lattice, with lattice spacing 1. The energy offset ε is
equal for all sites. The chain length M is chosen to be
odd, M = 2l + 1, where l is a non-negative integer, and
M = 1 corresponds to a single quantum dot. The second
term in (1) only exists if the chain has more than one site.

The Hamiltonian Ht = −τ1
[
ψ†L(0)d−l + d†lψR(0) + h.c.

]

describes tunneling between the ends of the chain and the
respective reservoirs.

We use the Keldysh technique [34, 35] to describe the
nonequilibrium situation with different chemical poten-
tials of the reservoirs and a local particle loss. The
Keldysh action S =

∫
dω/(2π)Ψ̄(ω)G−1(ω)Ψ(ω) is writ-

ten in the basis of fermionic coherent states parametrized
by the Grassmann variables ψ = (ψ+, ψ−). The
vector elements correspond to the forward and back-
ward time branches, which we rotate into (ψ1, ψ2) us-
ing the bosonic convention. We use the basis Ψ =(
ψ1
L ψ2

L d1
−l d

2
−l . . . d1

l d2
l ψ1

R ψ2
R

)T
to write the in-

verse Green’s function in a tridiagonal block form

G−1 =




L T1 0 . . . 0
T1 D−l T 0

0 T
. . . T

0 T D0 T
... T

. . . T
T Dl T1

0 T1 R




. (2)

The corner blocks are 2×2 matrices with the structure

R/L =

(
0 [GAL/R]−1

[GRL/R]−1 [GKL/R]−1

)
, (3)

written in terms of the retarded (R), advanced (A), and
Keldysh (K) Green’s functions. They correspond to the
leads modeled by local Green’s functions at r = 0 where
the tunneling occurs:

GR,AL/R(r = 0, ω) =
1

V

Λ/vF∑

k=−Λ/vF

1

ω − εk ± iη
. (4)

Here, V is the volume of the reservoirs and iη is an in-
finitesimal imaginary part. The Keldysh component is
given by GKL/R = (GRL/R − GAL/R) tanh

[
(ω − µL/R)/(2T )

]

with temperature T [34]. We consider here T = 0. The
reservoir eigenstates have a cutoff ±Λ/vF as the linear
dispersion relation is otherwise unbounded. While in the
limit Λ → ∞, the real part of (4) vanishes, keeping a
finite real part is connected to the appearance of bound
states outside the reservoir energy continuum [36]. The
blocks Dj correspond to the lattice sites and have the
same structure as (3),

D|j|>1 =

(
0 ω − ε− iη

ω − ε+ iη 2iη tanh
(
ω−ε
2T

)
)
. (5)

At the three central sites, the loss leads to a finite imag-
inary part (see SM [37]) which modifies the matrix ele-
ments,

Dj=0,±1 =

(
0 ω − ε− iγj/2

ω − ε+ iγj/2 iγj

)
. (6)

The dissipation rate on sites j = ±1 is chosen symmetri-
cally, γ1 = γ−1 < γ0, to model for instance a dissipative
laser beam with a Gaussian profile. We mostly set γ1 = 0
but discuss briefly the consequences of nonzero γ1. The
off-diagonal blocks contain the tunneling matrix elements

T1 =

(
0 τ1
τ1 0

)
, T =

(
0 τ
τ 0

)
.

To characterize transport and the properties of the
steady state, we calculate the current and the parti-
cle density distribution within the lattice. The con-
served current is related to the change of particle num-
ber in the reservoirs (see [33, 37] for details), I =

− 1
2 (d/dt) 〈NL −NR〉, where Ni =

∫
drψ†i (r)ψ†i (r) is the

particle number operator. One can compute the full non-
linear current-voltage characteristics from the above ac-
tion but we focus on the conductance G = limV→0 I/V ,
where V = µL − µR is the voltage, and fix µL,R =
±V/2. In natural units, the conductance quantum is
G0 = 1/(2π).
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In the case of a quantum dot coupled to reservoirs
(M = 1), only γ0 is present. The conductance is

Gdot =
1

2π

4Γ(γ0 + 4Γ)

4ε2 + (γ0 + 4Γ)2
, (7)

where Γ = πρ0τ
2
1 , and ρ0 is the constant density of states

per unit volume of the reservoirs. For γ0 = 0, Gdot is a
Lorentzian function with width 4Γ. Its maximum occurs
when the energy level of the quantum dot ε coincides with
the chemical potential in the reservoirs, here at ε = 0.
At this value, the system is perfectly conducting with
Gdot = G0 and the conductance is independent of the
tunneling τ1. A particle loss leads to a reduction of the
maximum and a broadening of the Lorentzian peak, seen
in Fig. 2(a).
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FIG. 2: (a) The conductance of a quantum dot as a function
of the energy offset ε, given by (7), with τ = 1 and τ1 = 0.5

in units of (πρ0)−1. In these units, τ1 has dimension 1/
√
V,

while ε, τ , and γj have dimension 1/V. The peak is reduced
and broadened with γ0 > 0. We plot only the ε > 0 region
since G(−ε) = G(ε). (b,c) The conductance of a lattice of 5
and 7 sites, respectively, with a loss only on the center site
(γ1 = 0). Vertical lines indicate the values of ε at which the
single-particle eigenenergies are zero in the τ1 → 0 limit. (d)
For a nine-site lattice with γ1 = γ0/4, resonance peaks at
the center and close to the edges of the spectrum persist at
large γ0. (e) The conductance as a function of γ0 at the ε = 0
resonance. When γ1 = 0, it is given by (8) and (9). For even
l (1, 5, and 9 sites), there is a faster decay than for odd l (3
and 7 sites), explained by the spatial symmetry of the relevant
eigenstates. For γ1 > 0, a faster decay occurs for odd and a
nonmonotonic dependence for even l (see SM [37]).

For a lattice of M sites, there are M such reso-
nances [33] of the conductance, as seen for M = 5, 7,
and 9 in Fig. 2(b–d). The horizontal axis is restricted
to positive ε since G(ε) is an even function. To gain in-
sight into the positions of the resonances, we consider the
single-particle eigenstates of an isolated (τ1 = 0) lattice.
There are M eigenstates with eigenenergies symmetric
around ε. The resonances occur approximately when an
eigenenergy En coincides with the chemical potential in

the reservoirs, here when En = 0. The eigenenergies are
indicated with vertical lines in Figs. 2(b–d). Whereas the
number of maxima can be fully understood by this con-
sideration, their positions are only exact in the τ1 → 0
limit; the eigenenergies of the chain are shifted when it is
coupled to reservoirs. This deviation is visible in Fig. 2
where τ1 = 0.5. Quite remarkably, even if the maxima
are shifted for τ1 > 0, the conductance at the maxima is
perfect, G/G0 = 1, in the absence of particle loss. This
was checked for lattice sizes M = 3 to 9 [37].

While a loss at the center site reduces the conductance
peaks, every second peak is only very weakly reduced, as
seen in Fig. 2(b,c). This interesting behavior stems from
the fact that, for an isolated lattice, half of the eigenstates
are antisymmetric and have a node at the center where
the particle loss takes place. Particles in antisymmetric
eigenstates are therefore not depleted by the loss [17],
and transport through these eigenstates – at values of ε
where an eigenenergy coincides with the chemical poten-
tial of the reservoirs – is only weakly affected. Symmet-
ric eigenstates on the other hand are depleted due to the
nonzero overlap with the lossy site. This leads, as for the
quantum dot, to a reduction of conductance. When an
extended loss is present, as in Fig. 2(d), all eigenstates
are depleted even in the τ1 → 0 limit since they can-
not have a node on three neighboring sites. However, for
γ1 < γ0 and moderate values of γ0, the maxima arising
from symmetric eigenstates are still reduced more than
the ones from antisymmetric eigenstates. Interestingly,
for a lattice of nine sites, a larger γ0 leads to a reinforce-
ment of the peak at ε = 0. Resonances close to the edges
of the spectrum are also preserved while the others are
suppressed. The outermost resonances preserved at large
γ0 arise from eigenstates with a node at j = 0 and only
a small overlap with j = ±1.

We now analyze the conductance peak at ε = 0 in
more detail for different lattice sizes. The eigenstate in
the middle of the spectrum is symmetric for even and
antisymmetric for odd l. The conductance at ε = γ1 = 0
is

G(ε = 0) =





1

2π

4Γ

γ0 + 4Γ
l = 0, 2, 4, (8)

1

2π

4τ2

γ0Γ + 4τ2
l = 1, 3. (9)

The corresponding expressions are given in the SM [37]
for γ1 > 0. Equations (8) and (9) can be expanded at
small γ0 as

4Γ

γ0 + 4Γ
≈ 1− τ

4Γ

γ0

τ
,

4τ2

γ0Γ + 4τ2
≈ 1− Γ

4τ

γ0

τ
. (10)

When Γ � τ , the slope τ/(4Γ) is large compared to
Γ/(4τ), resulting in a larger reduction of the conductance
with γ0 for symmetric eigenstates [see Fig. 2(e)]. We re-
late the reduction for antisymmetric eigenstates to a sym-
metry breaking: the coupling to the reservoirs breaks the
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reflection symmetry around the lossy site, and the wave-
function gains a finite value there. When the loss extends
to the neighboring sites, the wavefunction at those sites
also plays a role. The antisymmetric eigenstates have a
finite overlap with j = ±1, leading to a faster decay com-
pared to γ1 = 0. The symmetric eigenstates in contrast
have a node at j = ±1. This leads to a nonmonotonic
behavior: After an initial decay, the conductance is en-
hanced by the dissipation and even exceeds the value for
a strictly local loss. In the γ0 → ∞ limit, it again de-
creases as ∼ 1/γ0.

When the coupling τ1 is finite, the particle loss leads
to a reduction of conductance and non-ballistic trans-
port. To further understand how the ballistic transport
is altered, we analyze the steady-state particle density
distribution, shown in Fig. 3 for a lattice of 51 sites. We
set γ1 = 0 since the results are essentially the same for
the extended loss. We focus on the interplay of the finite
voltage and loss, but for completeness, panel (a) shows
the zero-voltage case. The setup in Refs. [18–20] is simi-
lar, except in our analysis, the coupling to the reservoirs
is explicitly described. The loss leads to a density mini-
mum at the lossy site while the density is nearly uniform
in the surrounding lattice. This background density has
a nonmonotonic dependence on γ0 associated with the
quantum Zeno effect [18, 19].
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FIG. 3: (a, b) Particle density 〈nj〉 = 〈d†jdj〉 in a 51-site lat-
tice as a function of the position j, for different voltages V and
losses γ0 with γ1 = ε = 0, τ = 1 and τ1 = 0.5. The parame-
ters are in units of (πρ0)−1 as in Fig. 2. A density imbalance
between the left and right sides develops as a combined effect
of the finite voltage and dissipation. (c) The average density
imbalance δn, defined in (11), as a function of voltage. We
compare the largest dissipation rate γ0 = 500 to a chain of
(M − 1)/2 = 25 sites coupled to a single reservoir at equi-
librium (“half chain”). The two results overlap and coincide
with the imbalance determined by the reservoir density, given
by (12).

When a voltage is present but there is no loss, the
density distribution is approximately uniform apart from
Friedel oscillations (cf. Fig. 3(b), γ0 = 0). Transport
through the chain is ballistic and a voltage drop occurs
only at the contacts. The situation changes drastically

when particle losses are present. The average density
becomes higher on the left side of the lossy site and lower
on the right. The average density imbalance

δn =
2

L− 1


∑

j<0

〈nj〉 −
∑

j>0

〈nj〉


 (11)

is shown as a function of voltage in Fig. 3(c). It rises
approximately linearly for small V and saturates when
the voltage exceeds the bandwidth 4τ , as there are no
eigenstates which could be filled by chemical potentials
outside the lattice energy band. The slope and satura-
tion value of δn(V ) depend strongly on the dissipation
strength. For small γ0, hardly any imbalance develops,
and transport through the chain is almost ballistic. In
contrast, for large γ0, a large imbalance arises, reaching
the maximum value 1 for γ0 → ∞ and V > 4τ . In the
presence of the loss, transport is thus no longer perfectly
ballistic. This agrees with the reduction of conductance
for increasing loss.

For γ0 → ∞, the lossy site is almost completely emp-
tied, effectively cutting the chain in two. The average
density on either side approaches that of a chain of half
the length, coupled to a single reservoir with the chemical
potential µL/R at equilibrium. Figure 3(c) shows that the
average imbalance for γ0 = 500 indeed overlaps with the
result for the half chain. Furthermore, the slope of δn(V )
can be estimated from the particle density in the reser-
voir coupled to each half, 〈nL,Rres 〉, by equating the chem-
ical potential ±V/2 with the energy εkF = −2τ cos(kF )
– the lattice dispersion relation – where kF = π 〈nres〉.
The filling factor is then given by

〈nL,Rres 〉 =
1

π
arccos

(
∓ V

4τ

)
. (12)

The resulting difference 〈nLres〉 − 〈nRres〉 agrees very well
with the result for γ0 = 500 and the one for a half chain.
We further observe that at large γ0, the average densities
develop a step-like substructure. These discrete changes
in density result from adding (on the left) or removing
(on the right) particles one by one when the chemical po-
tential of the reservoirs changes. Indeed, for 25 sites on
either side, a change from half to full filling on the left
and to an empty lattice on the right corresponds to 12.5
particles, which equals the number of steps in Fig. 3(c).
For larger lattices, these steps become more frequent,
suggesting that the density approaches the smooth func-
tion (12) in the M →∞ limit.

In summary, we show that particle transport can be
very differently affected by a local loss depending on the
underlying symmetry of the eigenstate responsible for the
transport. In particular, conductance can remain nearly
perfect despite the loss. In the nonlinear-response regime
with a finite voltage, we find novel dissipative steady
states characterized by a density drop at the lossy site.
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These phenomena could be observed in cold-atom exper-
iments, where local particle losses have already been ex-
plored. Extending the analysis to bosonic [9] or interact-
ing systems is an exciting outlook. An interesting ques-
tion is what kind of transport properties and nonequilib-
rium steady states arise in the presence of losses when the
system is for example in a correlated insulator [38] or su-
perfluid [39] state, or when a local loss leads to long-range
coherence [40]. Our analysis focuses on steady-state be-
havior, and an important question is how, and on what
timescale, the steady state is reached. This long-time
evolution is not easily accessed by our current approach
and is a considerable challenge for future research. How-
ever, dissipative steady states have been realized in ex-
periments with local losses [8, 15], and we therefore ex-
pect that the properties of the steady states studied here
could be observed on experimentally relevant timescales.
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N. O. Birge, “Supercurrent-induced temperature gradi-
ent across a nonequilibrium SNS Josephson junction,”
Phys. Rev. Lett. 96, 167004 (2006).

[30] S. Krinner, T. Esslinger, and J.-P. Brantut, “Two-
terminal transport measurements with cold atoms,”
Journal of Physics: Condensed Matter 29, 343003 (2017).

[31] F. Damanet, E. Mascarenhas, D. Pekker, and A. J. Da-
ley, “Controlling quantum transport via dissipation en-
gineering,” Phys. Rev. Lett. 123, 180402 (2019).

[32] F. Damanet, E. Mascarenhas, D. Pekker, and A. J. Da-
ley, “Reservoir engineering of Cooper-pair-assisted trans-
port with cold atoms,” New Journal of Physics 21,
115001 (2019).

[33] T. Jin, M. Filippone, and T. Giamarchi, “Generic trans-
port formula for a system driven by Markovian reser-
voirs,” Phys. Rev. B 102, 205131 (2020).

[34] A. Kamenev, Field theory of non-equilibrium systems
(Cambridge University Press, 2011).

[35] L. M. Sieberer, M. Buchhold, and S. Diehl, “Keldysh
field theory for driven open quantum systems,” Reports
on Progress in Physics 79, 096001 (2016).

[36] When the cutoff Λ is finite, bound states outside the
reservoir energy continuum contribute to the particle
densities at the edge sites. The bound-state contribution
decays with Λ, and we use here values for which it is
negligible.

[37] See Supplemental Material at [URL] for the derivation of
the conserved current, the Keldysh action for the dissi-
pative system, and the value of the conductance at the
maxima.
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OBSERVABLES

We consider an open quantum system described by the
quantum master equation

dρ

dt
= −i[H, ρ] +

1∑

j=−1

γj

[
LjρL

†
j −

1

2

{
L†jLj , ρ

}]
, (S1)

where ρ is the density operator and H the Hamiltonian.
The Lindblad operator Lj is here the annihilation oper-
ator dj at sites j = 0,±1. To characterize transport, we
calculate the particle current I through the lattice sys-
tem. The current is connected to the change of particle
numbers in the reservoirs,

I = −1

2

d

dt
〈NL −NR〉 , (S2)

where the expectation value is defined as 〈A〉 = Tr(Aρ)
for a generic operator A. The particle number operator
is Ni =

∫
drψ†i (r)ψi (r) with i = L,R. We obtain its time

derivative as

d

dt
〈Ni〉 =

d

dt
Tr (Niρ(t)) (S3)

= −iTr (Ni[H, ρ]) (S4)

+
1∑

j=−1

γjTr

(
Nidjρd

†
j −

1

2
Ni

{
d†jdj , ρ

})
(S5)

= −i 〈[Ni, Ht]〉 ,

where term (S5) is zero as [Ni, dj ] = 0. On the last
line, we observe that Ni commutes with all terms in the
Hamiltonian apart from Ht. Thus, the time derivatives
entering Eq. (S2) are found as

d

dt
〈NL〉 = iτ1

(
〈ψ†L(0)d−l〉 − 〈d†−lψL(0)〉

)
,

d

dt
〈NR〉 = iτ1

(
〈ψ†R(0)dl〉 − 〈d†lψR(0)〉

)
.

(S6)

The lattice size is denoted by M = 2l + 1. The dissi-
pation strength γ0,±1 does not appear explicitly in the
expression for the current since the particle loss operator
dj commutes with Ni.

KELDYSH FORMALISM

Keldysh action for the dissipative system

We compute the nonequilibrium expectation values of
Eq. (S6) as path integrals over a closed time contour.

As we are interested in steady-state expectation values,
the integration contour extends from t→ −∞ to ∞ and
back. One formulates the nonequilibrium action in terms
of Grassmann fields ψ±, ψ̄± for the forward (+) and back-
ward (−) time contours. The action of the open quantum
system is [1]

S =

∫ ∞

−∞
dt
[
ψ̄+i∂tψ

+ − ψ̄−i∂tψ−

− iL(ψ̄+, ψ+, ψ̄−, ψ−)
]
.

(S7)

In the case of the lattice coupled to leads, ψ± denotes
the vector ψ± = (ψ±L d±−l . . . d±0 . . . d±l ψ±R)T . In
writing the fermionic Keldysh action, one has to take into
account the anticommutation relations of the Grassmann
variables [2]. The Lindblad term L is

L(ψ̄+, ψ+, ψ̄−, ψ−) = −i(H+ −H−)

+
1∑

j=−1

γj

[
d̄−j d

+
j −

1

2
d̄+
j d

+
j −

1

2
d̄−j d

−
j

]
,

(S8)

whereH± is a function of ψ±. The first term on the right-
hand side represents the unitary time evolution by the
Hamiltonian. The terms on the second line, proportional
to γj , describe the dissipative process.

The action in total can now be written as a sum of the
coherent and dissipative terms,

S =
∑

i=L,R

Si + Stun + Schain + Sloss. (S9)

The coherent terms are the first three,

Si =

∫ ∞

−∞
dt
(
ψ̄+
i i∂tψ

+
i − ψ̄−i i∂tψ−i −H+

i +H−i
)
,

Stun = τ1

∫ ∞

−∞
dt
(
d̄+
−lψ

+
L + ψ̄+

Ld
+
−l + d̄+

l ψ
+
R + ψ̄+

Rd
+
l

− d̄−−lψ−L − ψ̄−L d−−l − d̄−l ψ−R − ψ̄−Rd−l
)
,

Schain =
l∑

j=−l
Sj + τ

l−1∑

j=−l

∫ ∞

−∞
dt
[
d̄+
j+1d

+
j + d̄+

j d
+
j+1

− d̄−j+1d
−
j − d̄−j d−j+1

]
,

where the term Sj for each lattice site is

Sj =

∫ ∞

−∞
dt
[
d̄+
j (i∂t − ε) d+

j − d̄−j (i∂t − ε) d−j
]
. (S10)

We perform the Keldysh rotation as

ψ1 =
1√
2

(
ψ+ + ψ−

)
, ψ2 =

1√
2

(
ψ+ − ψ−

)
, (S11)
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using the boson notation for fermionic coherent states [2]
rather that the usual one of Larkin and Ovchinnikov. In
the new basis, Si and Sj are represented in matrix form
as

Sx =

∫
dω

2π

(
ψ̄1 ψ̄2

)
G−1
x (ω)

(
ψ1

ψ2

)
, (S12)

where x = i, j, transformed into frequency basis. The
inverse Green’s function G−1

x has the standard structure

G−1
x (ω) =

(
0

[
GAx
]−1

[
GRx
]−1 [

G−1
x

]K
)
, (S13)

where
[
G−1
x

]K
= −

[
GRx
]−1 GKx

[
GAx
]−1

, and GAx , GRx , and
GKx are the advanced, retarded, and Keldysh components.
The reservoirs and lattice sites apart from j = 0 evolve
unitarily in time. In this case, one obtains GKx as

GKx = (GRx − GAx )[1− 2nF (ω − µx)], (S14)

where nF (ω) = (eω/T +1)−1 with temperature T denotes
the Fermi-Dirac distribution. For the lattice sites, µj = ε.
The Sj terms for the three central sites are modified by
the addition of Sloss, given by the second term of Eq. (S8).
Applying Eq. (S11), we get

Sloss =
1∑

j=−1

∫ ∞

−∞

dω

2π

(
d̄1
j d̄2

j

)( 0 − iγj2
iγj
2 iγj

)(
d1
j

d2
j

)
.

Correlation functions as matrix elements

Two-operator expectation values are calculated as
Gaussian path integrals

〈ψaψ̄b〉 =

∫
D[ψ̄, ψ]ψaψ̄beiS[ψ̄,ψ] = iGab, (S15)

where a, b ∈ {1, 2}. Here, S denotes the total action (S9),
and the corresponding inverse Green’s function G−1 is
given by Eq. (2) of the main text. The matrix elements
Gab are found by inverting G−1. The expectation value
of the current I of Eq. (S2) is written in the Keldysh
representation as

I =
iτ1
4

∫ ∞

−∞

dω

2π

(
〈d1
−lψ̄

1
L(0)〉 − 〈ψ1

L(0)d̄1
−l〉

+ 〈ψ1
R(0)d̄1

l 〉 − 〈d1
l ψ̄

1
R(0)〉

)

=
τ1
4

∫ ∞

−∞

dω

2π
(G3,1 − G1,3 + G2M+3,2M+1

− G2M+1,2M+3),

and the particle density in the lattice is given by

〈nj〉 =

∫ ∞

−∞

dω

2π

1

2

(
〈d1
j d̄

1
j 〉 − 〈d1

j d̄
2
j 〉+ 〈d2

j d̄
1
j 〉
)

=

∫ ∞

−∞

dω

2π

1

2

(
G2(l+j)+3,2(l+j)+3

− G2(l+j)+3,2(l+j)+4 + G2(l+j)+4,2(l+j)+3

)
.

VALUE OF THE CONDUCTANCE MAXIMA

We observe that the conductance as a function of the
energy level ε of the lattice sites has maxima at posi-
tions which correspond approximately to resonances of
the eigenstate energies. In the limit τ1 → 0, the posi-
tions of the resonances are the values of ε for which the
eigenstate energies of an isolated lattice coincide with
the chemical potential in the reservoirs. The positions
are shifted when τ1 > 0. We however observe that in the
absence of dissipation, the value of the conductance at
the maxima, such as in Fig. 2 of the main text, remains
at G/G0 = 1. For a lattice of three sites, at γ0 = γ1 = 0,
the conductance has the expression

G =
1

2π

4Γ2τ4

(ε2 + Γ2) [(ε2 − 2τ2)2 + ε2Γ2]
. (S16)

By differentiating with respect to ε, we get the positions
of the maxima as ε = 0, ε = ±

√
2τ2 − Γ2, and G of

Eq. (S16) is 1 at these values. The same analysis for 5,
7, and 9 sites shows that G/G0 = 1 at all maxima.

To model a local loss which extends to the sites next
to the central one, we set γ1 = γ−1 > 0. We find the
conductance at ε = 0 as

G =
1

2π

4Γτ2
(
4τ2 + γ0γ1

)

(2τ2 + Γγ1) (8Γτ2 + 2γ0τ2 + Γγ0γ1)
(S17)

for l = 2, 4; M = 5, 9 and

G =
1

2π

4Γ
(
4τ2 + γ0γ1

)

(2Γ + γ1) (8τ2 + 2Γγ0 + γ0γ1)
(S18)

for l = 1, 3; M = 3, 7.
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