
ar
X

iv
:2

20
1.

10
86

9v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

6 
Se

p 
20

22

Efimov effect for two particles on a semi-infinite line

Satoshi Ohya

Institute of Quantum Science, Nihon University,

Kanda-Surugadai 1-8-14, Chiyoda, Tokyo 101-8308, Japan

ohya.satoshi@nihon-u.ac.jp

(Dated: September 19, 2022)

Abstract

The Efimov effect (in a broad sense) refers to the onset of a geometric sequence of many-
body bound states as a consequence of the breakdown of continuous scale invariance to discrete
scale invariance. While originally discovered in three-body problems in three dimensions, the
Efimov effect has now been known to appear in a wide spectrum ofmany-body problems in various
dimensions. Here we introduce a simple, exactly solvable toy model of two identical bosons in one
dimension that exhibits the Efimov effect. We consider the situation where the bosons reside on
a semi-infinite line and interact with each other through a pairwise �-function potential with a
particular position-dependent coupling strength that makes the system scale invariant. We show
that, for sufficiently attractive interaction, the bosons are bound together and a new energy scale
emerges. This energy scale breaks continuous scale invariance to discrete scale invariance and
leads to the onset of a geometric sequence of two-body bound states. We also study the two-body
scattering off the boundary and derive the exact reflection amplitude that exhibits a log-periodicity.
This article is intended for students and non-specialists interested in discrete scale invariance.
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1 Introduction

In his seminal paper in 1970, Efimov considered three identical bosons with short-range pairwise in-

teractions [1]. He pointed out that, when the two-body scattering length diverges, an infinite num-

ber of three-body bound states appear, with energy levels {En} forming a geometric sequence. This

phenomenon—generally known as the Efimov effect—has attracted much attention because the ratio

En+1/En ≈ 1/(22.7)
2 is independent of the details of the interactions as well as of the nature of the parti-

cles: it is universal. More than thirty-five years after its prediction, this effect was finally observed in

cold atom experiments [2–6], which has triggered an explosion of research on the Efimov effect. For

more details, see the reviews [7–11]. (See also Refs. [12–14] for a more elementary exposition.)

Aside from its universal eigenvalues ratio, the Efimov effect takes its place among the greatest

theoretical discoveries in modern physics because it was the first quantum many-body phenomenon

to demonstrate discrete scale invariance—an invariance under enlargement or reduction in the system

size by a single scale factor [15]. It is now known that the emergence of a geometric sequence in

the bound states’ discrete energies is associated with the breakdown of continuous scale invariance to

discrete scale invariance [16], and can be found in a wide spectrum of quantum many-body problems

in various dimensions [17–23]. The notion of the Efimov effect has therefore now been broadened

to include those generalizations, so that its precise meaning varies in the literature. In the present

paper, we will use the term “Efimov effect” to simply refer to the onset of a geometric sequence in the

energies of many-body bound states as a consequence of the breakdown of continuous scale invariance

to discrete scale invariance.

To date, there exist several theoretical approaches to study the Efimov effect. The most common

approach is to directly analyze the many-body Schrödinger equation, which normally involves the use

of Jacobi coordinates, hyperspherical coordinates, the adiabatic approximation, and the Faddeev equa-

tion [7]. Another popular approach is to use second quantization, or quantum field theory [8]. Though

the problem itself is conceptually simple, it is hard for students and non-specialists to master these

techniques and to work out the physics of the Efimov effect. The essential part of this phenomenon,

however, can be understood from undergraduate-level quantum mechanics without using any fancy

techniques.

This paper is aimed at introducing a simple toy model for a two-body system that exhibits the

Efimov effect. We consider two identical bosons on the half-line R+ = {x ∶ x ≥ 0} with a pairwise

�-function interaction. The Hamiltonian of such a system is given by

H = − ℏ22m ( )2)x21 + )2)x22 ) + g(x1)�(x1 − x2), (1)

wherem is the mass of each particle and xj ∈ R+ (j = 1, 2) is the coordinate of the jth particle. Here g(x)
is a coupling strength. In this paper, we will focus on the position-dependent coupling strength that

satisfies the scaling law g(et x) = e−t g(x), where t is an arbitrary real number. Notice that, up to an

overall constant factor, this scaling law has a unique solution g(x) ∝ 1/x . For the following discussion,
it is convenient to choose

g(x) = ℏ2m g0x , (2)

where g0 is a dimensionless real number that can either be positive or negative. Physically, Eq. (2)

models the situation where the interaction strength becomes stronger as the particles come closer to

the boundary x1 = x2 = 0 (see Fig. 1). This two-body interaction is essentially equivalent to the so-

called scaling trap introduced in Ref. [19], where the Efimov effect was discussed in the context of two

non-identical particles on the whole line R. As we will see shortly, our two-identical-particle problem

onR+ enjoys simple solutions and is more tractable than the corresponding two-non-identical-particle

problem on R.
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Figure 1: Position dependence of the coupling strength g(x).
The rest of the paper is devoted to the detailed analysis of the eigenvalue problem of H . Before go-

ing into details, however, it is worth summarizing the symmetry properties of the model. Of particular

importance are the following:

• Permutation invariance. Thanks to the relation g(x1)�(x1 − x2) = g(x2)�(x2 − x1), the Hamiltonian

(1) is invariant under the permutation of coordinates, (x1, x2) ↦ (x2, x1). Note that this per-

mutation invariance is necessary for Eq. (1) to be a Hamiltonian of indistinguishable particles,

where, for bosons, the two-body wavefunction should satisfy  (x1, x2) =  (x2, x1). We will see

in Sec. 3.1 that this invariance greatly simplifies the analysis.

• Scale invariance. Thanks to the relations g(et x1) = e−t g(x1) and �(et x1 − et x2) = e−t �(x1 −x2), the Hamiltonian (1) transforms as H ↦ e−2t H under the scale transformation (x1, x2) ↦(et x1, et x2). This transformation law has significant implications for the spectrum of H . Let E(x1, x2) be a solution to the eigenvalue equationH E(x1, x2) = E E(x1, x2). Then,  E(et x1, et x2)
automatically satisfies H E(et x1, et x2) = e2t E E(et x1, et x2); that is,  E(et x1, et x2) is propor-
tional to the eigenfunction  e2t E(x1, x2) corresponding to the eigenvalue e2t E. The proportional-
ity coefficient can be determined by requiring that both  E and  e2t E be normalized. The result

is the following scaling law:

 e2t E(x1, x2) = et  E(et x1, et x2). (3)

If this indeed holds for any t ∈ R, e2t E can take any arbitrary (positive) value so that the spectrum
of H is continuous. As we will see in Sec. 3.2, however, if g0 is smaller than a critical value g∗,
Eq. (3) holds only for some discrete t ∈ t∗Z = {0, ±t∗, ±2t∗,⋯}; that is, continuous scale invariance
is broken to discrete scale invariance, defined by a characteristic scale t∗. As a consequence, there
appears a geometric sequence of (negative) energy eigenvalues, {E0, E0 e±2t∗ , E0 e±4t∗ ,⋯}, whereE0(< 0) is a newly emergent energy scale. One of the goal of this paper is to show this result

using only undergraduate-level calculus.

It should be noted that there is no translation invariance in our model: it is explicitly broken by

the boundary at x = 0 as well as by the position-dependent coupling strength (2). This non-invariance

means that the total momentum—the canonical conjugate of the center-of-mass coordinate—is not

a well-defined conserved quantity. In other words, the two-body wavefunction cannot be of the

separation-of-variable form  (x1, x2) = eiPX /ℏ �(x), where X = (x1 + x2)/2 is the center-of-mass co-

ordinate, P the total momentum, x = x1 − x2 the relative coordinate, and � the wavefunction of relative

motion. In the next section, we will first introduce an alternative coordinate system that is more suit-

able for the two-body problem on the half-line R+, before solving the problem in Sec. 3.
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Figure 2: Polar coordinates (r , �) in the (x1, x2)-space. The red line represents the set of two-body coincidence
points.

2 Two-body problem without translation invariance

Let us first introduce a new coordinate system in the (x1, x2)-space. In what follows, we will work with

the polar coordinate system (r, �) defined as follows (see Fig. 2):
x1 = r cos(� + �4 ), (4a)

x2 = r sin(� + �4 ), (4b)

or, equivalently,

r = √
x21 + x22 , (5a)

� = 12i log(x1 + ix2x1 − ix2) − �4 , (5b)

where r ∈ [0,∞) and � ∈ [−� /4, � /4]. Note that � = 0 and � = ±� /4 correspond to the two-body

coincidence point x1 = x2 and to the boundaries x1 = 0 and x2 = 0, respectively. Note also that the

permutation (x1, x2) ↦ (x2, x1) corresponds to the parity transformation (r, �) ↦ (r,−�); see Fig. 2.
In the coordinate system (r, �), the kinetic energy part of the two-body Hamiltonian (1) takes the

following form:

H0 = − ℏ22m ( )2)x21 + )2)x22 )
= − ℏ22m (1r ))r r ))r + 1r2 )2)�2)
= ℏ22mr− 12 (− )2)r2 + −)2� − 14r2 )r 12 , (6)

where )� = )/)� . Likewise, the potential energy part is rewritten as

V (x1, x2) = ℏ2m g0x1 �(x1 − x2)
= ℏ2m g0r cos(� + �4 )�(r cos(� + �4 ) − r sin(� + �4 ))
= ℏ2m g0√2r2 cos(�4 )�(�)
= ℏ2m g0r2 �(�) for � ∈ [−�4 , �4 ]. (7)

In the third equality we have used the formula �(f (�)) = (1/|f ′(�0)|)�(� − �0), where f (�) = r cos(� +� /4) − r sin(� + � /4), f ′ = df /d� , and �0 is a root of the equation f (�) = 0 for � ∈ [−� /4, � /4] and given
4



by �0 = 0. The total Hamiltonian H = H0 + V can then be cast into the following form:

H = ℏ22mr− 12 (− )2)r2 + Δ� − 14r2 )r 12 , (8)

where

Δ� = − )2)�2 + 2g0�(�). (9)

Now we are ready to analyze the Schrödinger equation by means of the separation of variables.

Suppose that the two-body wavefunction is of the form

 (x1, x2) = r− 12R(r)Θ(�). (10)

Let � be an eigenvalue of the operatorΔ� . Then, the time-independent Schrödinger equationH = E 
can be reduced to the following set of differential equations:

(− d2d�2 + 2g0�(�))Θ(�) = �Θ(�), (11a)

(− d2dr2 + � − 14r2 )R(r) = 2mEℏ2 R(r). (11b)

The energy eigenvalues are determined by the inverse-square potential, which has beenwidely studied

over the years in the context of quantum anomaly (symmetry breaking by quantization) or renormal-

ization [24–31], and is known to support a geometric sequence of bound states if � < 0 [32]. As we will
see shortly, if g0 is smaller than a critical value g∗, the lowest eigenvalue �0 in the eigenvalue equation

(11a) becomes negative. Hence, in such a �0-channel, continuous scale invariance can be broken down

to discrete scale invariance, and the two-body bound-state energies follow a geometric sequence. Let

us next see this by solving the differential equations (11a) and (11b) explicitly.

3 Two-body Efimov effect with boundary

3.1 Solution to the angular equation

Let us first solve the angular equation (11a). To this end, we need to specify the connection conditions

at � = 0 and the boundary conditions at � = ±� /4. We start with the connection conditions equivalent

to the �-function potential.

As is well known, the �-function potential system (11a) is equivalent to the differential equation−Θ′′ = �Θ for � ≠ 0 with the following connection conditions at � = 0 [33]:
−Θ′(0+) + Θ′(0−) + g0(Θ(0+) + Θ(0−)) = 0, (12a)

Θ(0+) = Θ(0−), (12b)

where the prime (′) indicates the derivative with respect to � .

Let us next take into account the symmetry of the two-body wavefunction. Since we are deal-

ing with identical bosons, the wavefunction must be symmetric under the permutation  (x1, x2) =
 (x2, x1).1 In the polar coordinate system, this is equivalent to Θ(�) = Θ(−�), whose derivative gives

1For fermions, we have  (x1, x2) = − (x2, x1), which is equivalent to Θ(�) = −Θ(−�). The connection conditions (12a)

and (12b) are then reduced to the Dirichlet boundary conditions Θ(0±) = 0, in which case � cannot be negative (if we imposeΘ(±�/4) = 0). Hence, for fermions, the Efimov effect cannot be realizedwith theHamiltonian (1). In order to realize the Efimov

effect for fermions with a pairwise contact interaction, one has to use the Hamiltonian H = −(ℏ2/(2m))()2/)x21 + )2/)x22 ) +(ℏ2/m)"(x1−x2; x1/g0), where " is the so-called "-function potential defined by "(x ; c) = lima→0+ (1/(2c)−1/a)(� (x +a)+� (x −a)).
For simplicity, in this paper we will not touch upon the fermionic case. For more details of the "-function potential, see

Refs. [34, 35].
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Figure 3: Left: g0 dependence of {�0, �1, �2,⋯}. The lowest eigenvalue �0 becomes negative if g0 goes below the
critical value g∗ = −4/� . Right: A typical profile of Θ�0 (�) for g0 < g∗.

Θ′(�) = −Θ′(−�). Hence, at the two-body coincidence point � = 0, there must hold the following

additional conditions: Θ(0+) = Θ(0−) and Θ′(0+) = −Θ′(0−). (13)

Thus, for identical bosons, Eq. (12a) can be reduced to the following Robin boundary conditions [36]:

∓Θ′(0±) + g0Θ(0±) = 0. (14)

Let us now specify the boundary conditions at � = ±� /4. For simplicity, we will impose the follow-

ing Dirichlet boundary conditions:2 Θ(±�4 ) = 0. (15)

Now it is straightforward to solve the angular equation (11a). Thanks to the propertyΘ(�) = Θ(−�),
it is sufficient to solve the differential equation −Θ′′ = �Θ in the 0 ≤ � ≤ � /4 region under the boundary
conditions −Θ′(0+) + g0Θ(0+) = 0 and Θ(� /4) = 0. The resulting solution for � ≠ 0 is

Θ�(�) = A� sin(√� (�4 − |� |)) , (16)

where A� is a normalization constant. Here � is a root of the transcendental equation

g0 = −√� cot(�4
√
�) . (17)

For � < 0, the square root should be understood as
√
� = i√|�|. In this case, the angular wavefunction

Θ�(�) ∝ sinh(√|�|(� /4 − |� |)) sharply localizes to the two-body coincidence point � = 0; that is, it
describes a two-body bound state (see the right panel of Fig. 3).

Though the transcendental equation (17) cannot be solved analytically, the g0 dependence of its
solutions can be seen by plotting the graph of g0 = −√� cot(�√�/4). As can be observed in the left

panel of Fig. 3, the lowest eigenvalue �0 becomes negative for g0 < g∗, where g∗ is the critical value
given by

g∗ ∶= lim�→0 [−
√
� cot(�4

√
�)] = − 4

�
. (18)

Hence, in the �0-channel, continuous scale invariancemust be broken down to discrete scale invariance

for g0 < g∗. Let us next see this by solving the radial equation (11b).

3.2 Boundary-localized two-body Efimov states

From here on, we will consider the situation where g0 < g∗, and focus on the case E < 0 in the channel

� = �0 < 0. In this case, there exists a square-integrable solution to the differential equation (11b)

2Alternatively, one can impose, e.g., the Neumann boundary conditions Θ′(±�/4) = 0, in which case the critical value isg∗ = 0.
6



whose asymptotic behavior as r → ∞ is R��(r) → N�� e−�r , where N�� is a normalization constant

and � = √2m|E|/ℏ2 > 0. The full solution is given by3

R��(r) = N��√2�r� Ki� (�r), � = √|�|, (19)

where Ki� is the modified Bessel function of the second kind whose asymptotic behavior is Ki� (�r) →√� /(2�r) e−�r as �r → ∞. Note that Eq. (19) together with Eq. (16) describes a two-body wavefunction

that localizes to � = 0 and r = 0; that is, it describes the two-body bound state that is localized to the

boundary (x1 = x2 = 0).
It should be noted that at this stage � is an arbitrary positive real constant. To determine its possible

values, we follow the argument in Ref. [32] and require the orthonormality of the radial wavefunctions.

Let R�� and R�′� be two distinct solutions to Eq. (11b). Then we have

−R′′�� + � − 14r2 R�� = −�2R�� , (20a)

−R′′�′� + � − 14r2 R�′� = −�′2R�′� , (20b)

where the overline ( ) stands for the complex conjugate and the prime here indicates the derivative

with respect to r . By multiplying R�′� to Eq. (20a) and R�� to Eq. (20b) and then subtracting one from

the other, we get

(−�′2 + �2)R�′�R�� = R�′�R′′�� − R′′�′�R��
= ddr (R�′�R′�� − R′�′�R��) . (21)

By integrating both sides from r = 0 to ∞, we find

(−�′2 + �2)∫ ∞
0 dr R�′�(r)R��(r) = ∫ ∞

0 dr ddr (R�′�(r)R′��(r) − R′�′�(r)R��(r))
= − limr→0(R�′�(r)R′��(r) − R′�′�(r)R��(r))
= 2√��′ sin(� log ��′ )sinh(�� ) N�′�N��, (22)

where the second equality follows from R�� , R�′� → 0 in the limit r → ∞, and the last equality follows

from the short-distance behavior of the modified Bessel function (see Eq. (A.4) in Appendix A).

Now, Eq. (22) enables us to determine the normalization constant as well as the energy eigenvalues.

First, the normalization constant is determined by requiring that R�� have the unit norm:

1 = ∫ ∞
0 dr |R��(r)|2

= lim�′→� ∫
∞

0 dr R�′�(r)R��(r)
= lim�′→� 2

√��′ sin(� log ��′ )sinh(�� )(�2 − �′2) N�′�N��
= �� sinh(�� ) |N��|2, (23)

3For E = −ℏ2�2/(2m) and � = −�2, Eq. (11b) is equivalent to the modified Bessel differential equation (r 2d2/dr 2 + rd/dr −�2r 2 + �2)(r− 12 R) = 0. The two independent solutions to this equation are the modified Bessel functions of the first and second

kind, Ii� (�r ) and Ki� (�r ), respectively, where the former is non-square integrable while the latter is square integrable. For

more details of the modified Bessel functions, see, e.g., Ref. [37].
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Figure 4: Schematic pictures of the boundary-localized two-body bound states with different binding energies
(left) and the scattering of a two-body bound state off the boundary (right). The boundary plays the
role of the (infinitely heavy) third particle (see Appendix B for details).

where the last equality follows from sin(� log(�/�′)) = sin(� log(1 + (� − �′)/�′)) = �(� − �′)/�′ +O((� −�′)/�′)2 as �′ → �. Thus we find
|N��| = √� sinh(�� )� . (24)

Second, the energy eigenvalues are determined by requiring that R�� and R�′� be orthogonal for � ≠ �′;
that is, ∫ ∞0 dr R�′�(r)R��(r) = 0 for � ≠ �′, which is attained if and only if sin(� log(�/�′)) = 0. Thus,� log(�/�′) must be an integer multiple of � :

� log ��′ = −n�, n ∈ Z, (25)

where the minus sign on the right hand side is just a convention. The solution to this condition is

given by �n = �∗ exp(−n�� ) , (26)

where �∗(> 0) is an arbitrary reference scale with the dimension of inverse length, which must be

introduced on dimensional grounds. Putting these together, we obtain an infinite number of discrete

negative energy eigenvalues:

En = −ℏ2�2∗2m exp(−2n�� ) , n ∈ Z. (27)

These are the binding energies of the boundary-localized two-body bound states. Note that the spatial

extent of these bound states is about r ≈ 1/�n = �−1∗ en�/� , which follows from the asymptotic behaviorR�n�(r) → N�n� e−�nr as r → ∞;4 see the left panel of Fig. 4. Note also that En and R�n�(r) fulfill the
relations En−1 = En e2�/� and R�n−1�(r) = e�/(2�) R�n�(e�/� r), which, through Eq. (10), guarantees the

scaling law (3) discussed in the introduction with the scaling factor et = e�/� .
3.3 Two-body scattering off the boundary

Let us finally consider the case E > 0 in the channel � = �0 < 0. In this case, we are interested in the

solution to the radial equation (11b) whose asymptotic behavior as r → ∞ is the linear combination

of plane waves Rk�(r) → e−ikr +S�(k) eikr , where S�(k) is a linear combination coefficient and k =√2mE/ℏ2 > 0. The full solution is given by5

Rk�(r) = √2kr� (e i�4 Ki� (e i�2 kr) + S�(k) e− i�4 Ki� (e− i�2 kr)) . (28)

4For more precise estimation, one should compute the expectation value of the distance |x1 − x2 | = |r sin �|.
5For E = ℏ2k2/(2m) and � = −�2, Eq. (11b) is equivalent to the Bessel differential equation (r 2d2/dr 2 + rd/dr + k2r 2 +�2)(r− 12 R) = 0. The two independent solutions to this equation are the Hankel functions of the first and second kind, H (1)i� (�r )

and H (2)i� (�r ), respectively. Note that the Hankel functions and the modified Bessel function of the second kind are related

as H (1)i� (x) = (2/(i�)) e− ��2 Ki� (e− i�2 x) and H (2)i� (x) = (2/(i�)) e ��2 Ki� (e i�2 x). For more details of the Hankel functions, see, e.g.,

Ref. [37].
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Note that Eq. (28) together with Eq. (16) describes the superposition of an incoming wave to r = 0 and
an outgoing wave from r = 0, both of which localize to � = 0; that is, it describes the two-body bound

state scattered off the boundary, where S�(k) plays the role of the reflection amplitude (see the right

panel of Fig. 4). Note also that the scattering solution (28) is no longer localized to the boundary r = 0.
It should be noted that at this stage S�(k) is an arbitrary constant. In order to determine S�(k), we

require that the scattering solution (28) be orthogonal to all the bound-state solutions (19). (Note that

the energy eigenfunctions should be orthogonal if their eigenvalues are different.) In exactly the same

way as for Eq. (22), one obtains the following relation:

(−�2n − k2) ∫ ∞
0 dr R�n�(r)Rk�(r) = − limr→0(R�n�(r)R′k�(r) − R′�n�(r)Rk�(r))

= 2√�nk� sinh(�� )N�n�[e i�4 sin(� log( k�n) + i��
2 )

+ S�(k) e− i�4 sin(� log( k�n) − i��
2 )]. (29)

Hence, in order to guarantee the orthogonality relation ∫ ∞0 dr R�n�(r)Rk�(r) = 0 for any k > 0 and n ∈ Z,

the coefficient S�(k) must be of the following form:

S�(k) = − e i�2 sin(� log( k�∗) + i��2 )
sin(� log( k�∗) − i��2 ) . (30)

This is the reflection amplitude off the boundary for the two-body bound state. This amplitude, which

satisfies the unitarity condition S�(k)S�(k) = 1, is a periodic function of log k with the period � /� .
This log-periodicity is a manifestation of discrete scale invariance S�(en�/� k) = S�(k) in the scattering

problem.6 We also note that Eq. (30) has simple poles at k = i�n = �∗ ei�/2−n�/� in the complex k-plane.
In fact, it behaves as follows:

S�(k) → i|N�n� |2k − i�n + O(1) as k → i�n. (31)

These simple poles are the manifestation of the presence of infinitely many bound states that satisfy

the geometric scaling En+1/En = �2n+1/�2n = e−2�/� .
We note in closing that the reflection amplitude (30) can be regarded as the scattering matrix (S-

matrix) element Sk�,k′�′ = (Ψoutk� ,Ψink′�′) for � = �′ = �0(< 0), where Ψink� = r−1/2Rk�Θ� is the in-state,

Ψoutk� = Ψink� is the out-state given by the complex conjugate (i.e., time reversal) of the in-state, and (⋅, ⋅)
is the inner product defined by (f , g) = ∫ ∞0 ∫ ∞0 f g dx1dx2 = ∫ ∞0 ∫ �/4−�/4 f g rdrd� . In fact, it follows from

the orthonormality ∫ �/4−�/4Θ�Θ�′d� = ���′ ,7 the identity (k2−k′2)Rk�Rk′� = (d/dr)(Rk�R′k′� −R′k�Rk′�), and
the asymptotic behavior Rk� → e−ikr +S�(k) eikr that this S-matrix element takes the form Sk�,k′�′ =
2��(k − k′)���′S�(k). One nice thing in this formulation is that it is obvious that there is no scattering

between different channels � and �′.
6Once given the relation S�(en� /� k) = S�(k) for any n ∈ Z, we can say that the reflection amplitude is of the formS�(k) = f�(log k), where f� is a periodic function with the period �/� . In general, in scattering problems discrete scale

invariance manifests itself in a periodic oscillation of the S-matrix as a function of log k. For more details, see Ref. [22].
7Without any loss of generality, the angular wavefunction Θ� can be chosen to be real for any � ∈ {�0, �1, ⋯}.
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4 Conclusion

In this paper, we have introduced a toy scale-invariant model of two identical bosons on the half-line

R+, where interparticle interaction is described by the pairwise �-function potential with the particular
position-dependent coupling strength given by Eq. (2). We have seen that, if the two-body interaction

is sufficiently attractive, continuous scale invariance is broken down to discrete scale invariance. In

the bound-state problem where the bosons are bound together and localized to the boundary, this dis-

crete scale invariance manifests itself in the onset of the geometric sequence of binding energies. In

the scattering problem where the two-body bound state is scattered by the boundary, on the other

hand, this discrete scale invariance manifests itself in the log-periodic behavior of the reflection am-

plitude. Hence, by breaking translation invariance of this one-dimensional problem, we can construct

a two-body model that exhibits the Efimov effect. In contrast to the ordinary Efimov effect in three-

body problems in three dimensions, our model can be solved exactly by just using undergraduate-level

calculus.

Finally, it should be mentioned the stability issue of the model and its cure. As is evident from

Eq. (27), there is no lower bound in the energy spectrum {En} for g0 < g∗. This absence of ground

state is inevitable if the system is invariant under the full discrete scale invariance that forms the

group Z. (As discussed in the introduction, the full discrete scale invariance leads to the geometric

sequence {E0, E0 e±2t∗ , E0 e±4t∗ ,⋯}, which cannot be bounded from below if E0 < 0.) In order to make

the spectrum lower-bounded, we therefore have to break this invariance under Z. The easiest way to

do this is to replace the short-distance singularity of the inverse-square potential by, e.g., a square-well

potential. Such regularization procedures have been widely studied over the years in the context of

renormalization of the inverse-square potential. For more details, we refer to Refs. [24–31].

Appendix A Modified Bessel functions of imaginary order

In this section, we summarize the short- and long-distance behaviors of the modified Bessel functions.

For details, we refer to Ref. [37].

First of all, the modified Bessel function of the second kind with imaginary order is defined as

follows: Ki� (z) = i�
2
Ii� (z) − I−i� (z)
sinh(�� ) , � ∈ R ⧵ {0}, (A.1)

where Ii� is the modified Bessel function of the first kind given by the following series:

Ii� (z) = ei� log z2 ∞∑n=0 1n!Γ(1 + n + i�) (z2)2n . (A.2)

Here Γ is the gamma function. It follows immediately from the definition (A.1) that K−i� (z) = Ki� (z). It
also follows from Eqs. (A.1) and (A.2) that Ki� (z) = Ki� (z) for z > 0.

The short-distance behavior of Ki� is governed by the n = 0 term in Eq. (A.2). By using the polar

form of the gamma function,

Γ(1 + i�) = |Γ(1 + i�)| ei arg Γ(1+i�)
=
√ ��
sinh(�� ) ei arg Γ(1+i�), (A.3)

where arg Γ(1 + i�) stands for the argument of Γ(1 + i�), we see that Ki� (z) behaves as follows:
Ki� (z) → −

√ �� sinh(�� ) sin(� log z2 − arg Γ(1 + i�)) + O(z2) as |z|→ 0. (A.4)

The long-distance behavior, on the other hand, is known to be of the following form:

Ki� (z) → √ �
2z e−z [1 + O( 1z )] as |z|→ ∞. (A.5)
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Appendix B Boundary as the infinitely heavy third particle

In this section we show that the two-body problem on the half-line R+ discussed in the main text is

equivalent to a three-body problem on the whole line R with an infinitely heavy third particle. We

note that this section is not necessary for understanding the main text.

To begin with, let us first define some notation. Let z1, z2 ∈ R be the coordinates of two identical

bosons of massm and z3 ∈ R be the coordinate of a third particle of massM . The Hamiltonian of these

particles is assumed to be of the following form:

H3-body = −
ℏ2
2m ( )2)z21 +

)2)z22) −
ℏ2
2M )2)z23 + g(z1 − z3)�(z1 − z2) + U (z1 − z3) + U (z2 − z3), (B.1)

where g(x) = ℏ2g0/(m|x |) is the position-dependent coupling strength that makes the two-body inter-

action between the identical bosons scale invariant. Note that the two bosons interact only when they

are in the same position, and that the interaction strength depends on their position relative to the

massive third particle. U is a pairwise interaction between one of the identical bosons and the third

particle whose explicit form is irrelevant for the moment. Note that Eq. (B.1) is invariant under the

translation (z1, z2, z3) ↦ (z1 + a, z2 + a, z3 + a) for any a ∈ R. Hence the total momentum is conserved

and the center-of-mass motion is that of a free particle. Below, we will show that, by taking the limitM → ∞, the relative Hamiltonian that describes the relative motion of this three-body system can be

reduced to the two-body Hamiltonian on the half-line discussed in the main text.

Let us first separate the center-of-mass Hamiltonian from Eq. (B.1) and identify the relative Hamil-

tonian. To this end, it is convenient to introduce the Jacobi coordinates (y1, y2, y3) as follows:
y1 = z1 − z2, (B.2a)y2 = z1 + z2

2
− z3, (B.2b)

y3 = mz1 +mz2 +Mz3
2m +M . (B.2c)

Physically, y1 is the relative coordinate for the identical bosons; y2 is the relative coordinate for the
center-of-mass of the identical bosons and the heavy particle; and y3 is the center-of-mass coordinate

for the three particles. A main advantage in this coordinate system is the following equality:

1m )2)z21 +
1m )2)z22 +

1M )2)z23 =
1�1 )2)y21 +

1�2 )2)y22 +
1�3 )2)y23 , (B.3)

where

�1 = ( 1m +
1m)−1

=
m
2
, (B.4a)

�2 = ( 1

2m +
1M )−1

=
2mM
2m +M , (B.4b)�3 = 2m +M. (B.4c)

Physically, �1 is the reducedmass for the identical bosons; �2 is the reducedmass for the center-of-mass

of the identical bosons and the heavy particle; and �3 is the total mass of the three particles. It is now

straightforward to show that the three-body Hamiltonian (B.1) can be written as H3-body = Hcm + Hrel,

where

Hcm = −
ℏ2
2�3 )2)y23 , (B.5a)

Hrel = −
ℏ2
2�1 )2)y21 −

ℏ2
2�2 )2)y22 + g(y2 + 12y1)�(y1) + U (y2 + 12y1) + U (y2 − 12y1). (B.5b)
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Hcm is the center-of-mass Hamiltonian so that Hrel = H3-body − Hcm describes the relative motion and

internal energy of the three-body system. In the following, we focus on Hrel.

Now let us consider the situationwhere the third particle ismuch heavier than the identical bosons,m/M ≪ 1. In the extreme case M → ∞, where �2 → 2m, Eq. (B.5b) reduces to

Heff = limM→∞Hrel

= −
ℏ2m )2)y21 −

ℏ2
4m )2)y22 + g(y2 + 12y1)�(y1) + U (y2 + 12y1) + U (y2 − 12y1). (B.6)

To standardize the expression, let us introduce a new coordinate system (x1, x2) defined by
x1 = y2 + 1

2
y1 = z1 − z3, (B.7a)

x2 = y2 − 1

2
y1 = z2 − z3, (B.7b)

in which Eq. (B.6) takes the following form:

Heff = −
ℏ2
2m ( )2)x21 +

)2)x22 ) + g(x1)�(x1 − x2) + U (x1) + U (x2). (B.8)

This Hamiltonian describes the relative motion of the three-body system in the center-of-mass frame

and in the M → ∞ limit. Notice that y3 → z3 as M → ∞ so that the infinitely heavy third particle

remains at the origin in the center-of-mass frame. In this limit, the three-body system is described by

the two-body Hamiltonian (B.8).

Finally, let us consider the confinement of the identical bosons on the half-line R+ by specifyingU . One way to achieve this is to choose U (x) = 0 for x > 0 and U (x) = ∞ for x < 0. An alternative way

is to use the strong-coupling limit of the following �-function potential:

U (x) = ℏ2m 
�(x), (B.9)

where 
 is a coupling constant. As discussed in Sec. 3.1, U (x1) is equivalent to the following connection
conditions for the two-body wavefunction  (x1, x2):

−
) )x1 (0+, x2) + ) )x1 (0−, x2) + 
 ( (0+, x2) +  (0−, x2)) = 0, (B.10a)

 (0+, x2) =  (0−, x2), (B.10b)

where x2 ≠ 0. In the strong-coupling limit 
 → ∞, Eq. (B.10a) reduces to  (0+, x2) +  (0−, x2) = 0,

which, together with Eq. (B.10b), leads to the Dirichlet boundary condition  (0+, x2) =  (0−, x2) = 0

that corresponds to Θ(� /4) = 0 in Eq. (15). Similarly, for U (x2), one can obtain  (x1, 0+) =  (x1, 0−) = 0

(x1 ≠ 0) that corresponds to Θ(−� /4) = 0. Notice that, under the Dirichlet boundary conditions, the

two regions x > 0 and x < 0 are physically disconnected because the probability current density

vanishes at x = 0 and hence there is no probability current flow across the origin. Alternatively, one

can say that particles cannot penetrate through the origin because the transmission amplitude for the�-function potential vanishes in the strong-coupling limit. Hence, if the identical bosons are initially

on the positive half-line R+, they remain on this region forever. This is the two-body problem on the

half-line discussed in the main text. Note that the effective two-body Hamiltonian (B.8) is no longer

invariant under the translation (x1, x2) ↦ (x1 + a, x2 + a).
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