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Analytical solution to the Poisson-Nernst-Planck equations for the charging of a long
electrolyte-filled slit pore
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We study the charging dynamics of a long electrolyte-filled slit pore in response to a suddenly
applied potential. In particular, we analytically solve the Poisson-Nernst-Planck (PNP) equations
for a pore for which A\p < H < L, with Ap the Debye length and H and L the pore’s width and
length. For small applied potentials, we find the time-dependent potential drop between the pore’s
surface and its center to be in complete agreement with a prediction of the celebrated transmission
line model. For moderate to high applied potentials, prior numerical work showed that charging
slows down at late times; Our analytical model reproduces and explains such biexponential charge

buildup.

I. INTRODUCTION

The behavior of electrolytes in narrow conducting
pores and channels is important in various fields of bi-
ology, chemistry, as well as in technological applications.
Supercapacitors, for example, store energy through elec-
tric double layer (EDL) formation in the nanometer-wide
pores of their porous carbon electrodes. Such devices are
often characterized by measuring the electric current that
arises in response to a time-dependent applied potential:
be it a step, oscillating (in impedance spectroscopy [1, 2]),
or ramps up and down (in cyclic voltammetry [3]). Ei-
ther way, the microscopic processes that underlie charge
storage are measured by these methods only in a volume-
averaged manner.

Theoretical models for porous-electrode charging of-
ten ignore the complex morphology of these electrodes.
Many molecular simulations, for instance, concern ide-
alized nanometer-sized pore-reservoir system, simulated
over nanoseconds [1-12]. As such simulations cannot
model the ion transport over millimeters in the quasi-
neutral pores of porous electrodes, they vastly underes-
timate the charging times of real devices [13]. Other ar-
ticles numerically solve the Poisson-Nernst-Plank (PNP)
equations [14—18] and dynamical density functional the-
ory (DDFT) [19, 20] to study the charging of cylindrical
and slit pores. As larger length scales could be stud-
ied than in MD, the predicted charging times are larger,
accordingly. Yet, a common picture arises from these dif-
ferent numerical methods [4, 5, 9, 10, 13, 14, 19]: Immedi-
ately after applying a potential, an electrolyte-filled pore
acquires its surface charge diffusively, o< v/¢, until ionic
charge variations penetrate the entire setup and charging
goes exponentially with an RC' timescale. At late times,
and especially for large applied potentials, charging slows
down and a second exponential regime sets in. Before
these numerical observations were made, biexponential
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response had been predicted by Biesheuvel and Bazant’s
porous electrode model [21]. As of yet, however, there is
no analytical expression based on a comprehensive first-
principles derivation that captures biexponential charge
build-up.

Decades before porous electrode charging was studied
by numerical PNP and molecular simulations, Daniel-
Bekh [22], Ksenzhek and Stender [23], and de Levie [241—

| developed the transmission line (TL) model. The
TL model is based on an electronic circuit that dis-
tributes the resistance and capacitance of an electrolyte-
filled pore over many circuit elements. For infinitesimally
small circuit elements, the circuit yields a 1d diffusion
equation, the TL equation, for the potential drop be-
tween the pore’s surface and its center [23, 24, 27]. The
response of the TL equation to various potentials and cur-
rents was discussed for semi-infinite pores by Ksenzhek
and Stender [23] and de Levie [24] and for finite-length
pores in contact with a bulk electrolyte by Posey and Mo-
rozumi [28]. The TL impedance found in this way [26] has
been widely used to fit experimental data [1, 2]. Likewise,
TL model’s transient response fitted MD data [11] and
accurately reproduced data from numerical solutions of
the PNP equations [17, 18]. Reinforcing the TL model’s
basis, Henrique, Zuk, and Gupta recently analytically de-
rived the TL equation from the PNP equations [18]. As
they restricted to small applied potentials, however, their
model did not capture Biesheuvel and Bazant’s late-time
slow down.

In this article, we analytically solve the PNP equations
to determine the charging dynamics of an electrolyte-
filled slit pore (Fig. 1). We consider a pore whose length
L is greater than its width H, which, in turn, is greater
than the Debye length Ap. Our derivation hinges on
i) asymptotic expansions of the ionic densities and lo-
cal electrostatic potentials for small H/L, which allow us
to reduce the 3d PNP equations for the in-pore ion dy-
namics to a 1d transport equation and ii) an expansion
of the time-dependent ionic chemical potentials around
the final-state ionic densities. For small applied poten-
tials, we reproduce Posey and Morozumi’s expression for
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FIG. 1. A slit pore subject to an applied potential ®, closed

at the right edge at = L and in contact at x = 0 with a
bulk filled with a symmetric electrolyte of constant density.

the time-dependent local electrostatic potential inside
the pore. For moderate applied potentials, our model
fully explains biexponential surface charge build-up: af-
ter initial RC-like relaxation, the charging slows down
and evolves with the larger diffusion timescale L?/D,
with D the ionic diffusion constant. Our analytically-
determined charging times agree with the numerical data
of Mirzadeh, Gibou, and Squires [17].

II. THEORY
A. Setup

We consider the charging of a narrow slit pore with
blocking, conducting walls filled with a 1:1 electrolyte.
The pore’s length L is much larger than its width H, so
that L > H. Moreover, the width is much larger than
the size of the ions and solvent molecules and we ignore
their finite sizes, accordingly. We use a Cartesian coor-
dinate system (x,y, z) with = in the length direction and
z in the width direction of the pore, see Fig. 1. More-
over, the pore is closed at x = L and in contact with
a bulk electrolyte reservoir at salt concentration ¢’ at
x = 0. The pore is translationally invariant in the y di-
rection; hence, the dimensionless potential ¢(¢,x, z) and
the ionic number densities p4 (¢, z, z) do not depend on y.
From ¢(t,z, z), one finds the local electrostatic potential
through multiplication by the thermal voltage kgT/e,
with kT the thermal energy and e the unit charge. Like-
wise, py(t, x, z) are the local ionic densities scaled to the
bulk ion concentration c’.

We model the evolution of py(t,z,2z) and é(t,z, z)
through the PNP equations,

Opr =DV - (p£ V), (1a)
pt =log(ps) £ ¢, (1b)
2, P+ —P-

Vi = -5 X, (1c)

where V. = (0,,0,) is the 2d gradient, where D

is the diffusion coefficient, assumed spatially constant
and the same for both ion species, where Ap =
[2¢%¢?/(ecokpT)]~'/? is the Debye length, with € and g
the relative and vacuum permittivity, respectively, and
where 4 are the dimensionless ionic chemical potentials,
which are the ionic chemical potentials divided by kpT.

Initially (¢ < 0), no potential is applied to the pore
and the electrolyte is homogeneous. Charging starts at
t = 0 when the dimensionless surface potential suddenly
steps to some nonzero ® (not necessarily positive). Equa-
tion (1) is thus subject to the following initial and bound-
ary conditions:

—_
[\~
—

6z.u:|:(t z,H) =0,
81,ui(t L z) = Oa

p+(0,z,2) =1, (2a)
pa(t,0,2) = plL(2), (2b)
o(t,z,0) = P. (2¢)
o(t,x, H) = P, (2d)

Oy pa(t,z,0) =0, 2e)
) = )

) = )

—~

2g

where Egs. (2¢)—(2g) follow from the pore walls being
blocking. Notice that our setup is symmetric around

= H/2. Hence, from hereon we model only the re-
gion 0 < z < H/2 and use 0,¢(t,z,H/2) = 0 in-
stead of Eq. (2d). Notice, also, that we study p (¢, z, 2)
and ¢(t,z,z) only within the pore, 0 < z < L (and
0 < z < H/2). In real systems, the potential ® is ap-
plied with respect to some other electrode. Especially
just after applying the potential, pore charging dynam-
ics can depend on the distance and space between these
two electrodes [27][29]. In our model, however, the reser-
voir affects the pore only through the boundary condition
Eq. (2b) at the orifice (z = 0). A key assumption of our
model, we postulate that the ionic number densities at
x = 0 relax instantaneously to their final states pi (2).
As we use the PNP equations, and as we will focus on
thin EDLs (H/Ap > 1), these final states are the Gouy-
Chapman density profiles

(1 +tanh(®/2)ex
ph(e) = (1 " tanh(®/2) ex

p(—2/Ap)\
p(z/m) - ®

The combination of Egs. (2b) and (3) should be reason-
able provided that two conditions are met. First, the
pore should be slender (L > H), so that slow relaxation
in the long in-pore direction allows the system to attain
quasi-equilibrium in the short z-direction at each time
[see Section II1B]. Second, our analysis can only apply
to pores whose resistance R is much larger than that of
the connected reservoir R,. For such systems, the elec-
tric field drops to zero much faster in the reservoir than
in the pore so that the reservoir is in quasi-equilibrium
with the pore as it charges. Reassuringly, our analysis
ultimately reproduces TL results (for the case R > R,.)
for all times, implying that the postulated instantaneous
densities at x = 0 are compatible with the TL model.



B. H/L <1 charging dynamics

Instead of fully solving the nonlinear 2d PNP equa-
tions (1), we seek asymptotic approximations to these
equations for small H/L, see Appendix A and Refs. [19,

, 30]. In short, we first rescale the variables in Eq. (1)
with length scales of their characteristic variations. The
scaled PNP equation (A1) contains O(1) and O(H?/L?)
terms only. Accordingly, we expand the ionic number
densities and dimensionless potential for H/L < 1 and
only retain terms of O(1) and O(H?/L?),

H? H?
palti2) = At + o) 40 ().
(42)

gb (t,z,z) + O <§:>
(4b)

o(t,x,2) = ¢°(t,w,2) +

Upon inserting Eq. (4) into Eq. (1), we find that the O(1)
problem Eq. (A3) contains only z-derivatives. In partic-
ular, the dimensionless potential ¢°(t,z,z) is governed
by

Y
¢°(t, 2,0) = @, (5b)
0-0°(t,x, H/2) = 0, (5¢)

Moreover, at O(1) we find that the chemical potential is
constant on z-slices of the pore [uY (¢, z,2) = p% (¢, z)]
throughout the charging process. The ionic number den-
sities can thus be expressed as [cf. Eq. (1b)]

Pt x,2) = exp[p(t, ) F ¢°(t, 2, 2)], (6)

which, inserted into Eq. (5a), gives

exp(p® + ¢°) — exp(pf. ¢°)
222

92¢" = (7)

As the O(1) problem does not capture the dynamics of

our system, we turn to the next order, O(H?/L?), where
we find the following transport equation [cf. Eq. (A5)]:

0ips — DOy (pLOxp) =0, (8)

where pY.(t,7) are cross-sectional averages of the ionic

number densities, defined for a general observable
ft,z, 2) as

B H/2
flt,x) = %/0 dzf(t,z, 2). (9)

Notice that, with a slight abuse of notation, we wrote
p°(t,x) instead of pO(t,z), to keep our expressions
tractable.

P (t,x)

The initial and boundary conditions for Eq. (8) follow
from cross-sectional averages of Eq. (2),

0,2) =1, (10a)
PL,0) = 7L, (10b)
aacﬂ'i (ta L) =0, (IOC)

where the final-state cross-sectional average densities ﬁi

follow from Egs. (3) and (9) as

o A
_f _ =)\ _ D
pi1+4{exp(q:2) 1} Il (11)

The key advantages of the H/L-expansion are that the
transport equation (8), which appears at O(H?/L?), is
1d and only contains the first terms of the asymptotic
density and potential expansions [Eq. (4)]. Hence, we do
not need to find pl (¢, z,2) and ¢ (¢, z, z) to characterize
the pore’s dominant charging dynamics.

This article focuses on analytically solving Egs. (8)
and (10). But, for comparison, we also solved these equa-
tions numerically, by a procedure outlined below and
elaborated upon in Appendix B. In our numerical ap-
proach, we close Eq. (8) by expressing the chemical po-
tential pO(t,z) = pO[p% (¢, x), p" (t,x)] as functionals of
the cross-sectional averages of the ionic number densities

7Y% (t, ). To do so, we insert Eq. (6) into Eq. (9) and find

Po(t, ) = exp (ud F ¢°) = exp (p3.) exp(F¢°), (12)

where, for the second equality, we used that p9 (¢, z) is 2
) t

mdependent With Eq. (12) we rewrite Eq. (7

1 p‘leXp(st)_p?reXp(cbO))
2 <exp(¢0) exp(—¢%) ) 1)

)
@]

82 ¢O

Clearly, a solution ¢°(z, p+,ﬁ ) to Eq (13) is a func-
tion of z and of the averaged densities pJ.(¢,2). We can
thus express the chemical potentials with Eq. (12) as
log exp(F¢°) , (14)

ud (%, 9%) =logp —

which depends on the averaged densities pY. (¢, z) but not
on the z-coordinate. Equation (14) enables us to reduce
Eq. (8) to a closed equation for p% (¢, ). Details on our
numerical implementation are in Appendix B.

C. Late-time charging dynamics

We seek an approximate solution to the coupled nonlin-
ear PDE (8) for times at which the deviations dp (¢,2) =

- ﬁi of the densities from their final states
are small. Specifically, we consider Maclaurin series of
the density-dependent chemical potentials p% (0p,,6p_),
omitting terms beyond linear order in dp,, we find

P = axdp, +bedp_ + O(6p%) (15a)



where

ol
op° |

g

- (15b)
(9,03_ ﬁfl—

ay = ) by =

Here, we used pu9. (ﬁi,ﬁf ) = 0, which, for our case of
thin EDLs, can be seen from Eq. (6): at the center of
the pore, the potential vanishes, ¢°(¢,z, H/2) = 0, and
final-state density amounts to pi(z) = 1. More general,
I (ﬁi,ﬁ’i ) = 0 follows from the pore being in osmotic
contact with a bulk reservoir where ¢ = 0 and pg =1

[cf. Eq. (1b)].
Inserting the linearization Eq. (15) into Egs. (8)
and (10), we find
8t5ﬁ(t, ) = DA9Zop(t, =) + O(6p2), (16a)
_ _ _f\T
5?( ,0) =0, (16¢)
0.:0p(t,L) =0, (16d)

where 6p(t,z) = (6p,, 55_)T and where

—f  —f
_ (Pyat piby
A= (pfa pfb)'

As ﬁi in Eq. (11) does not depend on z, neither does the
initial condition Eq. (16b); hence, §p(0, z) = §p(0).

According to the Hartman—Grobman theorem, the be-
havior of a nonlinear dynamical system of ODEs near
a hyperbolic equilibrium point can be described by lin-
earized equations (see Theorem 3.3.1 in Ref. [31]). By
Eq. (16), we have linearised a nonlinear PDE [Eq. (8)],
to which that theorem does not apply, but might be ex-
tended, see Ref. [32]. Further, our linearization is similar
to the linear stability analysis of 1d-DDFT discussed in
Section 7.2. of Ref. [33] and similar to the chemical-
potential expansion of Tomlin and coworkers around a
nonhomogenous equilibrium state (Eq. 3.1 in Ref. [20]).
We have not seen studies of electrolyte dynamics that
utilized chemical potential expansions around the final-
state densities, though.

As p depends only on the cross-sectionally averaged
densities, evaluating the derivatives in Eq. (15b) at the
ﬁi we find that a4 and by are constant determined
by the electrolyte properties in the pore at the final
state. Hence, A is constant. We assume that matrix
A has two distinct real eigenvalues, A\; and A9, and a
complete system of eigenvectors, v; and wsy, such that
Av; = \v;. One can thus diagonalize A = PAP™!,
where P = (v1,v3) and A = diag(A1, A2), which decou-
ples Eq. (16) to

(16e)

atgi (t, 17) = AzDag%gz (tv x)’ (17>

where g; are the components of the vector g = P~18p.
Notice that, to write Eq. (17), we have used that A does

not depend on time. The following boundary and initial
conditions apply:

9:(0) = (P~'6p(0)), , (18a)
9i(t,0) = 0, (18b)
0.9i(t,L) = 0. (18c¢)

Notice that the initial condition (18a) does not depend
on z, as neither P~! nor §p(0) does. Equations (17)
and (18) represent a standard heat conduction prob-
lem that can be solved with separation of variables [34],
Laplace transformations, or Green’s functions. We found

=3 20D g2 D1/ 22)0i0),
n=0 "

(19)
where 3, = 7 (1/2 4 n). In vector form, Eq. (19) reads

g(t,z) = i 2sin(Bpxz/L)
n=0 B
diag {eXp (/D’fzklff) , €Xp < B Dt)] 9(0).

(20)

We calculate the density variation §p = Pg and, with
the matrix exponent identity,
exp (A) = P diag(exp (A1), exp (X2)) P71, (21)

we find the following solution to Eq. (16):

sp(t,z) = S 2nOnt/D) (ﬂ2A )5p<>

(22)
A key quantity capturing the charging state of a pore
is its length-averaged charge density, Q(t) = fOL d:v(ﬁg_ —

7°)/L. For our setup with like-charged pore walls, Q(t)

is opposite and equal to the wall-averaged electric surface
charge density. Instead of on Q(t), we will focus on the
deviation 6Q(t) = Q7 — Q(t) from its final value Qy =

ﬁf_ — ﬁ’i . In terms of dp and the ionic valency vector
= (1,-1)" we find
1 L
0Q(t) = fz/ drz"8p(t, x). (23)
0

Inserting Eq. (22) into Eq. (23) then yields

o] 2
2 _ Dt
Q0 = =3 2 3" = AP0 exp (—wip),
n=0"" i=1
(24)
where we used Sylvester’s formula,

exp (—ﬁgAZL)D ZA exp< Dt), (25)



and the Frobenius covariants A;,

AT

A— NI
A, = == 727
1 )\1_)\27

= 26
2 )\2_)\1’ ( )

with I the identity matrix.

Except at early times, dQ(t) is dominated by its n =0
terms, which relax with timescales o< L?/(D);) and
o L?/(DX3). Hence, both timescales go as L?/D, which
corresponds to electrolyte diffusion along the length of
the pore. But these timescales can still differ much
through the factors A1 and Ao, which depend on the pore
and electrolyte properties through the coefficients a4+ and
by [Eq. (15b)].

D. Analytical approximations to §Q(t) for thin
EDLs and moderate potentials

We will seek analytical expressions for §Q(t) [Eq. (24)]
by considering increasingly-restrictive constraints on the
values of ® and Ap/H.

1. Thin double layers: exp(—H/Ap) < 1

O?Ne seek a solution to Eq. (7) and start by splitting
@°(t, z, z) into

pi(tz) —plta) $5C(

ot z,2) = 5

ta,z), (27)
where the superscript tentatively refers to Gouy and
Chapman. Inserting this expression into Eq. (7), we find
that ¢SC(¢,x, 2) is governed by

92¢5¢ = X, Zsinh (¢9°) , (28a)
#SC(t,2,0) = Dy, (28b)
2.¢%C(t,x, H/2) = 0, (28c)

where ®,,, = & — (u — p2)/2 is a modified dimension-
less surface potential and X, = Ap exp[—(uY + u2)/4]
a modified Debye length, which both depend on t and x
through u%. For general H/\,,, an equation equivalent
to Eq. (28) was solved by Corkill and Rosenhead [35],
with a solution [Eq. (3.7) therein] in terms of elliptical
functions. Meanwhile, for pores much wider than the De-
bye length, the Poisson-Boltzmann equation (28) has the
famous Gouy-Chapman solution

1+ tanh (®,,/4) exp(—z/An)
1 — tanh (®,,/4) exp(—z/Am)

(20)
Here, dots represent higher order terms in an H/Ap < 1
expansion of the elliptic functions of Corkill and Rosen-
head [35]. They showed that such terms are negligi-
ble for H/Ap > 16; the smallest value of that fraction
that we consider here is H/Ap = 20. Inserting Eq. (29)
into Eq. (27) then yields the solution of Eq. (7). As

¢4 (t, 2, 2) = 2log

5

#9C(t,z, H/2) = 0, we see from Eq. (27) that non-equal
chemical potentials ug # 19 result in a nonzero potential
at the middle of the pore.

Next, we insert Eqs. (6), (27), and (29) into Eq. (9) to
determine the cross-sectional average densities,

0 0
-0 _ wy + p 4>\m <I>m B
Py = €exp (2 ) {1 + Na exp :F—2 1| ¢,

+ O (exp(—H/Am)) » (30)

where the neglected higher order terms stem from the
leading order term of Eq. (29). As A, scales as Ap at
the linear expansion near the final state, A,, = Ap[l +
O(6pL )], we find that neglecting these terms in Eq. (30)
means that our theory holds for moderately thin ELDs
[O(exp(—H/Ap))]- (Notice that the final-state cross-
sectional average densities ﬁ{t of Eq. (11) also follow from
setting puy =0, A, = Ap and @, = @ in Eq. (30).)

Writing ﬁ(i = ﬁoi(ug#g) and differentiating both
sides with respect to pJ., we obtain four independent
equations for a4+ and b4,

1= 255; ++ gup%_a_, (31a)
0= g/’i%m gz%b, (31b)
1= gfum ga_, (31c)
0= g’irmr + gz_a. (31d)
Inserting Eq. (30), we find
T T Do 2y Jfler_ —zzi)D})Icosh((P oy %)
ay = —a_ (1 + W) , (32b)
bo=—a_ (1 + —MD;X_I) ;;j/ 2)> : (32¢)
by =a_. (32d)

With the coefficient ay and by [Eq. (31)] and final den-
sities pf [Eq. (11)] at hand, we can now express A
[Eq. (16¢)] and analytically determine its eigenvalues and
Frobenius covariants A; [Eq. (26)]. In turn, this yields
the charging dynamics dQ(t) [Eq. (24)]. The resulting
expressions, however, are very long (not shown).

2. Thin double layers and moderate potentials: Ap/H < 1,
exp (£®/2)A% /H? < 1

We further restrict the EDL thickness and also con-
strain the applied potential by omitting O(Ap/H)
and  O(exp (£®/2)\%,/H?) terms. We do keep



O(exp (£®/2)A\p/H) terms, which can become notable
for |®| > 1. Under these conditions, Eq. (32) reduces to

a:—msﬁ@mi [1+0<A;>] , (33a)
= —a {1+n{1+0<§g)”, (33b)

b= —a_ {1 +exp(—®)n {1 +0 (ﬁg)] } . (33c)

by =a_ (33d)

where the parameter 7 is given by

D\ Ap
n—4exp<2> T (34)

Parameters similar to 7 appear in models for elec-
trophoresis (as the “Dukhin” number) [36] and EDL for-
mation near flat plates [37, 38].

Using Eq. (11) and omitting O(Ap/H) and
O(exp (£®/2)0\%4 /H?) terms, we find ﬁ_{_cur = 7',
with a4 and b_ given in Eq. (33). Inserting this into
Eq. (16¢) yields

v H a7l
A= Teoh(®/2) 2 ( & atn) @

whose eigenvalues and eigenvectors read

- 1 H 1y _
A= Teosh(®/2) A [P+(1+n)+ M} , (36a)
1

do = W% [PL0+0) = T+ (36)

v = (\/M, 1)T7 (36¢)
vy = (W, 1)T, (364)

where pg,. = ﬁi +ﬁ’i — 2 is the excess salt density, which
arises in the eigenvalues Eqs. (36a) and (36b) as ﬁiﬁ{ =
1+ Poxe + O(exp (£8/2)0\% /H?).

Calculating the Frobenius covariants [Eq. (26)] and in-
serting them into Eq. (24), we obtain

5%@ =2 ﬁ—lg {[1 (1 ) 2] exp (—@%Alfﬁ)

n=0
o\ Dt
# 1= 0 P o (820 ) |

+0 (?) + 0 (e**2}/H?), (37a)

where

— o >\D . 2

Poxe = 16? sinh*(®/4) (37b)
Notice that the relative importance of the two terms of

Eq. (37a) depends only on .., which, in turn, depends
on the applied potential and EDL overlap.

3. Towards the TL model: n < 1

Next, we consider the case n <« 1. Clearly, for n to
be a small parameter puts restrictions on the applied
potential ® and the EDL overlap Ap/H. Yet, n < 1 and
® ~ 1 are simultaneously possible. Thus, for sufficiently
thin EDLs, the expressions that we derive below apply
to PNP in the nonlinear charging regime.

We insert Egs. (11) and (37b) for pL and 7., into
Eq. (36a) to obtain small-n expansions of the eigenvalues,

_ 2 exp(®/2) N
A= n cosh(®/2) +O(), (382)
Ao =1+ 0(). (38)

Likewise, we find that Eq. (37) reduces for small 7 to
0Q = 2 sinh?(®/4) 5. Dt
i Bl Y Ol Sl A — B2\ =
o L3 [( exp(@/2) 1) P\ TN T
sinh?(®/4)

Ve o (s )| o)

(39)

At late times, only the n = 0 terms contribute and §Q(t)

further simplifies to
) t inh?(® /4 t
00 L8 | p (L) gt @) (-t
Qf m

exp(®/2) To
(40a)
4 L?2)p P
T = ﬁﬁ? cosh (2> ; (40b)
4 L2
Ty = 2D > T, (40¢c)

where we omitted a O(n) term in the term relaxing with
71 relaxation as it is much smaller than the O(1) term
that we kept. We kept the O(n) term that relaxes with
the 75 timescale, however, as it can dominate the first
term of Eq. (40a) for 11 < ¢ < 75. In 75 we recog-
nise the common diffusion timescale; as we considered
Ap < H, it follows that 75 > 7. Next, we understand 7;
as follows. Multiplying the differential Gouy-Chapman
capacity per unit length in the y-direction, CSC =
2Leeg cosh(®/2)/Ap, by the electrolyte resistance times
a unit length in the y-direction, R = A\3,L/(HeeoD),
yields the timescale RC' = 2ApL?/(H D) cosh(®/2). To
the best of our knowledge, this timescale has not been
reported for pores. Yet, it is completely analogous to the
nonlinear RC time of flat-electrode charging [37]. In both
cases, the nonlinear RC' time comprises a ®-independent
prefactor multiplied by cosh(®/2).

Equation (39) and its late-time simplification Eq. (40)
are key results of this paper. As we will discuss further
in Sections III and IV, these analytical expressions fully
capture the biexponential charge relaxation seen in pre-
vious numerical works [4, 5, 9, 10].



4. TL model: & < 1

For ® <« 1 our theory recovers known TL model re-
sults. First, the timescale 71 reduces to

4 L? \p
T1 = 7T2 D hp ) (41)
where h, ~ H/2 is the ratio of the pore’s cross-section
area to perimeter for narrow pores H/L < 1. Apart from
the prefactor 4/72, the above timescale agrees with the
timescale 771, = L*Ap/(h,D) of Ref. [17].
Second, dropping the O(n) terms in Eq. (39) yields
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which is the charge density stated below Eq. (7) in
Ref. [17].

Last, we consider the electrostatic potential difference
between the pore’s surface and center line, A¢(t,z) =
& — ¢°(t,x, H/2). As the Gouy-Chapman potential ¢<¢
[Eq. (29)] vanishes at the mid-plane (» = H/2), with
Eq. (27) we find that A¢ = & — (uf — p%)/2. Using

Egs. (15) and (33) and a— = —H/(4Ap) for & <« 1, we
find
T J—
Ad(t, x) 1 Hz 5p(t,x), (43)
o p®

We use Egs. (22) and (25) to determine z7dp(t,z). In
this calculation, the first Frobenius covariant contributes
with a term 27 A;18p(0) = 4®A\p/H + O(n?), while the
second covariant Ay ~ O(n?) is discarded. We find

%thwem <_ﬁnt> (44)

ﬁn TTL

which coincides with Eq. (19) of Ref. [28]. Underlying
our derivation of Eq. (44) is the assumption that the
ion densities at = 0 relaxed instantaneously [Eq. (2b)]
to the Gouy-Chapman density [Eq. (3)]. Notice that
A¢p(t = 0,2 = 0) = & for these Gouy-Chapman den-
sities, which was precisely the boundary condition used
by Ref. [28] to derive their Eq. (19).

To our knowledge, we have thus given the first com-
prehensive derivation of TL-model results starting from
first principles.

n=0

III. RESULTS

We first discuss the dimensionless potential ¢° (¢, x, 2)
[Eq. (27)] inside our slit pore. To plot that equa-
tion requires inserting ¢“© [Eq. (29)] and pu% (p%,7%)—
the latter quantity we determined by a semi-analytical
method whereby we evaluated Eq. (15) with numerically-
determined coefficients a4+ and b4, see Appendix B. Fig-
ure 2(a) shows heat maps of ¢°(t,z, z) from Eq. (27) as

t =0.001L%/D

t=0.01L?/D

0. 0.2 0.4 0.6 0.8 T

0.001 0.01 0.1 1
iDL

FIG. 2. (a) Heat map of ¢°(t,z,2) for ® = 1 and three
different times; for this plot, we used Egs. (27) and (29) and
determined pd. by a semi-analytical described in the text. (b)
The potential drop between the pore surface and pore center,
Ap(z,t) = ® — ¢°(t, 2, H/2), as a function of ¢ at 2 = 0.25L
and x = 0.95L, for H/Ap = 40 and ® = 0.1,1.0,2.0 and
4.0 (orange, green dashed, blue, and purple lines). Lines are
determined by the semi-analytical method; black open circles
are the TL solution Eq. (43).

it evolves inside the slit pore. In these snapshots, we see
how a “charging front” penetrates the pore. Our semi-
analytical model thus contains more information than
the TL model, which only describes the dynamics of the
electrostatic potential drop A¢(t,z) = ® — ¢°(¢, z, H/2)
between the the pore surface and its mid-plane, which
we turn to next. Figure 2(b) shows A¢(t,z)/P as de-
termined by the semi-analytical method for x = 0.25L
and z = 0.95L, H/Ap = 40, and several ®. The same
panel also shows the ®-independent TL solution Eq. (44)
(black open circles), in whose derivation we omitted
O(n?) terms of A; and A, which would have contributed
to A¢(t,z)/® at O(n). The plot shows that Eq. (44)
agrees with the semi-analytical results up to ® = 1, for



which 1 = 0.16 is indeed small. This agreement up to
® =1 is surprising on the basis the TL equation’s usual
derivation, which involves a ® < 1 assumption [17].

Next, we discuss the deviation of the average ionic
charge density from its final state, @Q(¢). The theory
of the previous section enables us to determine 6Q(¢) at
different levels of restrictions to the parameters Ap/H
and ®. Here, we choose the following three methods
to determine dQ(¢): i) numerically, by solving Egs. (8)
and (10), see Appendix B; ii) semi-analytically (in the
same way as we determined ¢°(¢,z, H/2) above), with
Eq. (24) and numerically determined a+ and b, see Ap-
pendix B;j iii) analytically, with Eq. (37). Accordingly,
Fig. 3(a) shows numerical (open circles), semi-analytical
(lines), and analytical (dashed lines) results for §Q(¢) for
several ®. Comparing the results of the three methods,
we see that the numerical and semi-analytical methods
yield almost indistinguishable §Q(¢); predictions from
Eq. (37) differ a bit, but still agree with the other meth-
ods within a few percent. Clearly, all three methods pre-
dict the same qualitative behavior: For the small value
® = 0.1, the charge evolves with a single characteristic
time; for ® > 1, the charge relaxes exponentially with
two distinct timescales. For all & considered, the first
exponential regime describes almost the whole charging
process. The second exponential regime gains in impor-
tance as the applied voltage increases. All these obser-
vations can be understood with Eq. (40), which predicts
that charging goes exponentially with the two timescales
of Egs. (40b) and (40c). The second exponential regime
goes as o 4sinh?(®/4)Ap/H exp(—t/7), whose prefac-
tor explains the absence of the second regime for the
smallest potential in Fig. 3(a) and its appearance for
larger ®. In addition, for & < 1, the relaxation time
71 [Eq. (40b)] depends only weakly on the applied po-
tential, which results in the same early-time slope of the
curves for & = 0.1 and 1.

Figure 3(a) shows that charging goes slower for larger
applied potentials. This slowdown can be captured by
the charging time tq,, defined as the time at which
the pore reaches a certain fraction of its final charge—
Ref. [17] uses 99% and, to compare with their results, we
make the same choice here. In Fig. 3(a), ten thus cor-
responds to the intersection of the charging data with a
horizontal line at §Q/Q = 0.01—for ® = 1 and & = 4,
we indicate these intersections with stars and the corre-
sponding t, with arrows. Except for large ®, the cross-
over between the two exponential regimes in Fig. 3(a) is
narrow. t., thus usually falls either in the first or in the
second exponential regime. In Fig. 3(a), tq, falls in the
first exponential regime for & = 1 and in the second ex-
ponential regime for ® = 4. We now see that ®-induced
charging slowdown has two different origins. For small &,
ten falls in the first exponential regime and increases with
® due to the cosh(®/2) term in the nonlinear RC' time
71 [Eq. (40b)]. For large @, t.y falls in the second expo-
nential regime and increases with ® because this regime
contains a O(n) prefactor that grows with ® [cf. Eq. (40)].

0.1
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0Q/Q’

0.001
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FIG. 3. (a) Charging of a slit pore with H/Ap = 40 after ap-

plying a potential ® = 0.1,1.0,2.0 or 4.0 (orange, green, blue,
purple), calculated from the transport equations (8) and (10)
numerically (open circles), semi-analytically (solid lines) and
analytically [Eq. (37)] (dashed lines). The dot-dashed line il-
lustrates point where the system reaches 99% of its charge.
The vertical arrows indicate, for ® = 0.1 and & = 4.0, the
times tcn at which that barrier is crossed. (b) The scaled
charging time ratio ten/to (blue line) for H/Ap = 20, calcu-
lated semi-analytically using Eq. (24). The black open circles
are data from Fig. 5(d) of Ref. [17], obtained there through
numerical solution of the PNP equations. The gray dashed
line indicates cosh(®/2).

To further demonstrate the merits our model, we com-
pare its predictions for t.,(®) with corresponding data
from direct numerical PNP simulations of Ref. [17] of a
pore with H/Ap = 20 [39] subject to potentials up to
® = 7. In Fig. 3(b), the black open circles represent
the simulation data of Fig. 5(d) of Ref. [17]. For the
mentioned parameters, we cannot use our fully analyt-
ical expression Eq. (37a) to determine tq, as its higher
order term e®\2,/H? ~ 2.74 is non-negligible. We thus
use our semi-analytical method—Eq. (24), with numer-
ically determined ay and by. Figure 3(b) shows the
charging time ¢, (®) (blue line) for H/Ap = 20 [40].
All to, data in Fig. 3 is scaled by the charging time for
small applied potentials tg = t.,(P < 1). We estimate



to with Eq. (40a): 0.01 = (8/m2)exp [—n2to/(47rL)]
yields to = 771 (4/7?)In(800/7%) ~ 1.787ry [11]. Fig-
ure 3(b) shows that the prediction from our model—
which contains no fitted free parameters—agrees well
with the data of Ref. [17] for all ® considered. This
good agreement is in contrast to Biesheuvel and Bazant’s
model, whose t., were up to an order of magnitude
too large. Finally, we note that the t.,(®)/ty data
in Fig. 3(b) can be approximated as follows. If 99%
of the charge is reached within the first exponential
regime, we can write 0.01 = (8/72) exp (—ten/71), hence
ten = (4/7%)77L cosh(®/2)In(800/72). For ® < 1, this
simplifies to to = (4/72)7rr In(800/7?). Taking the ratio
of these expressions gives t.,/tg = cosh(®/2). We see
that this approximation describes t.,(®)/to up to about
® = 1. Indeed, in Fig. 3(a) we see that, for ® = 2, 99%
of the charge is not reached within the first exponential
regime, and the above argument does not hold.

IV. DISCUSSION
A. Biexponential decay of two-component systems

The charging dynamics of our pore is governed by a
matrix differential equation (16), whose 2 x 2 matrix A
has two distinct eigenvalues A; and \o. Equation (17)
shows that these eigenvalues set the relaxation times of
the components g; and g, of g = P~1§p. The number
of timescales (two) in our system is thus a direct conse-
quence of the number of electrolyte components (two).
For n < 1, P = (v1, v2) takes a simple form, and we find

L1 (Pt -1\ 1 % -p"
92(1 1>(p9(t,m)—1 T2\ 4+t -2/
(4

where we used that pf. — 1 for 7 < 1. The elements of
g in Eq. (45) correspond to ionic charge density and salt
density. These quantities thus decouple for n <« 1 and
relax with distinct timescales: g; relaxes with A; and go
relaxes with Ao. For finite 1, the matrix P becomes more
complicated and the product P~1§p no-longer yields a
charge- and salt-perturbations vector. Hence, a charge-
and salt-perturbations representation no-longer diagonal-
izes the matrix A, which means that salt and charge re-
laxation become coupled.

The above properties resemble those of electrolyte re-
laxation between two flat oppositely-charged electrodes
[37, 42]. When that system is modeled through the PNP
equations, the only differences to our setup are in the
geometry and its boundary conditions. For ® < 1, the
coupled PNP equations for p; and p_ again become de-
coupled in a charge (p; — p_) and salt (py + p_) rep-
resentation. At O(®), the salt does not respond, and
the charge relaxes with the RC time ApL/D, with L
the electrode separation. The nonlinear charging regime
® Z 1 was discussed by Bazant, Thornton, and Aj-
dori [37]. Through matched asymptotic expansions, they

found that the ionic charge density then relaxes biexpo-
nentially: the initial RC' relaxation is followed at late
times by diffusive L?/D charging.

It would be interesting to study flat-electrode charging
through final-state expansions as we did in this paper in
Eq. (15). Unfortunately, our approach cannot be trans-
ferred directly to the flat-electrodes problem. In our pa-
per, rather than the PNP equations, we solved the trans-
port equation (8), which resulted from the PNP equa-
tions after a lubrication approximation (H < L). This
transport equation only contained the cross-sectional
averaged densities pY (¢,z) and the chemical potential
p% (t, ), which did not depend on the z-coordinate ei-
ther. The absence of z-dependence in the transport equa-
tion (8) meant that we could expand the uY (¢, z) around

the homogeneous final state ﬁi. This reduced Eq. (8) to
a matrix differential equation (16) that was analytically
solvable, as its matrix A [Eq. (16¢)] was ¢, x, and z inde-
pendent. The flat-electrode charging problem is different.
Here, there is no small parameter with which we can re-
duce the PNP equations to a transport equation in terms
of densities averaged in the EDL direction. Expanding
the chemical potentials around the in-homogeneous final-
state densities then yields a matrix differential equation
with a spatially varying matrix. Such an equation, how-
ever, cannot be readily brought by matrix diagonalization
to a simple diffusion-type equation like our Eq. (17).

B. Comparison to Biesheuvel and Bazant [21]

Biesheuvel and Bazant developed a porous electrode
model comprising, at each point in the electrode, a
bulk solution in contact with charged double layers [21].
Specifically, their model accounted for the salt and ionic
charge transport through a pore, which exchanged salt
and ionic charge with EDLs modeled through Gouy-
Chapman theory. As that is an equilibrium theory, the
EDLs of their model were in a quasi-equilibrium that in-
stantaneously adapted to the salt and charge exchange
with the quasi-neutral bulk.

Our model has two salient structural similarities to the
model in Ref. [21]: First, our O(1) problem Eq. (A3a)
describes the equilibrium charge distribution at a cross-
section of the pore. In Ref. [21], this corresponds to
their choice to model the EDLs through Gouy-Chapman
theory, which is an equilibrium theory. Second, at
O(H?/L?), we found a one-dimensional transport equa-
tion [Eq. (8)] for the cross-sectional averaged cationic
and anionic densities. Likewise, Biesheuvel and Bazant
use transport equations [Egs. (9) and (10) there] for
the charge and salt adsorption [Egs. (6) and (8) there].
Again, in their model, the charge and salt adsorption are
modeled within the Gouy-Chapman theory, specifically,
as integrals of the difference and sum of the densities pi
and p/ given in Eq. (3).

Compared to Ref. [21], two merits our model are that



it is based on a first-principles derivation and that it re-
produces the data of Ref. [17].

C. Comparison to Henrique, Zuk, and Gupta [18]
and Alizadeh and Mani [30]

In Ref. [18], Henrique, Zuk, and Gupta studied the
charging of a narrow cylindrical pore for arbitrary double
layer overlap. For thin double layers, their Eq. (27b)
reduces to Posey and Morozumi’s expression Eq. (44).
Like ours, their derivation starts from the PNP equations,
but they make two additional assumptions.

(i) Reference [18] considered small applied potentials,
expanding all observables for small ® and accounting
only for the O(®) terms. This assumption allowed the
authors of Ref. [18] to render the Poisson equation in
radial geometry [Eq. (15) there] solvable. To extend
their study to larger ®, still keeping EDL overlap ar-
bitrary, one should find the cylindrical-pore counterpart
of Corkill and Rosenhead’s flat-plates Poisson-Boltzmann
solution [35]. Notice, however, that the validity of their
current small-® model is probably governed by a pa-
rameter like n rather than by ®: in our work, the sec-
ond regime of biexponential decay contains the prefactor
n = 4dexp(®/2)A\p/H. As Henrique and coworkers dis-
cuss cases of A\p/H ~ 1/2 (instead of < 1/20 as we did
here), in practice, the applied potential should be corre-
spondingly smaller to justify ignoring the second expo-
nential regime.

(ii) Next, Ref. [18] assumed quasi-equilibrium in the
radial direction of their cylindrical pore, which they jus-
tified by citing Ref. [30]. In Ref. [30], Alizadeh and Mani
scaled their electrokinetic equations (14)-(18) by the rel-
evant length scales L and H, as we did here. Taking
the limit H/L — 0, they found in Eqs. (22)-(28) that
their ionic densities were in equilibrium across sections
of the pore. Finally, they integrated the 3d transport
equations over the pore cross section and found reduced
1d equations. In spite of the similarity of these steps to
our calculations in Appendix A, there is a crucial differ-
ence between our methods. Unlike Ref. [30], we found
asymptotic approximations to the solutions of the PNP
equations Eq. (A1) (Egs. (14) and (15) in Ref. [30]). As
explained in Ref. [43], performing a scaling analysis to
identify a small parameter is one necessary step in this
process; plugging in assumed asymptotic expansions for
that small parameter [cf. Eq. (A2)] into the governing
equations is another. Reference [30] did not set the sec-
ond step. Without asymptotic expansions, however, one
cannot be sure that the solution of the cross-sectional
problem (Egs. (22)-(28) in Ref. [30]) has the same or-
der in H/L as the variables of the integrated transport
(Egs. (43) and (44) in Ref. [30]). We observed that the
time-dependent Eq. (A4a) contains both the first and
second terms of the asymptotic density and potential ex-
pansions over H/L. After cross-sectional averaging of
Eq. (A4da), the second terms of these asymptotic expan-
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sions dropped [cf. Eq. (A6)]. Hence, ion transport is gov-
erned solely in terms of the first terms of the asymp-
totic approximations. Comparing Eqs. (43) and (44)
of Ref. [30] (ignoring their fluid velocity term) to our
transport equation (8), we see that these are actually
the same—that is, if one reinterpret their densities and
chemical potentials as representing the first terms of our
asymptotic expansions rather than the full solutions. No-
tice that this somewhat trivial result required a nontrivial
derivation.

V. CONCLUSIONS AND OUTLOOK

We have studied the response of an elongated,
electrolyte-filled slit pore to a moderate applied potential.
Our approximate analytical solutions to the PNP equa-
tions yielded unprecedented insight into the biexponen-
tial charging of such pores. Moreover, we provided the
first comprehensive derivation of well-known TL model
results. In our model, we postulated that the ionic den-
sity at © = 0 were instantaneously relaxed [Eq. (2b)]. As
shown, this led to results in agreement with prior stud-
ies. Still, in future work, it would be interesting to check
by direct numerical simulations to what extend Eq. (2b)
agrees with simulated density profiles. Related, it would
be interesting to extend our model to explicitly account
for the electrolyte reservoir with which the pore is in con-
tact.

Future work could also study a case of overlapping
EDLs [18]. Instead of the Gouy-Chapman potential
Eq. (29) one should then either use Debye-Hiickel the-
ory (for & <« 1) or the results of Corkill and Rosen-
head (for ® < 2) [35]. Another possible direction is to
study nonblocking electrodes, which may shed light on
Refs. [44, 45]. Last, future work could consider larger
applied potentials. Electrostatic correlations [46] and
the finite size of ions [17] will then become important.
Luckily, substantial parts of Sections IIB and IIC are
actually model-independent and might be directly trans-
ferred to study more involved electrolyte model. One of
us—with Sinkov and Akhatov [19]—derived precisely the
same transport equation (8) in a DDFT study of confined
electrolytes. Here, we linearized Eq. (8) by expanding
the chemical potentials [Eq. (15)] around the final-state
ionic densities. This yielded a linearized transport equa-
tion (16), whose solution Eq. (22) should hold for any
system sufficiently close to equilibrium and governed by
Eq. (8). (With increasing potential, a system will move
ever further from its initial state; the discarded higher or-
der terms in Eq. (15) will then become more important.)
The physical properties of a specific pore and electrolyte
model enter Eq. (22) through the Frobenius covariants,
which depend on the expansion coefficients a+ and b4
[Eq. (15b)]. For PNP, we could determine ay and by
analytically. For more involved models, one might need
to determine them numerically.
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Appendix A: Derivation of Eq. (8)

Here, we follow Ref. [19] and derive the transport
equation (8) for long slit pores (H/L <« 1). First, we
change to different dimensionless variables: 2 = z/H and

Z = z/L are the dimensionless z- and z- coordinates;
QAS = ¢/® is the scaled dimensionless potential. To define
dimensionless time and density, we use the ¢ = tD/L?
and pr = H?py /2®)%, respectively. Such variables al-
low us to explicitly introduce the small parameter H/L
into the 2D-PNP Eq. (1), as follows

%jaiﬁﬂ: 12223 (P0zpa) + 0:(p£0zp1x), (Ala)
%2233¢+5§<5= —(p+ — p-), (Alb)
D412 (1,0) = 0, (Alc)
d:p(i,1) =0, (Ald)
o(t,0) =1, (Ale)
0:0(1,1/2) =0, (A1f)

where Egs. (Alc) and (A1d) express the condition of the
zero ionic flux through the pore walls.

As Eq. (A1) contains only even powers (zero and two)
of the small parameter H/L, we seek solutions g+ and gi;
to Eq. (A1) in terms of series with even powers of H/L
too,

. A H2 . H4

Pt =L + ﬁpi +0 <4> ; (A2a)
PN H4
=i+ Loro(L).

We insert Eq. (A2) into Eq. (A1) and collect terms of the
same order in H/L. At O(1), we find

0=0:p%0:%, (A3a)

02¢° = —(p% — p2), (A3b)
D:pS(£,0) = 0, (A3c)
d:u4(i,1) =0, (A3d)
$°(£,0) =1, (A3e)
0:9°(£,1/2) =0, (A3f)

where p9 = p+(pY,¢°) is the O(1) chemical potential.
Notice that the O(1)-problem does not depend on time.
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From Egs. (A3a), (A3c), and (A3d), we see that the
chemical potential does not depend on 2-coordinate uY. =
19 (£, ). This condition means that the O(1) density dis-
tributions can be found from Eq. (1b), which results in
Eq. (6). The remaining Eqgs. (A3b), (A3e), and (A3f) give
us the O(1)-Poisson equation (5), which can be solved
numerically and analytically (see Section IIC and Ap-
pendix B, respectively).

Inserting Eq. (A2) into Eq. (A1) gives, at O(H?/L?),

0:p% = i (pL0sp%L) + s (pLoepl + pYL0:pl)

(Ada)

R s L
d:p’(1,0) = 0, (Adc)
Dspl(t,1) =0, (A4d)
$'(£,0) = 0, (Ade)
d:9'(£,1/2) = 0, (A4f)

where the derivatives in Eq. (A4b) are calculated at pL =
P and § = ¢,
We integrate Eq. (A4a) over z from 0 to 1 and find

=0 b .. =0
Opp+ = 03 (/ dZPi%Hi@J)) =03 (Piaﬁz,uoi) ;
0
(A5)

where, for the first equality, we used

~ N 1
(PLO:ps + pL0:pd)],_, =0, (A6)

which follows from the conditions dzul = Ozl = 0
for 2 = 0 and 2 = 1, see Egs. (A3c), (A3d), (Adc),
and (A4d). For the second equality in Eq. (A5), we used
that Y (z,t) does not depend on z, which follows from
Egs. (A3a), (A3c), and (A3d), and can thus be taken out
of the integral. Returning to the variables of the main
text, we arrive at Eq. (8).

Appendix B: Numerical calculations

We numerically solve Eq. (8) through two sub-tasks:
(i) the calculation of the chemical potentials data to ob-
tain the functions of two variables p+(p,,p_) by inter-
polation; (ii) the solution of the transport equation (8)
for given functions p4(p,,p_).

Sub-task (i) corresponds to finding a self-consistent
solution of Egs. (12) and (13). These equations calcu-
lated for dens1t1es from a discrete two-dimensional set
{p+ W% { N, which is the Cartesian product
of the one-dimensional lists containing the following ele-



ments for ® > 0:

1—-7p. +2
pf):pi—ﬂ-k%n, for n=0,...,N,
(Bla)
7142
p(in):]_—ei—i—un’ for n=0,...,N,
N
(B1b)

with N the number of elements/gridpoint in our density
discretization, ex = 2|1 — py|/N is a parameter which
extends the data-set beyond the range (ﬁi,ﬁ’: ). In our
calculations we used N = 10. We use the Python li-
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brary SciPy to solve Eqgs. (12) and (13) for the densities
Eq. (B1). Then, we interpolate the calculated data using
the standard interpolation function of Wolfram Mathe-
matica, which gives us the functions p'P*(p, , p_). We use
these functions to numerically determine the coefficients

a+ and b4, as follows

8 int a int
at = e ; by = /iﬁ .
9P Ipr

B2
L, (B2)

To solve sub-task (ii), we follow Ref. [19]: spatial dis-
cretization along x-coordinate is performed on a uniform
staggered grid using finite volume method; the resulting
system of the ODEs is solved with the built-in method
of Wolfram Mathematica.
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