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Quantum many-body control is a central milestone en route to harnessing quantum technologies.
However, the exponential growth of the Hilbert space dimension with the number of qubits makes it
challenging to classically simulate quantum many-body systems and consequently, to devise reliable
and robust optimal control protocols. Here, we present a novel framework for efficiently controlling
quantum many-body systems based on reinforcement learning (RL). We tackle the quantum control
problem by leveraging matrix product states (i) for representing the many-body state and, (ii) as
part of the trainable machine learning architecture for our RL agent. The framework is applied to
prepare ground states of the quantum Ising chain, including states in the critical region. It allows
us to control systems far larger than neural-network-only architectures permit, while retaining the
advantages of deep learning algorithms, such as generalizability and trainable robustness to noise. In
particular, we demonstrate that RL agents are capable of finding universal controls, of learning how
to optimally steer previously unseen many-body states, and of adapting control protocols on-the-fly
when the quantum dynamics is subject to stochastic perturbations. Furthermore, we map the QMPS
framework to a hybrid quantum-classical algorithm that can be performed on noisy intermediate-
scale quantum devices and test it under the presence of experimentally relevant sources of noise.

I. INTRODUCTION

Quantum many-body control is an essential prerequi-
site for the reliable operation of modern quantum tech-
nologies which are based on harnessing quantum corre-
lations. For example, quantum computing often involves
high-fidelity state manipulation as a necessary compo-
nent of most quantum algorithms [1, 2]; In quantum sim-
ulation, the underlying AMO platforms require to pre-
pare the system in a desired state before its properties
can be measured and studied [3–5]; And quantum metrol-
ogy relies on the controlled engineering of (critical) states
to maximize the sensitivity to physical parameters [6, 7].
Controlling many-body systems can also be considered
in its own right, as a numerical tool which offers in-
sights into concepts such as quantum phases and phase
transitions [8]. Moreover, it can reveal novel theoretical
phenomena such as phase transitions in the control land-
scape [9], and bears a direct relation to our understanding
of quantum complexity [10].

Compared to single- and few-particle physics, work-
ing in the quantum many-body domain introduces the
formidable difficulty of dealing with an exponentially
large Hilbert space. A specific manifestation is the ac-
curate description and manipulation of quantum entan-
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glement shared between many degrees of freedom. This
poses a limitation for classical simulation methods, since
memory and compute time resources scale exponentially
with the system size.

Fortunately, there exists a powerful framework to
simulate the physics of one-dimensional (1d) quantum
many-body systems, based on matrix product states
(MPS) [11–14]. MPS provide a compressed representa-
tion of many-body wave functions and allow for efficient
computation with resources scaling only linearly in the
system size for area-law entangled states [15, 16].

While MPS-based algorithms have been used in the
context of optimal many-body control to find high-
fidelity protocols [17–20], the advantages of deep rein-
forcement learning (RL) for quantum control [21], have
so far been investigated using exact simulations of only a
small number of interacting quantum degrees of freedom.
Nevertheless, policy-gradient and value-function RL al-
gorithms have recently been established as useful tools
in the study of quantum state preparation [22–39], quan-
tum error correction and mitigation [40–43], quantum
circuit design [44–47], quantum metrology [48, 49], and
quantum heat engines [50, 51]; quantum reinforcement
learning algorithms have been proposed as well [52–56].
Thus, in times of rapidly developing quantum simula-
tors which exceed the computational capabilities of clas-
sical computers [57], the natural question arises regard-
ing scaling up the size of quantum systems in RL control
studies beyond exact diagonalization methods. We dis-
cuss a proof-of-principle implementation of the algorithm
on noisy intermediate-scale quantum (NISQ) devices for
small system sizes.

In this work, we develop a new deep RL framework for
quantum many-body control, based on MPS in two com-
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Figure 1. Many-body control studies in the ground
state phase diagram of the quantum Ising model, analyzed
in this work: an RL agent is trained to prepare a ground
state of the transverse field Ising model from random initial
states (Ctrl Study A, magenta), the z-polarized product state
from a class of paramagnetic ground states (Ctrl Study B,
green), and a ground state in the critical region of the mixed
field Ising model from paramagnetic ground states of opposite
interaction strength (Ctrl Study C, cyan). The optimized
agent outputs a control protocol as a sequence of operators
Âj , which time evolve the initial spin state into the desired
target state (marked by a star).

plementary ways. First, we adopt the MPS description
of quantum states: this allows us to control large inter-
acting 1d systems, whose quantum dynamics we simu-
late within the RL environment. Second, representing
the RL state in the form of an MPS, naturally suggests
the use of tensors network as (part of) the deep learn-
ing architecture for the RL agent, e.g., instead of a con-
ventional neural network (NN) ansatz. Therefore, in-
spired by earlier examples of tensor-network-based ma-
chine learning [58–60], we approximate the RL agent as
a hybrid MPS-NN network, called QMPS. With these in-
novations at hand, the required computational resources
scale linearly with the system size, in contrast to learn-
ing from the full many-body wave function. Ultimately,
this allows us to train an RL agent to control a larger
number of interacting quantum particles, as required by
present-day quantum simulators.

As a concrete example, we consider the problem of
state preparation and present three case studies in which
we prepare different ground states of the paradigmatic
mixed field Ising chain [Fig. 1]. We train QMPS agents
to prepare target states from a class of initial (ground)
states, and devise universal controls with respect to ex-

perimentally relevant sets of initial states. In contrast to
conventional quantum control algorithms (such as CRAB
or GRAPE [17, 18, 61]), once the optimization is com-
plete, RL agents retain information during the training
process in form of a policy or a value function. When
enhanced with a deep learning architecture, the learned
control policy generalizes to states not seen during train-
ing. We demonstrate how this singular feature of deep
RL allows our agents to efficiently control quantum Ising
chains (i) starting from various initial states that the RL
agent has never encountered, and (ii) in the presence of
faulty or noisy controls and stochastic dynamics. Thus,
even in analytically intractable many-body regimes, an
online RL agent produces particularly robust control pro-
tocols.

II. QUANTUM MANY-BODY CONTROL

Consider a quantum many-body system in the initial
state |ψi〉. Our objective is to find optimal protocols that
evolve the system into a desired target state |ψ∗〉. We
construct these protocols as a sequence of q consecutive
unitary operators U(τ) =

∏q
j=1 Uτj , where Uτj ∈ A are

chosen from a set A. To assess the quality of a given
protocol, we compute the fidelity of the evolved state
w.r.t. the target state:

F (τ) = | 〈ψ∗|U(τ) |ψi〉 |2. (1)

Throughout the study, we focus on spin-1/2 chains
of size N with open boundary conditions. The system
on lattice site j is described using the Pauli matrices
Xj , Yj , Zj . As initial and target states we select area-law
states, e.g., ground states of the quantum Ising model
[Sec. III]. In order to control chains composed of many
interacting spins, we obtain the target ground state using
DMRG [11, 13], and represent the quantum state as an
MPS throughout the entire time evolution [Supplemental
Material:, Sec. S.2 A].

We choose a set of experimentally relevant control uni-
taries A which contains uniform nearest-neighbor spin-

spin interactions, and global rotations: A = {e±iδt±Âj},
with

Âj ∈ A =

{∑

i

X̂i,
∑

i

Ŷi,
∑

i

Ẑi, (2)

∑

i

X̂iX̂i+1,
∑

i

ŶiŶi+1,
∑

i

ẐiẐi+1

}
.

Two-qubit unitaries are capable of controlling entangle-
ment in the state. Note that MPS-based time evolution
is particularly efficient for such locally applied operators
and the resulting protocols can be considered as a series
of quantum gates.

The time duration (or angle) δt± of all unitary op-
erators is fixed and slightly different in magnitude for
positive and negative generators Âj , and kept constant
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throughout the time evolution. Hence, the problem of
finding an optimal sequence reduces to a discrete combi-
natorial optimization in the exponentially large dimen-
sional space of all possible sequences: For a fixed se-
quence length q, the number of all distinct sequences is
|A|q; therefore, a brute-force search quickly becomes in-
feasible and more sophisticated algorithms, such as RL,
are needed. By fixing both q and δt± prior to the opti-
mization, in general, we may not be able to come arbi-
trarily close to the target state, but these constraints can
be easily relaxed.

III. STATE INFORMED MANY BODY
CONTROL

Our MPS-based RL framework is specifically designed
for preparing low-entangled states in 1d, such as ground
states of local gapped Hamiltonians. Hence, in the sub-
sequent case studies we consider ground states of the 1d
mixed field Ising model as an exemplary system:

ĤIsing = J

N−1∑

j=1

ẐjẐj+1 − gx
N∑

j=1

X̂j − gz
N∑

j=1

Ẑj , (3)

where gx (gz) denotes a transverse (longitudinal) field.
In the case of negative interaction strength and in the
absence of a longitudinal field gz = 0, the system is
integrable, and has a critical point at gx = 1 in the
thermodynamic limit, separating a paramagnetic (PM)
from a ferromagnetic phase (FM) [Fig. 1]. For gz > 0,
the model has no known closed-form expressions for its
eigenstates and eigenenergies. In addition, for positive
interactions, the phase diagram features a critical line
from (gx, gz)=(1, 0) to (gx, gz)=(0, 2) exhibiting a tran-
sition from a paramagnetic to an antiferromagnetic phase
(AFM) [see Supplemental Material: Sec. S.1 for a brief
introduction to quantum many-body physics and phase
transitions].

In the rest of this section we will analyze three differ-
ent control scenarios involving ground states of the mixed
field Ising model. In Sec. III A we consider the problem
of universal state preparation for N = 4 spins and train
a QMPS agent to prepare a specific target ground state
starting from arbitrary initial quantum states. This ex-
ample will serve as a first benchmark of the QMPS frame-
work. In Sec. III B we use the QMPS algorithm to pre-
pare a spin-polarized state starting from a class of para-
magnetic ground states which shows that our approach
produces reliable protocols in the many-body regime. Fi-
nally, in Sec. III C we consider N = 16 spins and tar-
get a state in the critical region of the mixed field Ising
model demonstrating that the QMPS framework can also
be employed for highly non-trivial control tasks such as
critical state preparation. Furthermore, we show that
the obtained QMPS agent has the ability to self-correct
protocols in the presence of noisy time evolution.

A. Universal ground state preparation from
arbitrary initial quantum states for N = 4 spins

In the noninteracting limit, J = 0, the QMPS agent
readily learns how to control a large number of spins
[Supplemental Material:, Sec. S.3 A 1]. Instead, as a non-
trivial benchmark of the QMPS framework, here we teach
an agent to prepare the ground state of the 4-spin trans-
verse field Ising model at (J =−1, gx = 1, gz = 0), start-
ing from randomly drawn initial states. While this con-
trol setup can be solved using the full wave function and
a conventional neural network ansatz [see Supplemental
Material: Sec. S.3 A 2], the uniform initial state distri-
bution over the entire continuous Hilbert space creates a
highly non-trivial learning problem and presents a first
benchmark for our QMPS framework. Moreover, system
sizes of N∼4 spins already fall within the relevant regime
of most present-day studies using quantum computers,
where gate errors and decoherence currently prevent ex-
act simulations at larger scales [2, 62, 63].

We first train an agent (QMPS-1) to prepare the tar-
get ground state within 50 protocol steps or less, setting
a many-body fidelity threshold of F ∗≈ 0.85. The initial
states during training are chosen to be (with probabil-
ity p= 0.25) random polarized product states, or (with
probability p=0.75) random reflection-symmetric states
drawn from the full 24 = 16 dimensional Hilbert space
[64]. In this way the QMPS-1 agent has to learn to both
disentangle highly entangled states to prepare the Ising
ground state, but also to appropriately entangle product
states to reach the entangled target [the learning curves
of the QMPS-1 agent are shown in Supplemental Mate-
rial:, Sec. S.3 A]. After this training stage, we test the
QMPS-1 agent on a set of 103 random initial states and
find that in ∼ 99.8% of the cases the fidelity threshold
is successfully reached within the 50 allowed steps. A
(much) better fidelity cannot be achieved by the QMPS-
1 agent alone, due to the discreteness of the action space
and the constant step size used, rather than limitations
intrinsic to the algorithm. Note that when following a
conventional approach of training a neural network di-
rectly on the quantum wave function, we were not able
to match the performance of the QMPS agent given the
same number of parameters and training episodes [see
Supplemental Material: Sec. S.3 A 2 for details]. This
suggests that the QMPS architecture has a more natural
structure for extracting relevant features from quantum
state data and can already be advantageous for small
system sizes.

To improve the fidelity between the final and the tar-
get state, we now train a second, independent agent
(QMPS-2) with a tighter many-body fidelity threshold of
F ∗≈0.97. The initial states are again sampled randomly
as mentioned above; however, we first use the already
optimized QMPS-1 agent to reach the vicinity of the tar-
get state within F >0.85. Then, we take those as initial
states for the training of the second QMPS-2 agent.

This two-stage learning schedule can in principle be
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Figure 2. Universal four-qubit control — (a) Achieved many-body fidelity F̄ between final and target state during
training averaged over 100 training episodes (dark-blue curve). The best and worst fidelity within each episode window is
indicated by the light-blue-shaded area. The fidelity threshold, F ∗ ∼ 0.97, is marked by a gray dashed line. The inset shows
the mean number of episode steps T̄ during training (averaged over 100 episodes). The maximum number of allowed steps
is set to 50. (b)-(e) Two QMPS agents [see text] are trained with fidelity thresholds F ∗ ∼ 0.85, 0.97 (gray dashed lines), to
prepare the Ising ground state (J=−1, gx= 1, gz = 0), starting from (b) the z-polarized product state, (c) the GHZ state, (d)
an Ising antiferromagnetic ground state at (J = +1, gx = gz = 0.1), and (e) a -random state. The QMPS-2 agent starts from
the final state reached by the QMPS-1 agent (purple shaded area). The many-body fidelity F between the instantaneous and
the target state, is shown in the lower part of each panel. The upper part of the panels shows the control protocol. The colors
and shading of each rectangle indicate the applied action A (see legend); ± stands for the sign of the action generator, i.e.,

exp(±iδt±Â). The QMPS-1,2 agents use fixed time steps of δt± = (π/8, π/16)+, (π/13, π/21)−, indicated by action rectangles
of different sizes in the protocol. N=4 spins.

continued to increase the fidelity threshold even further.
The learning curves of the QMPS-2 optimization are
shown in Fig. 2(a). In Fig. 2(b)-(c) we present the ob-
tained protocols for four exemplary initial states. Over-
all, the combined two-agent QMPS is able to reach the
fidelity threshold of F ∗ ∼ 0.97 for ∼ 93% of the randomly
drawn initial states within the 50 episode steps that were
imposed during training. We emphasize that this result
is already nontrivial, given the restricted discrete action
space, and the arbitrariness of the initial state.

Let us now exhibit two major advantages of RL against
conventional quantum control algorithms. (i) After train-
ing we can double the allowed episode length for each
agent to 100 steps. Since this allows for longer protocols,
we find that the target state can be successfully prepared
for 99.5% of the initial states (compared to the previously
observed 93%). Note that this feature is a unique advan-
tage of (deep) RL methods, where the policy depends
explicitly on the quantum state: during training, the
agent learns how to take optimal actions starting from
any quantum state and hence, it is able to prepare the
target state if it is given sufficient time. Moreover, (ii) in
this example we achieve universal quantum state prepa-
ration, i.e., the trained RL agent succeeds in preparing
the target state irrespective of the initial state. This is
not possible with conventional control techniques where
the optimal protocol is usually tailored to a specific ini-
tial state, and the optimization has to be rerun when
starting from a different state. In Sec. IV, we show how
the trained QMPS architecture can be implemented to

apply the RL agent on NISQ devices.

B. Preparation of a polarized product state from
paramagnetic ground states for N = 32 spins

In general, a (Haar) random quantum many-body state
is volume-law entangled and, hence, it cannot be approx-
imated by a MPS of a fixed bond dimension. Moreover,
it becomes increasingly difficult to disentangle an arbi-
trarily high entangled state for larger system sizes [65].
Therefore, when working in the truly quantum many-
body regime, we have to restrict to initial and target
states that are not volume-law entangled.

As an example, here we consider a many-body sys-
tem of N=32 spins and learn to prepare the z-polarized
state from a class of transverse field Ising ground states
(J =−1, gz = 0). Once high-fidelity protocols are found,
they can be inverted to prepare any such Ising ground
state from the z-polarized state, which presents a rel-
evant experimental situation [Supplemental Material:,
Sec. S.3 B]. Many-body ground state preparation is a pre-
requisite for both analog and digital quantum simulation,
and enables the study of a variety of many-body phenom-
ena such as the properties of equilibrium and nonequilib-
rium quantum phases and phase transitions.

To train the agent, we randomly sample initial ground
states on the paramagnetic side of the critical point:
1.0 < gx < 1.1. The difficulty in this state preparation
task is determined by the parameter gx defining the ini-
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Figure 3. Transverse-field Ising control — (a) Optimal
protocol obtained, starting from an initial ground state at
gx= 1.01 [cf. Fig. 2 for action legend]. The cyan shaded seg-
ment indicates a generalized Euler-angle-like many-body ro-
tation. (b) Final single-particle fidelities Fsp = N

√
F starting

from initial ground states with transverse field value gx. The
target state is the z-polarized product state. The gray dashed
line denotes the fidelity threshold (F ∗sp = 0.99, F ∗∼ 0.72): it
is surpassed for most initial states except at the critical point
gx ∼ 1 (cyan dot). The red vertical dashed lines contain the
training region. (c) The number of actions (unitaries) in the
QMPS protocols versus the initial state parameter gx. The
protocol starting from the critical state (gx∼1) does not reach
the fidelity threshold and is truncated after 50 episode steps.
Inset: the half-chain von Neumann entanglement entropy of
final states during training decreases as learning improves.
The dark green curve denotes the average over 200 episodes.
N=32 spins. See also Video 1.

tial state: states deeper into the paramagnetic phase are
more easy to ‘rotate’ into the product target state, while
states close to the critical regime require the agent to
learn how to fully disentangle the initial state in order
to reach the target. We train a QMPS agent on a sys-
tem of N=32 spins which is infeasible to simulate using
the full wavefunction, and is far out-of-reach for neural-
network based approaches. We set the single-particle fi-
delity threshold [cf. Sec. V] to F ∗sp = N

√
F ∗ = 0.99 (cor-

responding many-body fidelity F ∗ ∼ 0.72) and allow at
most 50 steps per protocol.

Figure 3(b) shows the successfully reached final fidelity
when the trained QMPS agent is tested on unseen initial
states, for various values of gx. First, notice that the
agent is able to prepare the target state also for initial
states with gx>1.1 that lie outside of the training region
(dashed vertical lines). Hence, we are able to extrapolate
optimal control protocols well beyond the training data
distribution, without additional training. Similar gen-
eralization capabilities have already been demonstrated
for supervised learning tasks such as Hamiltonian param-
eter estimation [66]. However, this is not true for states
inside the critical region, gx . 1, and in the ferromag-

netic phase (gx� 1); such a behavior is not surprising,
since these many-body states have very different proper-
ties compared to those used for training. Note that in
contrast to the previous control study of Sec. III A, the
initial training data states are not i.i.d. over the full 232

dimensional Hilbert space as we only train on PM ground
states of the Ising model. Therefore the agent cannot be
expected to generalize to arbitrary initial states in this
case. Interestingly, it follows that the onset of critical-
ity can be detected in the structure of control protocols,
as the number of required gates (actions) and, in par-
ticular, of entangling unitaries, increases rapidly as one
approaches the critical point [Fig. 3(c)].

Discontinuities in the achieved fidelity [Fig. 3(b)] arise
due to the fixed, constant step size δt±: we observe dis-
tinct jumps in the final fidelity, whenever the length of
the protocol sequence increases. This is a primary conse-
quence of the discrete control action space. Its physical
origin can be traced back to the need for a more frequent
use of disentangling two-site unitaries, for initial states
approaching the critical region.

Figure 3(a) shows the optimal protocol at gx = 1.01:

first, the agent concatenates three Ŷ -rotations (δt+ =
π/12) in a global gate, which shows that it learns the ori-
entations of the initial x-paramagnet and the z-polarized
target [yellow shaded region]. This is succeeded by a
non-trivial sequence containing two-body operators. A
closer inspection [Fig. S10 in Supplemental Material:,
Sec. S.3 B and Video 1] reveals that the agent discovered a
generalization of Euler-angle rotations in the multi-qubit
Hilbert space [blue shaded region]. This is remarkable,
since it points to the ability of the agent to construct
compound rotations, which is a highly non-trivial combi-
natorial problem for experimentally relevant constrained
action spaces. This can be interpreted as a generalization
of dynamical decoupling sequences introduced in state-
of-the-art NMR experiments and used nowadays in quan-
tum simulation, optimal quantum sensing, and to protect
quantum coherence [67–69]. We verified that this proto-
col is a local minimum of the control landscape.

We also investigated the system size dependence of op-
timal protocols in this control study. To our surprise, we
find that agents trained on the N = 32 spin system pro-
duce optimal protocols that perform reasonably well on
smaller (N=8) as well as larger (N=64) systems. Hence,
this control problem admits a certain degree of trans-
ferability, which worsens for initial states closer to the
finite-size dominated critical region [Supplemental Mate-
rial:, Sec. S.3 B].

The MPS-based control framework enables us to read-
ily analyze the physical entanglement growth during
training, via the bond dimension of the quantum state
χψ. The protocol exploration mechanism in QMPS
causes the agent to act mostly randomly during the ini-
tial stages of learning. This translates to random se-
quences of unitary gates that can lead to an increase
of quantum entanglement [Fig. 3(c), inset]. In our sim-
ulations, we set the maximum allowed bond dimension
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Figure 4. Self-correcting mixed-field Ising control — (a),(b) Final single-particle fidelity Fsp = N
√
F [top] and

corresponding protocol length [bottom] – see colorbars – versus the initial Ising ground state parameter values gx, gz. The
target is a state in the critical region of the Ising model at (J=+1, gx=0.5, gz=1.5). Training started only from initial states
sampled randomly from the enclosed white rectangle. Each of the two parts of a colorbar is shown on a linear scale with the
fidelity threshold (F ∗sp =0.97, F ∗∼0.61) and the maximum episode length during training (50), indicated by short black lines.
(c)-(f) Same as (a)-(b) but for noisy evolution – (c),(d): At each time step, actions other than the one selected by the agent,
are taken with probability ε=0.02; (e),(f): White Gaussian noise with standard deviation σ=0.01 is added to the time step δt±
of all applied unitaries. (g) Time-dependence of the single-particle fidelity starting from an arbitrary initial ground state, and
following the trained agent. The red curve denotes the unperturbed (noise-free) QMPS protocol. At time step 5 [indicated by
the black arrow], the QMPS protocol is perturbed by enforcing 5 suboptimal actions. All subsequent actions are selected again
according to the trained QMPS policy without perturbation (blue curves). The inset displays a zoom in the vicinity of the
fidelity threshold (dashed gray line), showing that each protocol terminates successfully. (h) Same as in (g) but for dynamics
subject to Gaussian noise at every time step δt±, for 5 different random seeds giving rise to 5 distinct protocols. N=16 spins.
See Videos 2 and 3.

to χψ = 16, which is sufficient for the considered initial
and target states to be approximated reliably. However,
not all states encountered can be represented with such a
small bond dimension, as reflected by large truncation er-
rors during training [Supplemental Material:, Sec. S.3 B].
Nonetheless, as training progresses, the agent learns to
take actions that do not create excessive entanglement
[Fig. 3(c)]. Therefore, the truncation error naturally de-
creases, as training nears completion. As a consequence,
the final converged protocols visit states that lie within
a manifold of low-entangled states. Moreover, increasing
χψ does not change these observations. We believe that
this mechanism relies on the area-law nature of the ini-
tial and target states, and we expect it to open up the
door towards future control studies deeper in the genuine
many-body regime.

C. Learning robust critical-region state
preparation for N = 16 spins

States in the critical region possess non-trivial corre-
lations and show strong system-size dependence, which
make manipulating them highly non-trivial. In partic-

ular, the required time duration to adiabatically pre-
pare critical states diverges with the number of particles,
whereas sweeping through critical points reveals proper-
ties of their universality classes [70]. Therefore, finding
optimal control strategies away from the adiabatic limit
is an important challenge. Critical state preparation is
also of practical relevance for modern quantum metrol-
ogy, where the enhanced sensitivity of critical states to
external fields is leveraged to perform more precise mea-
surements [6].

Our final objective is to prepare a ground state in
the critical region of the mixed field Ising chain (J =
+1, gx = 0.5, gz = 1.5) starting from non-critical para-
magnetic ground states of the same model with flipped
interaction strength: J =−1, 1.0<gx< 1.5, 0<gz < 0.5
[Fig. 1]. Hence, the agent has to learn to connect ground
states of two distinct Hamiltonians. This scenario is of-
ten relevant in typical experimental setups where only
a single-sign interaction strength can be realized: e.g.,
the initial state comes from the J <0 Ising model, while
the ground state of interest belongs to the antiferromag-
natic Ising Hamiltonian. In general, one can use two
completely distinct parent Hamiltonians for the initial
and target states, one of which being inaccessible in the
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quantum simulator platform at hand, while the other be-
ing the object of interest.

We train our QMPS agent on N = 16 spins with a
single-particle fidelity threshold of F ∗sp =0.97 (F ∗∼0.61),
and a maximum episode length of 50. Figure 4(a) shows
the achieved fidelity between the target state and the fi-
nal state, for different initial ground states corresponding
to a rectangular region in the (gx, gz)-plane. Notice that
the agent is able to generalize to unseen initial states ly-
ing far outside the training region (white rectangle), and
fails only close to the critical point of the transverse field
Ising model (gx = 1, gz = 0) and for a few isolated initial
states well outside of the training region.

We now demonstrate that our QMPS agent shows
remarkable generalization capabilities in noisy environ-
ments. In particular, we analyze how robust the
trained QMPS agent is to stochastic perturbations in
the time evolution of the state – a common problem in
noisy intermediate-scale quantum (NISQ) computing de-
vices [71]. In what follows, we consider two different
sources of noise independently: (i) At each time step,
with probability ε, a random action rather than the se-
lected one is enforced. This type of noise mimics bit-
or phase-flip errors, which occur in quantum computing.
(ii) Gaussian random noise with zero mean and standard
deviation σ, is added to the time duration δt± of each
unitary operator; this can, for instance, result from im-
perfect controls in the experimental platform.

Noise type (i) is equivalent to using an ε-greedy policy.
Hence, the states encountered when acting with such a
policy, could have (in principle) been visited during train-
ing. Due to the generalization capabilities of RL, it is rea-
sonable to expect that an agent will act optimally after
non-optimal actions have occurred, attempting to correct
the ‘mistake’. In Fig. 4(c)-(d) we show the achieved final
fidelity [top] and the required number of steps [bottom]
for ε = 0.02. Overall, the fidelity threshold can still be
reached in the majority of test cases. The randomness
typically results in longer protocols indicating that the
agent indeed adapts to the new states encountered. In-
terestingly, in the noise-free case the agent fails to prepare
the target state for a few points outside the training re-
gion [orange points in Fig. 4(a)]; this can be attributed to
incorrectly estimated Q-values which have not fully con-
verged to the optimal ones outside of the training inter-
val. However, when adding the perturbation, the agent is
able to correct its mistake in one of the shown instances
and prepares the target state successfully [Fig. 4(c)].

Recall that we use a different time step δt± for positive
and negative actions. This way the agent is not just able
to undo a non-optimal action by performing its inverse;
it rather has to adjust the entire sequence of incoming
unitaries in a non-trivial way. The ability of the QMPS
agent to adapt is demonstrated in Fig. 4(g) where we
plot the fidelity during time evolution starting from an
arbitrary initial ground state. At time step t=5, we per-
turb the protocol by taking 6 different actions, and let
the agent act according to the trained policy afterwards;

this results in 6 distinct protocol branches. In each of
them, the agent tries to maximize the fidelity and suc-
cessfully reaches the fidelity threshold after a few extra
protocol steps [see also Video 2]. In Supplemental Ma-
terial:, Sec. S.3 C we provide further examples showing
that this behavior is generic, and can also be observed
for different initial states.

In contrast to the ε-noise, adding Gaussian random
noise σ, (ii), to the time step duration δt±, results in
states that the agent has not seen during training. This
source of noise, therefore, explicitly tests the ability of
the agent to generalize beyond the accessible state space,
and in particular to interpolate between quantum many-
body states. Fig. 4(e)-(f) displays the achieved fidelity
and the corresponding protocol length for σ = 0.01. We
find that the QMPS agent is also robust to this type
of noise. In Fig. 4(h) we plot the fidelity trajectories
starting from the same initial state using 5 different ran-
dom seeds; this illustrates that our agent adapts success-
fully to previously unencountered many-body states, and
steers the protocol on-line to reach beyond the fidelity
threshold [see Video 3].

The robustness of QMPS agents to noise and, in gen-
eral, to stochasticity in the quantum gates, demonstrates
yet another advantage of deep RL methods over conven-
tional quantum control techniques. The latter typically
perform suboptimal in noisy systems since the optimiza-
tion does not take into account the quantum state infor-
mation during the time evolution, and the optimal pro-
tocols are specifically optimized for a fixed trajectory of
quantum states [27]. By contrast, QMPS value functions
are optimized on a large class of states and, as shown
above, can interpolate and extrapolate to new, seen and
unseen states as long as the deep learning approxima-
tion stays sufficiently accurate. Therefore, unlike conven-
tional quantum control algorithms, QMPS agents have
the ability to automatically self-correct their protocols
on-the-fly, i.e., while the system is being time evolved.

IV. IMPLEMENTATION ON NISQ DEVICES

The present QMPS framework requires the quantum
state to be accessible at each time step for both train-
ing and inference purposes; yet, quantum states are not
observable in experiments without performing expensive
quantum state tomography. On the other hand, MPS-
based quantum state tomography presents a possible and
efficient way of retrieving the quantum state in a form
that can be straightforwardly integrated in the QMPS
framework [72–74]. Alternatively, there already exist ef-
ficient encoding strategies that map MPS into quantum
circuits [75–81]. Moreover, several proposals were re-
cently developed in which MPS are harnessed for quan-
tum machine learning tasks, for example as part of hy-
brid classical-quantum algorithms [82–84] or as classical
pre-training methods [85, 86].

Similar ideas can be applied to the QMPS architecture
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Figure 5. QMPS circuit framework as a hybrid quantum-classical algorithm. On the quantum device, we first prepare
the initial state and apply the already inferred protocol actions as gates. In the example above, the initial state is the fully
z-polarized state, i.e., |0〉⊗4, and two actions are performed: A global rotation around X̂ followed by a global two-qubit Ŷ Ŷ

rotation. The resulting state |ψ〉 represents the input to the QMPS network. The QMPS tensors θQ = A[1] · · ·A[N ] can be
mapped to unitary gates on a quantum circuit. To compute the Q-values, we first apply the inverse of the QMPS circuit unitary
U†θ and measure the output in the computational basis. The fraction of all-zero measurement outcomes is an approximation
to the fidelity |〈θQ|ψ〉|2. Note that this denotes the fidelity with respect to the Q-value network state |θQ〉 and not the target
quantum state which is not required during protocol inference. The fidelity estimates are then fed into the neural network on
a classical computer. From the resulting Q-values we can infer the next action and repeat these steps until the target state is
reached.

by mapping the trainable MPS to a parametrized quan-
tum circuit, thus directly integrating the QMPS frame-
work in quantum computations with NISQ devices and
hence, eliminating the need for quantum state tomogra-
phy. This allows us to perform the expensive training
routine on readily available classical computers while the
inexpensive inference step can be performed on quantum
hardware.

The mapping of the QMPS to a quantum circuit is
described in detail in Supplemental Material:, Sec. S.4 A.
Figure 5 shows the resulting QMPS circuit framework
for the case of N = 4 spins/qubits in which the original
QMPS state

∣∣θ`Q
〉

is represented as unitary gates (purple

boxes). To calculate the Q-values Qθ(ψ, a) given an input
quantum state |ψ〉, we first compute the fidelity between
the input and the QMPS state

∣∣〈θ`Q
∣∣ψ
〉∣∣2 =

∣∣〈0|U†θUψ |0〉
∣∣2, (4)

which can be obtained via sampling on a quantum com-
puter. Alternatively, the overlap can also be accessed by
performing a SWAP test, albeit requiring additional an-
cilla qubits and non-local gates [87, 88]. The computed
fidelities for each QMPS circuit are then fed into the
classical neural network giving rise to a hybrid quantum-
classical machine learning architecture as shown in Fig. 5.
If necessary, the parameters of the QMPS circuit Uθ can
be fine-tuned by performing some additional optimiza-
tion.

We test the QMPS circuit framework on the univer-
sal ground state preparation task of Section III A. In
what follows we only report results for the QMPS-1 agent
trained on a fidelity threshold of F ∗∼0.85; the general-
ization to include the QMPS-2 agent is straightforward.
We translate the optimized QMPS to the corresponding
quantum circuit and investigate the effects of noise in the
quantum computation on the QMPS framework.

To simulate incoherent errors, we consider a depolar-
izing noise channel E

E(ρ) = (1− λ)ρ+ λ
I

2N
, (5)

and apply it after each action and QMPS gate. Here, ρ
denotes the quantum state density matrix and λ is the
depolarizing noise parameter which is set to λ1 = 10−4

for all single-qubit gates. We plot the success rate as a
function of the two- and three-qubit gate errors λ2/3 for
1000 randomly sampled initial states in Fig. 6(a) (purple
line). For error rates λ2/3 < 10−3 the QMPS agent is able
to successfully prepare the target state in almost all runs.
However, the performance deteriorates with increasing
error parameter λ2/3. Let us note that we have used
the same error rate for both, two-and three-qubit gates.
On a physical quantum device, the three-qubit gate will
be decomposed into a sequence of two-qubit gates and
hence the introduced noise will be amplified. However,
the decomposition, the resulting circuit depth, and the
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Figure 6. Universal four-qubit control — (a) We sam-
ple 1000 random initial states and apply the QMPS circuit
framework in the presence of depolarizing noise with error
parameter λ2/3 for all two-and three-qubit gates. Note that
the noise parameter for all single-qubit gates is always fixed
to λ1 = 10−4. We set the number of measurement shots to
4096 and plot the percentage of runs in which the target state
is successfully reached against the noise strength. The success
rate under exact, noise-free computation (without sampling)
is shown as a black dashed line. The success probability when
acting completely random is always zero. We provide both,
the results for the full χ = 4 QMPS circuit (purple solid line)
and the truncated χ = 2 QMPS (orange dash-dotted line).
Insets: The corresponding average number of protocols steps
T̄ as a function of the noise strength λ. The standard devi-
ation is indicated by the shaded areas. (b) Same as in (a)
except that we start each protocol from a fixed initial state:
the fully z-polarized state (green solid line), the GHZ state
(blue dashed line), and a ground state of the mixed field Ising
model at J = +1, gx = gz = 0.1 (red dashed-dotted line). To
compute the success rates and the average protocol length we
average over 500 different runs. Note that the x-axis scale is
shifted by one order of magnitude compared to (a).

sources of noise vary with the hardware type [89]. Thus,
we chose the simplified noise model of Eq. (5) in order to
study the QMPS circuits in a hardware agnostic way.

We also report the results obtained when truncating
the bond dimension χ = 4 QMPS to a χ = 2 QMPS
which gives rise to at most two-qubit gates in the final cir-
cuit. In this case the success probabilities [orange dashed
line in Fig. 6(a)] do not reach 100% even for small error
rates. This indicates that a bond dimension of χ = 4 is

indeed required to faithfully represent the QMPS state.
Finally, in Fig. 6(b) we show the success rates when

starting from three different initial states: the fully z-
polarized state (green), the GHZ state (blue), and a
ground state of the mixed field Ising model at J =
+1, gx = gz = 0.1 (red). The success probability of unity
can be maintained for error rates λ one order of magni-
tude larger than for the random initial state case. Physi-
cal states such as the GHZ or ground states possess only
a small amount of entanglement and hence allow us to
prepare the target state using a relatively small number
of two-qubit gates [c.f. Fig. 2(b)-(c)]. Thus, the result-
ing protocols are automatically more robust to two-qubit
gate errors.

The effect of other decoherence channels (amplitude
and phase damping) on the QMPS circuit framework
leads to qualitative similar results and is further dis-
cussed in Supplemental Material: Sec. S.4. Furthermore,
we also analyze the self-correcting property of the agent
in the presence of coherent gate errors.

Let us briefly discuss the bottlenecks of the current
QMPS circuit framework. The QMPS circuit depicted
in Fig. 5 is composed of a three qubit-gate and more
generally an MPS with bond dimension χ = 2n will nat-
urally give rise to (n+ 1)-qubit gates. While three-qubit
gates will likely be implemented in near-term quantum
computers, the gates realized in current NISQ devices are
commonly composed of at most two-qubit gates. Hence,
any gates acting on more than two qubits would need
to be decomposed into two-qubit gates which usually
gives rise to deep circuits. Instead, we can use alter-
native MPS-to-circuit mappings that would lead to at
most two-qubit gates in the final circuit [see Supplemen-
tal Material: Sec. S.4 A for a detailed discussion] [75–81].
Finally, the sampling of the fidelity in Eq. (4) requires
a number of measurement shots that could in principle
grow exponentially in the system size. One possible solu-
tion is to choose a different Q-value network ansatz such
as a matrix product operator [see Supplemental Mate-
rial: Sec. S.2 D]. The resulting computation can then be
interpreted as measuring an observable which can be per-
formed efficiently on larger systems. We find that for the
specific N = 4 QMPS example, the number of measure-
ments required for successfully preparing the target state
can be chosen relatively small, i.e., ∼ 500 to reach suc-
cess rates close to unity [see Fig. S18(a) in Supplemental
Material: Sec. S.4 and corresponding discussion].

V. DISCUSSION/OUTLOOK

In this work we introduced a tensor network-based
Q-learning framework to control quantum many-body
systems. Incorporating an MPS into the deep learning
architecture allows part of the Q-value computation to
be efficiently expressed as an overlap between two MPS
wave functions. As a result, larger system sizes can be
reached compared to learning with the full wave func-



10

tion. We emphasize that standard RL algorithms with
conventional neural network architectures cannot han-
dle quantum many-body states, whose number of com-
ponents scale exponentially with the number of spins:
e.g., for N = 32 spins, there are 232 ≈ 1010 wavefunction
components to store which is prohibitively expensive. By
contrast, our MPS learning architecture only requires lin-
ear scaling with the system size N . Furthermore, we
found that the hyperparameters of the optimization and,
in particular, the number of training episodes do not re-
quire finetuning with the system size, and stayed roughly
constant [Supplemental Material:, Sec. S.2 C]. Summariz-
ing, QMPS proposes the use of a tensor-network varia-
tional ansatz inspired by quantum many-body physics to
offer a novel RL learning architecture.

QMPS-based RL is designed for solving the quantum
many-body control problem by learning a value function
that explicitly depends on the quantum state. Therefore,
a successfully trained QMPS agent is capable of devising
optimal protocols for a continuous set of initial states,
and selects actions on-the-fly according to the current
state visited. As a result, a QMPS agent has the ability
to self-correct mistakes in the protocols when the dynam-
ics is stochastic, even before the protocols have come to
an end. Moreover, we illustrated that the agent can inter-
polate and extrapolate to new quantum states not seen
during training. Remarkably, we observed this behavior
over test regions several times the size of the training re-
gion. To the best of our knowledge, there does not exist a
quantum control algorithm that exhibits such desirable
features, as these are based on deep learning capabili-
ties: conventional quantum control algorithms require to
re-run the optimization when the initial state has been
changed, and thus lack any learning capabilities.

The generalization capabilities, the robustness to
noise, and the feasibility of universal state preparation
(for small system sizes) are advantages of the QMPS
framework over competitive optimal control algorithms.
These features are especially relevant for experiments
and modern quantum technologies that heavily rely on
quantum many-body control, and in particular for NISQ
devices. Moreover, we demonstrated that the present
QMPS framework can be integrated in quantum de-
vice simulations by mapping the optimized MPS ansatz
to gates in a quantum circuit. The resulting hybrid
quantum-classical algorithm allows us to control quan-
tum states directly on the device without the need of
performing expensive quantum state tomography. Thus,
unlike neural networks, using an MPS learning architec-
ture also facilitates the use of RL-agents on NISQ devices.

Our work opens up the door to further research on
tensor network-based RL algorithms for quantum (many-
body) control. Due to the modular structure of the ar-
chitecture, the QMPS can be replaced by various ten-
sor networks, such as tree tensor networks (TTN) [90]
or the multi-scale entanglement renormalization ansatz
(MERA) [91]; these would allow different classes of states
to be represented efficiently, and affect the expressivity

of the ansatz. Moreover, the infinite-system size descrip-
tion of iMPS can be used to devise control strategies in
the thermodynamic limit for which an efficient mapping
to quantum circuits exist as well [80]. Similarly, sys-
tems with periodic boundary conditions can be studied
[81]. Furthermore, tensor networks come with a com-
prehensive toolbox for analyzing their properties, such
as the entanglement structure and correlations. Hence,
tensor-network-based reinforcement learning will enable
us to study the data, the training, and the expressivity of
the ansatz using well-understood concepts from quantum
many-body physics [92, 93].

Finally, we mention that it is straightforward to use RL
algorithms other than Q-learning in conjunction with our
MPS-based ansatz. While we chose the DQN framework
since it is off-policy and, therefore, more data-efficient
compared to policy gradient methods [Sec. S.2 B], the
latter would more naturally allow for continuous action
spaces. In turn, with continuous controls, target states
can be reached with higher fidelity [31]. One can also
adapt the reward function and, for instance, consider the
energy density or various distance measures beyond the
fidelity.
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VIDEOS

Video 1 – Transverse-field Ising control
Bloch sphere trajectory of the reduced density matrix
of a single spin in the bulk (i= 15) when starting from
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the initial ground state at gx = 1.01 and acting accord-
ing to the optimal QMPS protocol. Also shown are the
single-particle and many-body fidelities, the half-chain
von Neumann entanglement entropy, the local magneti-
zations 〈σi〉, and the local spin-spin correlations 〈σiσi+1〉
during each step of the protocol. The protocol can be
divided into three segments involving an initial single-
particle rotation and a final many-body Euler-angle-like
rotation which reduces unwanted correlations [99].

Video 2 – Self-correcting Ising control
Bloch sphere trajectories of the reduced density matrix
of a single spin at the edge (i = 0) and in the bulk
(i = 15) when starting from the initial ground state at
J=−1, gx=1.2, gz=0.2 and preparing the critical-region
target state. The red arrow/curve denotes the trajec-
tory obtained via acting with the optimal QMPS proto-
col. The blue arrow/curve shows a suboptimal trajectory
where at time step t=5 a different than the optimal ac-
tion is chosen. Afterwards, the systems is again evolved
according to the optimally acting QMPS agent. We show
two examples of perturbed trajectories consecutively. In
both cases the agent is able to successfully prepare the
target state despite the perturbation, thus illustrating
the ability of the agent to generalize and adapt its pro-
tocols on-the-fly [99].

Video 3 – Self-correcting Ising control
Same as Video 2. However, in this case the blue ar-
row/curve displays the Bloch sphere trajectory subject
to noisy dynamics. Specifically, at each time step we add
white Gaussian noise with std σ= 0.05 to the time step
duration δt±. We show two examples of noisy trajecto-
ries with different random seeds consecutively. In both
cases the agent is again able to successfully prepare the
target state which illustrates the robustness of the QMPS
agent to noisy dynamics [99].

METHODS

Reinforcement learning (RL) framework

In RL, a control problem is defined within the frame-
work of an environment that encompasses the physical
system to be controlled, and a trainable agent which
chooses control actions to be applied to the system
[Fig. 7] [100]. The environment is described by a state
space S and a set of physical laws that govern the dy-
namics of the system. We consider episodic training, and
reset the environment after a maximum number T of time
steps. At each time step t during the episode, the agent
observes the current state st ∈ S and receives a scalar
reward signal rt. Depending on the current state st, the
agent chooses the next action at+1 from a set of allowed
actions A; this, in turn, alters the state to st+1. The
feedback loop between agent and environment is known
as a Markov decision process. The goal of the agent is
to find an optimal policy (a function mapping states to
actions) that maximizes the expected cumulative reward

in any state [Sec. S.2 B].

States — In our quantum many-body control setting,
the RL state space S comprises all quantum states |ψ〉 of
the 2N -dimensional many-body Hilbert space. Here, we
consider states in the form of an MPS with a fixed bond
dimension χψ: if χψ < χmax is smaller than the maxi-

mum bond dimension χmax = 2N/2, long-range entangle-
ment cannot be fully captured, and the resulting MPS
becomes a controlled approximation to the true quantum
state [Sec. S.2 A]. Hence, state preparation of volume-law
entangled states is restricted to intermediate system sizes
when using MPS. On the other hand, for large system
sizes, the control problems of interest typically involve
initial and target states that are only weakly entangled
such as ground states of local many-body Hamiltonians.
In these cases, the optimal protocol may not create ex-
cessive entanglement suggesting that the system follows
the ground state of a family of local effective Hamiltoni-
ans [101, 102], similar to shortcuts-to-adiabaticity control
[103], and thus, justifying a MPS-based description.

Actions — If not specified otherwise, the set of avail-
able actions A contains local spin-spin interactions and
single-particle rotations, as defined in Eq. (2).

Rewards — Since our goal is to prepare a specific
target state, a natural figure of merit to maximize is the
fidelity Ft = |〈ψt|ψ∗〉|2 between the current state |ψt〉
and the target state |ψ∗〉. To avoid a sparse-reward prob-
lem caused by exponentially small overlaps in many-body
systems, we choose the log-fidelity per spin at each time
step as a reward: rt = N−1 log(Ft). Moreover, we set
a fidelity threshold F ∗, which the agent has to reach for
an episode to be terminated successfully. Note that the
agent receives a negative reward at each step; this pro-
vides an incentive to reach the fidelity threshold in as
few steps as possible, in order to avoid accruing a large

negative return R =
∑T
t=1 rt, thus leading to short op-

timal protocols. For assessing the performance of the
QMPS agent to prepare the target state, we show the
final single-particle fidelity Fsp = N

√
F as it represents a

more intuitive quantity than the related log fidelity used
in quantum simulation experiments. A detailed compar-
ison of the control study results in terms of the achieved
single-and many-body fidelities can be found in the Sup-
plemental Material:, Sec. S.3.

In the case where the target state is the ground state
of a Hamiltonian H, we can also define the reward in
terms of the energy expectation value Et = 〈ψt|H|ψt〉.
Specifically, we can choose rt = N−1(E0 − Et), where
E0 = 〈ψ∗|H|ψ∗〉 is the ground state energy. Similarly
to the log-fidelity, this reward is always negative and be-
comes zero when evaluated on the target ground state.
If the target state and therefore also its energy is a priori
not known, one can alternatively replace E0 with a large
negative baseline which ensures that the rewards are al-
ways negative during training. Another advantage of the
energy reward is the fact that expectation values can be
efficiently calculated on a quantum device (in contrast to
the fidelity). We report results obtained with this reward
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Figure 7. Q-learning framework (QMPS) based on
matrix product states. The RL environment encompasses
a quantum many-body spin chain represented in compressed
MPS form which is time evolved according to globally applied
unitary operators chosen from a predefined set A. The reward
rt is given by the normalized log-fidelity between the current
state |ψt〉 and the target |ψ∗〉. The QMPS agent is represented
by a parameterized Q-value function Qθ(ψ, a) composed of a
MPS |θQ〉 which is contracted with the quantum state MPS
|ψt〉, and a subsequent neural network (NN) which outputs a

Q-value for each different action Â. The trainable parameters
of the QMPS are determined by the feature vector dimension
df and the bond dimension χQ.

definition in the Supplemental Material: Sec. S.3 A 2.
Training — Each training episode starts by sampling

an initial state followed by taking environment (state evo-
lution) steps. An episode terminates once the fidelity
threshold is reached. After every environment step an
optimization step is performed [see Sec. S.2 B for a de-
tailed explanation of the algorithm].

We note in passing that we do not fix the length of an
episode (the number of protocol steps) beforehand and
the agent is always trying to find the shortest possible
protocol to prepare the target state. However, we termi-
nate each episode after a maximum number of allowed
steps even if the target state has not been successfully
prepared yet: otherwise episodes, especially at the be-
ginning of training, can become exceedingly long leading
to unfeasible training times.

Matrix product state ansatz for Q-learning (QMPS)

We choose Q-learning to train our RL agent
[Sec. S.2 B], since it is off-policy and, thus, more data-
efficient compared to policy gradient methods. The op-

timal Q-function Q∗(ψ, a) defines the total expected re-
turn starting from the state |ψ〉, selecting the action a
and then following the optimal protocol afterwards. In-
tuitively, the optimal action in a given state maximizes
Q∗(ψ, a). Hence, if we know Q∗(ψ, a) for every state-
action pair, we can solve the control task. In Q-learning
this is achieved indirectly, by first finding Q∗. This ap-
proach offers the advantage to re-use the information
stored in Q∗ even after training is complete.

Since the state space is continuous, it becomes infeasi-
ble to learn the exact Q∗-values for each state. Therefore,
we approximate Q∗ ≈ Q∗θ using a function parametrized
by variational parameters θ, and employ the DQN algo-
rithm to train the RL agent [104]. In this work, we intro-
duce a novel architecture for the Q∗-function, based on a
combination of a MPS and a NN, called QMPS, which is
specifically tailored for quantum many-body states that
can be expressed as a MPS [Fig. 7]. We emphasize that
the QMPS is independent of the MPS representation of
the quantum state, and has its own bond dimension χQ.

To calculate Qθ(ψ, a) for each possible action a in a
quantum state |ψ〉, we first compute the overlap between
the quantum state MPS and the QMPS. The contrac-
tion of two MPS can be performed efficiently and scales
only linearly in the system size for fixed bond dimensions.
The output vector of the contraction corresponding to
the dangling leg of the central QMPS tensor, is then in-
terpreted as a feature vector of dimension df , which is
used as an input to a small fully-connected neural net-
work [Fig. 7]. Adding a NN additionally enhances the ex-
pressivity of the Q∗θ ansatz by making it nonlinear. The
final NN output contains the Q∗-values for each different
action.

The QMPS feature vector can be naturally written as
an overlap between the quantum state MPS |ψ〉 and the
QMPS |θQ〉. Thus, the Q∗-value can be expressed as

Qθ(ψ, a) = fθ
(
N−1 log

(
|〈θQ|ψ〉|2

))
, (6)

where fθ(·) denotes the neural network. We additionally
apply the logarithm and divide by the number of spins N
in order to scale the QMPS framework to a larger number
of particles. Note also that the QMPS does not represent
a physical wave function (it is not normalized); however,
for ease of notation, we still express it using the bra-ket
formalism.

Thus, the trainable parameters θ of the Q∗-function
contain the N +1 complex-valued QMPS tensors |θQ〉,
plus the real-valued weights and biases of the subsequent
NN. The QMPS feature dimension df and the QMPS
bond dimension χQ are hyperparameters of the optimiza-
tion, which determine the number of variational param-
eters of the MPS in analogy to the hidden dimension of
neural networks. An advantage of the MPS architecture
is that we can open up the black-box of the ansatz and
training using well-understood concepts from the MPS
toolbox. For example, it allows us to analyze the corre-
lations in the quantum state and the QMPS by studying
its entanglement properties.
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Alternatively to the MPS ansatz, we can also represent
the parameters of the Q-value network in terms of a ma-

trix product operator (MPO) θ̂Q. The Q-value compu-
tation then amounts to computing the expectation value
of the MPO ansatz with respect to the input quantum

state, i.e., Qθ(ψ, a) = fθ(〈ψ|θ̂Q|ψ〉). For a detailed expla-
nation of this architecture, we refer to the Supplemental
Material:, Sec. S.2 D. Furthermore, in Supplemental Ma-
terial:, Sec. S.3 A 2 we provide a performance comparison
of different QMPS/NN architecture choices for the N=4

qubit problem discussed in Sec. III A.

Note that the resources (time and memory) for train-
ing the QMPS framework scale at worst polynomially in
any of the parameters of the system and the ansatz, such
as the QMPS bond dimension χQ, the feature dimension
df , and the local Hilbert space dimension d = 2. Fur-
thermore, QMPS reduces an exponential scaling of the
resources with the system size N to a linear scaling in
N , therefore, allowing efficient training on large spin sys-
tems.
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G. Su, and M. Lewenstein, New Journal of Physics 21,
073059 (2019).

[123] J. Reyes and M. Stoudenmire, A multi-scale tensor
network architecture for classification and regression
(2020), arXiv:2001.08286 [stat.ML].

[124] E. M. Stoudenmire, Quantum Science and Technology
3, 034003 (2018).

[125] S. Cheng, L. Wang, T. Xiang, and P. Zhang, Phys. Rev.
B 99, 155131 (2019).

[126] M. L. Wall and G. D’Aguanno, Phys. Rev. A 104,
042408 (2021).

[127] Z.-F. Gao, S. Cheng, R.-Q. He, Z. Y. Xie, H.-H. Zhao,
Z.-Y. Lu, and T. Xiang, Phys. Rev. Research 2, 023300
(2020).

[128] Z.-Z. Sun, S.-J. Ran, and G. Su, Phys. Rev. E 102,
012152 (2020).

[129] Z. Liu, L.-W. Yu, L. M. Duan, and D.-L.
Deng, The presence and absence of barren plateaus
in tensor-network based machine learning (2021),
arXiv:2108.08312 [quant-ph].

[130] C. Watkins and P. Dayan, Machine Learning 8, 279
(1992).

[131] H. van Hasselt, A. Guez, and D. Silver, Deep re-
inforcement learning with double q-learning (2015),
arXiv:1509.06461 [cs.LG].

[132] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, New
Journal of Physics 12, 025012 (2010).

https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevLett.99.220405
https://arxiv.org/abs/2007.06082
https://arxiv.org/abs/2103.06872
https://arxiv.org/abs/1905.01330
https://arxiv.org/abs/1905.01330
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://github.com/tenpy/tenpy
https://github.com/tenpy/tenpy
https://arxiv.org/abs/1805.00055
https://doi.org/10.21468/SciPostPhys.2.1.003
https://github.com/frmetz/QMPS
https://doi.org/10.1103/PRXQuantum.3.030343
https://arxiv.org/abs/2208.14468
https://arxiv.org/abs/2208.14468
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1038/nature14236
https://books.google.de/books?id=v5vhg1tYLC8C
https://books.google.de/books?id=v5vhg1tYLC8C
https://books.google.de/books?id=v5vhg1tYLC8C
https://books.google.de/books?id=v8du6cp0vUAC
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1088/2040-8978/18/10/104005
https://books.google.de/books?id=LZRXjwEACAAJ
https://books.google.de/books?id=LZRXjwEACAAJ
https://doi.org/10.1017/CBO9780511973765
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://openreview.net/forum?id=HWNk5_DX-T
https://openreview.net/forum?id=HWNk5_DX-T
https://arxiv.org/abs/2004.10076
https://doi.org/10.3389/fams.2021.716044
https://doi.org/10.3389/fams.2021.716044
https://doi.org/10.1103/PhysRevB.101.075135
https://doi.org/10.1103/PhysRevB.101.075135
https://arxiv.org/abs/2106.12974
https://doi.org/10.3390/e21121236
https://proceedings.neurips.cc/paper/2019/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/PhysRevE.98.042114
https://arxiv.org/abs/2006.02516
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1088/1367-2630/ab31ef
https://arxiv.org/abs/2001.08286
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.1103/PhysRevA.104.042408
https://doi.org/10.1103/PhysRevA.104.042408
https://doi.org/10.1103/PhysRevResearch.2.023300
https://doi.org/10.1103/PhysRevResearch.2.023300
https://doi.org/10.1103/PhysRevE.102.012152
https://doi.org/10.1103/PhysRevE.102.012152
https://arxiv.org/abs/2108.08312
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://arxiv.org/abs/1509.06461
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/1367-2630/12/2/025012


16

Supplemental Material:

Self-Correcting Quantum Many-Body Control
using Reinforcement Learning with Tensor Networks

CONTENTS

S.1. Quantum many-body physics 16

S.2. Computational Methods 17
A. Matrix product states (MPS) 17

1. MPS in quantum physics 17
2. MPS in machine learning 18

B. Q-learning and DQN 18
1. Tabular Q-Learning 18
2. Deep Q-Learning 19

C. Details of the QMPS architecture and
training 20
1. Optimization 20
2. Compute resources 21

D. QMPO architecture 21

S.3. Details of the control studies 22
A. Universal state preparation from arbitrary

initial quantum states 22
1. Single-particle control 22
2. Universal ground state preparation for
N = 4 spins 23

B. Preparation of a polarized product state from
paramagnetic ground states for N = 32
spins 24

C. Learning robust critical-region state
preparation for N = 16 spins 29

S.4. NISQ Implementation of the QMPS Framework 31
A. QMPS to quantum circuit mapping 31
B. Additional results on the noise-robustness 32

S.1. QUANTUM MANY-BODY PHYSICS

Quantum many-body physics deals with the behavior
of large collections of interacting quantum particles, such
as electrons, atoms, or spins [105, 106]. Hence, quan-
tum many-body physics is used to study materials at
the atomic scale, which can provide insights into their
macroscopic features, such as conductivity, polarizabil-
ity, or magnetism. Quantum many-body systems can
exhibit a wide range of phenomena, from the emergence
of novel phases of matter to the occurrence of quantum
phase transitions and collective behavior that show exotic
electronic and magnetic properties that are considered in
the development of novel quantum technologies.

Quantum simulators provide a versatile testbed for
studying many-body physics by mimicking the behav-
ior of these quantum materials in a controlled environ-
ment [107]. By engineering the interactions between the

constituent particles of the quantum simulator, one can
create a system that displays properties similar to the
target system, which would otherwise be difficult or im-
possible to realize in real materials. Examples of quan-
tum simulators include ultracold atoms in optical lattices
[3], nitrogen-vacancy centres [5], trapped ions [4], or pho-
tonic systems [108].

Paradigmatic systems that are often realized in quan-
tum simulator platforms and that allow us to study a
range of interesting quantum many-body phenomena are
quantum spin models like the Ising model considered in
the main text [109]. The quantum Ising model describes
interactions between spins on a lattice. The quantum
state of the spin system is governed by the Ising Hamilto-
nian [see Eq. (3)], which includes a coupling term between
neighboring spins that tends to (anti-)align the spins de-
pending on the sign of the coupling constant, and a mag-
netic field term that tries to align each spin along the
direction of the field. The competition between the spin
interaction and the magnetic field gives rise to different
phases of matter and thus to a quantum phase transition.

Unlike classical phase transitions (such as the liquid-
gas transition in water), a quantum phase transition oc-
curs at zero temperature by varying a non-thermal pa-
rameter of the system like the magnetic field [110]. At
the phase transition the properties of the system abruptly
change which leads to non-analyticities in the ground
state properties such as diverging susceptibilites and cor-
relation lengths. The latter are also typical character-
istics of continuous phase transitions which feature a
power-law scaling of correlations and the emergence of
universal behavior that is independent of the specific de-
tails of the system. For example, the transverse field Ising
model exhibits a critical point at J = gx where the sys-
tem transitions from a disordered paramagnetic phase
where spins are aligned along the magnetic field in x-
direction to an ordered ferromagnetic phase where spins
are uniformly aligned in either the positive or negative
z-direction.

Quantum many-body ground states can also be stud-
ied and classified according to their entanglement proper-
ties [111]. To that end, the von Neumann entanglement
entropy can be used as a measure of the amount of en-
tanglement between a subset of particles and the rest of
the system. It is defined in terms of the reduced density
matrix ρA = Tr |ψ〉 〈ψ| for any bipartition A/B of the
system

SAent = −Tr [ρA log ρA] . (S.1)

The entanglement entropy can be regarded as a measure
of how correlated a system is and thus, it is usually large
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for systems that are highly correlated. For ground states
of local, gapped Hamiltonians it has been shown that the
entanglement entropy scales proportionally to the bound-
ary area of the partition and hence, these states are com-
monly referred to as area-law entangled states. On the
other hand, gapless critical states result in a logarithmic
scaling of the entanglement entropy. And finally, for sys-
tems with long-range interactions, the entanglement is
usually spread over a large region of space. Hence, the
entanglement entropy typically scales with the volume
of the partition and the corresponding states are said
to be volume-law entangled. Note that most quantum
states of a many-body Hilbert space display a volume-
law of entangelement. Nontheless, area-law entangled
states have received widespread attention since they can
be efficiently simulated using the matrix product state
formalism [15, 16].

S.2. COMPUTATIONAL METHODS

A. Matrix product states (MPS)

1. MPS in quantum physics

Matrix product states (MPS) define a class of tensor
networks (TN) – a computational tool developed to sim-
ulate quantum many-body systems [13, 14]. Consider a
lattice of N sites with local on-site Hilbert space dimen-
sion dj on site j [for spin-1/2 systems, dj = 2]. In gen-
eral, the amplitudes, ψ, of a many-body wave function
can be represented as a rank-N tensor ψj1,...,jN , where
ji ∈ {1, . . . , di}. A TN constitutes a decomposition of
the rank-N tensor into a product of lower-rank tensors.
In particular, a MPS represents the wave function as a
contraction over N rank-3 tensors, cf. Fig. S1:

|ψ〉=
∑

j1,...,jN

ψj1,...,jN |j1, j2, . . . , jN 〉 (S.2)

=
∑

j1,...,jN

∑

α2,...,αN

(S.3)

A[1]j1
α1α2

A[2]j2
α2α3

. . . A[N ]jN
αNαN+1

|j1, j2, . . . , jN 〉 ,

where |j1, j2, . . . , jN 〉 denotes the basis states. The phys-
ical indices ji = {1, . . . , di} run over the local Hilbert
space dimension. The non-physical indices, denoted by
α, are referred to as bond indices; the corresponding bond
dimension χi determines the number of parameters in the
ansatz which scales as Nχ2d for a uniformly fixed bond
dimension.

It has been shown that MPS define an efficient repre-
sentation of states obeying the area-law of entanglement
in one dimension, i.e., states whose entanglement entropy
at any bond of the lattice is independent of the system
size N [15, 16]. For such states, the bond dimension χ be-
comes system-size independent and all MPS operations,
such as computing overlaps, scale only linearly in N [as

χ

d

(a) (b)

j

α β

Ajαβ A
[1]j1
α1 A

[2]j2
α1α2 A

[3]j3
α2α3 . . . A

[N ]jN
αN−1

Figure S1. (a) Diagrammatic notation of a rank-3 tensor.
(b) Diagrammatic representation of MPS where d denotes the
local Hilbert space dimension and χ the bond dimension of
the virtual legs that are contracted over.

compared to the exponential scaling for generic states].
A class of states that automatically fulfill the area-law
are ground states of local, gapped Hamiltonians. In con-
trast, states for which the entanglement entropy depends
on the system size, e.g. linearly (volume-law states), or
logarithmically (critical states), will inevitably require a
bond dimension that increases with number of spins N
for an exact representation; this results in computational
resources scaling, at worst, exponentially with N . In
the latter class fall quantum states of systems taken far-
from-equilibrium which feature a ballistic growth of the
entanglement entropy [112, 113]. Hence, the applicabil-
ity of MPS is usually restricted to short-time dynam-
ics or to time evolution generated by local Hamiltonians
with times scaling at worst polynomially in the number
of spins [65]. These conditions are satisfied by our pro-
posed control setup and thus, justify a description using
MPS. In Sec. III B and Sec. S.3 B we also analyze the en-
tanglement entropies of the quantum states during time
evolution which show that they can indeed by faithfully
approximated by MPS.

MPS come with a well-developed toolbox of algorithms
for calculating ground states (e.g., DMRG) [11], com-
puting time evolution (e.g., TEBD), and with efficient
algorithms for computing overlaps and expectation val-
ues of local observables [13, 14]. In our simulations, we
use the two-site density matrix renormalization group
(DMRG) algorithm provided in the TensorNetwork li-
brary [94] to compute ground states, and a custom sim-
plified version of time-evolving block decimation (TEBD)
to time-evolve quantum states. Since we are only employ-
ing unitaries generated by a sum of commuting operators,
the time evolution can be simplified, leading to a consid-
erable computational speed-up. Each time evolution step
is carried out by applying a sequence of single/two-site
operators along the spin chain. After every application
of a two-site operator, a singular value decomposition is
performed to maintain the MPS form and to reduce the
bond dimension by truncating the matrix containing the
singular values. The error introduced in this process, can
be quantified by the truncation weight ε, which is calcu-

lated from the norm of the discarded singular values λ
[i]
α
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at each bond i

ε = 1−
N−1∏

i=1

(
1− 2

χmax∑

α=χtrunc

|λ[i]
α |2
)
, (S.4)

and represents an upper bound for the total truncation
error after one full TEBD sweep.

As a measure of entanglement we use the von Neumann
entanglement entropy; it can be expressed in terms of the

singular values λ
[i]
α for any bipartition of the system at

bond i:

Sient = −
χ∑

α=1

|λ[i]
α |2 log

(
|λ[i]
α |2
)
. (S.5)

2. MPS in machine learning

While MPS were originally developed within the con-
densed matter community to study the low-energy prop-
erties of quantum many-body systems, the variational ex-
pressivity of MPS and, more generally, tensor networks,
has recently been harnessed to solve machine learning
problems [58–60, 92, 114–127]. In one of the first ex-
amples of MPS-based machine learning, an MPS ansatz
is used for the compression of the weight matrix in a
linear classification task [58]. In this approach the clas-
sical data is first mapped to a “spin” state defined on a
higher dimensional space, which is then contracted with
the weight MPS. The latter features one tensor (usually
in the center) containing a dangling leg representing the
resulting prediction of the model, e.g., the class proba-
bilities. So far most applications of MPS-based machine
learning involved supervised learning tasks such as classi-
fication [58, 92, 114–116], or unsupervised learning tasks
such as generative modeling [59, 117, 118], sequence mod-
eling [119, 120], and anomaly detection [121]. Recently,
MPS have also been utilized as a feature map for classical
data in a quantum reinforcement learning (RL) frame-
work [52].

The MPS architecture can be optimized via conven-
tional gradient descent, and the gradients can be ob-
tained through backpropagation analogous to the opti-
mization of neural network parameters. Alternatively,
one can use a DMRG-style routine for MPS that only
locally optimizes one or two tensors at a time, while
sweeping back and forth through the MPS [58]. This
algorithm has the advantage that the bond dimension
can be adapted dynamically during the optimization and
has also shown better stability for large system sizes
(N > 200) where backpropagation fails due to exponen-
tially vanishing gradients [128, 129]. Since we are dealing
with intermediate system sizes N < 200 in this study, we
used backpropagation for calculating the gradients of the
MPS tensors.

B. Q-learning and DQN

Within the RL framework the agent chooses actions
according to a strategy, called policy π(a|s) – a function

that assigns a probability to every action a depending on
the current state s of the environment [100]. The goal
is to find the optimal policy π∗(a|s), i.e., the optimal
action to take in any state s that maximizes the expected

return R = Eπ
[∑T

t=0 rt|s0 = s
]

starting from state s and

following the policy π. In this work, we consider episodic
tasks involving a termination condition (e.g., a fidelity
threshold) which the agent has to reach within a fixed
number of steps T . Once the termination condition is
satisfied, the episode is over and the environment is reset.
This is in contrast to non-episodic tasks which continue
indefinitely.

Q-learning is a model-free RL algorithm in which the
agent learns an optimal policy π∗(a|s) solely via ob-
serving environment transitions, i.e., without knowing or
building a representation of the environment dynamics,
and without access to any prior information about the
system [130]. To every fixed policy π (optimal or sub-
optimal), we can assign a Q-function, defined as the ex-
pected return starting from state s, taking action a, and
following the policy π afterwards:

Qπ(s, a) = Eπ

[
T∑

t=0

γtrt|s0 = s, a0 = a

]
. (S.6)

The discount factor γ ∈ (0, 1] gives a higher importance
to immediate rewards and therefore ensures stability for
continuing, non-episodic RL tasks.

In Q-learning, the optimal policy π∗ is found indirectly
through learning the optimal Q-value function Q∗(s, a)
that gives the maximum expected cumulative discounted
reward:

Q∗(s, a) = max
π

Qπ(s, a). (S.7)

Once the optimal Q-values are known, the optimal pol-
icy is deterministic: π∗(s) = arg maxaQ

∗(s, a), i.e., it is
given by greedily taking actions according to the maxi-
mum optimal Q-value in each state.

1. Tabular Q-Learning

When the state space is discrete, the optimal Q-
function can be learned using tabular Q-learning through
an iterative update rule derived from the Bellman opti-
mality equation [130]

Qk+1 (s, a)←Qk (s, a) + αδk, (S.8)

δk = r(s, a) + γmax
a′

Qk (s′, a′)−Qk (s, a) ,

where k denotes the iteration step of the algorithm,
α ∈ (0, 1] is the learning rate, and δk is the temporal
difference error. Note that Q-learning requires isolated
tuples (s, a, r, s′), known as transitions, and not complete
trajectories. Moreover, due to the presence of the max
function in the update-rule above, the algorithm is off-
policy : this means that the transitions can come from
any policy (also old ones) – and yet the new updated
Q-function approaches the optimal Q∗.
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Convergence is guaranteed if each possible state-action
pair (s, a) can, in principle, be visited infinitely often. To
fulfill this condition the agent has to explore sufficiently
different state-action pairs. At the same time, the agent
should also exploit the high-reward transitions, especially
towards the end of training when the Q-value estimates
have mostly converged to their true values. A common
choice of behavior policy to follow during training that
satisfies this Exploration-Exploitation dilemma, is an ε-
greedy policy:

a =

{
random action with probability ε

arg maxa′ Q
π(s, a′) otherwise

, (S.9)

i.e. the agent chooses a random action with some small
probability ε and the greedy action maximizing the Q-
value otherwise. The hyperparameter ε can be de-
creased, e.g., exponentially, starting from a value close
to 1 (exploration-dominated regime) at the beginning of
training, to a small value, e.g., ε = 0.01, leading to less
exploration and more exploitation as training progresses.

2. Deep Q-Learning

For large or continuous state spaces, such as Hilbert
spaces, the tabular Q-learning algorithm described above
is inapplicable. In such cases, it is only possible to learn
an approximation to the optimal Q-values, Qθ(s, a) ≈
Q∗(s, a), given by a parameterized function, e.g., a neural
network [104]. The parameters θ of the variational ansatz
are then optimized by minimizing the expected mean-
square temporal difference error

Lk(θk) = E(s,a,r,s′)∼R

[(
yk −Qθk(s, a)

)2
]
,

yk = r + γmax
a′

Qθ̄k(s′, a′) . (S.10)

The minibatch of transitions (s, a, r, s′), used in each op-
timization step k, is uniformly sampled from a fixed-size
replay buffer R that contains previously collected tran-
sitions from agent-environment interactions. Since Q-
learning is an off-policy algorithm, transitions used for
updating the Q-value do not have to coincide with the
target policy allowing the use of experience replay. Thus,
the subroutine of collecting environment transitions can
be run independently and, if necessary, in parallel to
the optimization subroutine, thus speeding up training.
Therefore, the use of a replay buffer makes Q-learning
more data-efficient than policy gradient methods.

Note that the RL loss function Lk in Eq. (S.10) is dif-
ferent from the loss in supervised learning, in that the re-
gression target yk = r+γmaxa′ Qθ̄k(s′, a′) itself depends
on the parameterized Q-values that have to be learned;
therefore, the target (i.e., the label) changes in the course
of training. This running target makes DQN different
from ordinary gradient descent, and is the reason for the
lack of convergence guarantees in DQN. To stabilize deep
Q-learning, a second target Q-value network Qθ̄k(s, a) is

introduced whose parameters θ̄ are held fixed during the
optimization step. The optimized parameters θ are peri-
odically copied to the target network θ̄ ← θ.

Finally, we also employ Double Q-learning to reduce
overestimation errors in the Q-values [131]. Here, the
regression target is replaced by

yDouble
k = r + γ Qθ̄k(s′, argmax

a′
Qθk(s′, a′)). (S.11)

The full training algorithm is called DQN and we show
the corresponding pseudocode in Algorithm 1.
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Algorithm 1 QMPS training

Input: Target state |ψ∗〉, fidelity threshold F ∗, maximum episode length T , number of training episodes Neps, learning rate α,
batch size Nbatch, discount factor γ, replay buffer size Nbuff , target network update frequency ntarget, exploration parameters
(εinit, εfinal)

1: Initialize QMPS network Qθ and copy parameters to target network θ̄ ← θ
2: Reset RL environment (sample initial state |ψ0〉)
3: # Fill replay buffer with random transitions
4: for i = 1, .., Nbuff do
5: Select random action a→ ±Â
6: Time evolve state |ψ′〉 = exp

(
±iδt±Â

)
|ψ〉

7: Compute reward r = N−1 log
(
|〈ψ′|ψ∗〉|2

)
8: Append transition (|ψ〉, a, r, |ψ′〉) to replay buffer
9: Set |ψ〉 = |ψ′〉

10: if r > F ∗ or T is reached then
11: Reset RL environment (sample new initial state |ψ0〉)
12: # Start training
13: for l = 1, .., Neps do
14: Reset RL environment (sample initial state |ψ0〉)
15: Compute decay exploration parameter: εl = εfinal + (εinit − εfinal) exp(−8l/Neps)
16: for t = 0, .., T do
17: # Update network
18: Sample Nbatch transitions (|ψ〉, a, r, |ψ′〉) from replay buffer
19: Compute regression target y = r + γ Qθ̄(ψ

′, argmaxa′ Qθ(ψ
′, a′))

20: Compute gradients of L(θ) =
∑

batch(y −Qθ(ψ, a))2 w.r.t. parameters θ
21: Perform gradient descent step using ADAM
22: Every ntarget steps: Copy QMPS parameters θ to target QMPS network θ̄ ← θ

23: # RL environment step

24: Select action ±Ât ← at =

{
random action with probability εl

argmaxaQθ(ψt, a) otherwise

25: Time evolve state |ψt+1〉 = exp
(
±iδt±Ât

)
|ψt〉

26: Compute reward rt = N−1 log
(
|〈ψt+1|ψ∗〉|2

)
27: Append transition (|ψt〉, at, rt, |ψt+1〉) to replay buffer
28: if rt > F ∗ or T is reached then BREAK

C. Details of the QMPS architecture and training

In all examples discussed in this manuscript the QMPS
tensors are initialized as identity matrices with Gaussian
noise (σ=0.2) added to all components both for the real
and complex parts. The tensors are additionally scaled
by a factor of 0.25. The neural network weights and bi-
ases are initialized with real Gaussian random numbers
(σ = 0.1). All parameter values of the QMPS frame-
work are summarized in Tab. I. The values of the hyper-
parameters including the time evolution step sizes δt±
are obtained by performing a coarse grid-search, i.e. we
trained on a few different parameter values and select
the ones which yield best performance results. Note that
we adopt slightly different values for δt+ and δt−. This
choice prevents the agent to simply undo an action by
evolving with the inverse operator which helped stabilise
training.

As mentioned in the main text a single QMPS agent
is not able to reach arbitrarily high fidelities due to the
discreetness of the action space, the constant step size,
and the fixed maximum episode length. An additional
challenge is posed by the large deviation in the expected
return values for states at the beginning and the end

of the episode: The QMPS network is not able to re-
solve small differences in the reward which is however
required close to the target state where the log fidelities
approach zero. Therefore, we introduce a multi-stage
learning scheme in Section III A where successive agents
with tighter fidelity thresholds are trained starting from
states which are pre-prepared from agents optimized on
smaller thresholds. This training strategy also allows the
step size to be chosen separately for each agent.

1. Optimization

The gradients of the neural network and the QMPS
parameters can be computed via conventional backprop-
agation and, in principle, any automatic differentiation
library can be employed for this task. However, we ob-
tained a considerable speed-up (factor of ∼ 10) by im-
plementing the gradient computation from scratch. The
neural network takes as input the real-valued QMPS fea-
ture vector and therefore the parameters are chosen to
be real-valued as well. On the other hand, restricting the
QMPS tensors to real numbers greatly limited the ex-
pressivity of the ansatz. Hence, each tensor component is
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Parameter Value

number of training episodes Neps 40000 – 80000

optimizer ADAM

learning rate α 5× 10−5 − 1× 10−4

batch size 32 – 64

RL discount factor γ 0.98

RL buffer size 8000

target network update frequency ntarget 10

initial exploration εinit 1.0

final exploration εfinal 0.01

exploration decay εl exp(−8×l/Neps)

QMPS bond dimension χQ 4 – 32

QMPS feature vector dimension df 32 – 72

NN number of hidden layers 2

NN number of hidden neurons 100 – 200

NN nonlinearity tanh

Table I. QMPS training hyperparameters.

Parameter Study A
(QMPS-1, QMPS-2)

Study B Study C

system size N 4 32 16

single-particle
fid. threshold F ∗

(0.96, 0.992) 0.99 0.97

max. episode
length T

50 50 50

number of actions 12 7 12

step size δt+
(
π
8
, π

16

)
π
12

π
12

step size δt−
(
π
13
, π

21

)
π
17

π
17

quantum state
bond dim. χψ

4 16 16

Table II. RL environment parameters.

comprised of both a real and imaginary parameter. Due
to the overall QMPS ansatz being not holomorphic (the
absolute value is not complex differentiable), the real and
imaginary parameters have to be updated independently
by computing the gradient with respect to each of them
separately.

2. Compute resources

For a system of size N , local Hilbert space dimension
d, and uniformly fixed bond dimension χ, the number of
MPS parameters scale asNχ2d. The quantum state MPS
time evolution (based on SVD and matrix multiplication)
as well as the QMPS optimization (based only on matrix
multiplication) scale linear in N and at worst polynomial
in χ and d. We have not fixed the bond dimensions of the
MPS and QMPS to be uniform on all sites, but rather
let both of them grow exponentially from the boundary
up to a maximum uniform bond dimension in the middle

of the MPS.

Note that the linear complexity scaling of the QMPS
framework stands in contrast to the exponential scaling
expected when using a conventional neural network ar-
chitecture and training on the full wave function. Taking
the N = 32 case study as an example and assuming a
batch size of 64, one would need to load 64× 232 = 1011

parameters onto the CPU/GPU which would result in at
least 1 TB of data. Additionally, we would have to store
the neural network parameters which takes as an input
the full wave function, and take into account the replay
buffer which stores extra ∼ 8000 states. Hence, from a
viewpoint of memory resources alone, a tensor-network
approach is required for the simulation of quantum many-
body systems and the training thereof. Merging the TN
architectures with RL is what enables the ML-based con-
trol of 32 and more spins discussed in the main text.

For the hyperparameters chosen in this study, most
time was spent in the optimization step which requires
two forward passes and one backward pass on a batch
of input states. Overall, one full episode of training
(including 50 environment and optimization steps) for
N = 32, χQ = 32, χψ = 16, df = 32, and a batch size of
64 took 8.7 sec on a Intel Xeon Gold 6230 CPU and 1.5
sec on a NVIDIA Tesla P100 SXM2 GPU. Reducing the
QMPS bond dimension to χQ = 16 leads to runtimes of
4.3 sec (CPU) and 1.5 sec (GPU) respectively. Let us
note that the code has not been optimized for a GPU
and with some modifications an even larger speedup can
be expected. Therefore, larger system sizes should also
be within reach in the near future.

D. QMPO architecture

The QMPS architecture makes use of an MPS ansatz
to extract relevant features from the input quantum
state. Hence, we can interpret the QMPS as a set of
quantum states (up to normalization); calculating the
feature vector then amounts to computing the fidelity
between the input state and each QMPS state. However,
rather than learning parameterized “quantum states”
|θQ〉 and evaluating inner products, we could also learn

parameterized operators (or observables) θ̂Q that act on
the evolved physical quantum state instead. If the oper-
ators are further restricted to be hermitian, we are able
to express the feature vectors as an expectation value of

the operator θ̂Q and hence the Q-values are given by

Qθ(ψ, a) = fθ(〈ψ|θ̂Q|ψ〉), (S.12)

where fθ denotes the subsequent NN that the feature
vectors are fed through.

Similarly to the MPS representation of quantum states,

we can decompose a hermitian operator θ̂ into a product
of local tensors of rank 4, called matrix product operator
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θ̂Q

|ψ〉

|ψ〉

Qθ(ψ, a)→ Â ∈ A

fNN
θ

QMPO agent

Figure S2. QMPO framework based on trainable matrix
product operator [gray squares]. The Q-values are computed

by first calculating the expectation values of the QMPO θ̂Q
with respect to the input quantum states |ψ〉. The extracted
features are then fed through the subsequent neural network.

(MPO) [132]

θ̂j1...jNi1...iN
=
∑

α2,...,αN

O[1]i1j1
α1α2

O[2]i2j2
α2α3

. . . O[N ]iN jN
αNαN+1

. (S.13)

By inserting an additional tensor with a dangling leg at
the center of the MPO, we introduce an ansatz analo-
gous to the QMPS that maps an input quantum state
to a feature vector via computing expectation values [see
Fig. S2].

The QMPO tensors are initialized as identity matri-
ces with Gaussian noise (σ = 0.5), added both to the

real and imaginary parts of each parameter Xij
αα′ =

Re[Xij
αα′ ]+iIm[Xij

αα′ ]. The resulting tensors Xij
αα′ are not

yet hermitian and hence we choose Oijαα′ =
∑
kX

ik
αα′X

∗jk
αα′

as the hermitian operators O in the MPO ansatz of
Eq. (S.13).

We also find that normalizing the tensors O before
training substantially helps the optimization. To that
end, we perform a singular value decomposition on each

tensor Oijαα′ =
∑
k U

ik
αα′S

k
αα′V

kj
αα′ and overwrite the singu-

lar values Skαα′ with uniformly sampled random numbers
form the interval [0, 2/χ], where χ is the (local) bond

dimension of the corresponding QMPO tensor Oijαα′ .
Hence, the new, normalized QMPO tensors are given by

Õijαα′ =
∑
k U

ik
αα′ S̃

k
αα′V

kj
αα′ , where the singular values have

been replaced by S̃.
When training, we work with real parameters only.

Therefore, we perform a Cholesky decomposition to re-
trieve the X operators, i.e.,

Õijαα′ =
∑

k

X̃ik
αα′X̃

∗jk
αα′ . (S.14)

We then define the optimizable parameters to be the real
and imaginary parts of the X̃ operators. Training works
analogously to the QMPS optimization, that is, via gra-
dient descent and backpropagation. The only difference

is that due to the hermiticity requirement of the opera-
tors O, we always need to perform the additional matrix
multiplication step of Eq. (S.14).

The QMPO framework has some advantages over
QMPS. First, the Q-value computation can now be in-
terpreted as the measurement of an observable which can
be performed efficiently on NISQ devices, if we restrict
the observable to be local. Second, the expectation value
does not vanish (or explode) exponentially in the system
size as is the case for fidelities and hence, we expect that
the training of this ansatz is more stable for larger system
sizes and requires less hyper-parameter tuning (especially
with respect to the parameter initialization). However,
the QMPO ansatz is also computationally more demand-
ing, e.g., computing the expectation value in Eq. (S.13)
scales as χ4 whereas the calculation of the fidelity in the
QMPS only scales as χ3 (assuming that the bond dimen-
sions of the MPS and MPO are equal and uniform).

In Sec. S.3 A 2 we report results obtained with the
QMPO ansatz and compare it with other architecture
choices.

S.3. DETAILS OF THE CONTROL STUDIES

Parameters related to the RL environment and the spin
systems of each control study can be found in Tab. II.

A. Universal state preparation from arbitrary
initial quantum states

1. Single-particle control

To provide another benchmark of the QMPS frame-
work, we test it in a single-particle control setting. Our
goal is to prepare a specific state (here chosen to be the
spin-up state) from any other single-particle state. We
translate this setup to the many-body regime by consid-
ering N = 64 spins uniformly polarized in one direction
on the Bloch sphere, which can be exactly approximated
with an MPS of bond dimension χψ=1. Note that an ar-
bitrary single-particle spin state can always be expressed
as |ψ〉=cos(θ/2)|0〉+eiφ sin(θ/2)|1〉, where 0≤θ≤π and
0≤φ<2π.

We train a QMPS agent starting each episode from
a uniformly sampled state on the Bloch sphere, with
a fixed single-particle fidelity threshold of F ∗sp = 0.9995
(many-body fidelity F ∗ ∼ 0.97), and an action set
that is composed only of single-particle rotations A =
{X̂,−X̂, Ŷ ,−Ŷ , Ẑ,−Ẑ}. Figure S3 shows the achieved
fidelities between the final and target state for different
initial states represented by the angles θ and φ. We find
in all cases that the QMPS agent is able to successfully
reach the fidelity threshold and hence is capable of per-
forming universal single-particle state preparation. We
also plot the protocol length starting from each initial
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Figure S3. Universal single-particle control — Upper panel: Single-particle fidelity between the final and z-polarized
target state (θ=0) as a function of the initial state parameters θ and φ. In (a),(b) φ is held fixed; in (c),(d) θ is fixed instead.
The agent is able to surpass the fidelity threshold F ∗sp =0.9995, (vertical dashed line) for any state on the Bloch sphere. Lower
panel: The corresponding number of protocol steps used by the QMPS agent to reach the target state. N=64 spins.

state, which, as expected, increases as the distance be-
tween the initial and the z-polarized target state (θ=0)
becomes larger [Fig. S3(a)].

2. Universal ground state preparation for N = 4 spins

In Fig. S4 (a) we provide the learning curves of the
first QMPS-1 agent which was trained to prepare the
Ising ground state with a many-body fidelity threshold of
F ∗∼0.85 [Sec. III A]. When testing the trained QMPS-1
agent on a set of 103 random initial states, in 99.8% of in-
stances the fidelity threshold is attained within the 50 al-
lowed number of steps. In Fig. S4 (b) we show the corre-
sponding learning curves of a QMPO agent [see Sec. S.2 C
for the architecture and optimization procedure details]
trained on the same problem. For 103 randomly sam-
pled initial states, we reach a success rate of 100% which
suggests that the QMPO ansatz provides an alternative,
expressive ansatz for the state preparation scenario at
hand.

Next, we investigate how the trainability and the fi-
nal success rates of the QMPS-1 agent depend on the
architecture choice. For comparison, the success proba-
bility of 99.8% and the learning curves of Fig. S4 were
obtained on a hybrid MPS+NN architecture where the
NN contained two hidden layers, each of dimension 100.
Figure S5(a) instead shows the learning curves for a hy-
brid MPS+NN architecture with a single hidden layer
of dimension 100. In this case, the agent is only able to
successfully prepare the target state for 97.9% of the ran-
dom initial states which suggests that a deeper NN can
indeed increase the expressiveness of the overall ansatz.
Figure S5(b) displays the learning curves of an agent
composed of an MPS followed by a linear layer. The
average fidelity converges to a lower value than the fi-
delity threshold and the final success rate computes to

35.9% only. This indicates that for the task of universal
four-qubit control the non-linearities in the NN greatly
increase the expressiveness and are required for successful
training. Finally, in Fig. S5(c) we plot the learning curves
of a QMPS architecture consisting only of an MPS. We
found that training becomes unstable across all consid-
ered hyperparameters and random seeds of the optimiza-
tion. The final success probabilites are 1.6%. Note that
under certain simplifications of the control problem (e.g.,
smaller fidelity threshold, restriction to real initial wave
functions), we were able to successfully train an MPS-
only architecture. However, the average episode lengths
were in general larger and hence less optimal than the
ones we obtain from the hybrid MPS+NN ansatz.

The small Hilbert space dimension of the N = 4 qubit
control problem has the advantage that we can compare
the QMPS framework to an RL training scheme in which
we optimize a conventional feed-forward NN on the full
wave function data. To that end, we simulate the quan-
tum state exactly, i.e., without making use of the MPS
formalism, and feed the full 24 component wave func-
tion vector into a NN with two hidden layers and hidden
dimensions of 100 each. Since the wave function compo-
nents are complex-valued numbers, we double the size of
the NN input vector (2×24 = 32) to account for the real
and imaginary parts of the wave function. Figure S5(d)
shows the resulting learning curves of the best performing
Q-network which we choose after a coarse grid-like hyper-
parameter search and out of three different random seeds
of the optimization. The final success rate is evaluated
to 94.3% and thus substantially lower than the success
probability of 99.8% we obtained from the hybrid QMPS
architecture that involves a NN of the same size. Dou-
bling the NN hidden dimensions of the Q-network to 200
gave rise to a success rate of 96.8% instead. Hence, even
for small system sizes, the QMPS ansatz can lead to a
performance enhancement compared to the more tradi-
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Figure S4. Universal four-qubit control — (a) Learning
curves of the QMPS-1 agent trained on a many-body fidelity
threshold of F ∗∼0.85 (gray-dashed line). The achieved final
fidelity F̄ is shown averaged over a window of 100 training
episodes. The light-blue data indicates the range between
the best and the worst fidelity values. Inset: The number of
episode steps T̄ averaged over 100 episodes. The maximum
number of steps per episode was set to 50. (b) Learning
curves for training a QMPO agent on the same problem as in
(a). The final performance suggests that the QMPO architec-
ture can be used as an alternative ansatz for state preparation
tasks.

N=4 spins.

tional NN-only architecture. Note that the QMPS ansatz
for the N = 4 qubit problem represents only a small com-
putational overhead over the NN-only ansatz; in fact the
number of optimizable MPS parameters for this problem
computes to 592 while the number of parameters con-
tained in the NN are given by 14612 (hidden dimension of
100) and 49212 (hidden dimension of 200). This suggests
that the MPS ansatz indeed represents an efficient and
natural architecture when learning from quantum states
and can be beneficial even in the limit of small system
sizes where an MPS description is usually not necessary.

Finally, we provide additional results obtained when
training a QMPO agent with a modified reward func-
tion: Instead of using the log-fidelity between the target

|ψ∗〉 and the current state |ψt〉, we compute the energy,
i.e., the expectation value of the Ising Hamiltonian H
with respect to the current state Et = 〈ψt|H|ψt〉. The
reward is then defined as rt=(E0−Et)/N where E0 is the
true ground state energy of H. Note that this reward de-
scription might be advantageous in situations where the
target state is unknown or the training is performed di-
rectly on a quantum device. Figure S6 shows the learn-
ing curves obtained for two different energy thresholds
(E0−E∗)/N of −0.1 (a) and −0.15 (b) respectively. To
benchmark the final performance of the QMPO agents,
we again sample M = 103 random initial states and find
that for 98.9% (a) and 99.7% (b) of those instances the
energy threshold is surpassed when acting with the opti-
mized QMPO protocols. To compare these results with
the ones attained for the log-fidelity reward, we also com-

pute the average final fidelity F̄ =M−1
∑M
i |〈ψ∗|ψiT 〉|2 at

the end of each episode which yields F̄ = 0.88 (a) and
F̄ = 0.79 (b). For comparison the fidelity threshold used
in Fig. S4 was set to F ∗∼0.85.

B. Preparation of a polarized product state from
paramagnetic ground states for N = 32 spins

This section provides further details on the case study
presented in Sec. III B.

To speed training up, we restrict the action space
to 7 actions for this control setup with A =
{Ŷ , Ẑ,−Ẑ, X̂X̂,−X̂X̂, Ŷ Ŷ ,−Ŷ Ŷ }. This action set was
determined by first training on a smaller system size
(N = 8) using all actions and then selecting only those
that appear in the final optimal protocols.

To get an intuition about the difficulty of this control
setup, we proceed as follows: (i) we demonstrate that
the initial states are sufficiently far (in the Hilbert space
distance) from the target state, e.g., by computing the fi-
delity as a function of gx, cf. Fig. S7 [dashed lines]. This
corresponds to a protocol where the agent does not take
any action. (ii) an alternative protocol can be produced
by noticing that the initial states are paramagnetic, while
the target is a z-polarized state, and thus a π/2-rotation
about the y-axis presents a good candidate for the opti-
mal protocol [it is indeed optimal in the limit gx → ∞].
The corresponding fidelities are shown in Fig. S7 [solid
lines]. Compared to these fidelities, the threshold for the
RL agent is given by the horizontal dashed line; it gives a
lower bound on the performance of the QMPS protocols.
Notice that, the QMPS agents are able to considerably
improve on the initial fidelity and outperform the trivial
Ŷ -rotations for the considered range of transverse field
values.

The QMPS agent was trained to prepare a specific tar-
get state (the z-polarized state) starting from a class of
Ising ground states. In principle, the obtained proto-
cols can be inverted to achieve the opposite, i.e. prepare
any paramagnetic Ising ground state from the z-polarized
state. This is often the objective in quantum computing
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Figure S5. Universal four-qubit control — Comparison of learning curves for different QMPS-1 agent architecture choices.
The agents are trained on a many-body fidelity threshold of F ∗ ∼ 0.85 (gray-dashed line). The achieved final fidelity F̄ is
shown averaged over a window of 100 training episodes. The light-blue data indicates the range between the best and the worst
fidelity values. Inset: The number of episode steps T̄ averaged over 100 episodes. The maximum number of steps per episode
was set to 50. (a) Learning curves of a hybrid architecture of an MPS and a NN with a single hidden layer of dimension 100.
The final state preparation success rate is 97.9% computed over 103 randomly sampled initial states. This stands in contrast
to the success rate of 99.8% achieved by the QMPS-1 agent from the main text which involved a NN with two hidden layers.
Therefore, a deeper NN can increase the expressiveness of the overall ansatz. (b) Training curves of a hybrid architecture of
an MPS and a single final linear layer. The corresponding achieved success probability is 35.9% and indicates that a non-linear
NN is required for successful training of the QMPS agent for the given task. (c) Learning curves for a QMPS architecture
composed only of an MPS. Training becomes unstable and the final success rate is 1.6%. (d) Learning curves for a NN (two
hidden layers; each of dimension 100) which is trained on the full quantum state wave function. The final success probabilities
compute to 94.3%. Note that by doubling the hidden dimension to 200, we can increase the success rate to 96.8%. N=4 spins.

or simulation tasks where the system starts out in a sim-
ple product state and is then brought into the state that
has to be investigated or that encodes the solution to
a problem. With a single trained QMPS agent one can
generate optimal controls that, when reversed, prepare
a variety of different states that can then be used for
computation. Note however, that the final state reached
by using the original QMPS protocol does not exactly
coincide with the target state since we do not achieve a
perfect fidelity of unity. It is therefore not clear whether
the inverse protocol, when starting from the exact target
state, prepares the original initial states with an equally
high fidelity or whether it does considerably worse. In
Fig. S8 we provide the achieved single-particle fidelities

when preparing Ising ground states from the z-polarized
state by reversing the optimal QMPS protocols and com-
pare them to the fidelities of the original state prepara-
tion routine [cf. Fig. 3 of Sec. III B]. We find that the
fidelities do not differ significantly which justifies that
inverse state preparation using the QMPS protocols is
possible in this particular control scenario.

In Fig. S9 we display three optimal QMPS protocols
starting from initial ground states at gx = 1.01, 1.1, 1.3,
respectively. Interestingly, in all three cases, the agent
learns to initially apply a π/2-rotation about the y-
axis which is decomposed into three consecutive protocol
steps since we fix the duration of each applied unitary to
be δt+ =π/12. As discussed in the main text, the agent
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Figure S6. Universal four-qubit control — Learning
curves of QMPO agents where the energy density is chosen
as the reward function, i.e., rt = (E0−Et)/N with E0 being
the true ground state energy. The energy thresholds (gray-
dashed lines) are set to (a) (E0−E∗)/N = −0.1 and (b)
(E0−E∗)/N =−0.15 respectively. The achieved final energy
density (E0−Ē)/N is shown averaged over a window of 100
training episodes. The light-blue data indicates the range
between the best and the worst reward values. Inset: The
number of episode steps T̄ averaged over 100 episodes. The
maximum number of steps per episode was set to 50.

is able to successfully prepare the target state also for
initial ground states outside of the training interval, i.e.,
for gx>1.1. Note however, that the predicted Q-values of
the QMPS agent can be quite different from the true re-
turn when tested outside of the training interval, yet the
policy learned by the agent can still produce meaningful
optimal protocols. In the bottom panels of Fig. S9 we
show the half-chain von Neumann entanglement entropy
Sent of the encountered states when evolving according to
the optimal protocols. The entanglement entropy stays
small and hence, allows the time evolved system to be
simulated with a relatively small bond dimension χψ (for
training we set χψ = 16). Note however, that the entan-
glement entropy is not fully reduced to zero at the end
of the protocol which is especially the case for the states
close to the critical point. This can be attributed to the
logarithmic scaling of the entanglement entropy in the
initial critical state, with the subsystem size N/2 due to
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Figure S7. Transverse-field Ising control — Single-
particle fidelity (blue, left y-axis) and many-body fidelity (or-
ange, right y-axis) between the target z-polarized state and an
initial Ising ground state for different values of the transverse
field gx (dotted curves). The solid lines show the respective
fidelities of the target state and the initial ground state af-
ter applying a single-particle Ŷ -rotation with δt−=π/4. The
QMPS agent is able to improve on the trivial rotation and pre-
pare the target state with single-particle fidelities Fsp > 0.99
(many-body fidelities Fsp > 0.72) [gray dashed line]. N = 32
spins.
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Figure S8. Transverse-field Ising control — Final single-
particle fidelities when starting from Ising ground states with
transverse field values gx and preparing the z-polarized target
state (blue curve). The orange points show the fidelity when
reversing the state preparation scenario, i.e. one starts from
the polarized state and applies the inverse QMPS protocol
to reach the corresponding Ising ground state. The fideli-
ties achieved by the reversed protocol are comparably high.
Therefore they justify that, in this case study, the trained
QMPS agent can be employed for the inverse state prepara-
tion task as discussed in the main text. N=32 spins.

the presence of long-range correlations. While the agent
is able to reduce local correlations effectively [Fig. S10,
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Figure S9. Transverse-field Ising control — Upper panels: Final protocols of the QMPS agent when starting from a
ground state with (a) gx = 1.01, (b) gx = 1.1, and (c) gx = 1.3. Middle panel: Single-particle fidelities (blue, left y-axis)
and many-body fidelities (blue, right y-axis) between the evolved states and the z-polarized target state at each protocol step.
The fidelity threshold F ∗sp = 0.99 (F ∗ ∼ 0.72) is indicated by a gray dashed line. Lower panel: The corresponding half-chain
von Neumann entanglement entropy calculated at each step of the protocol. The applied unitaries do not create an excessive
amount of entanglement allowing the time evolved states to be described with a relatively low bond dimension. N=32 spins.
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Figure S10. Transverse-field Ising control — Anal-
ysis of the optimal QMPS protocol obtained when starting
from the initial ground state at gx = 1.01. Shown are the
local spin-spin correlations 〈σiσi+1〉 and the local magnetiza-
tion 〈σi〉 along each direction at the center of the spin chain
(i = 15). The yellow shaded segment indicates the initial

Ŷ -rotations which align the spin along the z-axis; the blue
shaded area points to a generalized Euler-angle-like many-
body rotation which reduces unwanted correlations and dis-
entangles the state. N=32 spins. See Video 1.

middle panel], the short protocol is not capable of de-
stroying all long-range correlations which persist in the
final state. The prepared state, therefore, has a finite
many-body overlap with the separable target state [see
orange curves/axis in Fig. S9 showing the many-body
fidelity], which explains the discrepancy in the final en-
tanglement entropies.

In Fig. S10 we plot the local expectation value of the
magnetization along each direction and the local spin-
spin correlations at the center of the chain which reveal
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Figure S11. Transverse-field Ising control — Upper
panel: Final single-particle fidelities achieved when testing the
protocols of a QMPS agent trained on N = 32 spins (blue
curve) on a smaller system size of N = 8 (red curve) and on
the larger N =64 spin system (green curve). The increase in
the single-particle fidelity for N = 8 suggests that optimized
protocols can be transferred to smaller system sizes for this
particular control setup. Lower panel: The opposite scenario,
where the protocols of a QMPS agent trained on N=8 spins
(light red) are tested on larger systems of N=32 spins (light
blue) and N = 64 spins (light green). The fidelity threshold
(gray dashed line) cannot always be maintained for the larger
system size especially close to the critical point at gx∼1.

the role of each unitary occurring in the protocol se-
quence corresponding to the state preparation task shown
in Fig. S9(a) [gx = 1.01]. As already mentioned, the first

three Ŷ -rotations align the state along the z-axis bring-
ing the expectation values of the X̂ and Ŷ component to
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Figure S12. Transverse-field Ising control — Truncation
error, cf. Eq. (S.4), for the evolved states encountered during
training of the QMPS agent. The dark purple curve shows the
truncation error averaged over a window of 3000 transitions.
Training was performed with a quantum state bond dimension
of χψ=16; N=32 spins.

zero. The role of the remaining unitaries is to decrease
unwanted correlations and consequently to disentangle
the state. Note that the 〈X̂X̂〉 and 〈Ŷ Ŷ 〉 correlations
approach zero in an intertwined manner which is caused
by an intricate combination of X̂X̂ and Ŷ Ŷ disentan-
gling gates and single-particle Ẑ-rotations. The latter
are important for finely realigning the state after each
disentangling operation and as such preventing the cor-
relations from diverging [see Video 1].

Next, we analyze how well the optimal protocols per-
form on systems with a different number of spins. To
this end, we test the protocols optimized for N=32 spins
(QMPS32) onN=8, 64 spin systems, and vice-versa: pro-
tocols obtained after training on N = 8 spins (QMPS8)
are tested on the larger N = 32, 64 systems [Fig. S11].
We find that the fidelity threshold can still be reached
when applying the QMPS32 protocols on smaller system
sizes. However, the opposite is not true: the QMPS8 pro-
tocols, in general, give rise to fidelities below the thresh-
old when tested on the N = 32, 64 spin systems. These
system-size (in)dependence suggests that, for this par-
ticular control setup, one can devise suitable pretraining
techniques for large system sizes, based on the behavior
of agents successfully trained on smaller systems. More-
over, the QMPS agent tends to find optimal protocols
which appear robust to changes in the system size, and
the control task likely admits a solution also in the ther-
modynamic limit.

Finally let us comment on the quantum state entan-
glement and the related MPS bond dimension. During
the initial exploratory stage of training, random unitaries
are applied to the system leading in general to a bal-
listic growth of the entanglement entropy. In this case
the fixed bond dimension of χψ = 16 is not always suffi-

Figure S13. Self-correcting mixed-field Ising control
— Many-body fidelity F (left) and single-particle fidelity Fsp

(right) between the critical-region target state and the ini-
tial ground states at transverse and longitudinal field values
gx, gz. The trained QMPS agent prepares the target state
with many-body and single-particle fidelities F > 0.61, Fsp >
0.97 respectively, and therefore considerably improves on the
initial fidelity values. N=16 spins.

Figure S14. Self-correcting mixed-field Ising control —
Half-chain von Neumann entanglement entropy of final states
during training. The dark green curve denotes the average
over 200 episodes and the orange dashed line indicates the
entanglement entropy of the critical-region target state. The
entropies decrease as learning progresses and converge to a
value close to that of the target state. Inset: Truncation error
averaged over a window of 3000 transitions (dark purple).
Training was performed with a quantum state bond dimension
of χψ=16; for testing χψ=32 was used. N=16 spins.

cient to capture the evolved quantum states giving rise
to the large truncation errors, shown in Fig. S12. These
truncation errors, however, naturally decrease as train-
ing progresses and the action selection becomes more de-
terministic while the Q-function converges close to the
optimal one. While for training a bond dimension of
χψ = 16 was used, testing was performed with χψ = 32
for which the truncation errors vanished to machine pre-
cision. This check ensures the stability of the QMPS
protocols to changes in the accuracy of the MPS approx-
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Figure S15. Self-correcting mixed-field Ising control — Exemplary QMPS protocols and time-dependence of the single-
particle fidelity when starting from an initial ground state within the training region at J = −1, gx = 1.2, gz = 0.2 (a)-(d),
and outside the training region at J =−1, gx = 1.0, gz = 1.0 (e)-(h). For each subplot the upper panel displays the optimal
QMPS protocol without perturbations, the middle panel presents an exemplary protocol subject to noise or perturbations, and
the bottom panel shows the single-particle fidelities at each time step for different protocols [the original, unperturbed QMPS
protocol is always indicated by the magenta line]. The single-particle fidelity threshold of F ∗sp = 0.97 (F ∗ ∼ 0.61) is denoted
by a gray dashed line. In (a)-(b), (e)-(f) the QMPS protocol is modified at time step t = 5 (t = 15) [indicated by a black
arrow] by taking 5 different random actions. Afterwards, the system is again evolved according to the QMPS agent leading to 5
distinct trajectories [blue lines]. In all but one case the QMPS agent is able to correct for the mistake and successfully reaches
the fidelity threshold. In (c)-(d), (g)-(h) white Gaussian noise with standard deviation σ=0.01 (c),(g), or σ=0.05 (d),(h)
is added to the time step duration δt±. The system is evolved with 5 different random seeds [blue lines]. The QMPS agent is
again able to adapt its protocol and successfully reaches the fidelity threshold in most cases. N=16 spins. See Videos 2 and 3.

imation.

C. Learning robust critical-region state
preparation for N = 16 spins

This section provides further details on the case study
presented in Sec. III C.

To compare the achieved fidelities of the QMPS agent
reported in Fig. 4(a), we show the fidelities between the
initial mixed-field Ising ground states and the critical-
region target state before any controls are applied in
Fig. S13. The QMPS agent is able to reach the target
with single-particles fidelities Fsp > 0.97 (corresponding
to a many-body fidelity of F ∼0.61).

The half-chain von Neumann entanglement entropy
of the quantum states during training is displayed in
Fig. S14. Similar to the previous case study, during
the initial stages of training the encountered states are
highly entangled due to the randomness of the action se-
lection. Once the agent learns how to reliably prepare
the target state, the entropies decrease and are scattered

closely around the target state value [orange dashed line].
We emphasize that critical states possess a logarithmic
correction to the area-law of entanglement, which makes
their preparation a non-trivial task. For training we used
a relatively small bond dimension of χψ=16 which led to
the finite truncation errors shown in the inset of Fig. S14.
However, training is still successful and all subsequent
tests were performed by setting χψ = 32 which did not
affect the QMPS protocols or the final achieved fidelities.

Next, we provide further examples showcasing the abil-
ity of the QMPS agent to self-correct its protocols on-
the-fly when the time evolution is noisy or perturbed. In
Fig. S15, we consider two different initial ground states,
one within the training region (J=−1, gx=1.2, gz=0.2)
[(a)-(d)] and one outside (J =−1, gx= 1.0, gz = 1.0) [(e)-
(f)], and analyze the success of state preparation subject
to different protocols. In the upper panels of each sub-
plot in Fig. S15 we display the actions of the optimal
protocol [top] and one exemplary protocol that has been
perturbed [bottom]. The lower panel always shows the
single-particle fidelities at each step of the protocols.

First, we take the optimal QMPS protocols and mod-



30

0.80

0.90

0.97
F

sp

(a)

σ = 0.01

0 10 20 30 40 50
time steps

0.80

0.90

0.97

F
sp

(b)

0.70

0.80

0.90

0.97

(c)

σ = 0.05

0 10 20 30 40 50
time steps

0.70

0.80

0.90

0.97

(d)

Figure S16. Self-correcting mixed-field Ising control — Time-dependence of the single-particle fidelity when adding
Gaussian random noise with standard deviations σ = 0.01 (a)-(b), and σ = 0.05 (c)-(d) to the time step duration δt± and
starting from an initial ground state at J =−1, gx = 1.2, gz = 0.2. For each figure, we sampled 100 different trajectories (each
corresponding to a different random seed). The original, unperturbed QMPS protocol is always indicated by the magenta line.
The single-particle fidelity threshold of F ∗sp = 0.97 (F ∗∼ 0.61) is denoted by a horizontal gray dashed line and the number of
steps required to reach the threshold in the noise-free case is indicated by a vertical black dotted line. In (a),(c) we always
evolve according to the fixed, unperturbed QMPS protocol we obtained from the noise-free simulation. The percentage of
successfully prepared target states within 50 steps is 90% in the case of weak noise (σ = 0.01) and 0% in the case of strong
noise (σ = 0.05). In (b),(d) we use the adaptive QMPS agent to generate different protocols for each distinct run (compare to
Fig. S15(a)-(d)). The respective success percentages are 100% (σ = 0.01) and 74% (σ = 0.05). Hence, in both instances, the
self-correcting agent is able to improve over the fixed, noise-free protocol.

ify it at time step t=5 (t=15) by taking 5 random sub-
optimal actions instead. Afterwards the system is again
evolved according to the greedily acting QMPS agent giv-
ing rise to 6 distinct trajectories (the magenta line corre-
sponds to the unperturbed one). In most cases the agent
is able to correct for the mistake by adapting the subse-
quent protocol and reaches the fidelity threshold nonethe-
less. However, in one instance [Fig. S15(a)], the resulting
QMPS protocol does not converge and the agent fails to
prepare the target state. Hence, the agent is not able to
generalize to states generated by this particular protocol
sequence, and likely predicts wrong Q-values that steer
the agent eventually away from the target state. This
is, however, not surprising since the agent has only been
trained on states within a small part of the many-body
Hilbert space and therefore, it cannot be expected to de-
vise successful protocols from arbitrary states.

Note that for the initial state outside of the training
interval [(e),(f)], the perturbation of the original QMPS
protocol gave rise to a shorter protocol, i.e. the fidelity
threshold is reached in a fewer number of steps. Hence,
in this case the original protocol is not a local minimum
of the control landscape. However, this is not surprising,
since the QMPS agent has not been trained on this ini-
tial state and therefore, the predicted Q-values are not

guaranteed to have converged to the true optimal values.

Finally, we study the robustness of the QMPS agent
to a randomized time step duration δ± by adding white
Gaussian noise with standard deviation σ= 0.01, 0.05 to
it [Fig. S15(c),(d),(g),(h)]. We evolve the system with
5 different random seeds giving again rise to 6 distinct
trajectories (the magenta line corresponds to the unper-
turbed one). For each of the 5 randomized time evolu-
tions, the QMPS agent has to eventually adapt its pro-
tocol by performing a different sequence of actions. It
successfully prepares the target state in all but one case
which falls outside the training region [Fig. S15(h)]. Note
here as well that in some instances the agent is able to
devise shorter control protocols compared to the original
unperturbed ones. Hence, the randomized step duration
can have a positive effect on the control problem allowing
for faster state preparation protocols.

In Fig. S16 we compare the achieved fidelities in the
presence of noise when we evolve with the adapted pro-
tocols (bottom) and with the original, noise-free protocol
(top) starting from an initial state J =−1, gx= 1.2, gz =
0.2 within the training region. We again consider Gaus-
sian random noise with standard deviations σ=0.01, 0.05
and repeat the time evolution with 100 different random
seeds for each of the two cases. When the noise is weak
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(σ = 0.01), the fixed, unperturbed protocol gives rise
to qualitatively similar fidelity curves regardless of the
seed (see Fig. S16(a)). We found that for 90 out of the
100 runs, the protocol successfully prepares the target
state, that is, the fidelity threshold is reached within 50
steps. However, in the cases where the fidelity threshold
is not surpassed, the final fidelities are close to the target
value of F ∗sp =0.97. If we instead allow the QMPS agent
to adapt to the perturbed states, we obtain the fidelity
curves in Fig. S16(b). The resulting protocols give rise
to qualitatively different trajectories that diverge more
towards later time steps (compare to Fig. S15(a)-(d)).
However, in this case the agent successfully prepares the
target state for each of the 100 runs. Hence, for suf-
ficiently weak noise strengths, the original unperturbed
protocol is expected to give qualitatively similar results
to the noise-free dynamics. However, even in this exam-
ple the self-correcting agent has a measurable advantage
over the fixed protocol.

This situation changes when we consider the case of
strong noise (σ = 0.05) as shown in Fig. S16(c)-(d). The
fixed, unperturbed protocol leads to diverging fidelity
curves already after a few steps (top). In fact, the success
probability for the simulated 100 runs is 0. In contrast,
the adaptive agent prepares the target state successfully
for 74 out of the 100 instances within the 50 allowed
time steps. Moreover, the agent clearly tries to steer the
quantum states towards high fidelity regions. This exam-
ple therefore demonstrates that the self-correcting agent
is able to improve over the original, noise-free protocol
when the dynamics is being perturbed.

S.4. NISQ IMPLEMENTATION OF THE QMPS
FRAMEWORK

A. QMPS to quantum circuit mapping

In the following we illustrate the QMPS to circuit map-
ping on the example of a N = 4 spin/qubit system. The
QMPS state

∣∣θ`Q
〉

is represented as

∣∣θ`Q
〉

=
∑

j1,...,j4

∑

α1,α2,α3

A[1]j1
α1

A[2]j2
α1α2

A[3]j3;`
α2α3

A[4]j4
α3
|j1, . . . , j4〉 ,

(S.15)
where we have already contracted the feature tensor
with its neighboring tensor A[3] and ` denotes the fea-
ture vector index. Our goal is to rewrite the QMPS
state as a quantum circuit

∣∣θ`Q
〉

= U `θ |0〉, where the

state preparation unitary U `θ is composed of several gates
U `θ = G`4 · · ·G`1.

First, we transform the QMPS into the left canonical
form via successive QR or singular value decompositions

Figure S17. MPS to circuit mapping for the N = 4 MPS of
Eq. (S.15) in left orthogonal form. (a) An MPS with bond
dimensions 2 − 4 − 2. (b) The truncated MPS with bond
dimensions 2− 2− 2.

such that
∑

j1α1

A[1]j1
α1

A[1]j1∗
α1

= 1, (S.16)

∑

jiαi

A[i]ji
αi−1αi

A
[i]ji∗
α′i−1αi

= Iαi−1α′i−1
, (i = 2, 3) (S.17)

∑

j4

A[4]j4
α3

A
[4]j4∗
α′3

= Iα3α′3
. (S.18)

In principle, the resulting tensors A[i] also depend on
the feature index ` after performing the canonicalization.
However, in what follows we omit the index ` and assume
that all subsequent steps are performed for each of the
values of ` separately.

The quantum circuit mapping of
∣∣θ`Q
〉

is depicted in

Fig. S17(a). We can interpret the rightmost tensor A[4]

as a single-qubit unitary, i.e., G4 = A
[4]j4
α3 as it satisfies

Eq. (S.18). Similarly, we can rewrite the adjacent tensor

A
[3]j3
α2α3 with dimensions 4 × 2 × 2 as a two-qubit unitary

after reshaping the index α2: G3 = A
[3]j3,α3

α2,α′2
. The next

tensor A
[2]j2
α1α2 represents an isometry with input dimen-

sion 2 and output dimensions 4 × 2. Hence, we need to

extend the columns of A
[2]j2,α2,α

′
2

α1,0,0
by padding it with the

(23−2) orthonormal vectors X in the kernel of A[2]† . The
resulting square matrix G2 = [X A[2]] is then chosen as
the three-qubit unitary. Finally, we can apply the same
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Figure S18. Universal four-qubit control — (a),(b) We sample 1000 random initial states and apply the QMPS circuit
framework with a varying number of measurement shots. In (a) we display the percentage of runs in which the target state
is successfully reached (i.e., the fidelity threshold of F ∗∼ 0.85 is surpassed after at most 50 protocol steps). The success rate
under exact computation (without sampling) is shown as a black dashed line. The success probability when acting random is
zero (gray dotted line). We provide both, the results for the full χ = 4 QMPS circuit (purple solid line) and the truncated
χ = 2 QMPS (orange dash-dotted line). We find that as low as ∼ 500 shots are sufficient for reaching success rates close to
100%. (b) The corresponding average number of required protocol steps T̄ for reaching the fidelity threshold. The standard
deviation is indicated by the shaded areas. The black dashed line corresponds again to the average value computed via exact
techniques, the gray dashed-dotted line indicates the maximum number of allowed episode steps (50). (c),(d) The success rate
and average protocol length when adding an amplitude and phase damping noise channel with error parameter p after each
gate. The noise parameter for all single-qubit gates is always fixed to p1 = 10−4. The number of measurements shots is set
to 4096. For error parameters p < 10−3 we are able to retain high success probabilities. (e),(f) The success percentage and
average protocol length when adding (coherent) Gaussian random noise with standard deviation σ to the time step duration
δt± of each action. For comparison, the original, unperturbed time step sizes δt+ = π/8 and δt− = π/13 which the agent was
trained on are indicated by the vertical dotted lines. This type of noise tests the ability of the agent to self-correct protocols
in an online fashion.

steps to the remaining isometry A
[1]j1
α1 , i.e., we pad the

columns of A
[1]j1,α1

0,0 with the 22 dimensional kernel of

A[2]† and interpret the resulting matrix as the two-qubit
gate G1.

Using the above mapping, an MPS circuit with bond
dimension χ = 2n always contains at least one (n + 1)-
qubit gate. Thus, the N=4 QMPS with bond dimension
χ = 4 results in a circuit including a three-qubit gate.
However, the native gates realized in most present-day
quantum computers contain at most two-qubit unitaries.
Therefore, gates acting on more than two qubits first have
to be decomposed into two-and single-qubit gates. Per-
forming the decomposition in an exact manner is usually
expensive, requires the use of optimization techniques,
and often leads to very deep circuits nonetheless. With
the short coherence times and large error rates of current
quantum devices, it therefore quickly becomes infeasible
to execute MPS circuits of bond dimension χ > 2. Hence,
we need alternative circuit mappings that give rise to at
most two-qubit gates in the final circuit. The simplest ap-
proach is to truncate the given QMPS to a bond dimen-
sion χ = 2 MPS (see Fig. S17(b) for the corresponding

circuit). However, if the truncation errors are too large,
the resulting circuit will not be an accurate description
of the true quantum state anymore. Several approxima-
tive methods have been proposed to bridge this gap and
prepare high fidelity states while restricting to the use
of only two-qubit gates [75–81]. Note that all of these
approaches can also be applied to the QMPS ansatz. For
the remainder of this work we will consider the previously
described exact mappings of the full χ = 4 and truncated
χ = 2 QMPS as shown in Fig. S17.

B. Additional results on the noise-robustness

This section reports further results of the QMPS cir-
cuit framework introduced in Sec. IV which is tested on
the universal ground state preparation task of Sec. III A.

First, we investigate how the number of measurement
shots for sampling the fidelity in Eq. (4) affects the per-
formance of the QMPS protocols under an ideal (noise-
free) simulator. To that end, we sample 1000 random
initial states and compute the percentage of successfully
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prepared states (i.e., those runs for which the fidelity
threshold is reached within 50 protocol steps). Moreover,
we also store the corresponding average protocol length
T̄ and show the results in Fig. S18(a)-(b). Surprisingly,
as few as 500 shots are already sufficient to reach success
rates of close to unity. There are several reasons for this
robust performance: First, in the cases where the agent
predicts a wrong action due to sampling noise, it can eas-
ily correct for the mistake in subsequent time steps since
it learned to prepare the target state from any quantum
state. Second, although the quantum circuit output is
noisy, we find that the subsequent neural network does
not enhance the noise and still outputs reasonable values.
Finally, since the optimal action is always determined by
the argmax of the Q-values, noise in the output does not
affect the chosen actions as long as its magnitude is suf-
ficiently small. Hence, we can achieve high success prob-
abilities even in the presence of sampling noise. This
stands in contrast to policy gradient techniques where
the network outputs the action values itself and a noisy
output can therefore lead to faulty protocols.

The corresponding average protocol length T̄ shown in
Fig. S18(b) converges to its value under exact computa-
tions (black dashed line) only after about 104 shots. No-
tice that this is still within the feasible regime for many
modern quantum devices. Note moreover that the per-
formance of the truncated QMPS circuit (orange lines
in Fig. S18) is considerably worse and indicates that we
indeed require a bond dimension of χ = 4 to faithfully
represent the QMPS agent.

Next, we study the effects of a combined amplitude
and phase damping noise channel on the performance of
the QMPS circuit. Similar to the experiments involving
depolarizing noise discussed in the main text, we add the
amplitude and phase damping channel after each action
gate and QMPS gate, and set the error parameters equal,

i.e., p = pamp = pphase. Due to the lower error rates of
single qubit gates, we fix the single-qubit gate errors to
p1 = 10−4 and plot the success rate as a function of the
two and three qubit error parameters p after sampling
1000 different random initial states [Fig. S18(c)]. Fig-
ure S18(d) displays the corresponding average number of
protocol steps. For error rates p < 10−3 we are able to
reach success probabilities close to unity. However, they
quickly deteriorate for larger error parameter values.

Finally, we analyze the robustness of the QMPS agent
to coherent gate errors, similar to the discussion in Sec-
tion III C. Coherent errors arise when the actual, exe-
cuted gate differs from the gate that has to be applied.
These errors can often be mitigated by calibrating the
devices carefully. However, frequent calibration is expen-
sive and therefore coherent errors can usually not be elim-
inated fully. We simulate coherent gate errors for each
of the 12 different actions by adding mean-zero Gaus-
sian random noise of standard deviation σ to the time
step duration δt±. In contrast to the discussion in Sec-
tion III C, each action gate is fixed, although the angles
of rotation δt are shifted compared to the original step
size the agent was trained on. We again sample 1000 ran-
dom initial states and show the state preparation success
rates for varying standard deviations σ in Fig. S18(e).
For each of the 1000 runs we also use a different random
seed when sampling the gate noise. We observe that for
standard deviations σ<0.5, the QMPS agent is still able
to self-correct the protocols and reach the target state
nonetheless. However, for larger amounts of noise the
agent is not capable of reliably preparing the target state
for all of the initial states.

We expect that the performance of the QMPS agent
can likely be improved by performing some additional
optimization on the quantum device taking into account
the exact noise model and error rates.
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