
Rheocoalescence: Relaxation time through

coalescence of droplets

Sarath Chandra Varma,,† Abhineet Singh Rajput,,† and Aloke Kumar∗,†

Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India

E-mail: *alokekumar@iisc.ac.in

Abstract

Dynamics of the pendant drop coalescing with a sessile drop to form a single daugh-

ter droplet is known to form a bridge. The bridge evolution begins with a point contact

between the two drops leading to a liquid neck of size comparable to the diameter of

the drops. To probe this phenomenon in polymeric fluids, we quantify the neck radius

growth during coalescence using high speed imaging. In the current study, we unveil

the existence of three regimes on basis of concentration ratio c/c∗ namely, inertio-

elastic c/c∗ < ce/c
∗, viscoelastic ce/c

∗ < c/c∗ < 20 and elasticity dominated regimes

c/c∗ > 20. Our results suggest that the neck radius growth with time (t) obeys a

power-law behaviour tb, such that the coefficient b has a steady value in inertio-elastic

and viscoelastic regimes, with a monotonic decrease in elasticity dominated regime.

Based on this dependence of b on concentration ratios, we propose a new measurement

technique Rheocoalescence to obtain the relaxation time of these fluids. We also show

a deviation from universality proposed in literature for the elasticity dominated regime.
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Introduction

Coalescence is a singular event in which two or more drops merge to form a single daughter

droplet.1 The dynamics of this singular event is governed by the liquid bridge formation

and its growth. This temporal growth bears the signature of the underlying governing

equation.2 Such natural processes are observed in raindrop condensation3,4 and industrial

processes such as paint spray coatings,5,6 combustion process,7 droplets on surfaces,8 and

processes linked to life.9,10 Depending on the relative orientation of droplets, the phenomenon

can occur in physically different configurations, i.e., pendant-pendant,11–13 sessile-pendant,14

and sessile-sessile.15–17 The entire evolution process in pendant-pendant and sessile-pendant

configurations is driven by a balance between surface tension, viscous and inertial effects, and

Laplace pressure.2,13 In Newtonian fluids, based on the force balance the evolution lies either

in the inertial dominated18 or viscous dominated regime.11,12 Apart from these regimes, a new

regime of inertially limited viscous regime19 was proposed in Newtonian droplet coalescence,

wherein all inertial, viscous, and surface tension forces are essential.

The kinematics of the coalescence phenomenon in pendant-pendant and sessile-pendant

configurations is characterized by the temporal evolution of the liquid bridge of neck radius

R and bridge semi-width H. In Newtonian droplets, the temporal evolution of neck12 was

demonstrated to follow the scale of R ∼ tb, where, R is the neck radius and t is time. Based

on viscosity of the fluid, the dynamics of the neck radius evolution has been identified to

have dominant viscous regime at early times and inertial regime at later instances. In the

viscous regime,12 the neck radius has a scaling of R ∼ t. Similarly in the inertial regime,12,18

neck radius has a scale of R ∼ t0.5. In literature, regime-wise universality2,11–13,18,20–32 is

elucidated both experimentally and analytically. In the viscous regime,18 the neck radius

has a universal scaling of R∗ ∼ (t∗), in which Rc = Ro and tc = ηRo/σ, where Ro is radius

of the drop, η is viscosity and σ is surface tension. Similarly, in the inertial regime2,18 neck

radius has a universal scale of R∗ ∼ (t∗)0.5, in which Rc = Ro and tc =
√
ρRo

3/σ, ρ being

density.
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The paradigm of a coalescence phenomenon in rheologically complex fluids is significantly

more involved. Polymeric fluids are a distinct subgroup of complex fluids that exhibit strong

non-Newtonian characteristics due to molecular chain interactions or relaxations. Relaxation

time (λ) is the fingerprint of elasticity and molecular relaxations. A recent study on aqueous

solutions of polymer droplets on both pendant-sessile14 and sessile-sessile15 configurations

emphasized the role of relaxation time on the dynamics of neck radius evolution. The former

study on pendant-sessile14 configuration showed that for Wi ∼ O(1), where Wi = λU/R

(λ is relaxation time, U is neck velocity) is Weissenberg number, the neck radius growth

follows the scale of R ∼ t0.36. The study also showed that for Wi ∼ O(10−3 − 10−4), the

neck radius growth follows the scale of R ∼ t0.39. The study also showed the universality

in the coalescence of polymeric droplets by non-dimensionalising the neck radius and time

with Rc =
√
νoλ and tc = Ohλ(c/c∗)1.2, respectively, where, νo is the kinematic viscosity of

the fluid, λ is relaxation time, Oh is Ohnesorge number and c/c∗ is concentration ratio, has

the universal scaling of R∗ ∼ t∗0.36. Similar to the relaxation time, concentration ratio c/c∗

is another important parameter representing the chain entanglements. Previous studies on

coalescence of polymeric droplets were done on the solutions of c/c∗ < 10.14 In the present

study we investigate the coalescence of the polymeric droplets with c/c∗ > 10.

Despite of many applications of coalescence of polymeric droplets in microfluidics and

interficial rheology,33,34 this phenomenon is sparsely studied. In the present study, we demon-

strate that the coalescence of sessile and hanging pendant drops of aqueous polymer solutions

have different regimes, along with the dependence of neck growth on relaxation time. To

experimentally depict the effect of relaxation time on neck growth, we study the coalescence

of droplets for various concentrations of polyethylene oxide (PEO) of molecular weights

Mw = 5 × 106 g/mol and Mw = 4 × 106 g/mol. Experimental observation of neck radius

growth of various concentrations is demonstrated by scaling analysis based on linear Phan-

Thein-Tanner (PTT)35,36 constitutive equation. Our results contrast the universal behaviour

proposed previously and hold enormous promise for opening a new method to determine the
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relaxation time of the fluid.

Materials and methods

Polyethylene oxide (PEO) of different molecular weights Mw are added to DI water in suf-

ficient quantities to get the various concentrations c. All the solutions are stirred at 300

RPM for different durations. Polymers used in the present study along with their molecu-

lar weights are listed in Table-I. Concentrations of the polymers are chosen in a way that

the solution types vary in a range of semi-dilute unentangled, and semi-dilute entangled

regimes. Regimes of semi-dilute unentangled, and semi-dilute entangled are differentiated

using the critical concentration c∗ and the entanglement concentration ce respectively. The

critical concentration of PEO for different molecular weights is obtained from the [η] in-

trinsic viscosity using the Flory relation c∗ = 1/[η] alongside the Mark-Houwink-Sakurada

correlation37 [η] = 0.072M0.65
w and the entanglement concentration ce is obtained using the

relation ce ≈ 6c∗.38 The values of c∗ and ce are listed in Table-I. All the concentrations used

in present study along with their concentration ratios c/c∗ are given in Table-II.

Table 1: List of molecular weights of polymers along with their critical and entanglement
concentrations.

Polymer Mw (g/mol) c∗ (% w/v) ce (% w/v)
PEO 5× 106 0.061 0.366
PEO 4× 106 0.071 0.426

Experiments are performed on a Polydimethylsiloxane (PDMS) coated glass substrate.

Before the experiments the substrate are cleaned with detergent followed by sonication with

acetone and DI Water respectively for 20 mins each. The substrates are then dried in a

hot air oven 95◦C for 30 mins. PDMS is prepared by adding the curing agent (Syl Gard

184 Silicone Elastomer Kit, Dow Corning) to PDMS in the ratio of 1:10. This mixture is

agitated and kept for desiccation for 30 minutes until all visible gas bubbles are removed.

Glass substrates are coated with PDMS using a spin coater at 5000 rpm for 60 s. The coated
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substrate are cured by keeping them in a hot air oven at 90◦C for at least 90 min. Surface

tension σ of the solutions are measured by pendant drop method using optical contact angle

measuring and contour analysis system (OCA25) instrument from Dataphysics. All the

solutions were found to have surface tension values of 0.062± 0.02 N/m. We have assumed

the density of all the solutions to be 1000 kg/m3.

Table 2: Rheological properties of the solutions. (Note: Relaxation time values given in blue
are obtained from the correlations, remaining values are obtained from the crossover of G′
and G′′.

Mw (g/mol) c (% w/v) c/c∗ (% w/v) ηo (Pa.s) λ (s)
0.1 1.64 0.006 0.0017
0.2 3.28 0.018 0.0025
0.4 6.56 0.06 0.064
0.75 12.29 0.8 0.165
1 16.39 4.5 0.5
1.5 24.59 20 0.67

5× 106 1.75 28.68 40 1.325
2.25 36.88 72 1.43
2.5 40.98 85 1.59
2.75 45.08 190 2.0
3 49.18 210 2.25
3.25 53.28 230 2.5
0.5 8.19 0.038 0.058
1.0 16.39 0.6 0.25

4× 106 1.5 24.59 2 0.57
2.0 32.79 10 1.04
2.5 40.98 16 1.65
3.0 49.18 75 2.4

Rheology

Rheometry

Rheology experiments are performed on Anton Paar® MCR 302 rheometer using a cone

and plate 40 mm, 1◦ geometry to characterize the viscoelastic behaviour of the solutions.

The viscosity variation with shear rate for the chosen solutions is shown in Fig. 1(a). All
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the concentrations have shown the shear thinning behavior. The zero shear viscosity of the

solutions is obtained by fitting the viscosity data in the form of Carreau-Yasuda model39

represented by equation η − η∞ = (ηo − η∞) [1 + (Γγ̇)p]
n−1
p , where ηo, η∞, γ̇, n, Γ and p

represent zero-shear viscosity, infinite-shear viscosity, shear rate, flow behavior index, time

constant and width of the transition region between ηo and the power-law region respec-

tively. The values of ηo for all the concentrations are listed in Table-II. Viscoelasticity of

the polymer solutions is characterized by performing the small amplitude oscillatory shear

SAOS experiments in rheometer. The variation of storage modulus G′ and loss modulus G′′

with frequency ω is shown in Fig. 1(b) for 1% w/v, 1.5% w/v, 2.25% w/v, 2.75% w/v and

3.25% w/v concentrations as a representation.

Figure 1: Rheological behavior of PEO Mw = 5× 106 g/mol (a) Dependence of viscosity on
shear rate for different concentrations. (b) Variation of the storage modulus G′ and the loss
modulus G′′ with frequency obtained from SAOS experiments for 1% w/v, 1.5% w/v, 2.25%
w/v, 2.75% w/v and 3.25% w/v concentrations. (Standard deviation of the data is less than
2% for all the concentrations)

.

Relaxation time

In SAOS, relaxation time λ of the polymer solutions is defined as λ = 1/ωc, where ωc is the

crossover frequency for the G′ and G′′ curves. It is observed that for concentrations c > 1%
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w/v, SAOS has a crossover. But, for c < 1% w/v, there is no crossover as rheometer has the

maximum frequency of 100 s−1 which corresponds to time scale of 10−2 s. So, for c < 1%

w/v, the relaxation times are estimated using the Zimm model.39

λz =
1

ζ(3ν)

[η]Mwηs
NAkBT

(1)

where, ηs is the solvent viscosity, kB is the Boltzmann constant, λz is the Zimm relaxation

time, T is the absolute temperature and ν is fractal polymer dimension determined using

the relation a = 3ν − 1, where a is the exponent of Mark-Houwink-Sakurada correlation.

For the solutions in in semi-dilute unentangled λSUE and semi-dilute entangled λSE regimes,

the relaxation times are calculated using these correlations : λSUE = λz

( c
c∗

) 2−3ν
3ν−1 and λSE =

λz

( c
c∗

) 3−3ν
3ν−1 40–42 respectively. The relaxation times for the chosen concentrations are listed

in Table-II. The relaxation times obtained for c > 1% w/v from the crossover frequency of

G′ and G′′ are in good agreement with Zimm model estimated values. As a representation

the relaxation time obtained from the frequency sweep for 1.5% w/v is 0.67 s, compared

with the value obtained from the Zimm model as 1 s.

Experiments

A drop of diameter 2.25 ± 0.1 mm is dispensed on a substrate. To achieve coalescence

a pendant drop of the same diameter is brought towards the dispensed drop with 10−4

approach velocity to ensure the controlled coalescence. Experiments are conducted at a

temperature of 25◦C and 1 atm pressure. Fig. 2(a) shows the schematic of the experimental

setup. The coalescence process is captured at 170000 fps using a Photron Fastcam mini

high-speed camera with a Navitar lens attachment. The drops are illuminated using an LED

light source. Data extraction from the images is performed using custom-written algorithms

in MATLAB.
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Figure 2: Schematics of (a) Experimental setup, (b) Neck region during coalescence repre-
senting the geometrical parameters during the process, (c) neck radius evolution of various
concentration ratios: 1.63, 12.21, 24.42, 36.63, and 44.77 of PEO at different instants.

Results and Discussion

Coalescence proceeds via the formation of a liquid bridge during the merge of a pendant and

sessile drop. This phenomenon is characterized by two geometric parameters namely the neck

radius R and the neck semi-width H as shown in Fig. 2(b). The neck radius grows with time
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due to the local curvature effects caused by surface tension σ. Such growth of neck radius for

the concentration ratios: 1.63, 12.21, 24.42, 36.63, and 44.77 of PEO Mw = 5× 106 g/mol at

different time instants are shown in Fig. 2(c). It is evident from Fig. 2(c) that for a particular

time instant, the bridge curvature for different concentration ratios has a significant change

as the ratio increases.

The temporal evolution of the neck radius, for various concentration ratios of the poly-

meric drops is shown in Fig. 3. The neck radius growth for the the concentration ratios

represented in Fig. 3(a) are the averaged values of 5 trials. It can be seen that the bridge

has slow growth initially followed by faster growth. As previously reported in the literature,

it is seen that the neck growth follows the universal power-law growth function,14 R = atb

which is equivalently the linear regime in Fig. 3. For different concentration ratios of poly-

meric droplets there is a decrease in neck speed due to the change in neck curvature. This

is reflected in the power law index b. The variation of b for different concentration ratios of

polymeric droplets is illustrated in Fig. 3(a). For Mw = 5× 106 g/mol, the value of b ranges

from 0.38 to 0.16 while, for Mw = 4× 106 g/mol the value of b ranges from 0.39 to 0.25 for

the range of concentration ratios explored in the current study. Fig. 3(b) shows the neck

radius evolution of Polyethylene glycol (PEG) and Polyvinyl alcohol (PVA) obtained from

Sarath et al.14 for c/c∗ < 1 along with DI Water c/c∗ = 0. It also shows the decrease in b

from 0.5 to 0.4 with slight addition of Polymer in DI Water.

To encapsulate the coalescence dynamics in polymeric fluid droplets, it is crucial to outline

the underlying forces. These underlying forces are, capillary force Fc, inertial force Fi, viscous

force Fv, and elastic force Fe. Among these forces, Fc drives the bridge growth while the other

three forces oppose it. The effect of these opposing forces Fi, Fv and Fe can be captured by

three non-dimensional numbers: Reynolds number Re =< ρuclc/ηo >,Wi =< λuc/lc >, and

Elasticity number El =< ηoλ/ρlc
2 >, where uc and lc represent characteristic velocity and

length scales respectively, ρ is density, and ηo is zero shear viscosity. The characteristic scales

associated with the flow are uc ∼ ∂R/∂t and lc ∼ R. The variation of these non-dimensional
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Figure 3: (a) Evolution of neck radius for various concentration ratios c/c∗ > 1 of PEO
solutions showing the decrease in intercept a and slope b with concentration ratios. (b)
Neck radius evolution for c/c∗ < 1 of Polyethylene glycol (PEG) and Polyvinyl alchol (PVA)
obtained from Sarath et al.14 along with DI Water (c/c∗ = 0) representing the decrease in b
from 0.5 to 0.4 with addition of polymer. (Note:The error in the measurements is less than
5%)

numbers with concentration ratio c/c∗ is presented in Fig. 4. It reveals the presence of 3

regimes based on the concentration ratios. In the first regime, with concentration ratios

c/c∗ < ce/c
∗, the orders of corresponding numbers are Re ∼ O(10), Wi ∼ O(100) and

El ∼ O(10−1) suggesting the dominance of inertia force over viscous and elastic forces i.e.

Fi > Fv ≈ Fe. As the inertial forces are predominant, this regime is an inertio-elastic

coalescence. While for the second regime, with the concentration ratios ce/c∗ < c/c∗ < cc/c
∗

(cc/c∗ ≈ 20), Re ∼ O(10−1), Wi ∼ O(10) and El ∼ O(102) indicating that Fe > Fv > Fi.

As the elastic forces are predominant followed by the viscous this regime is a viscoelastic

coalescence. Similarly, for the regime with c/c∗ > cc/c
∗, Re < O(10−1), Wi > O(102) and

El > O(103) indicating that Fe >> Fv >> Fi. In this regime, the elastic forces are much

greater than viscous forces, making it an elasticity dominant coalescence. Conclusively, as we

increase the value of c/c∗, the coalescence phenomenon shifts from inertio-elastic to elasticity

dominated regime.

The effect of the predominant forces in above 3 regimes are expounded by non-dimensionalizing,
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Figure 4: Comparison of predominant forces using Reynolds number, Weissenberg num-
ber, and Elastic forces represnting the inertio-elastic, viscoelastic and elasticity dominated
regimes with c/c∗ for PEO of different molecular weights.

the radial r direction momentum equation under the quasi-radial assumption. The non-

dimensional variables are defined as: υ∗r = υr/uc, r∗ = r/R, z∗ = z/R, t∗ = t/T , τ ∗rr =

τrr/τRC , τ ∗rz = τrz/τZC , p∗ = p/Pc, where T := R/uc and, Pc := σ/Ro (Ro is the droplet

radius) are the characteristic time and pressure respectively.

ρu2c
R

(∂υ∗r
∂t∗

+ υ∗r
∂υ∗r
∂r∗
)

= −Pc
R

∂p∗

∂r∗
+
τRC
R

(τ ∗rr
r∗

+
∂τ ∗rr
∂r∗

)
+
τZC
R

∂τ ∗rz
∂z∗

(2)

The characteristic scales of stresses τRC and τZC are obtained by introducing the pre-

viously defined non dimensional variables, along with the quasi-radial assumption in linear

Phan Thein Tanner constitutive equation as follow:

∂τ ∗rr
∂t∗

+ υ∗r
∂τ ∗rr
∂r∗
− 2τ ∗rr

∂υ∗r
∂r∗

+
τ ∗rr
λU
R

[
1 +

κλ

η
τRCτ

∗
rr

]
= 2

η

λτRC

∂υ∗r
∂r∗

(3)
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∂τ ∗rz
∂t∗

+ υ∗r
∂τ ∗rz
∂r∗
− τ ∗rz

∂υ∗r
∂r∗

+
τ ∗rz
λU
R

[
1 +

κλ

η
τRCτ

∗
rr

]
=

η

λτZC

∂υ∗r
∂z∗

(4)

From eq (3) and eq(4) it is observed that the τRC := η/λ, τZC := η/λ. By substituting these

scales into eq (2), the dimensionless radial momentum equation is deduced as represented in

eq(5).

ρu2cλ

η

(∂υ∗r
∂t∗

+ υ∗r
∂υ∗r
∂r∗
)

= − σλ

ηRo

∂p∗

∂r∗
+
τ ∗rr
r∗

+
∂τ ∗rr
∂r∗

+
∂τ ∗rz
∂z∗

(5)

Figure 5: (a) Variation of Re∗Wi with c/c∗ representing the decrease in Re∗Wi from O(101)
to < O(100) from inertio-elastic/viscoelastic to elasticity dominated regime, (b) Representing
the steady and monotonic decrease of b in inertio-elastic/viscoelastic regimes (c/c∗ < 20) and
elasticity dominated regime (c/c∗ > 20) respectively.

The coefficient ρu2cλ
η

, of inertial term in eq (5) is the product of Re and Wi, which is

given as Re ∗Wi =< ρu2cλ/η >= Elastic Force . Inertia Force
(Viscous Force)2

. The term Re ∗Wi can be rewritten

as Re ∗Wi =< u2c/U
2
s > where Us =

√
η/ρλ43 is the shear wave velocity of the complex

fluid. The values of Re ∗ Wi are presented for different concentration ratios in the Fig.

5(a). In the elasticity dominated regime, as observed in Fig. 4, the product of Re and Wi
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is Re ∗ Wi =< u2c/U
2
s >< O(100) while, for the other regimes Re ∗ Wi ∼ O(101). This

implies that for the elasticity dominated regime, the characteristic velocity of the system uc

is less than the shear wave velocity of the fluid Us while uc > Us for the other regimes. The

polymer chains begin to elongate along the shear direction after the droplets have touched

each other. Such elongation decreases as the concentration of polymer increases due to

polymer chain entanglements which alter the curvature of the liquid bridge, leading to the

slow growth of the bridge and inhibiting the coalescence. In the elasticity dominated regime,

the chains relax slower than the speed of information transfer hence the polymer chains are

in unrelaxed state. On the contrary, for the other regimes, the polymer chains relax faster

than the speed of information transfer implying that the chains have already relaxed to the

external perturbation. This behaviour of chain relaxation leading to the decrease of exponent

b in elasticity dominated regime where, Re ∗Wi < O(100) is represented in Fig. 5(b).

The effect of chain relaxation time is further demonstrated by considering the character-

istic velocity uc as the chain relaxation velocity, which can be defined as uc = Ro/λ. On

substitution, the term ρu2cλ/η can be simplified as ρR2
o/ηλ. This simplified result can be

rewritten as the ratio of time scales (τ ∗) ρR2
o/ηλ = tc/λ = 1/τ ∗2 where, tc = t2i /tv is the New-

tonian characteristic time. Here, tv = ηRo/σ is the viscous time scale and ti =
√
ρRo

3/σ

is the inertial time scale. It is observed from Fig. 6 that when τ ∗ < 10, the exponent is

constant with a value of 0.37 i.e the process is in inertio-elastic or viscoelastic regime. On

contrary, when τ ∗ > 10, the exponent decreases continuously. The dynamics governing the

above phenomenon lies in the relaxing of polymer chains. When τ ∗ < 10 the polymer chain

relaxation are comparable to the Newtonian time scale tc leading to a constant value. How-

ever, for τ ∗ > 10, the polymer chains are in unrelaxed state even after the Newtonian time

scale therefore altering the curvature of the bridge, resulting in the decline of b.

The universal behaviour of the neck radius evolution is proposed by Sarath et al.14 in

inertio-elatic regime. To attain the universality Sarath et al.14 non dimensionalized the

neck radius R using
√
νoλ as R∗ = R/

√
νoλ. Similarly, time t is non-dimensionalized with
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Figure 6: Dependence of the power law index b on the τ ∗ which is the ratio of relaxation time
λ and Newtonian characteristic time tc, with dashed blue line representing the exponential
fit of 97% confidence interval for PEO solutions of different molecular weights.

λOh−1( c
c∗

)−1.2 leading to t∗ = ( t
λ
Oh−1)( c

c∗
)−1.2. This non-dimensionalization led to the uni-

versal behaviour of the neck radius growth as R∗ ∼ t∗0.36 which is in agreement for the

solutions in inertio-elastic and viscoelastic regimes having a constant value of b = 0.37 as

represented in Fig. 6. However, such non-dimensionalization of neck growth breaks in the

elasticity dominated regime. As the low Wi assumption is no longer valid, the previously

reported governing equations is unable to capture the deviation from universality. This de-

viation shown in the inset of Fig. 7 is due to the incorrect characteristic length and time

obtained from the balance of inertia, elastic and capillary forces, as the inertial forces are

weak in the elasticity dominated regime. Moreover, in this regime, the polymer chains are

not relaxed, hence the temporal variation of stress in the upper convected derivative should

be considered, which was neglected in previous studies.14
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Figure 7: Non-dimensional neck radius as a function of non-dimensional time for all the
polymer solutions used in this study and the previous study by Sarath.et.al.14 with legend
representing corresponding c/c∗ values. Inset shows the breaking of universality for c/c∗ > 10
highlighted in the shaded region.

This deviation from universality in the elasticity dominated regime provides a novel

method to determine the relaxation time λ of the complex fluids using the coalescence

experiment. From Fig. 6 we propose a correlation between τ ∗ and b as b = 0.16 +

0.22exp(−0.0048τ ∗) for PEO. This correlation for PEO is validated by conducting coales-

cence experiments for concentration ratio c/c∗ = 32.56(2.0%w/v) of PEO Mw = 5 × 106

solution having η = 55 Pa.s. Under similar experimental conditions, the temporal evolution

of the neck for c/c∗ = 32.56 is found to have the power-law exponent as b = 0.275. On

substituting b = 0.275 in the correlation we obtain the relaxation time as λ = 0.6 s, which

agrees with the relaxation time obtained from the SAOS experiments 1.35 s. Even though
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there is a difference in the relaxation times, it is known that the relaxation time is method

specific. For instance, the relaxation time obtained from the Capillary breakup extensional

rheometer (CABER)44–47 and SAOS differ by an order.

In literature, many methods are proposed to measure the relaxation time of the fluid.

Most widely used way to find λ is the linear viscoelastic response in a conventional rheome-

ter.39,48 In this method, material is subjected to sinusoidal deformation to evaluate the

viscous and elastic responses via loss modulus G′′ and storage modulus G′ respectively. The

crossover of G′ and G′′ is used to determine the relaxation time of the fluid. But, this

method is limited by the motor inertia in conventional rheometers and cannot capture the

small values of λ. Hence for low relaxation times, a novel method named CABER, Capillary

breakup extensional rheometer- Dripping on substrate (CABER-DOS)49,50 was proposed.

However, the intrinsic difficulties in this method lies in the controlling of elongational flow.

Such difficulties have led to the significant difference in relaxation times measured from the

conventional method and by CABER. Recently, there are developments in microfluidic de-

vices42,51,52 for overcoming the limitations of conventional rheometer and CABER, but, the

fabrication of the microfluidic channel is intricate. However, the present study proposes a

simple comprehensive tool named Rheocoalescence based on empirical correlations to deter-

mine the relaxation time of PEO solutions. Even though the proposed correlation can be

used in all the regimes, it is robust in elasticity dominated regime. A comprehensive study

on this method is required to generalize Rheocoalescence for all the polymeric fluids. The

required experimental information for the correlation can be obtained easily, which makes

this tool predominantly effective for cases where performing experiments by conventional

methods become very difficult such as, the case of highly elastic fluid. This technique opens

up a new paradigm in microfluidics and rheological measurements.
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Conclusion

The current study demonstrates the effect of fluid elasticity on coalescence of pendant-sessile

polymeric droplets. We performed high speed imaging to capture the temporal evolution of

the bridge for a wide range of concentrations ratios. We reveal the presence of three regimes

namely inertio-elastic, viscoelastic and elasticity dominated regimes based on c/c∗. The

inertio-elastic regime occurs at c/c∗ < ce/c
∗, and viscoelastic regime at ce/c∗ < c/c∗ < cc/c

∗,

similarly elasticity dominated regime at c/c∗ > cc/c
∗. Experimentally, we have been able

to demonstrate the dependence of power law index b on relaxation time leading to a novel

method: Rheocoalescence to determine the relaxation time of the fluids. This opens a new

paradigm in determining the characteristic time scales for wider class of complex fluids.

However, the current study neglects the effect of surrounding fluid on the dynamics by

considering air as the outer fluid. Further studies should be dedicated to extending this

method’s applicability for a variety of fluids along with the effect of outer fluid.
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