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Schrödinger equation belongs to the most fundamental differential equations in quantum physics. However,
the exact solutions are extremely rare, and many analytical methods are applicable only to the cases with small
perturbations or weak correlations. Solving the many-body Schrödinger equation in the continuous spaces with
the presence of strong correlations is an extremely important and challenging issue. In this work, we propose
the functional tensor network (FTN) approach to solve the many-body Schrödinger equation. Provided the
orthonormal functional bases, we represent the coefficients of the many-body wave-function as tensor network.
The observables, such as energy, can be calculated simply by tensor contractions. Simulating the ground state
becomes solving a minimization problem defined by the tensor network. An efficient gradient-decent algorithm
based on the automatically differentiable tensors is proposed. We here take matrix product state (MPS) as an
example, whose complexity scales only linearly with the system size. We apply our approach to solve the ground
state of coupled harmonic oscillators, and achieve high accuracy by comparing with the exact solutions. Reliable
results are also given with the presence of three-body interactions, where the system cannot be decoupled to
isolated oscillators. Our approach is simple and with well-controlled error, superior to the highly-nonlinear
neural-network solvers. Our work extends the applications of tensor network from quantum lattice models to
the systems in the continuous space. FTN can be used as a general solver of the differential equations with many
variables. The MPS exemplified here can be generalized to, e.g., the fermionic tensor networks, to solve the
electronic Schrödinger equation.

I. INTRODUCTION

Solving differential equations belongs to the most funda-
mental but challenging tasks in mathematics, physics, and
etc. In general, the situations where we have the exact solu-
tions are extremely rare, thus various analytical and numerical
methods were developed under the simplifications or approx-
imations of different extent.

Let us concentrate on quantum physics, where the
Schrödinger equation plays a fundamental role. Different ap-
proximative treatments made to this equation have evolved
into different sub-fields. For instance, the density func-
tional theories and the so-called ab-initio calculations (see,
e.g., [1, 2]) successfully predict the properties of countless
quantum matters ranging from molecules to solids, under the
assumption of weak correlations. Recently, the hybridization
with machine learning has triggered a new upsurge in study-
ing the Schrödinger equation, including the simulations of the
ground states by better considering correlations [3–7] and in-
versely predicting the potentials knowing the wave-functions
or relevant physical information [8–11].

Towards the strongly-correlated cases, an important di-
rection is simplifying to the quantum lattice models, such
as Heisenberg or Hubbard models on discretized lattices.
Among the successful algorithms, remarkable progresses have
been made based on tensor network (TN) [12–16]. As two
important examples, we have the density matrix renormaliza-
tion group for simulating the ground states of one- and quasi-
one-dimensional systems [17–21], and projected-entangled
pair states for the higher-dimensional ones [22, 23].

The success of TN lies in its high efficiency of representing
quantum many-body states as well as the powerful algorithms

∗ Corresponding author. Email: sjran@cnu.edu.cn

to deal with the TN calculations. On the cost of obeying the
area law of entanglement entropy [22, 24, 25], TN reduces the
exponential complexity of representing a many-body state to
be polynomial. Accurate results are obtained by TN, thanks
to the fact that for most models we are interested in, such as
those with local interactions in one dimension [26], the area
law holds. However, beyond the quantum lattice models, TN
for those with continuous variables are mainly concentrated
on the quantum fields [27–32]. The use of TN for solving
differential equations with many continuous variables is un-
explored.

In this work, TN is proposed to solve the many-body
Schrödinger equation in the continuous space. Given the or-
thonormal functional bases, the coefficients of the quantum
wave-function is represented in the form of TN. Defining the
loss function L as the energy, the automatically differentiation
technique [33] is utilized to achieve the TN representing the
ground state. We dub this approach as functional TN. Tak-
ing the matrix product state (MPS in short, which is a spe-
cial one-dimensional TN) [12] as an example, our approach
is illustrated in Fig. 1. The loss function is calculated as
the inner product of two MPS’s. One MPS is the summa-
tion of many MPS’s representing the wave-function acted by
the corresponding operators, and the other is the MPS rep-
resenting the wave-function itself. The tensors forming the
MPS are automatically differentiable, and are updated by the
gradient descent algorithm. The gradients are obtained in the
back propagation process [33], similar to the optimizations of
neural networks.

We test our approach on the coupled harmonic oscillators
with two- and three-body interactions [see Eq. (27)]. The
model cannot be decoupled to isolated oscillators with the
presence of the three-body terms. With only the two-body
interactions, high accuracy is demonstrated by comparing the
achieved ground-state energy to the exact one. The error is
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FIG. 1. (Color online) The illustration of the functional MPS ap-
proach. By representing the trial wave-function in MPS, the loss
function L becomes the inner product of two MPS’s. One MPS is
the summation of several MPS’s, of which each is resulted from the
trial wave-function acted by an operator. The inset illustrates the gra-
dient descent [Eq. (29)] to update the tensors in the trial MPS.

well controlled by the entanglement of the MPS. The ground-
state energy and entanglement entropy with the three-body
terms are also demonstrated. Compared with the solvers of
differential equations based on neural networks [34–38] that
are in general highly non-linear, our functional TN solver does
not require sampling or the training data, thus do not belong to
the “data-driven” solvers. The optimizations of TN are imple-
mented simply by tensor contractions. Our works sheds light
on using TN as an efficient solver of the general many-variable
differential equations in and beyond quantum physics.

II. PRELIMINARIES AND NOTATIONS

A. Basis and expansion

With a set of orthonormal functional basis {φs(x)} satisfy-
ing
∫∞
−∞ φ∗s′(x)φs(x)dx = δs′s, a given function ψ(x) can be

expanded as

ψ(x) =

D−1∑
s=0

Csφs(x), (1)

where Cs denotes the expansion coefficients and D is the ex-
pansion order. Here, we assume ψ(x) to be smooth.

Considering ψ(x) to be the wave-function of a quan-
tum system, it should satisfy the normalization condition as∫∞
−∞ ψ∗(x)ψ(x)dx = 1. Thanks to the orthonormal condition

of the basis, the normalization condition can be represented by
the L2-norm of the coefficients as

|C| =
√∑

s

|Cs|2 = 1. (2)

Note we use a bold letter to denote a vector, matrix or ten-
sor, such as C, and use the same letter with lower indexes to

denote its elements, such as the s-th element Cs.

B. Operations

Consider an operator, denoted as Ô, that satisfies the linear
condition in the functional space as

Ôψ(x) = Ô
∑
s

Csφs(x) =
∑
s

CsÔ[φs(x)]. (3)

Assume for each basis function φs(x), Ô satisfies

Ô[φs(x)] =

D−1∑
s′=0

Os′sφs′(x). (4)

Apparently, the expansion coefficients of the function ψ̃(x) =
Ô[ψ(x)] =

∑
s C̃sφs(x) satisfy

C̃s′ =
∑
s

Os′sCs. (5)

In general, Os′s can be numerically evaluated as

Os′s =

∫ ∞
−∞

φ∗s′(x)Ô[φs(x)]dx. (6)

In some special cases, the matrix Os′s given the basis
{φs(x)} can be solved analytically. As an example, let us
take φs(x) as the s-th eigenstate of the quantum harmonic os-
cillator with the Hamiltonian

ĤHO = −1

2

d2

dx2
+
x2

2
. (7)

We take the Plank constant ~ = 1 for simplicity. We have

φs(x) =

(
1

2ss!
√
π

) 1
2

e−
x2

2 hs(x), (8)

with hs(x) the Hermitian polynomial. We dub Eq. (8) as
single-oscillator basis (SOB). Obviously {φs(x)} satisfy the
orthonormal conditions.

We now consider the operation D̂ = d
dx . With Ds′s =∫∞

−∞ φ∗s′(x)D̂[φs(x)]dx [Eq. (6)], we have

Ds′s =


√

s+1
2 , s′ = s− 1;

−
√

s+1
2 , s′ = s+ 1.

(9)

The dimensions of the matrix D should be infinite (i.e., D →
∞) to exactly represent the differential operator. In practice,
one may use a proper approximation by taking a finite D. For
the k-order differentiation, we have∫ ∞

−∞
φ∗s′(x)D̂

k[φs(x)]dx = [Dk]s′s, (10)

with Dk the k-th power of the matrix D. Another example is
the operation X̂ = x. Similarly, we have

Xs′s =


√

s+1
2 , s′ = s− 1;√
s+1
2 , s′ = s+ 1.

(11)
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C. Solving differential equation by optimization

Consider a differential equation formed by P terms. We
can formerly write it as

P∑
p=1

Ô[p][ψ(x)] = 0 (12)

Let us take the the static Schrödinger equation as an example,
we have  Ô[1] = − 1

2
d2

dx2 ,

Ô[2] = V (x),

Ô[3] = −E.
(13)

The first two terms (kinetic and potential terms, respectively)
correspond to the Hamiltonian Ĥ = Ô[1]+ Ô[2], and the third
corresponds to the (negative) energy.

To solve the static Schrödinger equation, we regard the co-
efficientsCs inψ(x) =

∑
s Csφs(x) as the variational param-

eters. Now we consider the calculation of the ground state,
i.e., the eigen-function with the lowest eigenvalue (energy) of
the given Hamiltonian. With the normalization constraint of
the wave-function given in Eq. (2), the energy (quantum aver-
age of Ĥ) satisfies

E = 〈Ĥ〉 =
∫ ∞
−∞

ψ∗(x)Ĥψ(x)dx =
∑
s′s

C∗sHss′Cs′ , (14)

where Hmn can be calculated using Eq. (6). Define the loss
function

L =
E

|C|2
. (15)

We introduce the devision over |C|2 so that we do not need
to consider the normalization of ψ(x) in the optimization pro-
cess. Then C is iteratively updated using gradient descent as

C← C− η ∂L
∂C

. (16)

with η the learning rate or gradient step.
Beyond the static Schrödinger equation, we can use the gra-

dient descent to solve a differential equation given in Eq. (12).
In a given set of functional basis, the differential equation can
be written as, ∑

ps′s

O
[p]
s′sCsφs′(x) = 0 (17)

Since {φs(x)} is a set of orthonormal basis, we have∑
ps

O
[p]
s′sCs = 0, for ∀s′. (18)

Introduce the vector Z with its s′-th element Zs′ =∑
psO

[p]
s′sCs. With |Z|2 = 0, ψ∗(x) is the solution of the

differential equation. Therefore, we define the loss function
as,

L = |Z|2. (19)

The coefficients can be updated using Eq. (16).

III. FUNCTIONAL MATRIX PRODUCT STATE

A. Matrix product state representation for the coefficients of
multi-variable function

Given N sets of orthonormal bases {φsn(xn)}, a function
with N independent variables x = (x1, · · · , xN ) can be ex-
panded as

ψ(x) =

D−1∑
s1···sN=0

Cs1···sNφs1(x1) · · ·φsN (xN ). (20)

Obviously, the complexity of the coefficient tensor C scales
exponentially with the number of variables N as O(DN ).

One key of our proposal is using TN to represent the coeffi-
cients. As illustrated in Fig. 2(a), we take MPS as an example
and have

Cs1···sN =

χ−1∑
α0···αN=0

A(1)
α0s1α1

A(2)
α1s2α2

· · ·A(N)
αN−1sNαN ,

(21)
with {αn} the virtual bonds. We take the MPS to have the
open boundary condition in the whole paper, with dim(α0) =
dim(αN ) = 1. The upper bound of dim(αn) (n =
1, · · · , N−1) is called the virtual bond dimension of the MPS,
denoted by χ. The indexes {sn} are called the physical bonds,
and the dimension is called the physical bond dimension. In
our cases, we have dim(sn) = D, i.e., the expansion order.
The number of parameters in the MPS (i.e., the total number
of elements in the tensors {A(n)} for n = 1, · · · , N ) scales
only linearly with N as O(NDχ2), while that of C scales
exponentially as O(DN ).

Akin to the one-variable cases, the norm of ψ(x) equals to
the norm of the coefficient tensor (or MPS), i.e.,∫ ∞
−∞

ψ∗(x)ψ(x)dx =
∑

s1,··· ,sN

C∗s1,··· ,sNCs1,··· ,sN = |C|2,

(22)
with dx =

∏N
n=1 dxn. Note that when the tensors in the MPS

{A(n)} are given, |C|2 can be obtained without calculating
C. Therefore, the exponential complexity is avoided. No-
tably, the proposed method and discussions in this work can
be readily extended to generally other TN’s.

B. Operations and quantum average

Consider an operation Ô(m) on xm. According to the lin-
earity and the independency of the variables, we have

ψ̃(x) = Ô(m)[ψ(x)]

=

D−1∑
s1···sN=0

Cs1,··· ,sN [
∏
n 6=m

φsn(xn)]Ô
(m)[φsm(xm)].

(23)

Denote the tensors in the MPS representing ψ̃(x) as {Ã(n)}.
Given the tensors {A(n)} in the MPS representation of ψ(x),
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FIG. 2. (Color online) (a) The graph of an MPS [Eq. (21)] with its
physical and virtual bonds. The virtual bonds at the two ends are
one-dimensional, and thus are ignored in the graph. In (b) and (c),
we illustrate the actions of one- and two-body operators on the MPS.
In (d) we illustrate the average of an one-body operator 〈Ô〉.

we have A(n) = Ã(n) for n 6= m. For n = m, we have

Ã
(m)
αsα′ =

∑
s′

O
(m)
ss′ A

(m)
αs′α′ , (24)

where O(m)
ss′ satisfies Eq. (6). See Fig. 2(b) for an illustration.

Similarly, the MPS obtained by acting multiple operators
can be derived. Take two operators Ô(m1) and Ô(m2) as
an example. The tensors {Ã(n)} in the MPS representing
ψ̃(x) = Ô(m2)Ô(m1)ψ(x) satisfy Ã(n) = A(n) for n 6= m1

and n 6= m2, and Ã(n)
αsα′ =

∑
s′ O

(n)
ss′A

(n)
αs′α′ for n = m1 or

n = m2.
Consider an operator acting on multiple variables, such as

Ô(m1,m2) acting on xm1
and xm2

. We assume that Ô(m1,m2)

cannot be decomposed to the product of two single-variable
operators, i.e., Ô(m1)Ô(m2). Then as an extension of Eq. (6),
we introduce a fourth-order tensor O(m1,m2), where its ele-
ments satisfy

O
(m1,m2)
n′1n

′
2n1n2

=

∫ ∞
−∞

φ∗n′1(xm1
)φ∗n′2(xm2

)

Ô(m1,m2)[φn1(xm1)φn2(xm2)]dxm1dxm2 .(25)

The calculation of the MPS representing ψ̃(x) =

Ô(m1,m2)[ψ(x)] is illustrated in Fig. 2(c). The actions of
multi-variable operators can be similarly defined.

Consider the quantum average of the operator Ô(m) as

〈Ô〉 =
∫ ∞
−∞

ψ∗(x)Ô(m)[ψ(x)]dx. (26)

As illustrated in Fig. 2(d), 〈Ô〉 is calculated in the same way
as calculating the average of a single-site operator with a stan-
dard MPS, similar to Eq. (14). Same arguments can be made
for the quantum average of multi-variable operators.

C. Solving coupled harmonic oscillators

We consider the following N coupled harmonic oscillators
in one dimension as an example, where the Hamiltonian reads

ĤHO =
1

2

N∑
n=1

(
− ∂2

∂x2n
+ ω2

nx
2
n

)
+ γ

N−1∑
m=1

xmxm+1

+γ̃

N−2∑
m=1

xmxm+1xm+2, (27)

where ωn gives the natural frequency of the n-th oscillator,
and γ and γ̃ are the two- and three-body coupling constants,
respectively.

We choose the bases {φsn(xn)} as SOB [Eq. (8)], consid-
ering that the matrices of the required operators, namely D̂
and X̂ , can be analytically obtained [Eqs. (9) and (11)]. Sup-
pose the ground state ψ(x) we aim to obtain is written in the
MPS formed by the tensors {A(n)}. For the kinetic terms, we
define ψ̃K(m)(x) = − 1

2
∂2

∂x2
m
ψ(x). According to Sec. III B,

the tensors of the MPS representing ψ̃K(m) can be obtained,
where the m-th tensor should be changed to

Ã
(m)
αsα′ = −

1

2

∑
s′s′′

Dss′Ds′s′′A
(m)
αs′′α′ , (28)

with D the coefficient matrix of the differential operator D̂
in the SOB [Eq. (9)]. Note the coefficients of operators only
depend on the choice of basis [Eq. (6)], instead of the number
of variables or the form representing the coefficients of the
wave-functions.

For the potential terms, we define ψ̃P(m)(x) =
1
2ω

2
nx

2
mψ(x). Similarly, the MPS representation of ψ̃P(m)(x)

can be obtained from {A(n)} and X by using Eq. (11). For the
coupling terms, we define ψ̃C(m,m+1)(x) = γxmxm+1ψ(x).
Them- and (m+1)-th tensors should be calculated following
Eq. (24). The MPS’s corresponding to the three-body interac-
tions can be similarly defined.

In all, we have (4N−3) MPS’s, in whichN MPS’s are from
the kinetic terms, N from the frequency terms, and (2N − 3)
from the coupling terms. The summation of these MPS’s
results in the MPS that represents ψ̃H(x) := Ĥψ(x). Two
MPS’s with the same physical bond dimension can be added,
which results in an MPS with the same physical bond dimen-
sion. Therefore, we can obtain ψ̃H(x) as an MPS. Denoting
the virtual bond dimensions of two added MPS’s as χ1 and χ2,
respectively, the virtual bond dimension of the resulting MPS
satisfies χ ≤ χ1 + χ2. The virtual bond dimension (denoted
as χH) of ψ̃H(x) satisfies χH ≤ (4N − 3)χ with χ the virtual
bond dimension of ψ(x). Since the MPS’s in the additions
have many shared tensors, we in fact have χH � (4N − 3)χ.
See more details in Appendix B.

To obtain the ground state, we choose the energy in Eq. (15)
as the loss functionL. With a trial MPS (where the tensors can
be initialized randomly), L can be calculated with polynomial
complexity, avoiding the exponentially-large full coefficient
tensor. For instance, the energy [Eq. (14)] is obtained by the
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inner product of the MPS’s ψ(x) and ψ̃H(x). The illustration
of the inner product is similar to Fig. 2(d). The complexity of
calculating the inner product of two MPS’s generally scales as
O[NDχχH(χ+ χH)]. See more details in Appendix C.

After calculating the loss L, the tensors in the MPS repre-
senting the wave-function ψ(x) can be updated by the gradi-
ent descent as

A(n) ← A(n) − η ∂L

∂A(n)
, (29)

where the gradients ∂L
∂A(n) can be obtained by the automatic

differentiation technique of TN [33]. In practice, we obtained
the gradients for all tensors and update them simultaneously
in a back-propagation process. We choose the Adam opti-
mizer [39] to control the learning rate η. After sufficiently
many iterations of updates, L converges to the ground-state
energy, and ψ(x) converges to the ground state. Compared
with the solvers of differential equations based on neural net-
works that are highly non-linear [34–38], one advantage of our
functional MPS (and generally TN) solver is that sampling is
not required. The optimization is implemented simply by ten-
sor contractions.

IV. NUMERICAL RESULTS

Taking γ = 0.5 and N = 4, 6, · · · , 20 as examples, the
Hamiltonian in Eq. (27) can be exactly solved by decoupling
to isolated oscillators. Fig. 3 demonstrates the error of the
ground-state energy

ε = |E − Eexact|, (30)

where Eexact is the exact solution satisfying [40]

Eexact =
1

2

N∑
n=1

√
1 + 2γcos

(
nπ

N + 1

)
. (31)

The hollow symbols with solid lines show the results by the
function MPS method with bond dimensions χ = 16. For
comparison, the solid symbols with dash lines show the re-
sults by directly treating the coefficients as aDN -dimensional
tensor (as explained in Sec. II C). For about N < 8, the dif-
ferences between the results by MPS and by tensor are small.
This indicates that the errors are mainly from the finiteness
of the expansion order D (the physical bond dimension of
the MPS). The error decreases by increasing D, and approxi-
mately converges for about D > 12. For the relatively large
D, the error by using MPS are lower than those by tensor due
to the finiteness of χ in the MPS (i.e., truncation error). The
differences are still slight [∼ (O−5) or less].

Another critical advantage of our approach over the neural-
network solvers is the interpretability. Below, we consider the
entanglement of MPS. Thanks to orthonormal property of the
functional bases, the entanglement of the MPS representing
the coefficients of the wave-function shares the same quan-
tum probabilistic interpretation of the MPS representing the
quantum states of lattice models. In specific, it characterizes

FIG. 3. (Color online) (a) The error of the ground-state energy ε
[Eq. (30)] versus the expansion order D for the coupled harmonic
oscillators with γ = −0.5 and γ̃ = 0 [Eq. 27]. We vary the number
of oscillators from N = 4 to 16, and fix the virtual bond dimension
of the MPS χ = 16. The results obtained by optimizing the full
coefficient tensors are shown by the solid symbols with dash lines. In
(b) we give the entanglement entropy S [Eq. (32)] versusD forN =
16. The inset shows the entanglement spectrum (Schmidt numbers)
measured in the middle of the MPS for D = 16.

the “quantum version” of correlations between two subsys-
tems. By “subsystem” in our examples, it means a subset of
oscillators.

Except for characterizing the quantum correlations among
oscillators, entanglement also characterizes the truncation er-
ror of MPS induced by the finiteness of χ. The entanglement
entropy is defined as

S = −2
χ−1∑
k=0

λ2k lnλk, (32)

with λk the k-th number in the entanglement spectrum or the
k-th Schmidt number. The upper bound of S for an MPS
with virtual bond dimension χ satisfies S ∼ lnχ. Consid-
ering an extreme case with S = 0, there will be only one
nonzero Schmidt number. The state will be a product state
ψ(x) =

∏
n

[∑
sn
C

(n)
sn φsn(xn)

]
, and the coefficient tensor

will be a rank-1 tensor satisfying C =
∏
⊗C(n). For S > 0,
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FIG. 4. (Color online) The error of the ground-state energy ε [Eq.
(30)] and entanglement entropy S [inset; see Eq. (32)] versus the
virtual bond dimension χ. We take D = 8, γ = −0.5, and γ̃ = 0.

the truncation error in general has a same or smaller order of
magnitude with the smallest Schmidt number. Obviously, we
always have S > 0 for the electronic wave-functions in or-
der to respect the anti-commutation relations. We leave the
electronic systems to our future study.

Fig. 3(b) shows the entanglement entropy S against D,
where the we measure S in the middle of the MPS. In other
words, S gives the entanglement entropy between the first
N/2 oscillators and the rest (we take N to be even, with-
out losing generality). As D increases, S converges to about
0.36, indicating that the ground state is not highly entangled.
The inset shows the entanglement spectrum for D = 16. The
smallest number in the spectrum is about O(10−5), which is
consistent with the error ε.

To further control the truncation error, Fig. 4 shows that
the error of energy ε converges to O(10−5) for χ ≥ 16 (with
D = 8). WhenN increases, εwill generally increases slightly
with χ remaining the same. The inset shows the entanglement
entropy S increases with χ, meaning more entanglement will
be captured (more product states are contained in the overlap)
with larger χ. S converges to about S ' 0.36 for the χ ≥ 16.

With different coupling strength, there is not always a
“physical” solution. Assuming γ to be a real number, the
Hamiltonian is hermitian and the energy (an eigenvalue)
should be real. From the analytical solution given by Eq. (31),
a real solution exists for |γ| < γc with

γc =
1

2
sec

π

N + 1
. (33)

However, the MPS still gives a converged energy even when
a real ground-state energy does not exist. As shown in Fig. 5,
the obtained energy matches accurately with the exact when
the real energy exists. To numerically identify the region
with no physical solution, we calculate the loss L defined in
Eq. (19), which characterizes the violation of the Schrödinger
equation. In the inset of Fig. 5, we show that L identifies the
regions with or without a physical solution, where we have

FIG. 5. (Color online) The ground-state energy obtained by our
method E and by the exact solution Eexact with N = 16. For
|γ| > γc = 1

2
sec π

17
' 0.509, there is no real solution for the

ground-state energy. The inset shows that this region can be identi-
fied by the loss L defined in Eq. (19), where we have L � 0 for
|γ| < γc. We take N = 16 and D = 16.

L � 0 for |γ| > γc.
Fig. 6 (a) shows the ground-state energy E obtained by

our function MPS method for different three-body interaction
strength γ̃ with N = 16, D = 8, χ = 16, and γ = −0.2. We
identify that for about γ̃ < γ̃c ' 0.168, E changes smoothly
with γ̃, as demonstrated in the inset. At γ̃ ' γ̃c, E drastically
jumps to a negative number. From Fig. 6 (b), one can see that
L suddenly becomes � 1 for γ̃ > γ̃c. This implies the real
solution does not exists in this region.

V. SUMMARY AND PERSPECTIVE

In this work, we extend the utilization of TN to solving
the many-body Schrödinger equation in the continuous space.
Given the local functional bases, the coefficients of the wave-
function are given in the form of TN, where the exponential
complexity is reduced to be polynomial. The observables such
as energy can be calculated simply by tensor contractions. Au-
tomatically differentiable tensors are used to form the TN.
Their gradients can be obtained in a back propagation pro-
cess and used to minimize the energy using gradient decent.
The error of the ground-state simulation is well controlled by
the entanglement. We take the TN to be MPS as an example,
and apply it to the coupled harmonic oscillators with two- and
three-body interactions. The existence of physical solution
can be identified by the loss that characterizes the violation of
the Schrödinger equation.

Our proposal can be readily extended to the general dif-
ferential equations with many variables. The functional bases
can be replaced by others, such as the Taylor series, depending
on the convenience of solving the target equation. The MPS
can also be generalized to other TNs such as projected entan-
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FIG. 6. (Color online) (a) The ground-state energy E obtained by
our function MPS method versus the strength of the three-body in-
teractions γ̃. We take N = 16, D = 8, χ = 16, and γ = −0.2.
The parallel dash line shows the exact energy Eexact for γ̃ = 0. The
inset shows E for γ̃ < γ̃c ' 0.168, where there exist a real solution
for the ground-state energy. In (b), we show that the loss L [Eq. 19]
suddenly becomes� 1 for γ̃ > γ̃c.

gled pair states. For electrons, the fermionic TNs [41–44] can
be used to represent the coefficients, in order to respect the
anti-commutation relations. Besides entanglement, our work
could build the bridge between Schrödinger equation and the
concepts with close relevance to TN, such as symmetries [45–
48] and quantum computation (see, e.g., [49–53]).
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Appendix A: Necessary notations

Given an N -th order tensor T, we use Ts1sN ···sN to repre-
sent a specific element. Take the following matrix (second-
order tensor) M as an example

M =

[
0 1
1 0

]
. (A1)

We have the matrix elements as M00 = M11 = 0 and M01 =
M10 = 1. Note to numbering multiple indexes or tensors, we
start numbering from 1. For a given index, say χ-dimensional,
we take its value from 0 to χ − 1. The indexes of tensors are
always lower indexes. The upper “indexes”, such as “(n)”
in A(n), are not actually indexes, but only to distinguish the
symbols for different tensors.

We use colon in the lower indexes to represent the slice of
tensor, following the syntax convention of Python. For in-
stance, M0,: = [0, 1] is a vector that gives the zeroth raw
of M. For the N -th order tensor T, we use Ts1,··· ,sN−2,:,:

to represent the matrix by fixing the first (N − 2) indexes
to (s1, · · · , sN−2). The size of this matrix is dim(sN−1) ×
dim(sN ). The range of the slice can be specified. Tak-
ing a vector V as an example, V′ = Va:b [with a and
b two non-negative integers and a < b < dim(V)] gives
a (b − a)-dimensional vector, satisfying V ′n = Vn+a with
n = 0, · · · , b−a−1. Note V0:b can be simplified to V:b, and
Va:dim(V) to Va:.

Appendix B: Addition of matrix product states

Given two MPS’s formed by the tensors {A(n)} and
{B(n)} (n = 1, · · · , N ), respectively, the addition of these
two MPS’s can be written in the MPS form. Denote the ten-
sors of the resulting MPS as {Q(n)}. In general, the elements
of Q(n) are zero except for the following parts

Q
(n)
:χ1,:,:χ′1

= A(n),

Q
(n)
χ1:,:,χ′1:

= B(n). (B1)

For simplicity, we assume that the sizes of A(n) and B(n) for
1 ≤ n ≤ N − 1 are (χ1 × D × χ′1) and (χ2 × D × χ′2),
respectively, considering the open boundary condition. The
sizes of A(1) and B(1) are (1 × D × χ′1) and (1 × D × χ′2),
respectively. The sizes of A(N) and B(N) are (χ1 × D × 1)
and (χ2×D×1), respectively. Then the size of Q(n) is [(χ1+
χ2)×D × (χ′1 + χ′2)].

If the dimensions of the left virtual bonds of A(n) and B(n)

are both one, the above equation can be simplified to

Q(n)
:,:,:χ1

= A(n),

Q(n)
:,:,χ1: = B(n). (B2)

The size of Q(n) will be [1×D×(χ′1+χ′2)] instead of [2×D×
(χ′1 + χ′2)]. Same simplification can be made in the case that
the dimensions of the right virtual bonds of A(n) and B(n) are
both one.



8

Let us now consider less general cases by assuming A(n) 6=
B(n) only for n = m, otherwise A(n) = B(n). In other
words, the tensors in the two MPS’s are the same except for
the m-th tensor. Then {Q(n)} satisfy

Q(n) = A(n) = B(n), for n < m− 1 or n > m+ 1{
Q

(n)
:,:,:χ′1

= A(n)

Q
(n)
:,:,χ′1:

= B(n)
, for n = m− 1{

Q
(n)
:χ1,:,: = A(n)

Q
(n)
χ1:,:,: = B(n)

, for n = m+ 1{
Q

(n)
:χ1,:,:χ′1

= A(n)

Q
(n)
χ1:,:,χ′1:

= B(n)
, otherwise (B3)

The size of Q(n) for n < m−1 or n > m+1 is (χ1×D×χ′1),
same as A(n) or B(n) that equal to each other in this case. The
size of Q(n) for n = m−1 is [χ1×D× (χ′1+χ

′
2)]. The size

for n = m+ 1 is [(χ1 + χ2)×D × χ′1]. Otherwise, the size
of Q(n) is [(χ1 + χ2)×D × (χ′1 + χ′2)].

Appendix C: Inner product of matrix product states

Given two MPS’s formed by the tensors {A(n)} and
{B(n)} (n = 1, · · · , N ), respectively, their inner product is

defined as

z =
∑
s1···sN

∑
α0···αN
α′0···α

′
N

A(1)
α0s1α1

A(2)
α1s2α2

· · ·A(N)
αN−1sNαN

B
(1)
α′0s1α

′
1
B

(2)
α′1s2α

′
2
· · ·B(N)

α′N−1sNα
′
N
.(C1)

Eq. (C1) can be calculated in an iterative way. We start
with a matrix V whose size is dim(α1) × dim(α′1) and take
V0,0 = 1 (note dim(α1) = dim(α′1) = 1). Update V by

Vαnα′n ←
∑

snαn−1α′n−1

Vαn−1α′n−1
A(n)
αn−1snαnB

(n)
α′n−1snα

′
n
.

(C2)
Iteratively calculate V by taking n from 1 to N , and finally
V becomes a (1× 1) matrix (i.e., a scalar) since dim(αN ) =
dim(α′N ) = 1. We have

z = V0,0. (C3)

An efficient way of calculating Eq. (C2) is to first com-
pute Ãα′n−1snαn

=
∑
αn−1

Vαn−1α′n−1
A

(n)
αn−1snαn , and then

Vαnα′n =
∑
snα′n−1

Ãα′n−1snαn
B

(n)
α′n−1snα

′
n

. The complexities
of these two scale, respectively, as

O[dim(α′n−1) dim(αn−1) dim(sn) dim(αn)], (C4)
O[dim(α′n−1) dim(α′n) dim(αn) dim(sn)]. (C5)

Thus, the complexity of calculating Eq. (C2) scales as

O{dim(sn) dim(α′n−1) dim(αn)[dim(αn−1) + dim(α′n)]}.
(C6)

The above way can be used to calculate the norm of a given
MPS, which equals to

√
z.
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