
TUNNELING EFFECT INDUCED BY A CURVED MAGNETIC
EDGE

SØREN FOURNAIS, BERNARD HELFFER, AND AYMAN KACHMAR

Abstract. Experimentally observed magnetic fields with nanoscale variations
are theoretically modeled by a piece-wise constant function with jump disconti-
nuity along a smooth curve, the magnetic edge. Assuming the edge is a closed
curve with an axis of symmetry and the field is sign changing and with exactly
two distinct values, we prove that semi-classical tunneling occurs and calculate
the magnitude of this tunneling effect.

This paper is dedicated to Elliott H. Lieb on the occasion of his 90th birthday.

1. Introduction

The purpose of this paper is to study the magnetic Laplacian in R2,

Ph :“ pih∇`Aq2 “
2
ÿ

j“1

pihBxj ` Ajq
2, (1.1)

where A :“ pA1, A2q P H
1
locpR2;R2q, is a magnetic potential generating the mag-

netic field B “ curlA :“ Bx1A2 ´ Bx2A1 P L
2
locpR2;Rq. We will also discuss the

case of the Neumann or Dirichlet realizations of Ph in smooth bounded planar
domains.

Here h is a positive parameter that tends to 0, which can be interpreted as
the semi-classical parameter. By writing h´2Ph “ pi∇` h´1Aq2, we observe that
the semi-classical limit, h Ñ 0`, is equivalent to the strong magnetic field limit,
h´1|B| Ñ `8.

The spectrum of the operator Ph has been the subject of an intense study in the
past decades, particularly in the context of superconductivity where the magnetic
field B is typically a constant function [6, 11, 17, 21, 23, 32].

There is an interesting analogy between the results for the Neumann realization
of Ph in a bounded smooth domain and those for the Schrödinger operator, ´h2∆`
V , with an electric potential V , in the full plane. The Schrödinger operator was
intensively studied by Helffer–Sjöstrand [24, 25] and Simon [36], notably in the
context of quantum tunneling. Bound states of ´h2∆ ` V concentrate near the
‘well’ ΓV :“ tx P R2 |V pxq “ minR2 V u; if furthermore ΓV is a regular manifold
(i.e. we have a degenerate well), bound states could concentrate near some points
of ΓV , the ‘mini-wells’. We have the same picture in the purely magnetic case with
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a Neumann boundary condition: bound states concentrate near the boundary of
the domain, whereby the boundary plays the role of a (degenerate) well, and the
set of points of maximum curvature plays the role of mini-wells, where bound
states decay away from them. Optimal estimates describing the concentration of
bound states are very important, since they lead to accurate asymptotics for the
low lying eigenvalues. The proof of the decay away from the mini-wells (points of
maximum curvature), is more delicate compared to that of the decay away from
the well (boundary).

In this paper, our main focus will be on magnetic fields having a jump-discontinuity.
Magnetic fields that vary on very short scales (nanoscales) have been observed
experimentally, see e.g. [15]. Their theoretical investigations, in the context of
quantum mechanics [34, 35] or graphene [18], involve the operator Ph but with the
magnetic field B being a step function having a discontinuity along a curve, that
we will refer to as the magnetic edge.

Earlier rigorous results were devoted to the case of a flat edge [28, 29, 30]. More
recently, non-flat edges have been considered in the context of spectral asymptotics
[1, 3] and in the context of superconductivity [4]. The magnetic edge will play the
role of the ‘well’, while the ‘mini-wells’ are the points of maximum curvature of
the magnetic edge [5], which is interestingly in analogy with the setting of the
Neumann realization with a constant magnetic field in a bounded smooth domain.

The case of a single mini-well, where the curvature of the edge has a unique and
non-degenerate maximum, was analyzed by Assaad–Helffer–Kachmar [3]. The
present paper investigates the situation of a symmetric edge with several mini-
wells, the simplest case being when there are two non-degenerate maxima of the
boundary curvature. We establish a sharp asymptotics of the splitting between the
energies of the ground and first excited state, which measures a tunneling effect
induced by the geometry of the edge, see Theorem 3.4 below which is our main
result.

Let us recall how the general strategy of Helffer–Sjöstrand [24, 25] has been
applied recently to understand the tunneling effect for the Neumann realization
in a bounded domain with the breakthrough paper [7] by Bonnaillie-Noël–Hérau–
Raymond as the crowning achievement. The first step, already performed in [21]
and [16], was the analysis of a model with a flat boundary (deGennes model),
which yields localization of bound states near the boundary of the domain (the
well), and consequently, leads to a full asymptotics of the low-lying eigenvalues.
The second step is a formal WKB expansion of bound states [8]. The third step
consists of optimal decay estimates of bound states recently achieved in [7]. The
importance of this step is that it allows one to rigorously approximate the bound
states by the formal WKB expansions, which eventually paves the way for the
analysis of an interaction matrix whose eigenvalues measure the tunneling effect.
The same approach has been successfully applied in the context of thin domains
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[31] and the Robin Laplacian [19, 20], where the proof of the tangential estimates
was less technical.

We will follow the same approach outlined above in the case of our discontinuous
magnetic field. The model problem with a flat edge was analyzed in [5] (see also
[4, 28]), while the full asymptotics for the low lying eigenvalues are obtained in
[3]. So we still need WKB expansions and optimal tangential estimates of bound
states, which we do in the present contribution. Finally, after establishing the
WKB approximation, the analysis of the interaction matrix is quite standard.

Let us give an informal statement of our main result (Theorem 3.4 below).
Suppose that Γ is a smooth, closed curve in R2, symmetric with respect to an axis,
and with two points of maximum curvature, denoted by s` and sr (` refers to “left”
and r to “right”, see Fig. 1). Consider the magnetic field satisfying B “ 1 in the
interior of Γ, and B “ a P p´1, 0q in the exterior of Γ. Under these assumptions,
we prove that, as h Ñ 0`, the spectral gap of the operator Ph is of exponential
order,

λ2phq ´ λ1phq « exp
´

´
Sa

h1{4

¯

, (1.2)

where Sa is the Agmon distance between the “wells” s` and sr defined by an ap-
propriate potential that depends on the magnetic field (through the parameter a)
and the geometry of Γ (through the curvature). The asymptotics in (1.2) (more
precisely that in Theorem 3.4) is a consequence of quantum tunneling. It is im-
portant to note that it is induced purely by the magnetic field, thereby providing
an example of a purely magnetic quantum tunneling—where the case of [7] also
required the interaction with the boundary. If we look at earlier results on the
tunneling effect, with or without magnetic field, we observe that the tunneling is
induced by an external potential [24, 14] or by confinement to a bounded/thin do-
main [20, 31, 9]. For the Neumann realization of Ph, the presence of the magnetic
field adds a challenging difficulty in the estimate of the magnitude of the tunneling
that was recently solved in [7]. Our proof of (1.2) is very close to that of [7], but
it relies on new elements that follow from a deep investigation of magnetic steps
[5, 3].

Let us give some of the heuristics behind the computations leading to (1.2). We
can construct two quasi-modes having the following structure

Ψh,`ps, tq « eiθh,`psq e´Φ`psq{h
1{4

f0,`psqφaph
1{2tq,

Ψh,rps, tq « eiθh,rpsqe´Φrpsq{h1{4 f0,rpsqφaph
1{2tq,

where s denotes the arc-length parameter along Γ, t denotes the normal distance to
Γ with the convention that t ą 0 in the interior of Γ and t ă 0 in the exterior of Γ.
The functions Φ` and Φr are non-negative and satisfy Φ`ps`q “ 0 and Φrpsrq “ 0, so
that Ψh,` (resp. Ψh,r) is localized near s` (resp. near sr). The phase functions θh,`
and θh,r involve the topology of the discontinuity curve and a spectral constant.
The function φa is the ground state eigenfunction of a model operator related
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Figure 1. A symmetric domain with respect to the y-axis (dashed
line). The orientation of the boundary is defined by the direct frame
pt,nq, where n is the inward normal vector and t is the unit tangent.
The curvature along the boundary has two non-degenerate maxima
at the points a1 and a2, with arc-length coordinates s` P r0, Lq and
sr P p´L, 0s, connected by upward and downward geodesics oriented
counterclockwise and represented by rsr, 0s Y p0, s`s and rs`, Ls Y
p´L, srs respectively. These upward and downward geodesics will
be denoted by rsr, s`s and rs`, srs respectively.

to the discontinuity of the magnetic field (see Sec. 3). Finally, f0,` and f0,r are
solutions of appropriate transport equations (see Theorem 5.1).

Up to truncation, the quasi-modes Ψh,` and Ψh,r are approximations of actual
bound states

gh,`ps, tq « Ψh,`ps, tq, gh,rps, tq « Ψh,rps, tq, (1.3)
where the bound states gh,` and gh,r are defined via the orthogonal projection Π
on V :“ ‘2

i“1 Ker pPh ´ λiphqq as follows

gh,`ps, tq :“ ΠΨh,`ps, tq, gh,rps, tq :“ ΠΨh,rps, tq.

By the Gram-Schmidt process, we transform tgh,`, gh,ru to an orthonormal basis B
of V and we denote by Mh the matrix relative to B of the restriction of Ph to V .
The spectral gap for the operator Ph is the same as that for the matrix Mh,

λ2phq ´ λ1phq “ λ2pMhq ´ λ1pMhq .

Using the approximation in (1.3), we get an approximate matrix pMh of Mh whose
spectral gap can be explicitly estimated (compare with (1.2))

λ2p
pMhq ´ λ1p

pMhq « exp
´

´
Sa

h1{4

¯

.
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We have then to show that the spectral gap for the matrix pMh is a good approxi-
mation of that of Ph up to an appropriate remainder, more precisely

λ2pMhq ´ λ1pMhq “
`

λ2p
pMhq ´ λ1p

pMhq
˘`

1` op1q
˘

.

Such an estimate is closely related to optimal decay estimates of bound states
(resp. approximate bound states) of the operator Ph, which yield accurate errors
for the approximation in (1.3).

Organisation. In Section 2, we review the recent result of [7] for the Neumann
magnetic Laplacian with a constant magnetic field, and introduce the related
deGennes model for a flat boundary. In Section 3, we introduce the magnetic
edge along with the related flat edge model, and state our main result, Theo-
rem 3.4, for the operator Ph with a magnetic step. In Section 4, we express Ph in
a Frénet frame and reduce the spectral analysis to an operator defined near the
edge. In Section 5, we introduce operators with a single well (with ground states
localized near a single point of maximum curvature), and perform a WKB expan-
sion for an approximate ground state (see Theorem 5.1). In Section 6, we explain
how optimal tangential estimates can be derived along the lines of the proof of
the similar statement in [7]. Finally, in Section 7, we introduce the interaction
matrix and finish the proof of Theorem 3.4, by referring to [7] for the detailed
computations, which are essentially the same in our setting.

2. Uniform magnetic fields

In this section, we review some results on the Neumann realization of the oper-
ator Ph with a constant magnetic field. We assume that

#

Ω Ă R2 is a simply connected open set,
Σ :“ BΩ is a C8 smooth closed curve.

+

(2.1)

and

A “
1

2
p´x2, x1q and B “ curlA ” 1 , (2.2)

We consider Ph introduced in (1.1), as a self-adjoint operator in L2pΩq, with do-
main,

DompPhq “ tu P H2
pΩq | n ¨ ph∇´ iAqu|BΩ “ 0u,

where H2pΩq denotes the Sobolev space W 2,2pΩq, and n the unit normal vector of
Σ, pointing inwards with respect to Ω.

2.1. Full asymptotics and decay of bound states. The conditions in (2.1)
ensure that Ω is bounded and that Ph has compact resolvent. Let pλnphqqně1 be
the sequence of eigenvalues of Ph. In generic situations, that will be explained
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precisely later on, there exist complete expansions of the eigenvalues of Ph, in the
form [16],

λnphq „ Θ0h´ kmaxC1h
3
2 ` C1Θ

1
4
0 p2n´ 1q

c

´
3

2
k2h

7
4 `

ÿ

jě15

ζj,nh
j{8 . (2.3)

The coefficients Θ0 and C1 appearing in (2.3) are universal positive constants
related to the deGennes model in the half-plane (see Sec. 2.2). The coefficients
kmax and k2 are related to the curvature on the boundary. Let Σ be parameterized
by arc-length s and denote by kpsq the curvature of Σ at s (see Sec. 4 for the
precise definition of k; in particular the orientation is chosen so that k ě 0 if Ω
is convex). The asymptotics in (2.3) holds provided the curvature k attains its
maximum value non-degenerately and at a unique point, i.e.

kmax :“ max
Σ

kpsq “ kp0q with k2 :“ k2p0q ă 0 . (2.4)

The sequence pζj,nqjě15 is constructed recursively, and it can be shown that ζj,1 “ 0
for odd j [8].

The derivation of (2.3) is related to the decay of bound states. Assume that n
is fixed and for all h ą 0 that uh,n is an eigenfunction of Ph, normalized in L2pΩq
and with eigenvalue λnphq. There exist constants α1, C1,n ą 0 such that

ż

Ω

|uh,n|
2 exp

´α1 distpx,Σq
h1{2

¯

dx ď C1,n .

This estimate says that the bound state uh,n concentrates near the boundary Σ
and is valid even when (2.4) is not satisfied [21]. If moreover (2.4) holds, then uh,n
concentrates near the point of maximal curvature as follows: There exist constants
ε0, α2, C2,n ą 0 such that [16]

ż

distpx,Σqăε0
|uh,n|

2 exp
´α2|spxq|

2

h1{4

¯

dx ď C2,n , (2.5)

where spxq denotes the arc-length coordinate of the point ppxq P BΩ defined by
distpx, ppxqq “ distpx,Σq. The decay estimate (2.5) is a key ingredient in the
derivation of the asymptotics in (2.3), but is not sufficient to handle the case of
symmetries that we shall discuss below.

Let us examine the case where the curvature attains its maximum at several
points s1, ¨ ¨ ¨ , sN . For all j P t1, ¨ ¨ ¨ , Nu and m P N, we introduce

λ app
m,j phq “ Θ0h´ kmaxC1h

3
2 ` C1Θ

1
4
0 p2m´ 1q

c

´
3

2
k2psjqh

7
4 .

Consider a relabeling pmn, jnqně1 of pm, jqmě1,1ďjďN such that

λappm1,j1
ď λappm2,j2

ď ¨ ¨ ¨ .
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Then, (2.3) is replaced with

λnphq “ λappmn,jn
` oph

7
4 q . (2.6)

If additionally k2psj1q “ k2psj2q, then λ2phq ´ λ1phq “ oph
7
4 q and we loose the

information on the simplicity of the eigenvalues. Consequently, we need a more
detailed analysis in the case of symmetries, which will rely on an optimal tangential
decay estimate improving the one given in (2.5). We will discuss these decay
estimates later in Sec. 6. Our next step is the review of an important model with
a flat boundary.

2.2. The deGennes model: flat boundary. The analysis of the model case
where Ω “ R ˆ R` and B “ curlA “ 1 leads us naturally to the family
(parametrized by ξ P R) of harmonic oscillators (deGennes model)

hN rξs “ ´
d2

dτ 2
` pξ ` τq2, (2.7)

on the semi-axis R` with Neumann boundary condition at τ “ 0. Let us denote
by pµNj pξqqjě1 the sequence of eigenvalues of hN rξs. The deGennes constant is
then defined as follows

Θ0 “ inf
ξPR

µN1 pξq . (2.8)

There exists a unique minimum ξ0 ă 0 such that

Θ0 “ µN1 pξ0q .

Furthermore, ξ0 “ ´
?

Θ0, pµN1 q2pξq ą 0 and 1
2
ă Θ0 ă 1. Denoting by u0 the

positive and normalized ground state of hN rξ0s, we can introduce the constant C1

appearing in (2.3),

C1 “
|u0p0q|

2

3
. (2.9)

2.3. Symmetric domains and tunneling. We continue to work under the con-
ditions in (2.1) but we assume furthermore that the domain Ω is symmetric with re-
spect to an axis and the curvature of its boundary Γ has exactly two non-degenerate
maxima. More precisely, the hypotheses are (see Fig 1):

Assumption 2.1.
i) Ω is symmetric with respect to the y-axis.
ii) The curvature k on Σ attains its maximum at exactly two symmetric points

a1 “ pa1,1, a1,2q and a2 “ pa2,1, a2,2q with a1,1 ă 0 and a2,1 ą 0.
iii) Denoting by sr and s` the arc-length coordinates of a1 and a2 respectively, we

have k2psrq “ k2ps`q ă 0.

This situation induces a tunneling effect where the energy difference between
the ground and first excited states is exponentially small. The magnitude of this
splitting has been rigorously computed recently in [7].
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Let us introduce the following effective quantities:

V psq “
2C1pkmax ´ kpsqq

pµN1 q
2pξ0q

, (2.10)

and

Au “ exp

˜

´

ż

rsr,0s

pV
1
2 q1psq ` g
a

V psq
ds

¸

,

Ad “ exp

˜

´

ż

rs`,Ls

pV
1
2 q1psq ´ g
a

V psq
ds

¸

,

g “ pV 2psrq{2q
1
2 “ pV 2ps`q{2q

1
2 .

(2.11)

In the above formulae, 0 and L are the arc-length coordinates of the points of inter-
section between the y-axis and the curve Σ, with the convention that 0 represents
the point on the upper part of Σ (see Fig. 1).

Theorem 2.2 (Bonnaillie-Noël–Hérau–Raymond [7]). Suppose that (2.1), (2.2)
and Assumption 2.1 hold. Then the first and second eigenvalues of Ph satisfy, as
hÑ 0`,

λ2phq ´ λ1phq “ 2|wphq| ` oph
13
8 e´S{h

1
4
q ,

where

wphq “ pµN1 q
2
pξ0qh

13
8 π´

1
2 g

1
2

ˆ

´

Au

a

V p0qe´Su{h
1{4

eiLfphq ` Ad

a

V pLqe´Sd{h
1{4

e´iLfphq
¯

,

and
i. The potential V is introduced in (2.10);
ii. S is the Agmon distance between the wells,

S “ min pSu, Sdq , Su “

ż

rsr,s`s

a

V psq ds, Sd “

ż

rs`,srs

a

V psq ds ; (2.12)

iii. Au, Ad and g are defined in (2.11);
iv. fphq “ γ0{h` ξ0{h

1{2 ´ α0 with

γ0 “
|Ω|

|Σ|
,

where |Σ| is the length of Σ, and α0 is a constant dependent on Ω.

Theorem 2.2 can be extended to the situation of N ě 3 wells, which corresponds
to a domain having symmetry by rotation of angle 2π{N andN points of maximum
curvature (see Fig. 2).
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Figure 2. A symmetric domain with respect to the origin with
N “ 4 points of maximum curvature.

3. Magnetic steps

The tunneling effect in Theorem 2.2 is a consequence of the magnetic field and
imposing the Neumann boundary condition (if a magnetic field were not present,
the first eigenvalue would be simple and equal to 0, while the Neumann bound-
ary condition inforces bound states to concentrate near the boundary points of
maximum curvature thereby inducing a phenomenon of multiple wells).

The present contribution is concerned with the following question:
Can we observe a tunneling effect, similar to the one in Theorem 2.2, but induced
purely by the magnetic field ?
That is, we would like to construct an example where the tunneling is not a
consequence of imposing a boundary condition, but rather a consequence of the
nature of the magnetic field. We will give an affirmative answer by working in
the full plane R2 and considering a magnetic field with a discontinuity along a
smooth curve1 (the magnetic edge). In the case of a flat edge, we get a model in
the full plane which plays the role of the deGennes model for uniform magnetic
fields. When the edge is non-flat and has symmetries, we observe an interesting
tunneling effect.

3.1. A new model: flat edge. Let us recall the model in R2 whereB “ curlA “

1R`ˆR ` a1R´ˆR and a P r´1, 0q is a fixed constant2. We get in this case a family

1From a technical perspective, the magnetic discontinuity curve plays the same role in our
case as the boundary does in Theorem 2.2.

2It is important for us to have a ă 0, because in the opposite case, a P p0, 1q, µapξq defined
in (3.3) becomes a monotone increasing function with infξPR µapξq “ a. This implies that the
magnetic step will no longer attract the ground state, i.e. we do not expect localization near the
magnetic step in this case.
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of Schrödinger operators [28]

harξs “ ´
d2

dτ 2
` Vapξ, τq, (3.1)

on L2pRq, where ξ P R is a parameter and

Vapξ, τq “
`

ξ ` bapτqτ
˘2
, bapτq “ 1R`pτq ` a1R´pτq . (3.2)

We introduce the ground state energy of harξs,

µapξq “ inf
uPB1pRq,u‰0

}u1}2L2pRq ` }
?
Va u}

2
L2pRq

}u}2L2pRq
, (3.3)

along with the following constant

βa :“ inf
ξPR

µapξq “ µapζaq , (3.4)

where ζa ă 0, is the unique minimum of µap¨q. Let φa be the positive and L2-
normalized ground state of harζas. We have [5]

c2paq :“
1

2
µ2apζaq ą 0 (3.5)

and
|a|Θ0 ă βa ă minp|a|,Θ0q, φ1ap0q ă 0 p´1 ă a ă 0q . (3.6)

For a “ ´1, we have by a symmetry argument

β´1 “ Θ0 , ζ´1 “ ξ0 , φ´1pτq “ u0p|τ |q , (3.7)

thereby returning to the deGennes model introduced in Sec. 2.2.
Later on, the following negative constant will be of particular interest,

M3paq “
1

3

´1

a
´ 1

¯

ζaφap0qφ
1
ap0q ă 0. (3.8)

3.2. Curved edge and single well. We return to the operator Ph in (1.1). Here
and in the rest of the paper, we will work under the following assumption3

#

Ω1 Ă R2 is a simply connected open set, Ω2 “ R2
zΩ1,

Γ :“ BΩ1 is a C8 smooth closed curve.

+

(3.9)

and that the magnetic field is a step function (see Fig. 3)

B “ 1Ω1 ` a1Ω2 where ´ 1 ă a ă 0 . (3.10)

The operator Ph is then self-adjoint in L2pR2q with domain4

DompPhq “ tu P L2
pR2
q : ph∇´ iAqju P L2

pR2
q, j “ 1, 2u. (3.11)

3Our results are likely to hold when Γ is CN smooth for some integer N ě 1. We impose the
C8 hypothesis since we use psudo-differential calculus and sought errors of order Oph8q.

4Since A P H1
locpR2q, there is no jump across Γ of u and n ¨ ph∇´ iAqu, @u P DompPhq.
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Figure 3. The plane R2 “ Ω1 Y Ω2 Y Γ with the non symmetric
edge Γ “ BΩ1 dashed.

By Persson’s lemma [33], the essential spectrum of Ph is determined by the mag-
netic field at infinity (in our case it is equal to a), so

inf σ esspPhq “ |a|h .

Since βa ă minp|a|,Θ0q, bound states of Ph are localized near the edge [5]. More
precisely, for every n P N, there exist constants α, h0, Cn ą 0 such that,

ż

R2

`

|uh,n|
2
` h´1

|ph∇´ iAquh,n|2
˘

exp
´α distpx,Γq

h1{2

¯

dx ď Cn, (3.12)

for all h P p0, h0s, where uh,n is a normalized eigenfunction associated to the n’th
eigenvalue of Ph.

Remark 3.1 (The case of bounded domains). We can also consider the Dirichlet
or Neumann realizations of Ph in a bounded smooth domain Ω, in which case the
spectrum is purely discrete. Related to our setting is [3, Thm. 1.2] dealing with
a somehow different geometric condition, where the operator Ph is considered in
L2pΩq with Dirichlet boundary condition, Ω1 Ă Ω and Γ a smooth curve that meets
BΩ transversely, see Fig. 5. However, the proofs are not altered by considering the
new setting of Ph above (Ph in the full plane and closed curve Γ). The main reason
is that the property βa ă |a| for ´1 ă a ă 0 ensures the localization of the bound
states near the edge Γ.

So the following result essentially follows from [3, Thm. 1.2]:

Theorem 3.2. Assume that (3.9) and (3.10) hold and that the curvature k of Γ
has a unique non-degenerate maximum, i.e.

kmax :“ max
Γ

kpsq “ kp0q with k2 :“ k2p0q ă 0
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Then, for all n P N˚ the n-th eigenvalue λnphq of Ph, defined in (1.1), satisfies as
hÑ 0,

λnphq “ βah` kmaxM3paqh
3
2 ` p2n´ 1q

c

k2M3paqc2paq

2
h

7
4 `Oph

15
8 q,

where βa, c2paq and M3paq are introduced in (3.4), (3.5) and (3.8) respectively.

Looking more closely at Theorem 3.2, we observe that the third term in the ex-
pansion of λnphq is effectively given (up to the factor of h3{2) by the n-th eigenvalue
of the following 1D operator on L2

`

R{p2LZq
˘

,

L eff
h “

µ2apζaq

2

´

´h
1
2B

2
s ` Vapsq

¯

, Vapsq “
2M3paqpkpsq ´ kmaxq

µ2apζaq
, (3.13)

where L “ |Γ|{2 and |Γ| denotes the arc-length of Γ. Notice, that Va ě 0, due to
the sign of M3paq (see (3.8)). This point of view is important in order to discuss
the case where Γ has symmetries and the splitting of the eigenvalues is no more of
fractional order in h.

In the presence of several points of maximal curvature, a variant of Theorem 3.2
continues to hold but we may loose the information on the simplicity of the eigen-
values, exactly in the same manner observed for the Neumann problem (see (2.6)).

3.3. Symmetric edge and tunneling. Suppose that, in addition to (3.9) and
(3.10), the following holds (see Fig 1):

Assumption 3.3.

i) Ω1 is symmetric with respect to the y-axis.
ii) The curvature k on Γ attains its maximum at exactly two symmetric points

a1 “ pa1,1, a1,2q and a2 “ pa2,1, a2,2q with a1,1 ă 0 and a2,1 ą 0.
iii) Denoting by sr and s` the arc-length coordinates of a1 and a2 respectively, we

have k2psrq “ k2ps`q ă 0.

This is exactly the same geometric assumption on Ω as Assumption 2.1 for the
Neumann realization in L2pΩq, with the edge Γ playing the role of Σ, the boundary
of Ω.

The presence of a symmetric edge yields a symmetric potential, and consequently
two wells, in the effective operator introduced in (3.13), which in turn will induce
a tunneling effect whose order of magnitude can be measured by the following
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quantities (similarly to what we have seen in Theorem 2.2):

Aau “ exp

˜

´

ż

rsr,0s

pV
1
2
a q

1psq ` ga
a

Vapsq
ds

¸

,

Aad “ exp

˜

´

ż

rs`,Ls

pV
1
2
a q

1psq ´ ga
a

V psq
ds

¸

,

ga “ pV
2
a psrq{2q

1
2 “ pV 2a ps`q{2q

1
2 .

(3.14)

Up to leading order, the operator in (3.13) continues to be effective under the new
assumptions on the edge, modulo additional terms related to the circulation of the
magnetic field and the geometry.

Theorem 3.4. Suppose that Assumption 3.3 holds in addition to (3.9) and (3.10).
The first and second eigenvalues of Ph satisfy as hÑ 0`,

λ2phq ´ λ1phq “ 2|waphq| ` oph
13
8 e´S

a{h
1
4
q ,

where:

waphq “ µ2apζaqh
13
8 π´

1
2 g

1
2
a

ˆ

´

Aau
a

Vap0qe
´Sau {h

1{4

eiLfaphq ` Aad
a

VapLqe
´Sad {h

1{4

e´iLfaphq
¯

,

with µa and ζa introduced in Section 3.1, and

i. The potential Va is introduced in (3.13);
ii. Sa is the Agmon distance between the wells,

Sa “ min pSau, S
a
dq , Sau “

ż

rsr,s`s

a

Vapsq ds, Sad “

ż

rs`,srs

a

Vapsq ds ; (3.15)

iii. Aau, Aad and ga are defined in (3.14);
iv. faphq “ γ0{h` ζa{h

1{2 ´ α0paq with

γ0 “
|Ω1|

|Γ|
, (3.16)

and α0paq is a constant dependent on a and Ω1.

Theorem 3.4 is the analogue of Theorem 2.2 but for the situation where tunneling
is due to the discontinuity of the magnetic field (without the need for imposing a
Neumann boundary condition). As in the proof of Theorem 2.2 in [7], the proof
of Theorem 3.4 relies on an optimal tangential decay estimate of ground states.
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Figure 4. The domain Ω is split into two parts with the edge Γ
(dashed) is a closed curve.

Figure 5. The edge Γ (dashed) splits the domain Ω into two parts
and intersects the boundary BΩ transversely.

3.4. Bounded domains. Theorem 3.4 continues to hold if we consider the Dirich-
let or Neumann realization of the operator Ph in L2pΩq, where Ω is a domain with
a C2 boundary such that Ω1 Ă Ω (see Fig 4). Thanks to (3.6), bound states of
Ph are localized near Γ “ BΩ1, and the proof of Theorem 3.4 is not altered. We
can also modify the configuration of our domains Ω1 and Ω2 in (3.9) and still get
the tunneling effect but without oscillatory terms. Let Ω be a domain with a C1

boundary such that Ω “ Ω1 Y Ω2, where Ω1 and Ω2 are disjoint simply connected
open sets. We consider a magnetic field as in (3.10) and notice that the edge
Γ “ ΩXBΩ1 “ ΩXBΩ2 (see Fig 5). We assume that Γ is a smooth curve and con-
sider the Dirichlet5 realization of Ph in L2pΩq. This is the situation considered in
[3]. Now we assume that the curvature k along Γ has a non-degenerate maximum

5The Neumann realization leads to a completely different behavior, reminiscent of domains
with corners [1].
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attained at two points, with arc-length coordinates s` ă 0 and sr “ ´s`, and that
it is an even function in a neighborhood of rs`, srs. In this situation, the splitting
between the first eigenvalues is given as follows:

λ2phq ´ λ1phq “ 2|waphq| ` oph
13
8 e´S

a{h
1
4
q,

where
waphq “ 2µ2apζaqh

13
8 π´

1
2 g

1
2
a Aa

a

Vap0q e
´Sa{h1{4 ,

and

Aa “ 2 exp

˜

´

ż

rs`,srs

pV
1
2
a q

1psq ´ ga
a

Vapsq
ds

¸

, Sa “

ż

rs`,srs

a

V psqds.

4. Reduction to a neighborhood of the edge

It will be convenient to work in Frénet coordinates, ps, tq, along the edge Γ, valid
in a neighborhood of Γ of the form

Γpεq “ tx P R2 : distpx,Γq ă εu pε ą 0q . (4.1)

Let us briefly recall these coordinates. Consider an arc-length parameterization of
Γ , M : p´L,Ls Ñ Γ, so that (see Assumption 3.3)

Mps`q “ a1, Mpsrq “ a2, 0 ă s` ă L, ´L ă sr ă 0 ,

and

ΓX tpx, yq P R2
| x “ 0u “ tMp0q “: p0, y0q,MpLq “: p0, yLqu with y0 ą yL .

Let npsq be the unit normal to Γ pointing inward to Ω1 (see Fig. 1), tpsq “ 9npsq
the unit oriented tangent, so that detptpsq,npsqq “ 1. Let us represent the torus
R{2LZ by the interval p´L,Ls. We can pick ε0 ą 0 such that

Φ : R{p2LZq ˆ p´ε0, ε0q Q ps, tq ÞÑMpsq ` tnpsq P Γpε0q

is a diffeomorphism whose Jacobian is

aps, tq “ 1´ tkpsq ,

with kpsq the curvature at Mpsq, defined by :npsq “ kpsqnpsq. The Hilbert space
L2pΓpε0qq is transformed to the weighted space

L2
`

R{2LZˆ p´ε0, ε0q; a dsdt
˘

and the operator Ph is transformed into the following operator (after a gauge
transformation pu,Aq Ñ pv “ eiφ{hu,A1 “ A ´ ∇φq to eliminate the normal
component of A, see [17, App. F]):

P̃h :“ ´h2a´1
BtaBt

` a´1

ˆ

´ihBs ` γ0 ´ baptqt`
k

2
baptqt

2

˙

a´1

ˆ

´ihBs ` γ0 ´ baptqt`
k

2
baptqt

2

˙
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where baptq is introduced in (3.2) and γ0 is the circulation introduced in (3.16).
Following the presentation of [7] (see also references therein), it is convenient

to introduce a truncated version of the operator P̃h so that it can be defined on
R{2LZ ˆ R instead of R{2LZ ˆ p´ε0, ε0q. This will be useful when rescaling the
t variable. What is handy in this situation is that the actual bound states of the
operator Ph decay exponentially away from the edge, at the length scale ~ :“ h1{2,
see (3.12). This motivates the change of variables, t “ ~τ and s “ σ, that will
allow the same spectral reduction as in [7, Prop. 2.7]. We will skip the details
which are the same as in [7].

From now on we set

µ “ h
1
4
`η for a fixed η P p0,

1

4
q (4.2)

and we introduce the function

cµpτq “ cpµτq , (4.3)

where c P C8c pRq satisfies c “ 1 on r´1, 1s and c “ 0 on Rzp´2, 2q. Consider the
new weight term

ãhpσ, τq “ 1´ h1{2cµpτqτkpσq ,

and the self-adjoint operator Ñh on the Hilbert space L2pR{2LZˆ R; ãhdσdτq,

Ñh “ ´ã
´1
h Bτa~Bτ

` ã´1
h

ˆ

´ih1{2
Bσ ` h

´1{2γ0 ´ baτ ` h
1{2cµ

k

2
baτ

2

˙

ˆ ã´1
h

ˆ

´ih1{2
Bσ ` h

´1{2γ0 ´ baτ ` h
1{2cµ

k

2
baτ

2

˙

, (4.4)

with domain

DompÑhq “ tu P L
2
pR{2LZˆ Rq | B2

τu P L
2
pR{2LZˆ Rq,

p´ih1{2
Bσ ` h

´1{2γ0 ´ baτq
2u P L2

pR{2LZˆ Rqu.

We have now the following spectral reduction6:

Proposition 4.1. Let a P p´1, 0q and Sa be the Agmon distance introduced in
(3.15). There exist K ą Sa, C, h0 ą 0 such that, for all h P p0, h0q, we have

λnphq ´ Ce
´K{h

1
4
ď hλnpÑhq ď λnphq ` Ce

´K{h
1
4 ,

where λnphq and λnpÑhq are the n-th (min-max) eigenvalues of the operators Ph
and Ñh respectively.

6The eigenvlaues of the operator Ñh depend on η in (4.2). However, the estimates in Propo-
sition 4.1 hold uniformly with respect to η P p0, εq for any fixed ε P p0, 14 q.
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Looking at the operator in (4.4), the effective semi-classical parameter is ~ “ h1{2

(this is the parameter appearing in front of Bσ). So with

~ “ h
1
2 , µ “ ~

1
2
`2η for a fixed η P p0,

1

4
q , (4.5)

we introduce the new weight term

a~pσ, τq “ 1´ ~cµpτqτkpσq ,
and the self-adjoint operator N~ on the Hilbert space L2pR{2LZ ˆ R; a~dσdτq,
which is nothing but the operator in (4.4) but with a change of parameter according
to (4.5),

N~ “ ´a
´1
~ Bτa~Bτ (4.6)

` a´1
~

ˆ

´i~Bσ ` ~´1γ0 ´ baτ ` ~cµ
k

2
baτ

2

˙

a´1
~

ˆ

ˆ

´i~Bσ ` ~´1γ0 ´ baτ ` ~cµ
k

2
baτ

2

˙

.

The domain of the operator N~ is

DompN~q “ tu P L
2
pΓˆ Rq | B2

τu P L
2
pR{2LZˆ Rq,

p´i~Bσ ` ~´1γ0 ´ baτq
2u P L2

pR{2LZˆ Rqu.
With Proposition 4.1 in hand, it is enough to compute the leading order term of
ν2p~q´ ν1p~q to prove Theorem 3.4, where, for n ě 1, we denote by νnp~q the n’th
min-max eigenvalue of N~.

5. Single well and WKB construction

We will adjust the edge Γ so that we only have a single point of maximum
curvature, sr or s`. This procedure will give us two new operators, the “right well”
and “left well” operators, N~,r,γ0 and N~,`,γ0 respectively. The same procedure
appears, for similar problems in the context of geometrically induced tunneling
effects [20, 31], but we follow here [7, Sec. 2.4] which is slightly different, but more
convenient for dealing with the symbol of the operator later on.

5.1. Right well operator. We present the construction for the right well opera-
tor, N~,r,γ0 and deduce the other one by symmetry. Let us fix η̂ as follows

0 ă η̂ ă min
´1

4
,
L

4

¯

where L “
|Γ|

2
. (5.1)

First, we identify Γ with ps` ´ 2L, s`s (by periodicity and translation of the s
variable), then we extend the curvature k to a function kr on R as follows:

kr “ k on I2η̂,r :“ ps` ´ 2L` η̂, s` ´ η̂q,

kr “ 0 on p´8, s` ´ 2Ls Y rs`,`8q , (5.2)
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and kr has a unique non-degenerate maximum at sr. Consequently, kr satisfies
(2.4).

We consider now the operator in L2pR2; a~,rdσdτq,

N~,r,γ0 “ ´a
´1
~,rBτa~,rBτ

` a´1
~,r

ˆ

´i~Bσ ` ~´1γ0 ´ baτ ` ~cµ
kr
2
baτ

2

˙

a´1
~,r

ˆ

ˆ

´i~Bσ ` ~´1γ0 ´ baτ ` ~cµ
kr
2
baτ

2

˙

(5.3)

where

a~,rpσ, τq “ 1´ ~cµpτqτkrpσq . (5.4)

Since, kr satisfies (2.4), we have, for an arbitrarily fixed n P N (with βa, c2paq and
M3paq from (3.4), (3.5) and (3.8)),

λnpN~,r,γ0q “ βah` kmaxM3paqh
3
2 ` p2n´ 1q

c

k2M3paqc2paq

2
h

7
4 `Oph

15
8 q . (5.5)

We are now in a simply connected domain, so the operators N~,r,γ0 and N~,r,0 are
unitarily equivalent (we can gauge away the flux term N~,r,γ0). Denote by u~,r a
normalized ground state ofN~,r,0 (the operator without flux term), a corresponding
normalized ground state of N~,r,γ0 is given by:

qφ~,rpσ, τq “ e´iγ0σ{~
2

u~,rpσ, τq. (5.6)

5.2. Left well operator. Using the symmetry operator

Ufpσ, τq :“ fp´σ, τq ,

we can define the left well operator on L2pR2; a~,`pσ, τq by :

N~,`,γ0 “ U´1N~,r,γ0U , (5.7)

where

a~,`pσ, τq “ a~,rp´σ, τq .

The left and right operators have the same spectrum, and a normalized ground
state of N~,`,γ0 is

qφ~,` :“ U qφ~,r “ e´iγ0σ{~
2

u~,`pσ, τq (5.8)

where u~,` “ Uu~,r.
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5.3. WKB expansions. We focus on the right well operator and construct an
approximate eigenvalue and an approximate ground state by WKB expansions,
involving formal series in the sense of [8, Notation 1.13]. The construction can be
translated to the left operator by symmetry.

Let us introduce the Agmon distance

Φrpσq “

ż

rsr,σs

b

Va,rpsqds (5.9)

related to the “right well” potential7

Va,rpσq “
2M3paqpkrpsq ´ kmaxq

µ2apζaq
(5.10)

Theorem 5.1. There exist two sequences pbjqjě0 Ă DompN~,rq, pδjqjě0 Ă R, a
family of functions pΨ~,rq~Pp0,~0s Ă L2pR2q and a family of real numbers pδp~qq~Pp0,~0s
such that

eΦrpσq{~
1
2 e´iσζa{~Ψ~,rpσ, τq „

~Ñ0
~´

1
8

ÿ

jě0

bjpσ, τq~
j
2 , (5.11)

δp~q „
~Ñ0

ÿ

jě0

δj~
j
2 ,

and
eΦrpσq{~

1
2
pN~,r ´ δp~qqΨ~,r “ Op~8q . (5.12)

Furthermore

δ0 “ βa , δ1 “ 0, δ2 “M3paqkmax, δ3 “

c

k2M3paqc2paq

2
,

b0pσ, τq “ f0pσqφapτq, (5.13)
and f0 solves the effective transport equation

µ2apζaq

2
pΦ1rBσ ` BσΦ1rqf0 ` iF pσqf0 “

c

k2M3paqc2paq

2
f0 , (5.14)

where F is a smooth real-valued function, introduced in (5.15), such that F psrq “ 0.

Remark 5.2. Let us explain precisely how the asymptotics in Theorem 5.1 are
interpreted. For every N ě 1 we introduce the function ψN~,rpσ, τq and the real
number δNp~q as follows:

ΨN
~,rpσ, τq :“ e´Φrpσq{~

1
2 eiσζa{~ ~´

1
8

N
ÿ

j“0

bjpσ, τq~
j
2 , δNp~q “

N
ÿ

j“0

δj~
j
2 .

Then (5.12) means

eΦrpσq{~
1
2
›

›pN~,r ´ δp~qqΨN
~,r
›

›

L2pRτ q
“ Op~Nq

7Recall from (3.8) that M3paq ă 0, so Va,r ě 0.



20 SØREN FOURNAIS, BERNARD HELFFER, AND AYMAN KACHMAR

locally uniformly with respect to σ.

Proof of Theorem 5.1. We work in an arbitrary bounded set of R2, so, in the below
computations, we take cµ “ 1 in (5.3) at the cost of an error Oph8q. That is
possible because our constructions will involve functions decaying exponentially
with respect to the normal variable τ .

Let us introduce the operator

pN~,r :“ eΦrpσq{~
1
2 eiσζa{~N~,re

´iσζa{~e´Φrpσq{~
1
2 .

It admits the formal expansion
pN~,r “ L0 ` ~1{2L1 ` ~L2 ` ~3{2L3 ` ~2L4 ` ¨ ¨ ¨

where

L0 “ ´B
2
τ ` pζa ` baτq

2

L1 “ ´2pζa ` baτqiΦ
1
rpσq

L2 “ krBτ ´ 2pζa ` baτq
´

´ iBσ `
kr
2
baτ

2
¯

´ Φ1rpσq
2
` 2krτpζa ` baτq

2

L3 “

´

´ iBσ `
kr
2
baτ

2
¯

iΦ1pσq ` iΦ1rpσq
´

´ iBσ `
kr
2
baτ

2
¯

´ 4Φ1rpσqτkrpζa ` baτq

L4 “ ´B
2
σ ` 2k2

rτ
2
pζa ` baτq

2

´ pζa ` baτq
”´

´ iBσ `
kr
2
baτ

2
¯

kr ` kr

´

´ iBσ `
kr
2
baτ

2
¯ı

...

Let bpσ, τ ; ~q :“
ř

jě0 bjpσ, τq~
j
2 and let us formally solve the equation

`

pN~,r ´ δp~q
˘

bpσ, τ ; ~q “ Op~8q.

Expanding the foregoing equation in powers of ~1{2, the vanishing of the coefficient
of each ~j{2, j ě 0, yields the following equations

pL0 ´ δ0qb0 “ 0

pL0 ´ δ0qb1 “ pδ1 ´ L1qb0

pL0 ´ δ0qb2 “ pδ2 ´ L2qb0 ` pδ1 ´ L1qb1

pL0 ´ δ0qb3 “ pδ3 ´ L3qb0 ` pδ2 ´ L2qb1 ` pδ1 ´ L1qb2

...

We will find solutions to these equations one by one. The first equation leads us
to choose δ0 “ ζa and b0pσ, τq “ f0pσqφapτq, where f0pσq is to be determined at a
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later stage. The function f0 will actually be free untill the first equation involving
L3.

For the equation for b1, we determine δ1 by assuming that pδ1´L1qb0 is orthog-
onal to φa in L2pRq. Then, we take the inner product with φa in L2pRq, use (9.2)
and get

δ1 “ 0, b1pσ, τq “ 2iΦ1rpσqf0pσqRa

`

pζa ` baτqφa
˘

,

where Ra the regularized resolvent introduced in (9.1). Since we are applying Ra

on functions orthogonal to φa, we can slightly abuse notation and say that it is
equal to pL0 ´ δ0q

´1.
The equation for b2 will determine δ2. This equation can be solved if pδ2 ´

L2qb0 ´ L1b1 is orthogonal to φa in L2pRq, which we assume henceforth. Taking
the inner product with φa in L2pRq, using (9.3) and Remark 9.1, we get

δ2f0pσq `
µ2apζaq

2
Φ1rpσq

2f0pσq ´M3paqkrpσqf0pσq “ 0,

since

2

ż

R
τpζa ` bapτqτq

2
|φapτq|

2 dτ ´

ż

R
bapτqτ

2
pζa ` bapτqτq|φapτq|

2 dτ “M3paq .

So, we choose δ2 “ krp0q “ kmax, and the foregoing equation involving f0 is valid
everywhere in light of (5.9), independently of the choice of f0. At the same time,
we choose b2 as follows:

b2pσ, τq “ pL0 ´ δ0q
´1
´

pδ2 ´ L2qb0 ´ L1b1

¯

.

From the equation of b3, we will determine δ3 and f0pσq. Taking the inner product
with φa in L2pRq and using (9.3), we get
A

pδ3 ´ L3qb0 ` pδ2 ´ L2qb1 ` pδ1 ´ L1qb2, φa

E

L2pRq
“

´

δ3 ´
µ2pζaq

2

`

Φ1rBσ ` BσΦ1r
˘

¯

f0pσq ` iF pσqf0pσq,

where F pσq is the real-valued function

F pσq “ |Φ1rpσq|
2

ż

R
gpσ, τqφapτqdτ, (5.15)

and

gpσ, τq “ pL0 ´ δ0q
´1
`

g1pσ, τq ` g2pσ, τq
˘

g1pσ, τq “ ´
´

kmax ` krpσq
`

ζa ` baτq
2
´ bapζa ` baτqτ

2
˘

´ |Φpσq|2
¯

φapτq

` krpσqφ
1
apτq

g2pσ, τq “ ´4|Φrpσq|
2
pL0 ´ δ0q

´1
`

pζa ` baτqφapτq
˘

.
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Since Φ1rpsrq “ 0, we observe that F psrq “ 0. We can solve the equation of b3 if
pδ3 ´ L3qb0 ` pδ2 ´ L2qb1 ` pδ1 ´ L1qb2 is orthogonal to φa in L2pRq, which yields
the following equation for f0:

´

δ3 ´
µ2apζaq

2

`

Φ1rBσ ` BσΦ1r
˘

¯

f0pσq ` F pσqf0pσq “ 0.

Since F psrq “ Φ1rpsrq “ 0, the foregoing equation has a solution satisfying f0psrq ­“

0 if δ3 “
µ2apζaq

2
Φ2rpsrq, thereby determining δ3 (from (5.10)) and f0. The procedure

can be continued to any preassigned order. �

Remark 5.3 (Solving (5.14) & normalization of Ψ~,r).
In (5.14), we make the ansatz f0pσq “ eiα0pσqf̃0pσq, with f̃0 and α0 are real-valued

functions such that f̃0p0q ą 0. Then we get from (5.14):

µ2apζaq

2

`

Φ1rBσ ` BσΦ1r
˘

f̃0pσq “

c

k2M3paqc2paq

2
f0pσq

and
µ2apζaqα

1
0pσqΦ

1
rpσq ` F pσq “ 0 .

This will determine f̃0pσq uniquely up to the choice of f̃0p0q, and also α0pσq
uniquely up to an additive constant (see [7, Eq. (2.14) & Rem. 2.9]). We choose
f̃p0q “

`

ga
π

˘1{4
pAauq

1{2 which yields that the WKB solution Ψ~,r in Theorem 5.1 is
almost normalized, }Ψ~,r} „ 1. The constant αa appearing in Theorem 3.4 is

αa “
α0p0q ´ α0p´Lq

L
. (5.16)

6. Optimal tangential Agmon estimates

The challenge of obtaining optimal decay estimates of bound states of the Neu-
mann magnetic Laplacian matching with the WKB solutions was recently taken
up in [7] by introducing pseudo-differential calculus with operator-valued symbols.
Fortunately, the method is quite general and can handle our situation of magnetic
steps.

6.1. A tangential elliptic estimate. We work with the single ‘right well’ flux
free operator, N~,r :“ N~,r,0, introduced in (5.3). For the sake of simplicity, we
will omit the reference to ‘right well’ in the notation and write N~ and k instead
of N~,r and kr.

The optimal estimates, on the bound states of N~, will hold in spaces with
an exponential weight, defined via a sub-solution of an effective eikonal equation.
More precisely, we consider a family of Lipschitz functions pϕ~qhPp0,1s Ă CpR;R`q
satisfying the following hypothesis:

Assumption 6.1. For all M ą 0 there exist ~0, C,R ą 0 such that, for all
~ P p0, ~0q, the function ϕ :“ ϕ~ satisfies
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(i) for all σ P R, vpσq ´ µ2apζaq
2

ϕ1pσq2 ě 0,
(ii) for all σ such that |σ ´ sr| ě R~ 1

2 , vpσq ´ µ21pξ0q

2
ϕ1pσq2 ěM~,

where vpσq “M3paqpkpσq ´ kmaxq.

In the sequel, to lighten the notation, we write ϕ instead of ϕ~. We consider the
conjugate operator, with the same domain as N~, and defined by:

N ϕ
~ “ eϕ{~

1
2N~e

´ϕ{~
1
2
“ ´a´1

~ Bτa~Bτ ` a
´1
~ T ϕ

~ a
´1
~ T ϕ

~ (6.1)

where

T ϕ
~ :“

´

´i~Bσ ´ baτ ` i~
1
2ϕ1 ` ~cµ

κr
2
baτ

2
¯

Theorem 6.2 (Bonnaillie-Noël–Hérau–Raymond). Let c0 ą 0 and χ0 P C
8
c pRq be

1 in a neighborhood of 0. Under Assumption 6.1, there exist c, ~0 ą 0 such that
for all ~ P p0, ~0q, z P rβa `M3paqkmax~ ´ c0~2, βa `M3paqkmax~ ` c0~2s and all
ψ P DompN ϕ

~ q,

c~2
}ψ} ď }xτy6pN ϕ

~ ´ zqψ} ` ~2
}χ0p~´

1
2R´1

pσ ´ srqqψ} ,

and

c~2
}~2
B

2
σψ} ď }xτy

6
pN ϕ

~ ´ zqψ} ` ~2
}χ0p~´

1
2R´1

pσ ´ srqqψ} ,

where xτy “ p1` τ 2q1{2.

Modulo the decomposition of the symbol of the operator N ϕ
~ and its parametrix,

the proof of Theorem 6.2 is the same as that of [7, Thm. 5.1]. In the sequel, we
give only the new ingredients.

Let us write

N ϕ
~ u “ Op W

~ pn~qu “
1

p2π~q

ĳ

R2

eipσ´sq¨ξ{~n~

´σ ` s

2
, ξ
¯

upsqdsdξ (6.2)

where the foregoing quantization formula is formal, unless we consider it on, say,
for u in the space S

`

R; pSpRq
˘

where

pSpRq “ tv P H2
pRqq | v|R˘ P SpR˘qu. (6.3)

The operator-valued symbol n~ can be decomposed as follows

n~ “ n0 ` ~
1
2n1 ` ~n2 ` ~

3
2n3 ` ~2r̃~,
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where
n0pσ, ξq “ ´B

2
τ ` pξ ´ bapτqτq

2 ,

n1pσ, ξq “ 2ipξ ´ bapτqτqϕ
1
pσq ,

n2pσ, ξq “ ´ϕ
1
pσq2 ` κcµpτqBτ ` cµκpσqpξ ´ bapτqτqbapτqτ

2

` 2κpσqτcµpτqpξ ´ baτq
2
` κpσqτc1µpτq ,

Re n3pσ, ξq “ 0 ,

r̃~pσ, ξq “ Opτ 4, pξ ´ bapτqτq
2τ 2, pξ ´ baτqτ, τ

2
Bτ q.

(6.4)

The notation O is defined in [7, Notation 3.1]:
For differential operators A,B,C, ¨ ¨ ¨ on Rτ , writing A “ OpB,C, ¨ ¨ ¨ q means the
following:

D c ą 0, @u P pSpRq, }Au}L2pRq ď c
`

}Bu}L2pRq ` }Cu}L2pRq ` ¨ ¨ ¨
˘

, (6.5)

where pSpRq is the space introduced in (6.3) and the constant c is independent of
A,B,C, ¨ ¨ ¨ (in particular, in (6.4), the estimate is uniform with respect to pσ, ξq).

Let us introduce a modified symbol by truncating the frequency variable. Recall
that ζa ă 0 is the unique minimum of the model operator with a flat edge (see
(3.4)). It will be convenient to introduce

ζ̂a :“ ´ζa ą 0 . (6.6)

Pick a smooth bounded and increasing function χ P C8pRq such that χpξq “ ξ for
ξ P p´ζ̂a{2, ζ̂a{2q, and η` :“ limξÑ`8 χpξq P p0, ζ̂aq. We introduce the function

χ1pξq “ ζ̂a ` χpξ ´ ζ̂aq, (6.7)

and the operator

Op W
~ pp~q where p~pσ, ξq :“ n~pσ, χ1pξqq. (6.8)

Now consider the Grushin problem defined by the matrix operator

Pzpσ, ξq “
ˆ

p~ ´ z ¨vξ
x¨, vξy 0

˙

P S
`

R2
σ,ξ,Lp Dompp0q ˆ C, L2

pRq ˆ Cq
˘

(6.9)

where S
`

R2
σ,ξ,Lp Domp0 ˆ C, L2pRq ˆ Cq

˘

is defined in [7, Notation 3.1],

p0pσ, ξq “ ´B
2
τ ` pχ1pξq ´ baτq

2 (6.10)

is the principal symbol of p~ and vξ is the positive normalized ground state of p0,
with corresponding eigenvalue µ1pχ1pξqq “ µap´χ1pξqq (see (3.3)).

From the decomposition of n~, we can decompose Pz as follows:
Pz “ P r3sz ` ~2R~, P r3sz “ P0,z ` ~1{2P1 ` ~P2 ` ~3{2P3,

where

P0,z “

ˆ

p0 ´ z ¨vξ
x¨, vξy 0

˙

, @j ě 1, Pj “
ˆ

pj 0
0 0

˙

, R~ “

ˆ

r~ 0
0 0

˙

,
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and
p1 “ 2ipχ1pξq ´ baτqϕ

1,

p2 “ ´ϕ
12
` κcµBτ ` cµκpχ1pξq ´ baτqbaτ

2
` 2κτcµpχ1pξq ´ baτq

2

` κτc1µ pτq ,

Re p3 “ 0,

r̃~ “ Opτ 4, τ 2
Bτ q,

where Opτ 4, τ 2Bτ q is understood in the sense of (6.5).
Then one can construct a parametrix of Op W

~ pPzq (see [7, Thm. 3.5] for details)

Lr3sz “

ˆ

qz q`z
q´z q˘z

˙

, Op W
~ pLr3sz q Op W

~ pPzq “ Id` ~2Opxτy6q,

where
q˘z “ q˘0,z ` ~1{2q˘1,z ` ~q˘2,z ` ~3{2q˘3,z ,

with
q˘0,z “ z ´ µ1pχ1pξqq,

q˘1,z “ ´iϕ
1
pσqBξµ1pχ1pξqq,

q˘2,z “ kpσqC1pξ, µq ` C2pξ, zqϕ
1
pσq2,

Re q˘3,z “ 0,

(6.11)

and
C1pξ, µq “ ´ x

`

cµBτ ` cµpχ1pξq ´ baτqbaτ
2
` 2τcµpχ1pξq ´ baτq

2
˘

vξ, vξy

´ xτc1µBτ
˘

vξ, vξy,

C2pξ, µq “1´ xpp0 ´ zq
´1ΠKpχ1pξq ´ baτqvξ, pχ1pξq ´ baτqvξy.

(6.12)

Here Π “ Πξ is the orthogonal projection on vξ and ΠK “ Id´ Π. Note that, by
(6.6), Remark 9.1 and (9.3),

C1pζ̂a, 0q “ ´M3paq, C2pζ̂a, βaq “
µ2apζaq

2
.

Now we argue like [7, Prop 4.4]. Recall that |z ´ βa ´M3paqkmax~| ď c0~2 and
that µÑ 0 as hÑ 0. Expanding C1pξ, µq and C2pξ, zq near ξ “ ζ̂a, we get

C1pξ, µq “ ´M3paqkmax~`O
`

~minp1, |ξ ´ ζ̂a|q
˘

,

C2pξ, zq “
µ2apζaq

2
`O

`

~minp1, |ξ ´ ζ̂a|q
˘

.

Furthermore, since µ1apζaq “ 0 and µ2apζaq ą 0, there exists a constant c1 ą 0 such
that

µpχ1pξqq ´ z ě c1 minp1, |ξ ´ ζ̂a|
2
q.

Now we have the following lower bound

´ Re q˘z ě ~pvpσq ´ C2pζ̂a, βaqϕ
1
pσq2

˘

´ C~2,
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where vpσq is introduced in Assumption 6.1. We apply the Fefferman-Phong in-
equality [12, Thm. 3.2] (see also [37, Thm. 4.3.2]) on the symbol

apσ̂, ξ̂; ~q :“ A p~1{2σ̂, ~1{2ξ̂; ~q,

where

A pσ, ξ; ~q :“ ´ Re q˘z pσ, ξq ´ ~pvpσq ´ C2pζ̂a, βaqϕ
1
pσq2

˘

´ C~2.

In that way, we have

´ Rex Op W
~ pq

˘
z qψ, ψy ě ~

ż

R

ˆ

vpσq ´
µ2apζaq

2
|ϕ1pσq|2´C~

˙

|ψ|2dσ,

from which we get the following estimate (see [7, Thm. 4.2])

cR2~2
}ψ} ď }p Op W

~ pp~q ´ zqψ} ` CR~2
}χ0p~´1{2R´1

pσ ´ srqqψ} ` ~2
}τ 6ψ} ,

which is almost the inequality in Theorem 6.2, but with the operator Op W
~ pp~q

instead of the operator N ϕ
~ “ Op W

~ pn~q. The only difference between the two
operators is the frequency cut-off in the symbol, which can be removed following
the same argument in [7, Thm. 5.1].

6.2. Applications. By appropriate choices of the function ϕ in Theorem 6.2, we
get optimal tangential estimates for the bound states of the ‘single’ and ‘double’
well operators. For details, see [7, Corol. 5.7, Corol. 6.1&Prop. 6.2].

Proposition 6.3 (Decay of bound states). Let θ, ε P p0, 1q and K ą 0. There
exist C, ~0 ą 0 such that for all ~ P p0, ~0q, the following is true.

If λ eigenvalue of the operator N~ in (4.6), |λ´ pβa `M3paqkmax~q| ď K~2 and
u P DompN~q is an eigenfunction associated to λ, then

ż

r´L,LqˆR
e2ϕ{~

1
2
|u|2dsdτ ď Ceε{~

1
2
}u}2L2pr´L,LqˆRq .

where
ϕ “ p1´ θq1{2 minpΦ̃r, Φ̃`q ,

and Φ̃r, Φ̃` are 2L-periodic functions satisfying, for η sufficiently small,

Φ̃rpσq |´Lďσďs`´η “ Φrpσq :“

d

´2M3paq

µ2apζaq

ż

rsr,σs

a

kmax ´ kpsq ds,

Φ̃`pσq |´Lďσďsr´η “ Φ`pσq :“

d

´2M3paq

µ2apζaq

ż

rs`,σs

a

kmax ´ kpsq ds .

Remark 6.4. The estimate in Proposition 6.3 continues to hold if λ is an eigen-
value of the right or left well operator, N~,r or N~,`, and u is a corresponding
eigenfunction.
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Returning to the ‘one well’ operators, N~,r,γ0 and N~,`,γ0 introduced in (5.3) and
(5.7) respectively, we get from Proposition 6.3 and the min-max principle, the
following rough estimate, important for the analysis of tunneling later on,

µ sw
1 p~q ´ Õpe´Sa{

?
~
q ď ν1,ap~q ď ν2,ap~q ď µ sw

1 p~q ` Õpe´Sa{
?
~
q, (6.13)

where Sa is introduced in (3.15),

µ sw
1 p~q “ inf σpN~,r,γ0q “ inf σpN~,r,γ0q ,

pνj,ap~qqjě1 is the sequence of eigenvalues of the operator N~, and the notation
Õpe´Sa{

?
~q means

Opepε´Saq{
?
~
q for any fixed ε ą 0. (6.14)

The analysis of the tunneling requires an explicit approximation of the ground
state of the single well operators. Recall the Agmon distance Φr and the WKB
solution Ψ~,r introduced in (5.9) and Theorem 5.1 respectively. Consider the flux
free ‘right well’ operator N~,r :“ N~,r,0. By (5.5), the low lying eigenvalues of
this operator are simple; we denote by Πr the orthogonal projection on its first
eigenspace. By [7, Prop. 6.3], it results from Theorem 6.2:

Proposition 6.5 (WKB approximation). We have

}ψ~,r ´ Πrψ~,r}L2pR2q “ Op~8q
and

xτy eΦr{
?
~
pΨ~,r ´ u~,rq “ Op~8q in C 1

pK;L2
pRqq, (6.15)

where K Ă I2η̂,r :“ ps` ´ 2L` η̂, s` ´ η̂q is a compact set,

ψ~,rpσ, τq :“ χη̂,rpσqΨ~,τ pσ, τq ,

and χη̂,r is a cut-off function supported in Iη̂,r such that χη̂,r “ 1 on I2η̂,r.

7. Interaction matrix and tunneling

We return to the operator N~ introduced in (4.6). In order to estimate the
splitting between the first and second eigenvalues, ν2p~q ´ ν1p~q, we will write the
matrix of this operator in a specific basis of

E “ ‘2
i“1 Ker

`

N~ ´ νip~q
˘

.

Let Π be the orthogonal projection on E. We introduce the two functions

f~,r “ χη̂,rφ~,r, f~,` “ χη̂,`φ~,`,

where χη̂,r is the cut-off function introduced in Proposition 6.5, χη̂,` “ Uχη̂,r
is defined by the symmetry operator (see Sec. 5.2), φ~,r, φ~,` enjoy periodicity
properties and are defined by inspiration from the functions in (5.6) and (5.8). In
fact, φ~,rpσ, τq need to be defined in the support of χη̂,r. Starting on r´L, s`´ η̂

2
qˆR,

we take φ~,rpσ, τq the same as the function in (5.6); on rs` ` η̂
2
, Lq ˆ R, we do a
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change of variable, and modify the function in (5.6) so that its module satisfies a
periodic boundary condition on ˘L. More precisely, we have

φ~,rpσ, τq “

#

e´iγ0σ{~
2
u~,rpσ, τq, if ´ L ď σ ď s` ´

η̂
2
,

e´iγ0pσ´2Lq{~2u~,rpσ ´ 2L, τq, if s` ` η̂
2
ă σ ă L,

(7.1)

and so f~,r is well defined on r´L,Lq. In a similar fashion,

φ~,`pσ, τq “

#

e´iγ0pσ`2Lq{~2u~,`pσ ` 2L, τq, if ´ L ď σ ď sr ´
η̂
2
,

e´iγ0σ{~
2
u~,`pσ, τq, if sr ` η̂

2
ă σ ă L,

(7.2)

and f~,` is well defined on r´L,Lq.
Also we introduce the following actual bound states by projecting on the eigenspace

E,
g~,r “ Πf~,r, g~,` “ Πf~,` .

We use the notation Õ in (6.14). By Proposition 6.3, we have (see [7, Sec. 7.1]
and [9, Sec. 3] for details)

}f~,r}
2
“ 1` Õpe´2Sa{

?
~
q, }f~,`}

2
“ 1` Õpe´2Sa{

?
~
q,

xf~,r, f~,`y “ Õpe´Sa{
?
~
q,

and
}g~,α ´ f~,α} ` }Bτ pg~,α ´ f~,αq} “ Õpe´Sa{

?
~
q α P tr, `u.

Now, we construct an orthonormal basis B~ :“ tg̃~,r, g̃~,`u of E from tg~,r, g~,`u by
the Gram-Schmidt process. Let M be the matrix of N~ relative to the basis B~.
Then

ν2p~q ´ ν1p~q “ 2|w`,r| ` Õpe´2S{
?
~
q , w`,r “ xr~,`, f~,ry, (7.3)

where
r~,` “ pN~,` ´ µ

sw
p~qqf~,`.

All we have to do now is the computation of w`,r by the WKB approximation
in Proposition 6.5. By [7, Lem. 7.1](which is essentially an integration by parts
formula)

w`,r “ i~
ż

R
a´1
~

`

φ~,`D~φr ` rD~φ~,`sφ~,r
˘

p0, τqdτ

´ i~
ż

R
a´1
~

`

φ~,`D~φ~,r ` rD~φ`sφ~,r
˘

p´L, τqdτ,

where
D~ “ ~Dσ ` ~´1γ0 ´ bapτqτ ` ~cµ

k

2
bapτqτ

2 .

Writing a~ “ 1 ` op1q, ~cµτ 2 “ op~´2ηq, and approximating φ~,r, φ~,` by using
(7.1), (7.2) and Proposition 6.5, we get (see [7, Sec. 7.2.2] for details)

wr,` “ i~pw u
r,` ` w

d
r,`q (7.4)
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where

w u
`,r “

ż

R
a´1
~ Ψ~,`

´

~Dσ ´ baτ ` ~cµ
κ

2
baτ 2

¯

Ψ~,rp0, τqdτ

`

ż

R
a´1
~

”´

~Dσ ´ baτ ` ~cµ
κ

2
baτ

2
¯

Ψ~,`

ı

Ψ~,rp0, τqdτ `Op~8qe´Sau {~1{2 ,

and

w d
`,r “

ż

R
a´1
~ Ψ~,`

´

~Dσ ´ baτ ` ~cµ
κ

2
baτ 2

¯

Ψ~,rp´L, τqdτ

`

ż

R
a´1
~

”´

~Dσ ´ baτ ` ~cµ
κ

2
baτ

2
¯

Ψ~,`

ı

Ψ~,rp´L, τqdτ `Op~8qe´Sad {~1{2 .

Eventually, using (3.13) and (5.11), we get (see [7, Eq. (7.11)])

~
1
4 eS

a
u {~1{2w u

`,r “ ´i~
1
2µ2apζaqπ

´ 1
2 g

1
2
a

a

Vap0qA
a
ue
´2iα0p0q `Op~q

and, in a similar fashion,

~
1
4 eS

a
d {~

1{2

w d
`,r

“ ´i~
1
2µ2apζaqπ

´ 1
2 g

1
2
a

a

Vap´LqAade
´2iα0p´Lqeip´2Lγ0{~2´2Lζa{~q `Op~q ,

where α0 is the function introduced in Remark 5.14.
Collecting (7.4) and (7.3) and using that ~ “ h1{2, we get

ν2p~q ´ ν1p~q “ 2|eiLfphqw`,r| ` Õpe´2Sa{
?
~
q

“ h´1
|waphq| ` Õph´1e´2Sa{

?
~
q,

where fphq and w̃aphq are the expressions in Theorem 3.4. In light of Proposi-
tion 4.1, this finishes the proof of Theorem 3.4.

8. Conclusion and open problems

Until now, examples of magnetic tunneling effects are rare in the literature.
Very few articles have been dealing with the measure of the tunneling effect due
to the presence of the magnetic field. In the presence of an electric potential with
multiple wells, the article [27] was only considering a case when the magnetic field
was a perturbation and the tunneling was mainly created by the electric potential.
Other examples include the case of a pure flux [31]. After the recent contributions
of Bonnaillie-Hérau-Raymond [9] and Fefferman-Shapiro-Weinstein [14] (see also
references therein), we have presented a new magnetic tunneling effect due to the
curvature of the magnetic edge.

Both for the Neumann problem occurring in surface superconductivity [22] or for
the problem considered here [2], it would be interesting to consider the p3Dq-case.
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Excluded in this paper is the case a “ ´1, where localization near the point(s)
of maximum curvature no more occurs (M3paq “ 0 in the asymptotics of Theo-
rem 3.2). In contrast, this case seems to feature an interesting new phenomenon
where localization near the whole edge Γ occurs, which also has a nice analogy to
what was observed in the multiple wells situation in [26]. We hope to come back
to the treatment of this case rather soon.

Finally we mention that the standard purely magnetic double well problem
seems at the moment a difficult challenge. Here we consider a purely semi-classical
magnetic Laplacian (say in R2) where the magnetic field has two symmetric non
degenerate positive minima.

9. Appendix: Regularized resolvent and moments

Let us return back to the flat edge model in Sec. 3.1 and recall some necessary
computational results.

We can invert the operator harζas on the orthogonal complement of the ground
state φa. Extending by linearity, we get the regularized resolvent Ra defined on
L2pRq by

Ra u “

#

0 if u ‖ φa
pharζas ´ βaq

´1u if u K φa
. (9.1)

By [5], pζa ` bapτqτqφa and φa are orthogonal in L2pRq:
ż

R
pζa ` bapτqτq|φapτq|

2 dτ “ 0 . (9.2)

Later on we will encounter the following integral [3, Prop. 2.5]

I2paq :“

ż

R
φapτqRarpζa ` bapτqτqφas dτ “

1

4
´
µ2apζaq

8
. (9.3)

We recall some identities from [5] involving for n P N quantities of the form

Mnpaq “

ż

R

1

bapτq
pζa ` bapτqτq

n
|φapτq|

2 dτ . (9.4)

We have

M1paq “ 0 , (9.5)

M2paq “ ´
1

2
βa

ż

R

1

bapτq
|φapτq|

2 dτ `
1

4

´1

a
´ 1

¯

ζaφap0qφ
1
ap0q , (9.6)

M3paq “
1

3

´1

a
´ 1

¯

ζaφap0qφ
1
ap0q . (9.7)

The case a “ ´1 is special because

M3p´1q “ 0 and M3paq ă 0 for ´ 1 ă a ă 0 .
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Remark 9.1. The next identities follow in a straightforward manner [3, Rem. 2.3],
ż

R
τpζa ` bapτqτq|φapτq|

2 dτ “M2paq,

ż

R
τpζa ` bapτqτq

2
|φapτq|

2 dτ “M3paq ´ ζaM2paq,

ż

R
bapτqτ

2
pζa ` bapτqτq|φapτq|

2 dτ “M3paq ´ 2ζaM2paq,

and
ż

R
τ |φapτq|

2 dτ “ ´ζa

ż

R

1

bapτq
|φapτq|

2 dτ,

ż

R
τ |φ1apτq|

2 dτ “ βaζa

ż

R

1

bapτq
|φapτq|

2 dτ ` 2M3paq ´ 2ζaM2paq.
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