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Abstract—We propose CLA-NeRF – a Category-Level Artic-
ulated Neural Radiance Field that can perform view synthesis,
part segmentation, and articulated pose estimation. CLA-NeRF
is trained at the object category level using no CAD models
and no depth, but a set of RGB images with ground truth
camera poses and part segments. During inference, it only
takes a few RGB views (i.e., few-shot) of an unseen 3D object
instance within the known category to infer the object part
segmentation and the neural radiance field. Given an articulated
pose as input, CLA-NeRF can perform articulation-aware
volume rendering to generate the corresponding RGB image at
any camera pose. Moreover, the articulated pose of an object
can be estimated via inverse rendering. In our experiments, we
evaluate the framework across five categories on both synthetic
and real-world data. In all cases, our method shows realistic
deformation results and accurate articulated pose estimation.
We believe that both few-shot articulated object rendering and
articulated pose estimation open doors for robots to perceive
and interact with unseen articulated objects.

I. INTRODUCTION

Our living environment is full of articulated objects:
objects composed of more than one rigid parts (links) con-
nected by joints allowing rotational or translational motion,
such as doors, refrigerators, scissors, and laptops. Endowing
robots with the ability to perceive and interact with these
objects requires a detailed understanding of the objects’ part-
level poses, 3D shape, and materials. Prior works [1], [2]
on estimating these properties of articulated objects often
assume the object’s CAD model and thus cannot generalize
to objects unseen during training.

To address this limitation, several recent works have ex-
plored category-level representations for articulated objects.
These representations do not assume CAD models during
testing and therefore can achieve intra-category generaliza-
tion. For instance, ANCSH [3], designed specifically for
articulated object pose estimation, uses the 3D coordinates
in the canonical frame as the representation where the
canonical frame is determined by authors who manually
align the center and orientation of different CAD models.
A-SDF [4], focusing on articulated object shape reconstruc-
tion, uses deep implicit signed distance function [5] as the
representation and factors the latent space into shape codes
and articulation angles. Although these representations have
shown impressive results, both of them are limited by the
requirement of access to ground truth 3D geometry during
training, which is costly to scale up for articulated objects [6].
Furthermore, during testing, both works require depth images
as inputs. This poses additional requirements on hardware
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and may not work on articulated objects that are thin or
highly reflective, e.g., scissors.

In this work, we seek to relax these requirements and build
a category-level representation for articulated objects that
doesn’t require 3D CAD models or depth sensing during
both training and testing — only using RGB images with
camera poses and part segmentation labels for training, and
RGB images alone for testing. To this end, we introduce
CLA-NeRF, a Category-Level Articulated NeRF represen-
tation that supports multiple downstream tasks including
novel view synthesis, part segmentation, and articulated pose
estimation. Our representation is based on Neural Radiance
Fields (NeRF [7]), a method that has shown impressive
performance on novel view synthesis of a specific scene
by encoding volumetric density and color through a neural
network. As NeRF typically requires a lengthy optimization
process for each scene independently, we follow recent
works [8], [9] to directly predict NeRFs from one or several
RGB images in a feed-forward manner. However, simply
doing so cannot capture articulated objects’ part attributes
(e.g., part poses and segmentation) and joint attributes (e.g.,
joint axis). We, therefore, propose to explicitly model the
object articulation by predicting a part segmentation field in
addition to the volumetric density and color. Joint attributes
can then be inferred by performing line-fitting on the part
segmentation field.

In the experiments, we focus on modeling objects with
revolute joints that cause 1D rotational motion (e.g., eye-
glasses). We show that CLA-NeRF can render the object
and its part segmentation map at unseen articulated poses by
performing articulation-aware volume rendering. Addition-
ally, it can perform category-level articulated pose estimation
with RGB inputs by minimizing the residual between the
rendered and observed pixels. We note that these tasks are
not possible with existing NeRF formulations [7], [8], [9]
which explicitly model the camera poses but don’t consider
the object articulation. To the best of our knowledge, our
work is the first to model general articulated objects with
neural radiance fields.

We summarize our primary contributions as follows, and
more information are provided in our project website1:
∙ We propose CLA-NeRF, a differentiable representation
for articulated objects that explicitly models the part
and joint attributes. The proposed representation dis-
entangles camera pose, part pose, part segmentation,
and joint attributes, allowing us to independently control
each property during rendering.

1https://weichengtseng.github.io/project_website/icra22/index.html
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Fig. 1. We present a framework that takes a few visual observations and corresponding camera poses as input; then, we can perform (a) view synthesis
and (b) part segmentation from unseen viewpoints and articulated poses. Moreover, (c) the articulated pose can be estimated via inversely optimizing the
3D deformation through our framework to match the target visual observation.

∙ We show that the proposed representation can per-
form category-level articulated pose estimation through
analysis-by-synthesis with only RGB inputs. To the best
of our knowledge, existing works for this task all require
depth inputs [3], [10], [11], [12].

II. RELATED WORKS

A. Articulated 3D Shape Representations
Meshes and rigging techniques [13] are widely used to

model the shape and deformation of articulated objects.
Leveraging the abundant prior knowledge of human bodies,
efficient techniques [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23]1 have been developed to model the defor-
mation of a wide variety of body shapes. However, creating
watertight meshes and rigs remains a labor-intensive process
for general articulated objects whose part and joint attributes
are less constrained. For the robotics community, it is very
costly, if not impossible, to hire specially trained experts
to model all sorts of articulated objects exist in our daily
life. Recently, NASA [24] proposes to represent articulated
shapes with a neural indicator function that successfully
circumvents the complexity of meshes and the issue of water-
tightness. A-SDF [4] uses neural networks to encode signed
distance function for articulated shape modeling. It’s trained
on multiple instances of the same category and learns a
disentangled latent space that allows it to synthesize novel
shapes at unseen articulated poses. However, both of them
require ground truth 3D models for training and thus still
suffer from the scalability issue. Concurrently with our work,
NARF [25] also proposes to explicitly consider articulation
within NeRF and show impressive results on view synthesis
of human bodies. Compared to NARF, our method differs in
two aspects. First, our method focuses on general articulated
objects and thus doesn’t assume known joint attributes (e.g.,
root joint’s pose, bone length) during test time. Instead,
we infer them from the predicted segmentation field and
further show results on articulated pose estimation. Second,
our method uses RGB images and part segmentation labels
as supervision, while NARF uses RGB images and joint
attributes. We believe both works complement each other

and further supports the possibility that explicitly considering
articulation within NeRF can lead to better generalization.
B. Articulated Object Pose Estimation

Most existing approaches for articulated object pose es-
timation requires instance-level information. They either
assume the articulated object’s exact CAD model [1], [2]
or need to generate the object’s motion through deliberate
interaction before inference [26], [27], [28], [29], [30],
[31]. Both directions require the robot to learn about each
object from scratch, no matter how similar the object is
to those it has previously experienced. To address this
issue, recent works have proposed to predict canonicalized
object coordinates [32] for category-level articulated object
pose estimation [3], [10]. However, such representation is
designed specifically for articulated pose estimation and can’t
perform other tasks such as shape reconstruction or view
synthesis. Additionally, it requires articulated objects’ ground
truth 3D geometries for training and depth images for testing.
As for inferring articulated pose from visual data, [12]
proposed to use a mixture density network that consumes
an RGB-D image to predict the probability of the joint
attribute and articulated pose. ScrewNet[11] takes multiple
depth images with different articulated poses and the same
camera pose as input to predict joint attribute and articulated
pose. [33] extended [34] by including reasoning about the
applied actions along with the observed motion of the object
while estimating its kinematic structure. Different from these
works, we focus on building a category-level representation
that only requires 2D supervision. Also, we demonstrate
results on view synthesis besides articulated pose estimation.

C. Preliminaries: NeRF
NeRF learns to synthesize novel views associated with

unseen camera poses given a collection of RGB images with
known camera poses. Specifically, NeRF represents a scene
as a volumetric field of density � and RGB color c. The
density models the shape of the scene and the color models
the view-dependent appearance of occupied regions of the
scene, both of which lie within a bounded 3D volume. A



Fig. 2. The overview of our framework. (a) Our framework retrieves features from two instance as the condition of NeRF model and predicts color c,
density � and segmentation s. The volume rendering is applied to predict rendered results. (b) We calculate the deformation matrix based on the articulated
pose. Then, we deform the sampled rays with the deformation matrix. Finally, the deformed visual image is rendered using our learned framework. (c)
The articulated pose is estimated via inversely minimizing color.

multilayer perceptron (MLP) parameterized by the weights
Θ is used to predict the density � and RGB color c of each
point by taking its 3D position x = (x,y,z) and unit-norm
viewing direction d as input, where (�,c)← FΘ(
(x),d) and

(⋅) is a high-frequency positional encoding [35]. To render a
pixel, NeRF emits a camera ray r(t) = o+ td from the camera
center o along the direction d passing through that pixel on
the image plane. Along the ray, K points {xk = r(tk)}Kk=1 are
sampled for use as input to the MLP which outputs a set of
densities and colors {�k,ck}Kk=1. These values are then used
to estimate the color Ĉ(r) of that pixel following volume
rendering [36] approximated with numerical quadrature [37]:

Ĉ(r) =
K
∑

k=1
T̂k(1−exp(−�k(tk+1− tk)))ck,

with T̂k = exp(−
∑

k′<k
�k′ (tk′+1− tk′ ))

(1)

where T̂k can be interpreted as the probability of the ray
successfully transmits to point r(tk). NeRF is then trained
to minimize a photometric loss  =

∑

r∈R ||Ĉ(r) −C(r)||22,
using some sampled set of rays r ∈ R where C(r) is the
observed RGB value of the pixel corresponding to ray r
in some image. To improve rendering efficiency one may
train two MLPs: one “coarse” and one “fine”, where the
coarse model serves to bias the samples that are used for the
fine model. For more details, we refer readers to Mildenhall
et al. [7].

While NeRF originally needs to optimize the representa-
tion for every scene independently, several recent works [8],
[9], [38] on category-level NeRF have been proposed to
directly predict a NeRF conditioned on one or few input

images.

III. METHOD

Although NeRF has shown impressive results on modeling
the appearance of static objects, its formulation only allows
control over the camera poses during rendering. Therefore, it
cannot render a deformable articulated object (e.g., laptop) at
different articulated poses (e.g., closing vs. opening) because
it has more than 6 degree of freedom (DoF). CLA-NeRF is
designed to tackle these issues. Instead of simply predicting
colors c and densities � for each 3D location, we propose
to additionally estimate part segmentation s. Instead of only
controlling the camera poses during rendering, our formu-
lation allows user to input articulated poses. And instead of
casting rays solely based on camera poses, we also transform
camera rays based on query articulated poses, predicted part
segmentation, and inferred joint attributes during volume
rendering. These modifications together allow CLA-NeRF to
render articulated objects at unseen articulated poses.

A. Category-Level Semantic NeRF

Here we first describe how we extend NeRF to predict
part segmentation. For each 3D location x and viewing
direction d, we add another linear layer on top of NeRF’s
MLP backbone to predict part segmentation:

(�,c,s) = FΘ
(


(x),d
)

(2)

where s is the segmentation logits with P +1 dimension (P
parts and background).

With the volumetric field of predicted part segmentation,
we can predict which part a pixel belongs to following the



procedure we used to approximate the volume rendering of
RGB:

Ŝ(r) =
K
∑

k=1
T̂k(1−exp(−�k(tk+1− tk)))sk,

with T̂k = exp(−
∑

k′<k
�k′ (tk′+1− tk′ ))

(3)

where sk is the predicted part segmentation of sampled point
r(tk). The new model can then be trained with both color
loss color and segmentation loss seg:

color =
∑

r∈R

[

||Ĉc(r)−C(r)||22+ ||Ĉf (r)−C(r)||22
]

(4)

seg = −
∑

r∈R

[P+1
∑

i=1
pi(r)log p̂ic(r)+p

i(r)log p̂if (r)
]

(5)

where p̂i(r) = exp(Ŝi(r))
∑P
j=1 exp(Ŝj (r))

Here, C(r), Ĉc(r) and Ĉf (r) are the ground truth color,
color predicted by the coarse network, and color predicted by
the fine network for ray r, respectively. In the segmentation
loss seg, pi is the ground truth probability of part i, while
p̂ic and p̂if represent the probability predicted by the coarse
and fine network for ray r. In summary, the color loss
color is the L2 distance between ground truth color and
the color predicted by both coarse and fine networks, and
the segmentation loss seg is a multi-class cross-entropy loss
that encourages the rendered semantic labels to be consistent
with the provided labels. A coefficient � is used to modulate
these two losses during training: total = color+� ⋅seg.

We note that the current formulation still requires lengthy
optimization for each articulated object and does not share
knowledge between different objects. To make our method
generalize to objects within the same category, we customize
the framework of previous works [8], [9] to directly predict
the proposed semantic NeRF given one or a few input
images of the articulated object. For brevity, we explain the
framework with a single input image I . First, we extract the
image feature with an image encoder E to form a feature
map W = E(I). Then, we project each sampled 3D point x
to the input image plane and get the projected coordinate
�(x). Finally, we augment the input to NeRF FΘ with
the associated feature W (�(x)), resulting in the following
formulation:

(�,c,s) = FΘ
(


(x),d,W (�(x))
)

(6)

The model is jointly trained on a collection of articulated
objects belonging to the same category. Relative camera
poses between multi-view images and the corresponding part
segmentation labels are used for supervision.
B. Joint Attributes Estimation

In this work, we consider 1D revolute joints. The joint
attributes consist of the direction of the rotation axis u as
well as a pivot point v on the rotation axis. Given an input
image of the articulated object, we propose to infer the joint

attributes from the predicted segmentation field through ray
marching. For each pixel on the image plane, we cast a ray
r(t) = o+ td starting from the camera center o along the
direction d passing through that pixel. We then sample K
points {xk = r(tk)}Kk=1 along the ray and feed them into
the semantic NeRF to get their predicted density and part
segmentation {�k,sk}Kk=1. Since the 1D revolute joint lies at
the intersection of two parts, we filter the sampled points to
collect points that are close to the intersection:

Xintersection = {xk | argmax(sk) ≠ argmax(sk+1)∧�k ≥H}
(7)

where H is a predefined threshold to remove points with low
density. After collecting Xintersection from all the pixels, we
can perform linear regression on these 3D points to estimate
both rotation axis u and the pivot point v.
C. Articulation-aware Volume Rendering

After predicting the part segmentation field and joint
attributes J, we discuss a modified volume rendering pro-
cedure that allows us to perform view synthesis at unseen
articulated poses. Given an input articulated pose a specified
by users, we construct deformation matrices {Di(a,J)}P+1i=1
that describe the rigid transformation between part i and the
root part. During volume rendering, we deform the rays with
each part’s deformation matrix Di and collect the outputs for
all P +1 parts:

{�i,ci,si = FΘ
(


(Dix),d,W (�(Dix))
)

}P+1i=1 (8)

To merge these outputs for articulation-aware volumetric
rendering, we weight all the fields with predicted part
segmentation p̂, where p̂i indicates the estimated probability
of being classified as part i. The predicted color Ĉ(r) and
segmentation Ŝ(r) are therefore the weighted sum of each
part:

Ĉ(r) =
K
∑

k=1
T̂ (tk)

P+1
∑

i
p̂i(tk)(1−exp(−�ik(tk+1− tk)))c

i(tk) (9)

Ŝ(r) =
K
∑

k=1
T̂ (tk)

P+1
∑

i
p̂i(tk)(1−exp(−�ik(tk+1− tk)))s

i(tk)

(10)
where the accumulated transmittance is

T̂k = exp(−
∑

k′<k

P+1
∑

i
p̂i(tk)�ik′ (tk′+1− tk′ )) (11)

D. Articulated Pose Estimation
Here we explain how we perform category-level articu-

lated object pose estimation with CLA-NeRF. We assume
the semantic NeRF FΘ of an articulated object has already
been predicted from source images and both the camera
intrinsics and extrinsics are known. The goal is to estimate
the articulated pose a of a given input image I . Unlike CLA-
NeRF’s training procedure which optimizes Θ using image
observations and part segmentations, we instead solve the



Fig. 3. The typical results on (a) synthetic data and (b) real-world data. We can find that the part in the object is consistently deformed with the joint
parameter.

inverse problem [39] of recovering the articulated pose a
given the weights Θ and the image I :

â = argmina∈Acolor(a|Θ,d,J) (12)

To solve this optimization problem, we iteratively perform
gradient-based optimization to minimize the residuals be-
tween the rendered image and the observed image.

IV. EXPERIMENTS

We evaluate CLA-NeRF on three different tasks: view
synthesis, part segmentation, and articulated pose estimation.

A. Dataset
a) Synthetic data: We consider the “laptop”, “scissors”,

“eyeglasses”, “stapler” and “pliers” classes of SAPIEN [40],
[41], [42] with 46, 54, 65, 24 and 23 instances respectively.
We split these instances into two sets: training and held-out.
We train on 200 observations of each training instance at a
resolution of 200×200 pixels. Camera poses are randomly
generated on a sphere with the object at the origin. Trans-
parencies and specularities are disabled. We further render
the held-out instances to construct a dataset for performance
evaluation.

b) Real-world data: To further test our method, we
manually collect real-world images and the corresponding
camera poses for the “laptop” and “scissors” with articulate
poses at [0◦,30◦,60◦,90◦].

B. View Synthesis and Part Segmentation
We show the qualitative results in Fig. 3 and quantitative

results in Table I for the synthetic data. We find that CLA-
NeRF successfully renders the held-out object at different

TABLE I
QUANTITATIVE RESULT INCLUDING SEGMENTATION, ARTICULATE POSE,
AND NOVEL VIEW SYNTHESIS OF OUR FRAMEWORK EVALUATED ON THE

DATASET GENERATED FROM SAPIEN[40].

Novel View Synthesis Segmentation
MSE↓ PSNR↑ SSIM↑ LPIPS↓ Pixel Acc↑ mIoU↑

Laptop 0.0811 23.89 0.94 0.1323 0.981 0.971
Scissors 0.0722 24.01 0.92 0.1456 0.989 0.969

Eyeglasses 0.0991 23.72 0.89 0.1755 0.973 0.941
Stalper 0.0771 26.91 0.96 0.1022 0.969 0.940
Pliers 0.0413 25.90 0.96 0.0711 0.971 0.940

TABLE II
QUANTITATIVE RESULTS FOR OUR REAL-WORLD DATA.

category MSE↓ PSNR↑ SSIM↑ LPIPS↓
Laptop 0.1021 22.12 0.93 0.1600
Scissors 0.1281 23.39 0.92 0.1492

articulated poses. For the real data, we report the quantitative
results in Table II and qualitative results in Fig. 3. The used
metrics are MSE/PSNR/SSIM (higher is better) and LPIPS
[43] (lower is better). We found that the network trained on
synthetic data effectively infers the shape and texture of the
real object, suggesting our model can transfer beyond the
synthetic domain.

C. Articulated Pose Estimation
The results on synthetic data and real-world data are

presented in Table III. Fig. 4 shows the L1 error with
different articulate poses of source images and target images
on the real-world dataset. We can first find that the error
is the lowest when no deformation is required. Second, if
the articulated poses are too different, the estimation will be



TABLE III
QUANTITATIVE RESULTS FOR ARTICULATED POSE ESTIMATION AND JOINT LOCALIZATION. WE SHOW THE POSE ERROR aERROR , ANGLE ERROR uERROR ,

DISTANCE ERROR vERROR . FOR THE REAL-WORLD RESULTS, PLEASE SEE SEC. IV-C.

Dataset Synthetic Real-World
Apporach Ours ScrewNet [11] Abbatematteo et al. [12] Ours

aerror uerror verror aerror uerror verror aerror uerror verror aerror (sim2real) aerror (generalize) aerror(overfit)
Laptop 0.138 0.010 0.091 0.129 0.019 0.062 0.137 0.012 0.041 0.179 0.174 0.179
Scissors 0.130 0.016 0.120 0.116 0.149 0.136 0.131 0.037 0.041 0.179 0.170 0.170

Eyeglasses 0.151 0.109 0.071 0.141 0.140 0.136 0.149 0.108 0.082 - - -
Stalper 0.182 0.021 0.010 0.119 0.146 0.101 0.172 0.031 0.008 - - -
Pliers 0.171 0.010 0.010 0.121 0.132 0.102 0.183 0.009 0.009 - - -

TABLE IV
WE ALSO EVALUATE OUR APPROACH WITH POSE ERROR aERROR , ANGLE

ERROR uERROR , DISTANCE ERROR vERROR ON SHAPE2MOTION VALIDATION

SET. NOTE THAT ANCSH [3] REQUIRES DEPTH TO ESTIMATE POSE.

Approach Ours ANCSH [3]
aerror uerror verror aerror uerror verror

Laptop 0.179 0.011 0.110 0.169 0.009 0.017
Eyeglasses 0.169 0.109 0.091 0.076 0.039 0.016

Fig. 4. Error heatmap of articulate pose estimation.

less accurate. It is because we only optimize articulated pose
with color and local minimum occur during the optimization
process.

To test the limit of our method, we compare our method
with ScrewNet [11] and Abbatematteo et al. [12] on our
dataset (Table III). Besides, we also evaluate CLA-NeRF on
the Shape2Motion dataset without fine-tuning. The results
compare against ANSCH [3] are shown in Table IV. Despite
not using depth images as inputs and not finetuned, we find
our model to only perform slightly worse than ANSCH [3]
and ScrewNet [11] and [12]. It shows that the proposed
representation is a promising direction for category-level
articulated pose estimation.

To understand whether the articulated pose estimation can
be improved, we finetune the model in two manners. First, we
finetune the framework with a set of real-world objects, then,
we test it on unseen real-world objects. Second, we directly
finetune the framework on specific object and test on it.
These fine-tuning approaches are labeled as generalize and
overfit in Table III, respectively. Only minor improvement
is observed.

D. Failure Cases

Despite the promising results shown in Sec. IV-B and Sec.
IV-C, there are some failure cases that need to be discussed.

Fig. 5. Failure cases. (a) Incorrect keyboard appearance due to missing
observation in source images. (b) Incorrect geometry due to lack of texture.

First, since our framework only takes few instances as
conditions, if query camera poses are highly distinct from
the source camera pose, the appearance may have some
defect. From Fig. 5 (a), the predicted screen color is not
the same as the ground truth. However, the geometry of the
object and its part segmentation are reconstructed correctly,
so the articulated pose estimation isn’t affected by this issue.
Besides, despite the color of the screen isn’t accurate, the
appearance still matches the normal appearance of the laptop
screen. Second, for the CAD model without texture, it is hard
for our framework to correctly infer its geometry. From Fig. 5
(b), we find that the shape of the screen is distorted. Besides,
our joint localization is inaccurate if the source images are
closed laptop. It is because the NeRF model the two part
of laptop attach with each other, so the intersection points
form a surface. Therefore, the joint axis can’t be estimated
correctly.

V. CONCLUSION

We propose a framework that only takes few instances of
an articulate object with different viewpoints as references;
then, infers the corresponding deformable neural radiance
field to predict the image and part segmentation with the
specified camera pose. With the well-trained framework, the
articulate pose of an object can be estimated via inversely
optimize the deformation condition. In the experiments, we
evaluate the framework in both synthesis objects collected
from SAPIEN and our manually collected real-world data.
In all cases, our method shows realistic deformation results
and accurate articulated pose estimation.
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