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Abstract

With a variety of local feature attribution methods
being proposed in recent years, follow-up work
suggested several evaluation strategies. To
assess the attribution quality across different
attribution techniques, the most popular among
these evaluation strategies in the image domain
use pixel perturbations. However, recent advances
discovered that different evaluation strategies
produce conflicting rankings of attribution
methods and can be prohibitively expensive to
compute. In this work, we present an information-
theoretic analysis of evaluation strategies based
on pixel perturbations. Our findings reveal that
the results are strongly affected by information
leakage through the shape of the removed pixels
as opposed to their actual values. Using
our theoretical insights, we propose a novel
evaluation framework termed Remove and Debias
(ROAD) which offers two contributions: First, it
mitigates the impact of the confounders, which
entails higher consistency among evaluation
strategies. Second, ROAD does not require
the computationally expensive retraining step
and saves up to 99 % in computational costs
compared to the state-of-the-art. We release
our source code at https://github.com/
tleemann/road_evaluation.

1. Introduction
Explainable Artificial Intelligence (XAI) has become a
widely discussed research topic (Adadi & Berrada, 2018).
Specifically, feature attribution methods (Springenberg
et al., 2015; Ribeiro et al., 2016; Lundberg & Lee, 2017;
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Figure 1. Comparison between previous removal and retraining
evaluation strategies (Top) and ours (Bottom). Previously,
rankings of different attribution methods, Integrated Gradients (IG)
(Sundararajan et al., 2017) and its two variants SmoothGrad (IG-
SG) (Smilkov et al., 2017), SmoothGrad2 (IG-SQ) (Hooker et al.,
2019), are highly inconsistent with respect to hyperparameters
such as the removal orders Most Relevant First (MoRF) and Least
Relevant First (LeRF). Our ROAD strategy achieves a consistent
ranking using only 1% of the previously required resources.

Sundararajan et al., 2017; Selvaraju et al., 2017) that
quantify the importance of input features to a model’s
decision are widely used. Such local explanations can
help to analyze and debug predictive models (Bhatt et al.,
2020b; Adebayo et al., 2020), e.g., in the medical domain
(Eitel et al., 2019), in recommender systems (Afchar &
Hennequin, 2020), and many other applications. With an
increasing number of feature attribution methods proposed
in the literature, the need for sound strategies to evaluate
these methods is also increasing (Nguyen & Martı́nez, 2020;
Hase & Bansal, 2020; Yeh et al., 2019; Hooker et al., 2019).

Evaluation strategies, proposed to compare different
attribution methods, commonly follow an ablation approach
by perturbing the input features, e.g., image pixels, deemed
most or least important. Specifically, perturbing pixels
assigned high importance should decrease predictive quality
whereas perturbing unimportant pixels, should hardly affect
the predictions. These measures aim to capture the fidelity
of explanations (Tomsett et al., 2020), i.e., how well
the explanation genuinely reflects the prediction of the
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underlying model. Fidelity based on a single data sample is
known as local fidelity, while global fidelity is measured on
the whole data set (Tomsett et al., 2020).

The outcome of evaluation strategies is highly sensitive
to parameters such as the perturbation function and order.
Depending on the order chosen, i.e., most relevant pixels
first or least relevant pixels first, such removal strategies
often lead to highly contradictory results. For instance,
local attribution methods that seem to perform well in
one order may perform rather poorly in the other (Tomsett
et al., 2020; Haug et al., 2021; Hooker et al., 2019). This
inconsistency makes it hard for researchers to impartially
compare between different attribution methods and it is
not well understood where the inconsistencies stem from.
Moreover, for conducting the global fidelity check, a
retraining step is required by some methods (Hooker et al.,
2019), which is prohibitively expensive in practice (Tomsett
et al., 2020). These two drawbacks and our improvements
are illustrated in Figure 1.

In this paper, we aim to overcome these shortcomings and
make the evaluation more consistent and efficient. To this
end, we propose a new debiased strategy that compensates
for confounders causing inconsistencies. Furthermore, we
show that in the debiased setting, we can skip the retraining
without significant changes in the results. This results
in drastic efficiency gains as shown in the lower part of
Figure 1. We argue that it is crucial for the community to
have sound evaluation strategies that do not suffer from
limited accessibility due the required compute capacity.
Specifically, we make the following contributions:

• We examine the mechanisms underlying the evaluation
strategies based on perturbation by conducting a
rigorous information-theoretic analysis, and formally
reveal that results can be significantly confounded.

• To compensate for this confounder, we propose the
Noisy Linear Imputation strategy and empirically
prove its efficiency and effectiveness. The proposed
strategy significantly decreases the sensitivity to
hyperparameters such as the removal order.

• We generalize our findings to a novel evaluation
strategy, ROAD (RemOve And Debias), which can
be used to objectively and efficiently evaluate several
attribution methods. Compared to previous evaluation
strategies requiring retraining, e.g., Remove and
Retrain (ROAR) (Hooker et al., 2019), ROAD saves
99 % of the computational costs.

2. Related Work
There is a plethora of works on different explanation
techniques (Tjoa & Guan, 2020), especially attribution

methods that assign importance scores to each input features.
Popular approaches have been proposed by Springenberg
et al. (2015); Lapuschkin et al. (2015); Ribeiro et al. (2016);
Kasneci & Gottron (2016); Sundararajan et al. (2017); Fong
& Vedaldi (2017); Shrikumar et al. (2017); Smilkov et al.
(2017); Petsiuk et al. (2018); Adebayo et al. (2018); Chen
et al. (2018); Xu et al. (2020); Covert et al. (2021), and
many more.

With the growing number of attribution methods, various
scholars have presented desiderata that explanations should
fulfill (Bhatt et al., 2020a; Nguyen & Martı́nez, 2020;
Fel et al., 2021; Afchar et al., 2021; Nauta et al., 2022).
Doshi-Velez & Kim (2017) consider two subcategories
in this field, namely human-grounded metrics relying on
human judgment and functional-grounded metrics. The
latter do not require a human-generated ground truth that
can be hard or even impossible to obtain. Metrics of this
type frequently rely on the idea that if the most important
part of the image is changed, the output probability of
the given black-box model should also change in return.
Examples include the Sensitivity-n measure proposed by
Ancona et al. (2017) and the infidelity and max-sensitivity
metrics by Yeh et al. (2019). Samek et al. (2016) and
Petsiuk et al. (2018) also propose to perturb the pixels in the
input image according to the importance scores. However,
Hooker et al. (2019) show that the perturbation introduces
artifacts and results in a distribution shift, putting these
no-retraining approaches in question. They propose the
Remove and Retrain (ROAR) framework with an extensive
model retraining step to adapt to the distribution shift.
Therefore, we distinguish between evaluation methods with
retraining and no-retraining approaches. ROAR has been
adopted in several recent studies (Hartley et al., 2020; Izzo
et al., 2020; Meng et al., 2021; Schramowski et al., 2020;
Srinivas & Fleuret, 2019) and variations are being proposed
in concurrent work (Shah et al., 2021).

Only few papers have used and compared different
evaluation strategies for attribution methods and a sound
theoretical explanation for the differences between them
is still missing. Sturmfels et al. (2020) assess different
baselines for feature attribution applying the Integrated
Gradient method (Sundararajan et al., 2017). They also
observe that changing the hyperparameter settings can
lead to varying results. Haug et al. (2021) draw the
same conclusion for attributions on tabular data. Tomsett
et al. (2020) compute the consistency among different, no-
retraining evaluation strategies and report an alarmingly low
agreement. In this work, we conduct a rigorous analysis of
reasons for existing inconsistency and provide a solution to
reduce it, which is not studied in previous works. Moreover,
our solution also reduces high computational costs caused
by retraining.
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Figure 2. Our analytical model of feature removal evaluation
(MoRF order shown): The input image x (9 pixels a–i) is explained
by an explanation method that returns a mask M indicating
important pixels (black). The remaining, less important pixel
values xl can be extracted from the image using the masking
operatorMl and transformed via the imputation operator Il to an
imputed variant of the input x′l, which determines the evaluation
outcome. This model allows to separate the information in the
feature values from that contained in the binary mask M .

3. Preliminaries
In this section, we formally define the pixel-perturbation
strategies considered by the following analysis.

3.1. Retraining Evaluation Strategies

We consider a pixel removal strategy, where pixels are
successively replaced by imputed values. Consistent with
the literature (Tomsett et al., 2020; Samek et al., 2016),
we consider two removal orders: MoRF (Most Relevant
First) or LeRF (Least Relevant First), where the subsequent
removal starts with the most important pixels for the former
and the least important ones for the latter. We now provide
a formal definition of MoRF with retraining, i.e., the ROAR
benchmark, that will be used throughout our analysis. We
always use the MoRF order in the analysis presented in this
paper. However, an analogous analysis of its counterpart
LeRF is possible without much additional effort and can be
found in the appendix.

To ease our derivations, we describe the procedure by a
series of operations that can be analyzed independently. A
classifier f : Rd → {1, . . . , c} maps inputs x ∈ Rd to
labels C ∈ {1, . . . , c}, where c is the number of classes.
A feature attribution explanation for the prediction assigns
each input dimension an importance value. In the MoRF
setting, the features are ordered in a descending order of
importance. Subsequently, the k most important features
per instance are selected for removal, where 0 ≤ k ≤ d is
successively increased during the benchmark. However, for
the moment we consider only one fixed value of k. Thus,

C Class label random variable
I Mutual information
I Imputation operator

M Binary mask in {0, 1}d
M Mask selection operator (takes out relevant features)
x Input features in Rd

xl Low importance features only in Rd−k

x′l Imputed low importance features in Rd

Table 1. Overview of the notation used in this work.

we can model the explanation ek as a choice of features
via a binary mask M = ek (f,x) ∈ {0, 1}d, with the
corresponding value set to one, if the corresponding feature
is among the top-k, and to zero otherwise. Furthermore,
supposeMl : {0, 1}d × Rd → Rd−k to be the selection
operator for the least important dimensions indicated in
the mask and xl = Ml (M ,x) to be a vector containing
only the remaining features as shown in Figure 2. We
suppose that the features preserve their internal order in
xl, i.e., features are ordered ascendingly by their original
input indices. This definition allows to separately consider
the information flow in the feature mask M and that in the
feature values xl.

The ROAR approach measures the accuracy of a newly
trained classifier f ′ on modified samples x′l := Il (M ,xl),
where Il : {0, 1}d × Rd−k → Rd is an imputation
operator that redistributes all inputs in the vector xl to
their original positions and sets the remainder to some
filling value. In the special case of zero imputation, x′l =
Il (M ,Ml (M ,x)) = (1−M)� x. This means the top-
k features are discarded. For a better evaluation result, the
accuracy should drop quickly with increasing k, indicating
that the most influential features were successfully removed.

3.2. Information Theory

We now briefly revisit the central concepts of information
theory that will be handy for our analysis and introduce the
notation. The fundamental quantity in information theory is
the entropy H of a discrete random variable X with support
supp {X},

H(X) := −
∑

x∈supp{X}

P (X = x) logP (X = x). (1)

The entropy corresponds to the information gained through
observation of a realization of this variable. If the random
variable considered can be easily inferred, we use p(x) as a
shorthand for P (X = x). Furthermore, we denote the joint
entropy between random variables X and Y by H(X,Y ),
which is equivalent to the entropy of their joint distribution.
In accordance with Cover & Thomas (2006), we always
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Figure 3. Relation between Mutual Information (MI) and
obtainable accuracy for the two-class problem with equal class
priors. The knowledge of the MI I(x;C) implies strong bounds
for the obtainable accuracy. This connection permits to use MI as
a surrogate for the obtainable accuracy in the perturbation strategy
in our analysis. Figure adapted from Meyen (2016).

separate random variables by comma to denote the joint
distribution of multiple of variables.

The conditional entropy H(X|Y ) is the expected amount
of information left in a variable, given the observation of a
condition Y . The most central concept in our analysis will
be mutual information (MI), i.e., the amount of information
in one random variable shared with another. For example, by
I(x;C) := H(C) −H (C|x), we denote the MI between
the complete feature vector and the class variable C. We
separate arguments by a semicolon and allow single random
variables or sets of random variables as arguments to all the
defined quantities. For sets, we always consider the joint
distribution of their member variables. Please confer Cover
& Thomas (2006) for a more profound introduction. We
provide a short overview of our notation in Table 1.

4. Analysis
In this section, we show that the pixel perturbation strategies
are susceptible to a previously unknown confounder: The
binary mask itself can leak class information that might
in not be present in the feature values. After making the
connection between the accuracy and mutual information
as a theoretical tool in Section 4.1, we formally derive
the confounder and identify this leakage on real data in
Section 4.2. We subsequently show how to mitigate it
through Minimally Revealing Imputation in Section 4.3.

4.1. On the Relation Between Accuracy and Mutual
Information

To begin our analysis of the presented strategies and their
underlying mechanisms, we first establish the relation
between classification accuracy and the mutual information.
It is well-known that the classification performance of an
optimal classifier in the Bayesian sense (assigning the class
with the highest posterior) is dependent on the MI between
features and labels (Hellman & Raviv, 1970; Vergara &

Estévez, 2014; Meyen, 2016). Nevertheless, the relationship
is not a function, but comes in form of upper and lower
bounds of the obtainable accuracy. For the simple two-
class problem, the bounds are shown in Figure 3 (cf.
Appendix A.1 for derivations). They impose strong limits
on the optimal classification performance, if the mutual
information I(x;C) is known.

For the pixel removal strategies that use retraining, this
allows us to analyze the frameworks using MI as a surrogate
for the attainable accuracy because higher MI almost
always leads to higher accuracy. In the MoRF setting
with retraining, I(x′l;C) will play a key role, because
it quantifies the information left in the least important
features and thus determines obtainable accuracy which is
the outcome of the evaluation. Low mutual information
I(x′l;C) results in a sharp drop in accuracy and good
benchmarking results:

↓ I(x′l;C) ⇒ ↑ MoRF benchmark.

Therefore, in the MoRF setting low mutual information of
x′l and C is desirable1.

4.2. Class Information Leakage through Masking

We demonstrate that it is easily possible to leak class
information only through the mask’s shape and to harshly
manipulate the evaluation score. Therefore, we start by
separating the influence of the mask from that of the feature
values. Our derivation relies on the multi-information
I(C;x′l;M), which is defined by Vergara & Estévez (2014)
as follows:

I(C;x′l;M) = I(C;x′l|M)− I(C;x′l) (2)
I(C;x′l;M) = I(C;M |x′l)− I(C;M). (3)

Setting Equation (2) and Equation (3) equal, we arrive at
the identity:

I(x′l;C)︸ ︷︷ ︸
Eval. Outcome

= I(C;x′l|M)︸ ︷︷ ︸
Feature Info.

+ I(C;M)︸ ︷︷ ︸
Mask Info.

− I(C;M |x′l)︸ ︷︷ ︸
Mitigator

.

(4)

The quantities involved are visualized in Figure 4a. The
first term “Feature Information” is the class information
contained in the features (and not in the mask) that we
wish to estimate. The second term “Mask Information”
shows that class-discriminative information in the mask can
have a high impact on the result. This influence can be
compensated by the “Mitigator” term.

Class Information Leakage If the Mask Information
term is superior to the Mitigator, I(C;M) > I(C;M |x′l),

1In LeRF, a higher accuracy and thus higher I(x′l;C) is
beneficial
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Figure 4. The Evaluation Outcome I(x′l;C) (red area), is confounded by the Mask Information I(C;M) (gray area) when there is
some overlap (a). Only the Feature Information I(x′l;C|M), the part of the Outcome not overlapping (light red area), should actually
be assessed. In the worst case (which we term Invertible Imputation), the Mask Information is entirely contained in the Outcome (b).
Separating the information in the imputed image x′l and the mask M allows to reduce the overlap and the influence (c).

the evaluation outcome is unfairly increased to a value not
justified by the selected features. We term this phenomenon
Class Information Leakage, as some discriminative
information is “leaked” through the used binary mask M .

The Mitigator can entirely vanish when the mask is perfectly
inferable from the imputed image x′l. This results in a
non-compensated effect of Class Information Leakage. We
define this imputation operation as follows:

Condition 4.1. Invertible Imputation. Let Il : {0, 1}d ×
Rd−k → Rd be the imputation operator that takes the least
important features as an input. We suppose that there are
inverse functions I−1

l,M and I−1
l,x , such that

x′l = Il (M ,xl)⇔M = I−1
l,M (x′l) ∧ xl = I−1

l,x (x′l).

If, for instance, the pixels removed are set to some reserved
value indicating their absence, the imputation operator is
invertible, as the mask can be reconstructed. Therefore,
H(M |x′l)=H

(
I−1
l,M (x′l)|x′l

)
=0. In this case, also the

Mitigator I (C;M |x′l) = 0, because it is bounded by
0 = H(M |x′l) ≥ I (C;M |x′l) ≥ 0. The Feature
Information term is constrained to be positive. Thus,
the Mask Information has a non-negligible impact on the
Evaluation Outcome because a higher Mask Information
term will always increase it. This case is depicted in
Figure 4b.

We can create a simple example that shows how evaluation
scores are influenced: Imagine a two-class problem that
consists of detecting whether an object is located on the
left or the right side of an image. A reasonable attribution
method masks out pixels on the left or the right depending
on the location of the object. In this case, the retraining
step can lead to a classifier that infers the class just from the
location of the masked out pixels and obtain high accuracy.

This explanation map will be rated far worse in MoRF (no
accuracy drop) than it might actually be. In the context of
amortized explanation methods, a similar finding has been
made by Jethani et al. (2021). We theoretically showed
that this problem also arises in evaluation strategies and
empirically demonstrate that the leakage is significant for
popular attribution methods on real data in Section 5.1.

4.3. Reduction of Information Leakage

To tackle this problem, we follow an intuitive approach:
If we cannot guarantee that there is no class information
contained in the mask itself, we have to stop it from
leaking the class information into the imputed images.
Therefore, we make sure that the mask used cannot be
easily inferred from the imputed image. We would like
to set I(x′l;M) = 0, i.e., the mask is independent of the
imputed vector allowing to separate the effects as shown
in Figure 4c. Unfortunately, this is not possible in general:
If both should be dependent on the class label, they will
also have to share a minimal amount of information (that
regarding the class). However, we can demand conditional
independence and make I(x′l;M) as small as possible.

Condition 4.2. Minimally Revealing Imputation. Let Il :
{0, 1}d×Rd−k → Rd be the infilling operator that takes the
least important features as an input. Suppose x′l and M are
independent given the class information I (x′l;M |C) = 0
and I (x′l;M) ≈ 0.

In this case, I(C;M) − I (C;M |x′l) = I (x′l;M) −
I (x′l;M |C) ≈ 0, which implies I(C;M) ≈ I (C;M |x′l)
(also cf. Figure 4c), indicating that the Mitigator effectively
compensates the Mask Information term.
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Figure 5. Accuracy of a trained classifier only using the binary
masks M without feature values as input on the CIFAR-10 data
set. Binary masks M were computed for different variants of IG
and GB. Only the masks contain enough information to reach an
accuracy of almost up to 80 % (compared to 85 % with full images)
highlighting that the feature values do not play an important role
in the evaluation. This underlines the necessity to compensate for
this confounder.

5. Debiasing Evaluation Strategies for Local
Attribution Methods

With the theoretical analysis in Section 4, we can better
understand where the biases come from, and thus mitigate
them. Building on the derivations, we now show the
strong impact of the Class Information Leakage introduced
in Section 4.2 on a real-world data set to highlight the
necessity to compensate for this confounder. We explain
how we reduce its influence by proposing a novel imputation
operator termed Noisy Linear Imputation.

5.1. Extent of Class Information Leakage

To empirically confirm our findings, we performed
experiments on CIFAR-10 (Krizhevsky et al., 2009). We
use the same attribution methods as in Hooker et al. (2019):
Integrated Gradients (IG) (Sundararajan et al., 2017) and
Guided Backprop (GB) (Springenberg et al., 2015) serve
as base explanations, and three ensembling strategies for
each are used in addition: SmoothGrad (SG) (Smilkov
et al., 2017), SmoothGrad2 (SQ) (Hooker et al., 2019) and
VarGrad (Var) (Adebayo et al., 2018). In total, we consider
eight attribution methods and provide details and parameters
in the supplementary material.

We empirically show that with fixed value imputation with
the global mean, the explanation masks are leaking class
information. This takes two steps: (1) We show that the
Mask Information I(C;M) is extremely high. (2) We
verify that the Mitigator is small by testing the Invertible
Imputation Condition, which implies that class information
is leaked into the evaluation outcome through I(C;M).

To assess the class information in the mask, we train a

ResNet-18 (He et al., 2016) that uses only binary masks M
(no pixel values xl) to predict the class. As we discussed
previously, the accuracy of a classifier can be used as a
surrogate for the calculation of MI, which is prohibitively
expensive for high-dimensional data. The curves2 are shown
in Figure 5. Stunningly, the mask alone results in high
accuracy curves that reach almost 80 % for IG-SG, only
some percent below the accuracy of the classifier on the full
inputs. This allows us to conclude that the Mask Information
I (C;M) is almost as high as our Evaluation Outcome
I (C;x′l).

To show that the Mitigator is almost zero which leads to
class information leakage, we test the Invertible Imputation
condition. Therefore, the inverse function I−1

l,M that predicts
the imputation mask from the imputed image is required
(having this function, finding I−1

l,x is trivial). For the
fixed value imputation, an approximate inverse is simple:
Setting all pixels in the mask to 0 if the corresponding
image pixel has the filling value (which has to be inferred
from the distribution). For a stronger verification, we
train an imputation predictor network consisting of three
convolutional layers, which predicts for each pixel if it was
imputed or original. As Figure 6e (blue curve) shows, the
miss-classification rate when using fixed value imputation
is almost zero, i.e., the network can easily recognize the
pixels that were imputed. According to our analysis, in this
setting close to Invertible Imputation, the Mitigator will be
negligibly small.

This leads us to the conclusion that the mask-related leakage
fundamentally influences many previous evaluations using
fixed value imputation (Shrikumar et al., 2017; Petsiuk et al.,
2018; Hooker et al., 2019) and it is essential to stop the
information leakage through the masks.

5.2. Debiasing with Noisy Linear Imputation

To reduce the Class Information Leakage, we propose a
better-suited imputation operator Il that adheres to the
Minimally Revealing Imputation condition we derived. The
remaining process is left unchanged and stays as depicted
in Figure 2. However, we face three requirements: (1) We
have to get closer to the theoretical condition of Minimally
Revealing Imputation. (2) The imputation strategy needs to
be highly efficient, since the imputation module has to be
run for each image in the data set. (3) We wish to have as
few hyper-parameters as possible (preferably none to rule
out another confounding factor).

We devise a new strategy called Noisy Linear Imputation,
which fulfills the above goals. In this way, our model
addresses some of the fundamental problems of existing

2Standard Errors are indicated by shaded areas in all figures.
However, they are often hardly visible due to their low magnitude.



A Consistent and Efficient Evaluation Strategy for Attribution Methods

strategies. Intuitively, we search a way to make more subtle
imputations that cannot be easily recognized and result in
lower I (x′l;M). To this end, we suppose that each pixel
can be approximated by the weighted mean of its neighbors
(cf. Figure 6d) as image pixels are highly correlated3:

xi,j = wd (xi,j+1 + xi,j−1 + xi+1,j + xi−1,j)

+ wi (xi+1,j+1 + xi−1,j+1 + xi+1,j−1 + xi−1,j−1)

where wd, wi are constant coefficients for direct neighbors
and indirect, diagonal neighbors. When setting up a
single equation for each removed pixel we arrive at an
equation system. For known pixels, we directly plug in
their values and only consider each removed pixel as an
unknown variable. When neighboring pixels are removed,
the equations become connected and cannot be solved
independently. Nevertheless, the resulting system is sparse
and can be efficiently solved, even for a large number of
missing pixels. To choose the neighbor weights for the
linear interpolation, we draw inspiration from the graph
structure (see Figure 6d): Indirect neighbors have distance
2 from the original node in the graph and direct neighbors
have distance 1. Hence, we gave the direct neighbors twice
the weight of the diagonal ones. Because the weights need
to some up to 1 for a weighted interpolation, this leads to
wd= 1

6 and wi=
1
12 . We add a small random noise (σ = 0.1)

to the solution to ensure that the linear dependency cannot
be learned by the model.

Figure 6 (top) provides an example of an imputed sample.
From the imputed version in Figure 6c, inference on the
mask is significantly harder than the one imputed with
fixed values as in Figure 6b. We again train the imputation
predictor for verification and show the results in Figure 6e.
We confirm that our strategy lies significantly closer to
the optimal, Minimally Revealing Imputation. Admittedly,
there are even more sophisticated imputation strategies,
for example building on Generative Adversarial Networks
(GANs) such as Generative Adversarial Imputation Nets
(GAIN) proposed by Yoon et al. (2018). However, our
strategy already achieves considerable improvements and
is highly efficient, because it does not require training of
a GAN model. For completeness, we include additional
experiments with GAN imputation in Appendix B.

6. Experiments
Having established that our Noisy Linear Imputation fulfills
its purpose, in this section, we show that it entails even more
benefits in practice. We first highlight how it makes results
among different evaluation strategies more consistent in
Section 6.1. We then present another considerable advantage
in Section 6.2: its agreement with a no-retraining evaluation

3In fact, for direct and indirect neighbors, ρ=0.89 and ρ=0.82
respectively on CIFAR-10

(a) Original (b) Fixed Imp. (c) Noisy Lin. Imp.
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(e) Misclassification rate of the
imputation predictor for different shares
of randomly imputed pixels (CIFAR-10)

Figure 6. The considered imputation operators. When 50 % of the
original image (a) are removed, they can either be imputed by
a fixed value (b) or by our proposed Noisy Linear strategy (c,d).
Training of an imputation predictor (e) shows that it is much harder
to tell which pixels are original and which were imputed when
using our proposed imputation model. This is closer to the optimal,
minimally revealing imputation (black). Hence, by using imputed
samples of this kind, Class Information Leakage is reduced.

strategy is sufficiently high, so that the retraining step is no
longer required. We name this debiased and no-retraining
evaluation framework ROAD (RemOve And Debias). All
experiments in this section were conducted on CIFAR-10
using the eight attribution methods mentioned. We also use
Food-101 (Bossard et al., 2014), a large-scale dataset of
high-resolution images, to validate the generalizability of
our method. To this end, we train over 1000 models from
scratch on data imputed using the strategies, explanations
and removal percentages. Since the results on Food-101
also support the findings from CIFAR-10, we include them
in Appendix D.

6.1. Consistency under Removal Orders

As we aim for evaluation strategies that are less prone to the
hyperparameter setting and allow for a consistent ranking,
we study the consistency of evaluation results under the
different removal orders MoRF and LeRF. Figure 7 depicts
the obtained curves (using “Retrain”). For a clear view,
we only show four curves of attribution methods based on
IG with retraining and up to 50% pixels are removed. We
include the full curves for the IG with its derivatives as well
as GB with derivatives in Appendix C. The results using
the common fixed value imputation shown in Figure 7a and
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Figure 7. Consistency comparison using fixed value vs. Noisy
Linear Imputation. The higher accuracy is better in LeRF, while
the lower is better in MoRF. Comparing (a) and (c), fixed value
imputation gives different rankings in MoRF and LeRF orders: IG-
SG is the best in LeRF but the worst in MoRF. Comparing (b) and
(d), Noisy Linear Imputation changes the outcome considerably
and yields a consistent ranking in MoRF and LeRF.

Figure 7c. The results with our Noisy Linear Imputation
are shown in Figure 7b and Figure 7d. In MoRF, a sharp
drop in the beginning indicates a better attribution method,
while a slight drop is desirable in LeRF. Hence, using fixed
imputation, the ranking in MoRF is IG, IG-Var, IG-SQ, IG-
SG, whereas the ranking in LeRF is IG-SG, IG, IG-SQ, and
IG-Var. We see, for instance, that IG-SG is the worst in
MoRF and the best in LeRF. When using the Noisy Linear
Imputation, the inconsistency vanishes. The ranking in
MoRF is: IG-SG, IG, IG-SQ, and IG-Var, which is the same
as in LeRF.

We quantitatively compute the consistency among all eight
attribution methods with and without retraining. Concretely,
we compute the ranks (from 1=best to 8=worst) of our
explanation methods for each percentage of perturbed pixels.
We then calculate the Spearman Rank correlation between
different evaluation strategies. As shown in Table 2, the
correlation score of the fixed value imputation is −0.01
when using retraining and 0.01 when no retraining is applied.
This indicates no consistency in the rankings. When we
deploy our Noisy Linear Imputation, the results change
drastically: The correlation score is improved to 0.61 and
0.58 with and without retraining, respectively. This might
imply that the information leakage is responsible for a major
share of the inconsistency.

6.2. Efficiency

When we apply our Noisy Linear Imputation, we
additionally reduce the difference between evaluation with
and without retraining. This can be attributed to the reduced
distribution shift incurred when using an almost Minimally
Revealing Imputation. If all pixels were perfectly imputed,

Retrain No-Retrain
MoRF vs. LeRF MoRF vs. LeRF

fixed lin fixed lin

-0.01±0.01 0.61±0.01 0.01±0.00 0.58±0.01

Table 2. Spearman rank correlation between evaluation strategies.
There is almost no agreement between MoRF and LeRF when
using fixed imputation (as in previous works). When using our
imputation (“lin“), consistency across MoRF and LeRF orders
increases drastically.

MoRF LeRF
Retain vs. No-Retr. Retain vs. No-Retr.

fixed lin fixed lin

0.15±0.01 0.84±0.01 0.09±0.01 0.94±0.01

Table 3. Spearman rank correlation between evaluation with and
without retraining. Our Noisy Linear Imputation (“lin”) also results
only in marginal differences between “Retrain” and “No-Retrain”.
We conclude that the retraining step is no longer necessary.

the resulting image would not be out-of-distribution. Since
we are interested in the rankings of attribution methods,
we again compute Spearman correlation between the
rankings obtained with and without retraining and show it
in Table 3. The order remains almost always intact between
the “Retrain” with Noisy Linear Imputation and the “No-
Retrain” variant with Noisy Linear Imputation resulting
in a rank correlation of 0.84 in using MoRF and 0.94 in
LeRF. This leads us to the conclusion that “No-Retrain”
and “Retrain” end up with a highly similar ranking when
using Noisy Linear Imputation. Thus, we conclude that the
retraining step is not longer justified and can be skipped
without significant distortion of the results. Qualitative
results are shown in Appendix C.3, cf. Figure 17 (CIFAR-
10) and Figure 23 (Food-101).

These results allow us to introduce a novel evaluation
framework. We refer to the removal with Noisy Linear
Imputation and no retraining as ROAD – Remove and
Debias. We showed that ROAD is highly consistent with
the compensated results of the ROAR, but comes at an
enormous advantage: The retraining step is no longer
required. This permits to save a vast amount of computation
time. In our experiments, evaluation using the ROAD took
only 0.7 % of the resources required for ROAR, as given
by the runtimes in Table 4 obtained on the same hardware
(single Nvidia GTX 2080Ti and 8 Cores).

In the end, we illustrate the evaluation results using ROAD
among all eight attribution methods in MoRF and LeRF
in Figure 8. In MoRF, the best ones are IG-SG, GB-
SQ, GB-Var and IG, which have lower accuracies in the
beginning, whereas they have higher accuracies in LeRF.
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Strategy Retrain No-Retrain

fixed† lin fixed lin?

Time 3903±117 s 4686±2 s 18.0±0.1 s 33.3±0.1 s
Relative 100 % 120 % 0.5 % 0.9 %

Table 4. Mean runtime (5 runs) for evaluating a single explanation
method (IG). † refers to ROAR, and ? to our ROAD.
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Figure 8. Evaluation results in MoRF (a) and LeRF (b) using our
ROAD framework.

GB and GB-Var both perform badly in MoRF and LeRF.
We see that some inconsistencies still remain, which cannot
be compensated by the current imputation. However,
the evaluation strategies might also consider different
characteristics of an attribution method (e.g., one might
be particularly good at identifying irrelevant pixels), which
is why perfect agreement might not even be desirable.

7. Conclusion and Outlook
We introduced ROAD, an evaluation approach for measuring
global fidelity among attribution explanations. ROAD
comes with two key advantages over existing methods: (1) it
is highly efficient, e.g., permitting a 99% runtime reduction
w.r.t. ROAR, and (2) it circumvents the Class Information
Leakage issue, which was thoroughly analyzed in this work.
We believe the ROAD framework will be beneficial to the
research community because it unifies several methods and
is more consistent under varying removal orders. Moreover,
it is broadly accessible due to its low resource requirements.
ROAD is open-source4, and can be readily implemented in
practical use-cases. Going forward, we plan to investigate
more sophisticated imputation models in ROAD as well as
other evaluation metrics besides fidelity.
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A. Additional Theory
A.1. Formulation of the MI Bounds for the Binary Case

As we discussed in our main paper, the relationship between Mutual Information (MI) and accuracy is not a function, but
comes in form of upper and lower bounds of the obtainable accuracy. If, for example, the binary classification case with
equal class priors p(C = 0) = p(C = 1) = 1

2 is considered, the following bounds can be derived (Hellman & Raviv, 1970;
Meyen, 2016):

I(x;C) + 1

2
≤ Acc(C|x) ≤ H−1

2 (1− I(x;C)), (5)

where H−1
2 : [0, 1]→

[
1
2 , 1
]

is the inverse of the binary entropy with support
[

1
2 , 1
]
. For completeness, we restate the proof

of this upper bound in Appendix A.2.

A.2. Reproduction of the proof of the relation between mutual and accuracy in the binary case

In this section, we reproduce the proofs for the upper and lower bounds of bayesian classifier accuracy given a certain
amount of mutual information from the master’s thesis by (Meyen, 2016) for completeness. The upper bound given there is
tighter than the bounds present in the literature.
We consider the following setting (C, x are random variables):

• binary classification problem, C ∈ ΩC = {0, 1}

• equal class priors P (C = 0) = 1
2 , P (C = 1) = 1

2

• discrete features x (which can be the product of multiple random variables)

• support set Ωx = supp {x} of countable size

We first prove the following Lemma:

Lemma A.1. Let the assumptions stated above be true. Then, the mutual information is the weighted mean of a function of
the conditional accuracies Acc(C|s), where s ∈ Ωx:

I (C;x) =
∑
s∈ΩS

p(s) (1−H2 [Acc(C|s)])

In this formulation, p(s) is a shorthand for P (x = s) and H2(p) := −p log p − (1 − p) log(1 − p) is the entropy for a
binary random variable.
Proof.

I (C;x) = H(C)−H(C|x) (6)

=
∑
c∈ΩC

p(c) log
1

p(c)
−
∑
s∈ΩS

p(s)
∑
c∈ΩC

p(c|s) log
1

p(c|s) (7)

=
∑
s∈Ωx

p(s)

[∑
c∈ΩC

p(c) log
1

p(c)
−
∑
c∈ΩC

p(c|s) log
1

p(c|s)

]
(8)

=
∑
s∈Ωx

p(s) [H(C)−H(C|s)] (9)

In our consideration, ΩC = {0, 1} and P (C = 0) = 1
2 , P (C = 1) = 1

2 , so H(C) = 1. Additionally, the bayesian classifier
rule yields

acc(C|s) =

{
P (C = 0|s), for P (C = 1|s) ≤ 0.5
P (C = 1|s), for P (C = 1|s) > 0.5

(10)
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and

H(C|s) = −P (C = 0|s) logP (C = 0|s)− P (C = 1|s) logP (C = 1|s) (11)
= H2(P (C = 0|s)) = H2(P (C = 1|s)) (12)
= H2(acc(C|s)) (13)

Plugging in the results H(C) = 1 and H(C|s) = H2(Acc(C|s)), we obtain the proposed lemma. �

For the derivation of upper and lower bounds, Jenssen’s inequality is used. 1−H2(·) is a convex function and the {p(s)}s∈Ωx

are convex multipliers, i.e., they are non-negative and sum up to one. Then,

1−H2 (Acc(C|x)) = 1−H2

(∑
s∈Ωx

p(s) Acc(C|s)
)

(14)

≤
∑
s∈Ωx

p(s) [1−H2 (Acc(C|s))] = I(x;C) (15)

We can restate this equation in terms of accuracy.

H2 (Acc(C|x)) ≥ 1− I(C;x) (16)

Using that H2 (·) is decreasing monotonically on the interval
[

1
2 , 1
]
, so its inverse H−1

2 exists, and that Acc(C|s) ≥ 0.5:

Acc(C|x) ≤ H−1
2 (1− I(C;x)) . (17)

The inequality sign is flipped again, due to the inverse being monotonically decreasing. Note that the bounds derived for the
special case are much tighter than the general ones provided by Vergara & Estévez (2014) and Cover & Thomas (2006,
Chapter 2.10), that are not of any use, because they are even less strict than the trivial bound Acc(C|x) ≤ 1, for the simple
case considered here.

For the lower bound, we refer the reader to Hellman & Raviv (1970, eqn. 18), where the term I corresponds to H(C|x) =
H(C)− I(C;x) in our notation. Rewriting the result from Hellman & Raviv (1970) in our notation, we obtain

1−Acc(C|x) ≤ H(C)− I(C;x)

2
. (18)

Using H(C) = 1 and rearranging yields

1−Acc(C|x) ≤ 1− I(C;x)

2
(19)

and

Acc(C|x) ≥ I(C;x) + 1

2
. (20)

�

A.3. Analysis of the LeRF Ordering

In this section, we analyze the masking impact for the case of the Least Relevant First (LeRF) ordering. We first provide a
definition for the operators involved as we did for the Most Relevant First (MoRF) case. In the LeRF setting, the k least
important important features per instance are removed. We model the explanation as a choice of features via a binary mask
M = e (f,x) ∈ {0, 1}d, with the corresponding value set to one, if the corresponding feature is among the top-k, and
to zero otherwise. Furthermore, supposeMh : {0, 1}d × Rd → Rk to be the selection operator for the highly important
dimensions indicated in the mask and xh =Mh (M ,x) to be a vector containing only the remaining, highly important
features as shown in Figure 9. We suppose that the features preserve their internal order in xh, i.e., features are ordered
ascendingly by their original input indices.

The LeRF approach with retraining (also called “Keep and Retrain”, KAR, by Hooker et al. (2019)) measures the accuracy
of a newly trained classifier f ′ on modified samples x′h := Ih (M ,xh), where Ih : {0, 1}d × Rk → Rd is an imputation
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Figure 9. Analogous analytical model of feature removal in the opposite order (LeRF): The input image x is explained by an explanation
method that returns a mask M indicating important pixels. The remaining, highly important pixels can be extracted from the image using
the masking operatorMh and transformed to a modified variant of the input x′h via the imputation operator Ih.

operator that redistributes all inputs in the vector xh to their original positions and sets the remainder to some filling value.
This means only the top-k features are kept. For a better evaluation result, the accuracy should increase quickly with
increasing k, indicating the most influential features are present. Accuracy should not increase much for the high values of
k, because inserting the low importance features should not have a large effect (equivalently, this means it should not drop
much when the least important features are removed). Overall, higher accuracies indicate better attributions in the LeRF
setting.

For the LeRF benchmark, the quantity of interest in our analysis will be I(x′h;C), the class information contained in the
filled-in version of the selected high important features. We want to maximize I(x′h;C) to obtain a good score,

↑ I(x′h;C) ⇒ ↑ LeRF benchmark.

As before, we can apply the following, general identity:

I(x′h;C)︸ ︷︷ ︸
Evaluation Outcome

= I(C;x′h|M)︸ ︷︷ ︸
Feature Info.

+ I(C;M)︸ ︷︷ ︸
Mask Info.

− I(C;M |x′h)︸ ︷︷ ︸
Mitigator

. (21)

The interpretation of the terms is analogous to that in our main paper.

Class-Leaking Explanation Map For the case of the class-leaking map, we again require the imputation operator to be
invertible:

Example A.2. Invertible Imputation. Let Ih : {0, 1}d × Rk → Rd be the imputation operator that takes the highly
important features as an input. We suppose that there are inverse functions I−1

h,M and I−1
h,x, such that

x′h = Ih (M ,xh)⇔M = I−1
h,M (x′h) ∧ xh = I−1

h,x(x′h).

If, for instance, the pixels removed are set to some reserved value indicating their absence, the infilling operator is invertible.
In this case, also the Mitigator I (C;M |x′h) = 0 (see Section 4.3 for details). The “Feature Info” term is constrained to be
positive. Thus, the Mask Information has a non-negligible impact on the Evaluation Goal, because a higher Mask term will
always increase it.

We can create a another example of a spurious explanation map that shows how evaluation scores are influenced even worse
for LeRF: Suppose an explanation map that starts masking out pixels at the top for class zero and at the bottom for class
one. Thus, a retrained model will be able to infer the category just from the shape of the masked pixels and obtain the
best possible accuracy and thus score in the LeRF setting. However, it does not provide a reasonable attribution for the
importance of the features.
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B. GAN Imputation
We also use Generative Adversarial Imputation Nets (GAIN) proposed by Yoon et al. (2018) as an imputation operator. We
first train a GAIN model on CIFAR-10. To find the best-performing setup, we run a hyperparameter selection for the GAIN
model. We keep all the default parameters identified by Kachuee et al. (2020), but search for the value of alpha (α), which
can be seen as a weight factor for the reconstruction loss of the non-imputed pixels in the GAN, and the hint rate (hr)
parameter, which provides the Discriminator with hints to balance the difficulty of the tasks. We train the models for 100
epochs which resulted in converged MSEs and Frechet Inception Distances (FIDs). We use MSE to the original pixels to
assess the generative quality of the model. Kachuee et al. (2020) reported low values for both these parameters to perform
well, but did not provide the exact values. We extended their value ranges to α = 100 and performed and exhaustive search.
The results for the GAIN models on CIFAR-10 can be seen in Table 5. For the experiments we used the best setup with
α = 100 and hr = 0.01.

α=0.1 α=1 α=10 α=100
hr=0.01 0.0131 0.0164 0.0090 0.0085
hr=0.1 0.0113 0.0133 0.0131 0.0101
hr=0.3 0.0172 0.0183 0.0151 0.0127
hr=0.9 0.0303 0.0484 0.0379 0.0088

Table 5. Mean-Squared-Errors for GAIN on CIFAR-10 using different hyperparameter choices.

In Figure 10, we demonstrate imputation results using three operators for one image (a) from CIFAR-10. Compared to
the fixed value imputation (b) and noisy linear imputation (c), GAN imputation (d) yields most natural imputed image.
Although it cannot perfectly reconstruct the original image, for example the background is noisy and the body color is
different from the original one, it is not easy to deduce the mask from (d). A trained imputation predictor also verifies that
GAN imputation is closest to the optimal condition, Minimally Revealing Imputation.

However, there are drawbacks of the GAN imputation. It may introduce some new “features” that do not exist in the original
sample. For instance the dog in (d) has new patterns on its body. Moreover, it does not give very good results when too
many pixels are removed (cf. Figure 12). The GAIN training again requires tuning hyperparameter settings and is highly
expensive. Therefore, this model does not allow for the desired improvements (few hyperparameters, efficiency). Compared
to GAN, our Noisy Linear imputation does not have these drawbacks. Considering all these factors, we recommend to use
Noisy Linear Imputation in the evaluation framework.

(a) (b)

(c) (d)
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Figure 10. The considered imputation operators. When 30 % of the original image (a) are removed, they can either be completed by a
fixed value (b) or by our proposed Noisy Linear imputation (c) or GAN imputation (d). Training of an imputation predictor (e) shows that
it is much harder to tell which pixels are original and which were imputed when using our proposed imputation models, which is closer to
the theoretical optimum (black). Hence, Class Information Leakage is reduced by our imputation methods.
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Figure 11. Illustration of modified data set in MoRF/LeRF and fixed value imputation settings. Left: Modifications in the MoRF
framework. Right: Modifications in the LeRF framework. Top to Bottom: Modifications using Integrated Gradient (IG) (Sundararajan
et al., 2017) and three ensemble variants of IG: SmoothGrad (SG-IG) (Smilkov et al., 2017), SmoothGrad2 (SG-SQ-IG) (Hooker et al.,
2019), and VarGrad (Var-IG) (Adebayo et al., 2018). The percentage of pixels that are removed or kept is given at the bottom.

C. Additional Experiments on CIFAR-10
C.1. Implementation Details

In this section, we report implementation details on CIFAR-10 as well as additional results for comparison between fixed
value imputation and our Noisy Linear Imputation. We also include GAN imputation results. In Figure 12, an overview of
using three different imputations with different perturbation percentages are illustrated.

We train a vanilla ResNet-18 (He et al., 2016) on CIFAR-10 and compute different explanations using the trained model.
The model is trained with the initial learning rate of 0.01 and the SGD optimizer (Sutskever et al., 2013). We decrease the
learning rate by factor 0.1 after 25 and train the model for 40 epochs on one GPU. The trained model achieves a test set
accuracy of 84.5 % (comparable to the model in (Tomsett et al., 2020)). For attributions, we use the same settings as in
(Hooker et al., 2019): As base explanations we implement Integrated Gradient (IG) (Sundararajan et al., 2017) and Guided
Backprop (GB) (Springenberg et al., 2015). Additionally, we use three ensembling strategies for each: SmoothGrad (SG)
(Smilkov et al., 2017), SmoothGrad2 (SG-SQ) (Hooker et al., 2019) and VarGrad (Var) (Adebayo et al., 2018). For each
explanation method, we modify the data set using the fraction of pixels η = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9]. Figure 11
illustrates the modified images by using four different explanations in the GB-family within MoRF and LeRF orders (fixed
mean value imputation is used).

We use N = 5 runs and report averaged results for all CIFAR-10 experiments in our paper and indicate the standard errors
(which are very small) as an area behind our plots. In Table 6 and Table 7, we show the mean accuracy and its standard
deviation at each the fraction of pixels η for IG-SG and GB-SG explanations. For other explanations we used, the standard
deviation at each η in the magnitude of below one percent as well. Mean runtimes (average over 5 runs) for evaluating one
explanation method (IG) using all three imputation methods are listed in Table 8.

C.2. Correlation Analysis

In Table 9, we show a full view of the Spearman Correlation of rankings between all twelve different evaluation strategies
(“Retrain”/“No-Retrain”, MoRF/LeRF, and fixed value/Noisy Linear/GAN imputation) used in this paper. In this work, our
primary focus was on consistency between the respective Retraining/No-Retraining Methods and the consistency between
MoRF/LeRF and we mark the results used in the main paper in bold.

C.3. Extended Figures

In this section, we include full qualitative results of using four variants in evaluation strategies (“Retrain”/“No-Retrain”,
MoRF/LeRF) for three different imputation operators (fixed value/Noisy Linear/GAN imputation). In Figure 13, the full
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Figure 12. Sample images from CIFAR-10 and Food-101 imputed with the three methods considered in this work for different percentages.
The missing pixels are determined by the IG attribution method (in MoRF order). While the GAN leads to sharper images for the early
percentage values, where the linearly imputed samples become more blurry. Artefacts are introduced for high missingness percentages
(0.9) in GAN imputation, which may distort the results of the evaluation once again. Therefore, we decide to stick to the Noisy Linear
Imputation that operates more stably.

plots of IG-family attribution methods using fixed value imputation are shown, while Figure 16 illustrates for the GB-based
attribution methods. Figure 14 and Figure 17 show the evaluation results when using our Noisy Linear Imputation for
IG- and GB-family attribution methods, respectively. From results, we see that using our Noisy Linear Imputation, the
consistency between the evaluation rankings conducted in MoRF and LeRF with and without retraining increases, for
instance in Figure 14 compared to Figure 13.

D. Additional Experiments on Food-101
D.1. Implementation Details

We trained a vanilla ResNet-50 (He et al., 2016) on Food-101 (Bossard et al., 2014). Concretely, we trained the model using
the SGD optimizer. Additionally the model was trained with the initial learning rate of 0.01. The learning rate was reduced
by factor of 0.1 after every 10 epochs. In total, we trained 40 epochs with a batch size of 32 and the model achieved the
accuracy of 81.67% on the test set. To run the GAN imputation operator, we first trained a GAIN model on Food-101 as
introduced in Appendix B. We used the hyper-parameters α = 100 and hr = 0.1 and trained the GAIN model with the
batch size of 32 for 100 epochs. We computed the eight explanations and run ROAD and ROAR evaluation using the same
settings as introduced in Appendix C.1 for CIFAR-10.

D.2. Correlation Analysis

In Table 10, we show a full view of Spearman Correlation of rankings given by eight different evaluation strategies
(“Retrain”/“No-Retrain”, MoRF/LeRF, and fixed/Noisy Linear/GAN imputation) on Food-101. In the table, results marked
in bold indicate the consistency of using three imputation operators. We observe that the consistency between the respective
Retrain and No-Retrain methods is still very high, which confirms that the efficiency gains reported in the main paper can be
realized for larger data sets. Consistency between MoRf/LeRF is improved (over fixed imputation) when using retraining,
but decreases slightly when the No-Retraining approach is used. Because the curves are often very close on this dataset
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10 20 30 40 50 70 90

Retrain
MoRF

fixed 74.94±0.57 75.42±0.45 75.62±0.24 75.16±0.50 74.95±0.45 73.73±0.48 65.18±0.85
lin 69.72±0.49 68.10±0.34 67.28±0.34 67.32±0.22 67.52±0.22 66.46±0.54 60.37±0.51
gan 74.78±0.31 73.16±0.22 72.02±0.03 71.40±0.23 70.72±0.30 68.44±0.43 59.37±0.44

No-Retrain
MoRF

fixed 44.06±0.04 29.81±0.03 21.99±0.03 17.35±0.02 14.67±0.01 11.50±0.04 10.90±0.03
lin 67.66±0.02 59.94±0.03 54.05±0.05 49.46±0.04 45.63±0.06 36.87±0.05 24.55±0.04
gan 74.53±0.04 71.41±0.04 69.10±0.06 67.55±0.09 66.55±0.07 60.73±0.12 25.46±0.10

Retrain
LeRF

fixed 80.88±0.14 81.34±0.15 81.41±0.01 81.36±0.14 81.34±0.11 80.95±0.01 76.86±0.34
lin 81.41±0.10 81.67±0.18 81.88±0.16 81.56±0.13 81.31±0.22 79.89±0.23 72.83±0.36
gan 81.05±0.22 80.99±0.15 80.14±0.16 79.25±0.18 78.24±0.22 74.92±0.15 68.69±0.21

No-Retrain
LeRF

fixed 74.34±0.02 69.04±0.03 64.06±0.04 59.86±0.03 57.59±0.03 53.81±0.06 46.74±0.02
lin 82.20±0.04 82.04±0.03 81.76±0.08 81.34±0.06 80.97±0.03 77.89±0.07 56.74±0.13
gan 80.80±0.02 80.38±0.03 79.90±0.02 78.85±0.07 77.47±0.08 71.14±0.10 32.96±0.17

Table 6. Mean accuracy at each η by using IG-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-η).

10 20 30 40 50 70 90

Retrain
MoRF

fixed 76.30±0.43 75.60±0.27 74.89±0.29 74.27±0.29 73.37±0.28 72.15±0.09 67.99±0.24
lin 72.83±0.37 71.87±0.41 71.58±0.19 70.98±0.15 70.47±0.20 67.81±0.45 59.38±0.46
gan 76.64±0.13 75.44±0.13 74.73±0.28 73.69±0.30 72.85±0.34 68.97±0.08 56.81±0.30

No-Retrain
MoRF

fix 73.03±0.03 66.72±0.03 58.72±0.07 52.51±0.04 48.52±0.08 48.79±0.06 44.43±0.06
lin 74.57±0.08 71.18±0.06 68.70±0.08 67.24±0.08 64.82±0.11 57.68±0.06 32.59±0.09
gan 76.57±0.03 74.70±0.04 72.51±0.09 71.19±0.07 69.64±0.08 60.89±0.15 21.11±0.16

Retrain
LeRF

fixed 72.39±0.39 71.76±0.41 71.21±0.30 70.26±0.50 69.83±0.22 68.32±0.45 63.29±0.56
lin 72.86±0.24 71.63±0.27 70.67±0.42 70.08±0.30 69.82±0.22 68.10±0.18 60.12±0.34
gan 75.97±0.27 74.73±0.27 73.41±0.24 72.74±0.34 72.20±0.28 69.89±0.26 57.57±0.24

No-Retrain
LeRF

fixed 69.61±0.04 64.90±0.02 57.88±0.05 51.67±0.09 46.93±0.06 42.40±0.09 37.10±0.03
lin 71.84±0.06 66.71±0.08 63.79±0.05 61.46±0.09 59.69±0.09 55.09±0.06 35.72±0.13
gan 75.13±0.02 72.13±0.05 70.25±0.05 68.56±0.08 67.35±0.08 62.32±0.13 24.61±0.19

Table 7. Mean accuracy at each η by using GB-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-η).

(in particular for the No-Retraining setup), small differences might already lead to a change in the ranking and the results
are in general noisier than on CIFAR-10. In summary, we observe similar trends, although the consistency gain between
MoRF/LeRF in No-Retrain is not as pronounced. Nevertheless, a perfect agreement between MoRF/LeRF might not be
desirable.

D.3. Extended Figures

Full qualitative results of using four variants in evaluation strategies (“Retrain”/“No-Retrain”, MoRF/LeRF) for three
different imputation operators (fixed value/Noisy Linear/GAN imputation) are listed from Figure 19 to Figure 24. Figure 20
and Figure 23 show the evaluation results when using our Noisy Linear Imputation for IG- and GB-family attribution
methods, respectively. From results, we see that using our Noisy Linear Imputation, the consistency between the evaluation
results using “Retrain” and “No-Retrain” are more consistent compared to using the fixed value imputation. Therefore,
retraining can be safely skipped by using our Noisy Linear Imputation.
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Strategy Retrain No-Retrain

fixed† lin gan fixed lin? gan

Time 3903±117 s 4686±2 s 6421±74 s 18.0±0.1 s 33.3±0.1 s 35.0±0.1 s
Relative 100 % 120 % 164 % 0.5 % 0.9 % 0.9 %

Table 8. Mean runtime (5 runs) for evaluating a single explanation method (IG) on three imputation operators. † refers to ROAR, and ? to
our ROAD.

Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain
MoRF

fixed†
1.00
±0.00

lin
0.68
±0.02

1.00
±0.00

gan
0.76
±0.01

0.82
±0.01

1.00
±0.00

No-Retrain
MoRF

fixed
0.15
±0.01

0.38
±0.02

0.23
±0.01

1.00
±0.00

lin∗
0.66
±0.01

0.84
±0.01

0.86
±0.01

0.43
±0.01

1.00
±0.00

gan
0.65
±0.01

0.62
±0.01

0.84
±0.01

0.14
±0.01

0.78
±0.01

1.00
±0.00

Retrain
LeRF

fixed
-0.01
±0.01

0.48
±0.02

0.28
±0.02

0.66
±0.00

0.47
±0.02

0.13
±0.01

1.00
±0.00

lin
0.16
±0.01

0.61
±0.01

0.34
±0.01

0.78
±0.01

0.50
±0.01

0.10
±0.01

0.87
±0.01

1.00
±0.01

gan
0.15
±0.01

0.59
±0.01

0.32
±0.01

0.74
±0.00

0.50
±0.01

0.10
±0.01

0.90
±0.01

0.96
±0.01

1.00
±0.00

No-Retrain
LeRF

fixed
0.49
±0.01

0.44
±0.01

0.69
±0.01

0.01
±0.00

0.60
±0.00

0.77
±0.00

0.09
±0.01

0.03
±0.01

-0.03
±0.00

1.00
±0.00

lin
0.21
±0.01

0.60
±0.01

0.38
±0.01

0.81
±0.00

0.58
±0.01

0.22
±0.01

0.85
±0.00

0.94
±0.01

0.91
±0.00

0.10
±0.00

1.00
±0.00

gan
0.05
±0.01

0.47
±0.01

0.17
±0.01

0.69
±0.00

0.36
±0.00

-0.07
±0.01

0.85
±0.00

0.86
±0.01

0.90
±0.01

-0.14
±0.00

0.79
±0.00

1.00
±0.00

Table 9. CIFAR-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. Results indicated in bold correspond to those reported in the main paper.
The ROAR benchmark is marked by † and our ROAD by ∗.
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Figure 13. Consistency comparison using Fixed Value imputation on IG-based methods on CIFAR-10
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Figure 14. Consistency comparison using Noisy Linear imputation on IG-based methods on CIFAR-10
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Figure 15. Consistency comparison using GAN imputation on IG-based methods on CIFAR-10
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Figure 16. Consistency comparison using Fixed Value imputation on GB-based methods on CIFAR-10
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Figure 17. Consistency comparison using Noisy Linear imputation on GB-based methods on CIFAR-10
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Figure 18. Consistency comparison using GAN imputation on GB-based methods on CIFAR-10
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Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain
MoRF

fixed†
1.00
±0.00

lin
0.48
±0.03

1.00
±0.00

gan
0.50
±0.04

0.79
±0.03

1.00
±0.00

No-Retrain
MoRF

fixed
0.12
±0.01

0.57
±0.02

0.50
±0.01

1.00
±0.00

lin∗
0.61
±0.01

0.81
±0.02

0.67
±0.04

0.31
±0.01

1.00
±0.00

gan
0.74
±0.01

0.79
±0.02

0.67
±0.04

0.35
±0.01

0.86
±0.00

1.00
±0.00

Retrain
LeRF

fixed
-0.26
±0.02

0.41
±0.02

0.30
±0.02

0.53
±0.01

0.10
±0.01

0.11
±0.01

1.00
±0.00

lin
-0.40
±0.02

0.26
±0.04

0.19
±0.04

0.30
±0.03

-0.05
±0.01

0.09
±0.01

0.83
±0.01

1.00
±0.00

gan
-0.18
±0.01

0.46
±0.04

0.32
±0.04

0.50
±0.03

0.13
±0.02

0.14
±0.03

0.89
±0.02

0.83
±0.01

1.00
±0.00

No-Retrain
LeRF

fixed
0.79
±0.02

0.79
±0.03

0.63
±0.05

0.32
±0.01

0.85
±0.00

0.89
±0.00

0.02
±0.01

-0.15
±0.02

0.10
±0.03

1.00
±0.00

lin
-0.28
±0.02

0.35
±0.02

0.28
±0.04

0.46
±0.00

-0.03
±0.00

-0.06
±0.00

0.89
±0.01

0.81
±0.02

0.87
±0.01

-0.11
±0.00

1.00
±0.00

gan
-0.45
±0.02

-0.08
±0.03

-0.04
±0.04

0.23
±0.00

-0.37
±0.00

-0.44
±0.00

0.58
±0.01

0.61
±0.01

0.54
±0.00

-0.41
±0.00

0.70
±0.00

1.00
±0.00

Table 10. Food-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. The ROAR benchmark is marked by † and our ROAD by ∗. Bold results
highlight the consistency between Retrain and No-Retrain (still very high) as well as MoRF and LeRF evaluation strategies using different
imputation operators (fair increase when using Noisy Linear and GAN imputations instead of fixed imputation in “Retrain”, decrease in
“No-Retrain”).
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Figure 19. Consistency comparison using Fixed Value imputation on IG-based methods on Food-101.
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Figure 20. Consistency comparison using Noisy Linear imputation on IG-based methods on Food-101.
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Figure 21. Consistency comparison using GAN imputation on IG-based methods on Food-101.
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Figure 22. Consistency comparison using Fixed Value imputation on GB-based methods on Food-101.
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Figure 23. Consistency comparison using Noisy Linear imputation on GB-based methods on Food-101.
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Figure 24. Consistency comparison using GAN imputation on GB-based methods on Food-101.


