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Abstract

Deep neural networks have shown great success in rep-
resentation learning. However, when learning with noisy
labels (LNL), they can easily overfit and fail to general-
ize to new data. This paper introduces a simple and ef-
fective method, named Learning to Bootstrap (L2B), which
enables models to bootstrap themselves using their own
predictions without being adversely affected by erroneous
pseudo-labels. It achieves this by dynamically adjusting the
importance weight between real observed and generated la-
bels, as well as between different samples through meta-
learning. Unlike existing instance reweighting methods, the
key to our method lies in a new, versatile objective that en-
ables implicit relabeling concurrently, leading to significant
improvements without incurring additional costs.

L2B offers several benefits over the baseline methods. It
yields more robust models that are less susceptible to the
impact of noisy labels by guiding the bootstrapping pro-
cedure more effectively. It better exploits the valuable in-
formation contained in corrupted instances by adapting the
weights of both instances and labels. Furthermore, L2B is
compatible with existing LNL methods and delivers com-
petitive results spanning natural and medical imaging tasks
including classification and segmentation under both syn-
thetic and real-world noise. Extensive experiments demon-
strate that our method effectively mitigates the challenges of
noisy labels, often necessitating few to no validation sam-
ples, and is well generalized to other tasks such as image
segmentation. This not only positions it as a robust com-
plement to existing LNL techniques but also underscores its
practical applicability. The code and models are available
at https://github.com/yuyinzhou/l2b.

1. Introduction
In computer vision, deep learning has made significant
strides, especially when provided with extensive, high-

quality datasets. However, the persistent issue of label
noise in real-world datasets, which stems from factors
such as inter-observer variability, human annotation errors,
and adversarial rival, can significantly undermine perfor-
mance [31]. As the size of datasets for deep learning con-
tinues to grow, the impact of label noise may become more
significant. Understanding and addressing label noise is
crucial for improving the accuracy and reliability of deep
learning models [28, 49, 53, 60, 70, 71, 73].

Existing learning with noisy labels (LNL) methods, such
as [9, 35], focus on loss correction by estimating a noise
corruption matrix, which is often challenging and involves
assumptions [13, 29, 54]. Recent research like [10, 15, 62]
primarily targets identifying and utilizing clean samples
within noisy datasets, frequently treating low-loss sam-
ples as clean [3]. Unlike approaches that discard noisy
examples, meta-learning methods [38, 40] assign adap-
tive weights to each sample, with noisier ones receiv-
ing lower weights. However, this may compromise per-
formance in high-noise scenarios by neglecting or under-
weighting portions of the training data. To better utilize
corrupted samples, several studies have focused on using
network predictions, or pseudo-labels [19], to recalibrate la-
bels [2, 37, 43, 44, 61]. The bootstrapping loss method [37]
is notable for using pseudo-labels in training targets, coun-
tering noisy sample effects. However, the static weight of
pseudo-labels can lead to overfitting and inadequate label
correction [2]. Addressing this, Arazo et al. [2] developed a
dynamic bootstrapping method that adjusts the balance be-
tween actual and pseudo-labels using a mixture model.

In contrast to prior works that individually reweight la-
bels or instances, our paper introduces a simple and effec-
tive approach to concurrently adjust both, elegantly unified
under a meta-learning framework. We term our method as
Learning to Bootstrap (L2B), as our goal is to enable the
network to self-boost its capabilities by harnessing its own
predictions in combating label noise. Specifically, L2B in-
troduces a new, versatile loss that allows dynamically ad-
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justing the balance between true and pseudo labels, as well
as the weights of individual samples. This adjustment is
based on performance metrics from a separate, clean valida-
tion set within a meta-network framework. Unlike previous
bootstrapping loss methods [2, 37, 68], which reallocate la-
bels through a fixed weighted combination of pseudo and
true labels, L2B offers greater flexibility. It uniquely does
not limit the weights to sum to one, allowing for more nu-
anced reweighting across all instances and labels. Further-
more, we empirically show that meta-learning algorithms’
need for a clean validation set can be removed by dynami-
cally creating an online meta set from the training data using
a Gaussian mixture model [36]. This not only enhances our
method’s practicality but also facilitates its integration with
current LNL techniques like DivideMix [22], UniCon [16],
and C2D [69]. Consequently, L2B attains superior results
without relying on a validation set.

In addition, we theoretically prove that our formulation,
which reweights different loss terms, can be reduced to the
original bootstrapping loss and therefore conducts an im-
plicit relabeling instead. Through a meta-learning process,
L2B achieves significant improvements (e.g., +8.9% im-
provement on CIFAR-100 with 50% noise) compared with
the instance reweighting baseline with no extra cost. This
versatile bootstrapping procedure of L2B presents a simple
and effective plug-in compatible with existing LNL meth-
ods. Our comprehensive tests across both natural and med-
ical image datasets such as CIFAR-10, CIFAR-100, Cloth-
ing 1M, and ISIC2019, covering various types of label noise
and recognition tasks, highlight L2B’s superiority over con-
temporary label correction and meta-learning techniques.

2. Related Works

Learning with noisy labels. Various approaches have been
proposed to tackle the challenge of training models with
noisy labeled data. Noisy detection approaches [10, 13, 58,
63] focus on identifying and reducing the influence of noisy
samples to mitigate label inaccuracies. Label correction
strategies [22, 37, 68] aim to refine pseudo labels to better
match true labels. Within this domain, one group empha-
sizes robust representation learning through unsupervised
contrastive learning [8, 16, 23, 69], while another signifi-
cant group employs meta-learning, using a subset of clean
data for optimization guidance [21, 38, 40, 52, 56, 68, 70].

Explicit relabeling. Existing works propose to directly
identify noisy samples and relabel them through estimating
the noise transition matrix [9, 35, 54, 59] or modeling noise
by graph models or neural networks [20, 46, 47, 55]. Pa-
trini et al. [35] and Hendrycks et al. [13] estimate the label
corruption matrix to directly correct the loss function. How-
ever, these methods usually require assumptions about noise
modeling. For instance, Hendrycks et al. [13] assume that

the noisy label is only dependent on the true label and inde-
pendent of the data. Another line of approaches proposes to
leverage the network prediction (pseudo-labels) for explicit
relabeling [11, 33, 37, 44, 61]. However, using a uniform
weight for all samples, as in [37], can exacerbate the in-
fluence of noisy data, impeding effective label correction.
Semi-supervised LNL techniques [22, 68] segment training
data into labeled “clean samples” and unlabeled noisy sets,
subsequently relabeled using pseudo-labels. To bolster the
reliability of these pseudo-labels, unsupervised contrastive
learning approaches are employed [8, 16, 23, 69].
Instance reweighting. To counteract the adverse effects of
corrupted examples, various strategies focus on reweighting
or selecting training instances to minimize the influence of
noisy samples [6, 15, 38]. Based on the observation that
deep neural networks tend to learn simple patterns first be-
fore fitting label noise [3], many methods treat samples with
small loss as clean ones [10, 15, 39, 50, 62]. Rather than di-
rectly selecting clean examples for training, meta-learning
techniques [38, 40, 56] adjust instance weights, and cur-
riculum learning [15] sequences them by noise levels. Such
strategies enhance robustness in medical imaging [30, 57],
but overlooking training subsets can affect performance in
high-noise scenarios.
Meta-learning. Meta-learning methods [21, 38, 40, 52, 56,
68, 70] use a small clean validation set to optimize model
weights and hyper-parameters. Techniques include instance
reweighting [38, 40, 56], which involves bi-level optimiza-
tion for determining training sample contributions. An-
other line of works view label correction as a separate meta-
process [52, 68, 70]. Meta-learning has also been utilized
to prevent overfitting to noisy labels [21]. Recently, meta-
learning approaches has also been modified for other pur-
poses. For instance, CMW-Net [41] adaptively generates
sample weight based on the intrinsic bias characteristics
of different sample classes. DMLP [45] combines self-
supervised representation learning and a linear meta-learner
for label correction.

Different from the aforementioned approaches which
separately handle instance reweighting and label reweight-
ing, we introduce a generic learning objective that concur-
rently meta-learns per-sample loss weights while implicitly
relabeling the training data.

3. Methodology
3.1. Preliminary

Given a set of N training samples, i.e., Dtra =
{(xi, yi)|i = 1, ..., N}, where xi ∈ RW×H denotes the i-th
image and yi is the observed noisy label. In this work, we
also assume that there is a small unbiased and clean valida-
tion set Dval = {(xv

i , y
v
i )|i = 1, ...,M} and M ≪ N ,

where the superscript v denotes the validation set. Let
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F(:, θ) denote the neural network model parameterized by
θ. Given an input-target pair (x, y), we consider the loss
function of L(F(x, θ), y) (e.g., cross-entropy loss) to min-
imize during the training process. Our goal in this paper is
to properly utilize the small validation set Dval to guide the
model training on Dtra, for reducing the negative effects
brought by the noisy annotation.

To establish a more robust training procedure, [37] pro-
posed the bootstrapping loss to enable the learner to “dis-
agree” with the original training label, and effectively re-
label the data during the training. Specifically, the train-
ing targets will be generated using a convex combination
of training labels and predictions of the current model (i.e.,
pseudo-labels [19]), for purifying the training labels. There-
fore, for a L-class classification problem, the loss function
for optimizing θ can be derived as follows:

ypseudo
i = argmax

l=1,..,L
P(xi, θ), (1)

θ∗ = argmin
θ

N∑
i=1

L(F(xi, θ), βy
real
i +(1−β)ypseudo

i ), (2)

where β is used for balancing the weight between the real
labels and the pseudo-labels. P(xi, θ) is the model out-
put. yreal and ypseudo denote the observed label and the
pseudo-label respectively. However, in this method, β is
manually selected and fixed for all training samples, which
does not prevent fitting the noisy ones and can even lead to
low-quality label correction [2]. Moreover, we observe that
this method is quite sensitive to the selection of the hyper-
parameter β. For instance, as shown in Figure 1(a), even
a similar β selection (i.e., β = 0.6 vs. β = 0.8) behaves
differently under disparate noise levels, making the selec-
tion of β even more intractable. Another limitation lies in
that equation 2 treats all examples as equally important dur-
ing training, which could easily cause overfitting for biased
training data.

3.2. Learning to Bootstrap through Meta-Learning

To address these above challenges, in this paper, we aim
to learn to bootstrap the model by conducting a joint label
reweighting and instance reweighting. To achieve this, we
propose to generate meta-learned weights for guiding our
main learning objective:

θ∗(α,β) = argmin
θ

N∑
i=1

αiL(F(xi, θ), y
real
i )

+ βiL(F(xi, θ), y
pseudo
i ),

(3)

with {αi, βi}Ni=1 being the balance weights. Here we note
that this new learning objective can be regarded as a gen-
eral form of the original bootstrapping loss, as equation 3

can be reduced to equation 2 when αi + βi = 1 given that
L(·) is the cross-entropy loss (see details in Appendix 7.1).
By relaxing this constraint such that α,β ≥ 0, we can
see that the optimization of equation 3 not only allows the
main learner to explore the optimal combination between
the two loss terms but also concurrently adjust the con-
tribution of different training samples. In addition, com-
pared with equation 2, the optimization of equation 3 does
not rely on explicitly generating new training targets (i.e.,
βyreal

i +(1−β)ypseudo
i ), but rather conducts implicit relabel-

ing during training by reweighting different loss terms. We
note that the key to L2B is that the sum of αi and βi need not
be 1, which results in +8.9% improvement on CIFAR-100
with 50% noise (Section 4.3).

Note that this form is also similar to self-distillation
in [25]. But different from [25] where the weights are de-
termined by heuristics, our weights α,β are meta-learned
based on its performance on the validation set Dval, that is

α∗,β∗ = argmin
α,β≥0

1

M

M∑
i=1

L(F(xv
i , θ

∗(α,β)), yvi ). (4)

It is necessary to constrain αi, βi ≥ 0 for all i to avoid po-
tential unstable training [38]. Both the meta learner (i.e.,
equation 4) and the main learner (i.e., equation 3) are op-
timized concurrently, which allows the model to maximize
the performance on the clean validation set Dval by adjust-
ing the importance weights of the observed and the pseudo-
labels in a differentiable manner.
Online Approximation. For each step t at training, a mini-
batch of training examples {(xi, yi), 1 ≤ i ≤ n} with
n ≪ N is sampled to estimate a temporary adjustment to
the parameters based on the descent direction of the loss
function. For simplicity, let fi(θ) denote L(F(xi, θ), y

real
i )

and gi(θ) denote L(F(xi, θ), y
pseudo
i ) in the following sec-

tions. Given any α,β, we use

θ̂t+1 = θt − λ∇(
n∑

i=1

αi fi(θ) + βi gi(θ))
∣∣∣
θ=θt

(5)

to approach the solution of equation 3. Here λ is the step
size. We then estimate the corresponding optimal α,β as

α∗
t ,β

∗
t = argmin

α,β≥0

1

M

M∑
i=1

fv
i (θ̂t+1). (6)

However, directly solving for equation 6 at every train-
ing step requires too much computation cost. To reduce
the computational complexity, we apply one step gradi-
ent descent of αt,βt on a mini-batch of validation set
{(xv

i , y
v
i ), 1 ≤ i ≤ m} with m ≤ M as an approximation.

Specifically,

(αt,i, βt,i) = −η∇(
m∑
i=1

fv
i (θ̂t+1))

∣∣∣
αi=0,βi=0

, (7)
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Figure 1. (a) The original bootstrapping loss [37] is sensitive to the reweighting hyper-parameter β. Under different noise levels, the optimal β is different
(NF stands for noise fraction). (b) Schematic description of our Learning to Bootstrap (i.e., L2B) method. The reweighting hyper-parameters are learned in
a meta-process.

where η is the step size for updating α,β. To ensure that the
weights are non-negative, we apply the following rectified
function:

α̃t,i = max(αt,i, 0), β̃t,i = max(βt,i, 0). (8)

To stabilize the training process, we also normalize the
weights in a single training batch so that they sum up to
one:

α̃t,i =
α̃t,i∑n

i=1 α̃t,i + β̃t,i

, β̃t,i =
β̃t,i∑n

i=1 α̃t,i + β̃t,i

. (9)

Finally, we estimate θt+1 based on the updated αt,βt so
that θt+1 can consider the meta information included in
αt,βt:

θt+1 = θt − λ∇(
n∑

i=1

α̃t,i fi(θ) + β̃t,i gi(θ))
∣∣∣
θ=θt

. (10)

See Appendix 7.2 for detailed calculation of the gradient
in equation 10. A schematic description of our Learning
to Bootstrap algorithm is illustrated in Figure 1(b) and the
overall optimization procedure can be found in Algorithm 1.

3.3. Convergence Analysis

In proposing equation 3, we show that with the first-order
approximation of α,β in equation 7 and some mild as-
sumptions, our method guarantees to convergence to a local
minimum point of the validation loss, which yields the best
combination of α,β. Details of the proof are provided in
Appendix 7.3.

4. Experiments
4.1. Datasets

CIFAR-10 & CIFAR-100. Both CIFAR-10 and CIFAR-
100 contain 50K training images and 10K test images of
size 32 × 32. Following previous works [17, 22, 44], we

Algorithm 1 Learning to Bootstrap

Require: θ0, Dtra, Dval, n, m, L
Ensure: θT

1: for t = 0 ... T − 1 do
2: {xi, yi} ← SampleMiniBatch(Dtra, n)
3: {xv

i , y
v
i } ← SampleMiniBatch(Dval, m)

4: For the i-th sample of Dtra, compute ypseudo
i =

argmaxl=1,..,L P(xi, θt)
5: Learnable weights α, β
6: Compute training loss lf ←

∑n
i=1 αifi(θt) +

βigi(θt)

7: θ̂t+1 ← θt − λ∇lf
∣∣∣
θ=θt

8: Compute validation loss lg ← 1
m

∑m
i=1 f

v
i (θ̂t+1)

9: (αt,βt)← −η∇lg
∣∣∣
α=0,β=0

10: α̃t,i ← max(αt,i, 0), β̃t,i ← max(βt,i, 0)

11: α̃t,i ← α̃t,i∑n
i=1 α̃t,i+β̃t,i

, β̃t,i ← β̃t,i∑n
i=1 α̃t,i+β̃t,i

12: Apply learned weights α,β to reweight the training
loss as l̂f ←

∑n
i=1 α̃t,ifi(θt) + β̃t,igi(θt)

13: θt+1 ← θt − λ∇l̂f
∣∣∣
θ=θt

14: end for

experimented with both symmetric and asymmetric label
noise. In our method, we used 1,000 clean images in the
validation set Dval following [13, 15, 38, 40, 70].

ISIC2019. Following [57], we also evaluated our algo-
rithm on a medical image dataset, i.e., skin lesion classifi-
cation data, under different symmetric noise levels. Our ex-
periments were conducted on the 25,331 dermoscopic im-
ages of the 2019 ISIC Challenge1, where we used 20400
images as the training set Dtra, 640 images as the valida-
tion set Dval, and tested on 4291 images.

1https://challenge2019.isic-archive.com/data.
html
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Table 1. Comparison in test accuracy (%) with the baseline methods on CIFAR-10/100 datasets with symmetric noise.

Dataset CIFAR-10 CIFAR-100 ISIC

Method/Noise ratio 20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%
Cross-Entropy (CE) 86.9 84.9 83.3 81.3 59.6 52.2 49.2 44.4 79.4 77.5 75.3 73.7
Bootstrap [37] 85.2 84.8 82.9 79.2 61.8 54.2 50.2 45.8 80.8 77.7 75.7 74.8
L2RW [38] 90.6 89.0 86.6 85.3 67.8 63.8 59.7 55.6 80.1 77.7 76.3 74.1
L2B (Ours) 92.2 90.7 89.9 88.5 71.8 69.5 67.3 64.5 81.1 80.2 78.6 76.8

Clothing 1M. We evaluate on real-world noisy dataset,
Clothing 1M [55], which has 1 million training images col-
lected from online shopping websites with labels generated
from surrounding texts. In addition, the Clothing 1M also
provides an official validation set of 14,313 images and a
test set of 10,526 images.

4.2. Implementation Details

For all CIFAR-10 and CIFAR-100 comparison experiments,
we used an 18-layer PreActResNet [12] as the baseline net-
work following the setups in [22], unless otherwise speci-
fied. The model was trained using SGD with a momentum
of 0.9, a weight decay of 0.0005, and a batch size of 256
for CIFAR-100 and 512 for CIFAR-10. The network was
trained from scratch for 300 epochs. We set the learning
rate as 0.15 initially with a cosine annealing decay. Follow-
ing [22], we set the warm up period as 10 epochs for both
CIFAR-10 & CIFAR-100. The optimizer and the learning
rate schedule remained the same for both the main and the
meta model. Gradient clipping is applied to stabilize train-
ing. All experiments were conducted with one V100 GPU,
except for the experiments on Clothing 1M which were con-
ducted with one RTX A6000 GPU.

For ISIC2019 experiments, we used ResNet-50 with Im-
ageNet pretrained weights. A batch size of 64 was used for
training with an initial learning rate of 0.01. The network
was trained for 30 epochs in total with the warmup period
as 1 epoch. All other implementation details remained the
same as above. For Clothing 1M experiments, we used an
ImageNet pre-trained 18-layer ResNet [12] as our baseline.
We finetuned the network with a learning rate of 0.005 for
300 epochs. The model was trained using SGD with a mo-
mentum of 0.9, a weight decay of 0.0005, and a batch size of
256. Following [22], to ensure the labels (noisy) were bal-
anced, for each epoch, we sampled 250 mini-batches from
the training data.

4.3. Performance Comparisons

Efficacy of L2B. We compare our method with differ-
ent baselines: 1) Cross-Entropy (the standard training), 2)
Bootstrap [37], which modifies the training loss by gen-
erating new training targets , and 3) L2RW [38], which
reweights different instances through meta-learning under
different levels of symmetric labels noise ranging from

20% ∼ 50%. To ensure a fair comparison, we report the
best epoch for all comparison approaches. All results are
summarized in Table 1. Compared with the naive boot-
strap method and the baseline meta-learning-based instance
reweighting method L2RW, the performance improvement
is substantial, especially under larger noise fraction, which
suggests that using meta-learning to automatically boot-
strap the model is more beneficial for LNL. For example,
on CIFAR-100, the accuracy improvement of our proposed
L2B reaches 7.6% and 8.9% under 40% and 50% noise
fraction, respectively. We also demonstrate a set of quali-
tative examples to illustrate how our proposed L2B benefits
from the joint instance and label reweighting paradigm in
Figure 2. We can see that when the online estimated pseudo
label is of high-quality, i.e., the pseudo label is different
from the noisy label but equal to the clean label, our model
will automatically assign a much higher weight to β for cor-
rupted training samples. On the contrary, α can be near zero
in this case. This indicates that our L2B algorithm will pay
more attention to the correct pseudo label than the real noisy
label when computing the losses. In addition, we also show
several cases where the online pseudo label has not yet been
corrected and therefore is equal to the noisy label during the
training process, where we can see that α and β are almost
identical under this circumstance since there will be no need
to correct it. We note that by the end of the training, most
noisy examples will be successfully corrected, leading to
significantly different weighting of pesudo and noisy labels
that will help rectify the training.

The relatively small values of α and β are due to that
we use a large batch size (i.e., 512) for CIFAR-10 experi-
ments. By normalizing the weights in each training batch
(see equation 9), the value of α and β can be on the scale of
10−4.

Comparison with the state-of-the-arts. We compare our
method with SOTA methods on CIFAR 10 and CIFAR
100 in Table 2. We demonstrate our L2B is compatible
with existing LNL methods. When integrated with ex-
isting LNL methods like DivideMix [22], UniCon [16],
C2D [69], L2B consistently enhances performance across
varying noise ratios on both datasets. Notably, L2B-C2D
surpasses all competing methods in various settings, achiev-
ing 94.4% and 60.7% accuracy under the noise ratio of 90%
for CIFAR-10 and CIFAR-100. We also test our model
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Table 2. Comparison in test accuracy (%) with state-of-the-art methods on CIFAR-10/100 datasets with symmetric noise.

Dataset CIFAR-10 CIFAR-100

Method/Noise ratio 20% 50% 80% 90% 20% 50% 80% 90%

Co-teaching+ [62] 89.5 85.7 67.4 47.9 65.6 51.8 27.9 13.7

Mixup [66] 95.6 87.1 71.6 52.2 67.8 57.3 30.8 14.6

PENCIL [61] 92.4 89.1 77.5 58.9 69.4 57.5 31.1 15.3

Meta-Learning [21] 92.9 89.3 77.4 58.7 68.5 59.2 42.4 19.5

M-correction [2] 94.0 92.0 86.8 69.1 73.9 66.1 48.2 24.3

AugDesc [32] 96.3 95.4 93.8 91.9 79.5 77.2 66.4 41.2

GCE [8] 90.0 89.3 73.9 36.5 68.1 53.3 22.1 8.9

Sel-CL+ [24] 95.5 93.9 89.2 81.9 76.5 72.4 59.6 48.8

MLC [70] 92.6 88.1 77.4 67.9 66.8 52.7 21.8 15.0

MSLC [52] 93.4 89.9 69.8 56.1 72.5 65.4 24.3 16.7

MOIT+ [34] 94.1 91.8 81.1 74.7 75.9 70.6 47.6 41.8

TCL [14] 95.0 93.9 92.5 89.4 78.0 73.3 65.0 54.5

DivideMix [22] 96.1 94.6 93.2 76.0 77.3 74.6 60.2 31.5

L2B-DivideMix 96.1 95.4 94.0 91.3 77.9 75.9 62.2 35.8
UniCon [16] 96.0 95.6 93.9 90.8 78.9 77.6 63.9 44.8

L2B-UniCon 96.5 95.8 94.7 92.8 78.8 77.3 67.6 49.6
C2D [69] 96.3 95.2 94.4 93.5 78.7 76.4 67.8 58.7

L2B-C2D 96.7 95.6 94.8 94.4 80.1 78.1 69.6 60.7

Table 3. Comparison with 40% asymmetric noise in test accuracy on the
CIFAR-10 dataset.

Method Acc

Cross-Entropy 85.0
F-correction [35] 87.2
M-correction [2] 87.4
Chen et al. [4] 88.6

P-correction [61] 88.5
REED [64] 92.3

Tanaka et al. [44] 88.9
NLNL [17] 89.9
JNPL [18] 90.7

DivideMix [22] 93.4
MLNT [21] 89.2
L2RW [38] 89.2

MW-Net [40] 89.7
MSLC [52] 91.6

Meta-Learning [21] 88.6
Distilling [68] 90.2

L2B-Naive (Ours) 91.8
L2B-C2D (Ours) 94.0

with 40% asymmetric noise and summarize the testing ac-
curacy in Table 3. Among all compared methods, we re-
implement L2RW under the same setting and report the
performance of all other competitors from previous pa-
pers including [17, 18, 22].Compared with previous meta-
learning-based methods (e.g., [4], [64]), and other methods
(e.g., [38], [52], [40]), our L2B achieves superior results.

Table 4. Comparison with state-of-the-art methods in test accuracy (%) on
Clothing 1M.

Method Acc (%)

Cross-Entropy 69.2
M-correction [2] 71.0

PENCIL [61] 73.5
DivideMix [22] 74.8

Nested [5] 74.9
AugDesc [32] 75.1

RRL [23] 74.9
GCE [8] 73.3
C2D [69] 74.3

MLNT [21] 73.5
MLC [70] 75.8

MSLC [52] 74.0
Meta-Cleaner [67] 72.5
Meta-Weight [40] 73.7

FaMUS [56] 74.4
MSLG [1] 76.0
DISC [26] 73.7

InstanceGM [7] 74.4
DivideMix+SNSCL [51] 75.3

L2B-Naive (Ours) 77.5 ± 0.2

Generalization to real-world noisy labels. We test L2B
on Clothing 1M [55], a large-scale dataset with real-world
noisy labels. The results of all competitors are reported
from published papers. As shown in Table 4, our L2B-
Naive attains an average performance of 77.5% accuracy
from 3 independent runs with different random seeds, out-
performing all competing methods.
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Table 5. Segmentation performance comparison under noisy-supervision
on PROMISE12.

Method Dice (%)↑ ↑ HD (voxel)↓ ASD (voxel)↓

UNet++ [72] 73.74 11.63 3.70
UNet++ meta 73.04 17.06 5.50

NL reweighting [30] 76.64 8.33 2.75
Mix-up [65] 69.18 13.25 4.56
L2B (Ours) 80.83 6.68 2.10

Table 6. L2B for segmentation under different noise levels.

Method Dice (%)↑
baseline - L1 59.77

L2B - L1 77.70
baseline - L2 73.74

L2B - L2 80.83
baseline - L3 80.03

L2B - L3 82.01

Figure 2. Examples of α and β on CIFAR-10 with asymmetric noise frac-
tion of 20%. When the estimated pseudo label is of high-quality, i.e., the
pseudo label is different from the noisy label but equal to the clean label,
our model will automatically assign a much higher weight to β than to α
for corrupted training samples. When the pseudo label is equal to the noisy
label (i.e., the two loss terms are equal to each other), α and β are almost
identical.

Generalization to image segmentation L2B can be eas-
ily generalized for segmentation tasks. Specifically, the
learnable weights α and β are replaced with pixel-wise
weight maps corresponding to noisy labels and pseudo la-
bels (model predictions). L2B dynamically assigns these
weight maps, adjusting for both noisy and pseudo labels
to optimize the bootstrapping process via a meta-process.
To assess L2B’s performance in segmentation, we em-
ployed the PROMISE12 dataset [27] which contains 50 3D
transversal T2-weighted MR images. Specifically, 40/10
cases were used for training/evaluation. 3 out of the 40
training cases are chosen randomly as the meta set. Follow-
ing [42, 48], we utilized 2D slices in the axial view for both
training and testing. All images are resized to 144 × 144
and splits are randomized. Noisy labels used in Table 5
were synthesized using random rotation, erosion, or dila-
tion, achieving approximately a 60% corruption ratio and

an average Dice coefficient of 0.6206. And visualizations
of the corrupted noisy labels (shown in yellow) as well as
the ground-truth (shown in red) are illustrated in Figure 5 in
Appendix. As presented in Table 5, we compare our method
with 1) UNet++ [72], 2) UNet++ meta, which trains exclu-
sively on the meta data, 3) NL reweighting [30], which only
reweights the noisy labels, 4) Mix-up [65], a regularization
based method. L2B outperforms others in all evaluation
metrics of Dice, Hausdorff Distance (HD) and Average Sur-
face Distance (ASD). Furthermore, we also investigate the
robustness of our method by varying the noise level of the
corrupted training set from {L1,L2,L3}, where the average
Dice coefficients are DiceL1 = 0.4148, DiceL2 = 0.6206, and
DiceL3

= 0.8031 (i.e., the corrupted ratios are around 60%
(L1), 40% (L2), and 20% (L3)). At each noise level, we
compare the baseline UNet++ which is directly trained on
the noisy training data with our generalized L2B. As shown
in Table 6, we report the averaged dice coefficient over 5
repetitions for each series of experiments. The standard de-
viation for all experiments is within 0.5%. We could notice
that while the noise level increases, performances of base-
line drop from 80.03% to 59.77%, but performances of L2B
only drop from 82.01% to 77.70% which indicates that our
L2B is robust to different noisy levels and shows larger im-
provements under a much severer noisy situation.

Qualitative Results We also demonstrate a set of qualita-
tive examples to illustrate how our proposed L2B benefits
from the joint instance and label reweighting paradigm. In
Figure 2, we can see that when the estimated pseudo label
is of high-quality, i.e., the pseudo label is different from the
noisy label but equal to the clean label, our model will au-
tomatically assign a much higher weight to β for corrupted
training samples. On the contrary, α can be near zero in
this case. This indicates that our L2B algorithm will pay
more attention to the pseudo label than the real noisy la-
bel when computing the losses. In addition, we also show
several cases where the pseudo label is equal to the noisy
label, where we can see that α and β are almost identical
under this circumstance since the two losses are of the same
value. Note that the relatively small values of α and β are
due to that we use a large batch size (i.e., 512) for CIFAR-
10 experiments. By normalizing the weights in each train-
ing batch (see equation 9), the value of α and β can be on
the scale of 10−4.

4.4. Ablation Study

On the importance of α,β. To understand why our
proposed new learning objective can outperform previ-
ous meta-learning-based instance reweighting methods, we
conduct the following analysis to understand the importance
of hyper-parameter α and β in our method. Specifically, we
set α = 0 and β = 0 respectively to investigate the impor-
tance of each loss term in equation 3. In addition, we also
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Table 7. Ablation on size of validation data on CIFAR-10 and CIFAR-100 datasets.

CIFAR-10 CIFAR-100
Validation Size 20% 50% 80% 90% 20% 50% 80% 90%

L2B-DivideMix

baseline 96.1 94.6 93.2 76.0 77.3 74.6 60.2 31.5
0 96.3 95.3 93.5 82.6 77.6 75.3 60.8 31.0

500 96.1 95.3 93.8 91.1 78.2 75.3 62.5 34.0
1000 96.1 95.4 94.0 91.3 77.9 75.9 62.2 35.8

L2B-UniCon

baseline 96.0 95.6 93.9 90.8 78.9 77.6 63.9 44.8
0 96.4 95.6 94.2 92.5 78.7 77.4 68.0 48.6

500 96.3 95.6 94.5 92.7 78.5 77.5 67.8 51.1
1000 96.5 95.8 94.7 92.8 78.8 77.3 67.6 49.6

L2B-C2D

baseline 96.4 95.3 94.4 93.5 78.7 76.4 67.8 58.7
0 96.4 95.6 94.9 93.7 79.1 77.8 68.5 60.3

500 96.6 95.5 94.9 94.0 79.5 77.9 69.0 60.8
1000 96.7 95.6 94.8 94.4 80.1 78.1 69.6 60.7

Table 8. Ablation of α, β. L2B (α, β ≥ 0) consistently achieves superior
results to L2B (α+ β = 1) under different noise levels on CIFAR-100.

Method 20% 40%

baseline (CE) 59.6 49.2
α = 0 55.7 47.1
β = 0 63.2 57.5

α+ β = 1 64.8 59.1
α,β ≥ 0 71.8 67.3

show how the restriction of αi + βi = 1 (equation 2) would
deteriorate our model performance as follows.
• α = 0. As shown in Table 8, in this case, the per-

formance even decreases compared with the baseline ap-
proach. This is due to that when only pseudo-labels are
included in the loss computation, the error which occurs
in the initial pseudo-label will be reinforced by the net-
work during the following iterations.

• β = 0. From equation 3, we can see that setting β as
0 is essentially equivalent to the baseline meta-learning-
based instance reweighting method L2RW [38]. In this
case, the performance is largely improved compared to
the baseline, but still inferior to our method, which jointly
optimizes α and β.

• α+β = 1. We also investigate whether the restriction of
α+β = 1 is required for obtaining optimal weights dur-
ing the meta-update, as in [68]. As shown in Table 8, L2B
(α,β ≥ 0) consistently achieves superior results than
L2B (α+β = 1) under different noise levels on CIFAR-
100. The reason may be the latter is only reweighting
different loss terms, whereas the former not only explores
the optimal combination between the two loss terms but
also jointly adjusts the contribution of different training
samples.

The number of clean validation samples In Table 7, our
L2B method is shown to require few to no validation sam-
ples for LNL problems, highlighting its practicality. In the

absence of a dedicated validation set, L2B adeptly gener-
ates an online meta set directly from the training data using
a Gaussian mixture model [36], following [22]. L2B con-
sistently boosts baseline methods such as DivideMix, Uni-
Con, and C2D. Specifically, L2B-DivideMix has showcased
its efficacy, particularly at high noise levels. Specifically,
in a scenario with 90% noise on CIFAR-10, our approach
outstripped the baseline by 8.7%, achieving an accuracy of
82.6% compared to 76.0%, and this was achieved without
the need for clean validation samples. The advantage of
L2B-DivideMix becomes even more pronounced when we
incorporate a minimal amount of clean labels. With just
500 clean labels (equivalent to 2% of the training data), our
performance lead over the baseline extends to a remark-
able 15.1%. However, as we double the clean samples to
1000, the incremental benefit tapers off, yielding a mere
0.2% boost. This behavior underscores the efficiency of
L2B-DivideMix, demonstrating that it can deliver impres-
sive results with minimal or even no clean validation data,
making it a highly adaptable and practical solution for real-
world applications.

5. Conclusion
Our paper presents Learning to Bootstrap (L2B), a new
technique using joint reweighting for model training.
L2B dynamically balances weights between actual labels,
pseudo-labels, and different samples, mitigating the chal-
lenges of erroneous pseudo-labels. Notably, L2B operates
effectively without a clean validation set and can be well
generalized to other tasks, highlighting its practicality in
real-world settings. Extensive experiments on CIFAR-10,
CIFAR-100, ISIC2019, and Clothing 1M datasets demon-
strate the superiority and robustness compared to other ex-
isting methods under various settings.
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Supplementary Material

6. Appendix

6.1. Normalization function comparision.

Figure 3. Comparison among different normalization functions (i.e., Eq. 9,
Sigmoid function and Softmax function). Testing accuracy curve: (a) with
different normalization functions under 40% symmetric noise label on the
ISIC dataset. (b) with different normalization under 40% symmetric label
noise on CIFAR-100.

6.2. Alleviate potential overfitting to noisy exam-
ples.

We also plot the testing accuracy curve under different noise
fractions in Figure 4, which shows that our proposed L2B
would help preventing potential overfitting to noisy samples
compared with standard training. Meanwhile, compared to
simply sample reweighting (L2RW), our L2B introduces
pseudo-labels for bootstrapping the learner and is able to
converge to a better optimum.

Figure 4. Test accuracy v.s. number of epochs on CIFAR-100 under the
noise fraction of 20% and 40%.

7. Theoretical Analysis

7.1. Equivalence of the two learning objectives

We show that Eq. 3 is equivalent with Eq. 2 when ∀i αi +
βi = 1. For convenience, we denote yreal

i , ypseudo
i ,F(xi, θ)

Figure 5. Visual comparison of prostate MRI images with noisy (con-
toured in yellow) and accurate (contoured in red) segmentation masks to
demonstrate the discrepancy in segmentation quality between the two.

using yri , y
p
i , pi respectively.

αiL(pi, yri ) + βiL(pi, ypi ) =
L∑

l=1

αiy
r
i,l log pi,l (11)

+ βiy
p
i,l log pi,l =

L∑
l=1

(αiy
r
i,l + βiy

p
i,l) log pi,l (12)

Due to that L(·) is the cross-entropy loss, we have∑L
l=1 y

r
i,l =

∑L
l=1 y

p
i,l = 1. Then

∑L
l=1 αiy

r
i,l + βiy

p
i,l =

αi + βi. So if αi + βi = 1, we have

L∑
l=1

(αiy
r
i,l + βiy

p
i,l) log pi,l = L(pi, αiy

r
i + βiy

p
i ) (13)

= L(pi, (1− βi)y
r
i + βiy

p
i ) (14)

7.2. Gradient used for updating θ

We derivative the update rule for α,β in Eq. 10.

αt,i = −η
∂

∂αi
(

m∑
j=1

fv
j (θ̂t+1))

∣∣∣
αi=0

(15)

= −η
m∑
j=1

∇fv
j (θ̂t+1)

T ∂θ̂t+1

∂αi

∣∣∣
αi=0

(16)

= −η
m∑
j=1

∇fv
j (θ̂t+1)

T (17)

∂(θt − λ∇(
∑

k αk fk(θ) + βk gk(θ))
∣∣∣
θ=θt

)

∂αi

∣∣∣
αi=0

(18)

= ηλ

m∑
j=1

∇fv
j (θt)

T∇fi(θt) (19)

1



βt,i = −η
∂

∂βi
(

m∑
j=1

fv
j (θ̂t+1))

∣∣∣
βi=0

(20)

= −η
m∑
j=1

∇fv
j (θ̂t+1)

T ∂θ̂t+1

∂βi

∣∣∣
βi=0

(21)

= −η
m∑
j=1

∇fv
j (θ̂t+1)

T (22)

∂(θt − λ∇(
∑

k αk gk(θ) + βk gk(θ))
∣∣∣
θ=θt

)

∂βi

∣∣∣
βi=0

(23)

= ηλ

m∑
j=1

∇fv
j (θt)

T∇gi(θt) (24)

Then θt+1 can be calculated by Eq. 10 using the updated
αt,i, βt,i.

7.3. Convergence

This section provides the proof for covergence (Sec-
tion 3.3).

Theorem. Suppose that the training loss function f, g have
σ-bounded gradients and the validation loss fv is Lipschitz
smooth with constant L. With a small enough learning rate
λ, the validation loss monotonically decreases for any train-
ing batch B, namely,

G(θt+1) ≤ G(θt), (25)

where θt+1 is obtained using Eq. 10 and G is the validation
loss

G(θ) =
1

M

M∑
i=1

fv
i (θ), (26)

Furthermore, Eq. 25 holds for all possible training
batches only when the gradient of validation loss function
becomes 0 at some step t, namely, G(θt+1) = G(θt) ∀B ⇔
∇G(θt) = 0

Proof. At each training step t, we pick a mini-batch B
from the union of training and validation data with |B| = n.
From section B we can derivative θt+1 as follows:

θt+1 = θt − λ

n∑
i=1

(αt,i∇fi(θt) + βt,i∇gi(θt)) (27)

= θt − ηλ2M

n∑
i=1

(∇GT∇fi∇fi +∇GT∇gi∇gi)

(28)

We omit θt after every function for briefness and set m
in section B equals to M . Since G(θ) is Lipschitz-smooth,
we have

G(θt+1) ≤ G(θt) +∇GT∆θ +
L

2
||∆θ||2. (29)

Then we show ∇GT∆θ + L
2 ||∆θ||2 ≤ 0 with a small

enough λ. Specifically,

∇GT∆θ = −ηλ2M
∑
i

(∇GT∇fi)2 + (∇GT∇gi)2.

(30)
Then since fi, gi have σ-bounded gradients, we have

L

2
||∆θ||2 ≤ Lη2λ4M2

2

∑
i

(∇GT∇fi)2||∇fi||2 (31)

+ (∇GT∇gi)2||∇gi||2 (32)

≤ Lη2λ4M2σ2

2

∑
i

(∇GT∇fi)2 + (∇GT∇gi)2

(33)

Then if λ2 < 2
ησ2ML ,

∇GT∆θ +
L

2
||∆θ||2 ≤ (

Lη2λ4M2σ2

2
− ηλ2M) (34)∑

i

(∇GT∇fi)2 + (∇GT∇gi)2 ≤ 0.

(35)

Finally we prove G(θt+1) = G(θt) ∀B ⇔ ∇G(θt) = 0:
If ∇G(θt) = 0, from section B we have αt,i = βt,i = 0,
then θt+1 = θt and thus G(θt+1) = G(θt) ∀B. Otherwise,
if∇G(θt) ̸= 0, we have

0 < ||∇G||2 = ∇GT∇G =
1

M

M∑
i=1

∇GT∇fv
i , (36)

which means there exists a k such that ∇GT∇fv
k > 0. So

for the mini-batch Bk that contains this example, we have

G(θt+1)−G(θt) ≤ ∇GT∆θ +
L

2
||∆θ||2 (37)

≤ (
Lη2λ4M2σ2

2
− ηλ2M) (38)∑

i∈B

(∇GT∇fi)2 + (∇GT∇gi)2 (39)

≤ (
Lη2λ4M2σ2

2
− ηλ2M)∇GT∇fv

k

(40)

< 0. (41)
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