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Abstract

Self-propelled jumping of two polymeric droplets on superhydrophobic surfaces

is investigated by three-dimensional direct numerical simulations. Two identi-

cal droplets of a viscoelastic fluid slide, meet and coalesce on a surface with

contact angle 180 degrees. The droplets are modelled by the Giesekus constitu-

tive equation, introducing both viscoelasticity and a shear-thinning effects. The

Cahn-Hilliard Phase-Field method is used to capture the droplet interface. The

simulations capture the spontaneous coalescence and jumping of the droplets.

The effect of elasticity and shear-thinning on the coalescence and jumping is

investigated at capillary–inertial and viscous regimes. The results reveal that

the elasticity of the droplet changes the known capillary–inertial velocity scaling

of the Newtonian drops at large Ohnesorge numbers; the resulting viscoelastic

droplet jumps from the surface at larger Ohnesorge numbers than a Newto-

nian drop, when elasticity gives rise to visible shape oscillations of the merged

droplet. The numerical results show that polymer chains are stretched during

the coalescence and prior to the departure of two drops, and the resulting elastic

stresses at the interface induce the jumping of the liquid out of the surface. This

study shows that viscoelasticity, typical of many biological and industrial ap-
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plications, affects the droplet behaviour on superhydrophobic and self-cleaning

surfaces.

Keywords: coalescence-induced droplet jumping, Viscoelasticity, jumping

velocity, superhydrophobic surface, Diffuse-interface method

1. Introduction

When two droplets coalesce, the total surface area decreases. Hence, surface

energy is released during this process. If the two droplets are far from a wall, the

new bigger drop oscillates symmetrically until the released surface energy has

been dissipated by viscosity. However, when two drops of micro- or nanometer

size coalesce on a superhydrophobic surface, the presence of a repellent wall

breaks the vertical symmetry and the resulting droplet propels in the direction

perpendicular to the wall [2]. Coalescence-induced jumping has been reported

on a variety of natural repellent surfaces such as cicada, lacewings [30] and gecko

skin [29], and can be exploited in a variety of applications such as anti-icing [36]

and self-cleaning surfaces [29, 30], and to control heat transfer [10]. Several

researchers have studied the different aspects of the coalescence-induced droplet

jumping numerically and experimentally, including the basic mechanism of the

two equal-sized drop self-propelled jumping [19], and the effects of droplet size

mismatch [28, 27], droplet initial velocity [14, 18], surface topology [26, 24, 34,

20, 23], surrounding gas properties [11, 32, 33], and surface wettability [6]. A

few main results are outlined in the following.

When two equal-sized static drops coalesce on a superhydrophobic surface,

their total surface area decreases. This implies that surface energy is released

and converted into viscous dissipation and kinetic energy, in a proportion de-

termined by the Ohnesorge number, which represents the ratio between viscous

and capillary-inertial forces. At large Ohnesorge numbers, corresponding to the

viscous regime, the kinetic energy is completely absorbed by viscous forces, pre-

venting the jumping of the merged droplet [19]. Even at small Ohnesorge num-

bers, corresponding to the capillary–inertial regime, only less than 4 % of the
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released surface energy converts to vertical translational kinetic energy, which

nevertheless causes the jumping of the merged droplet. The conversion rate

of surface energy into kinetic energy reduces when the droplets are of unequal

sizes, due to the strong asymmetric flow [28, 27]. The merged droplet attains

an asymmetric shape and jumps with an oblique angle when one of the two

droplets has an initial velocity; moreover, the jumping velocity of the merged

droplet increases significantly above a critical initial velocity [18].

In addition, macrostructures on the surface affect the jumping velocity and

energy transfer rates significantly. The jumping velocity and the conversion

efficiency of surface energy to kinetic energy decrease if the lower contour of

the merging drop falls between the gap of two rectangular grooves, whereas

both jumping velocity and energy conversion increase when the liquid bridge

expands on a triangular prism structure [26]. The critical Ohnesorge number

for droplet jumping depends on both the surface wettability and the ambient

fluid properties such as density and viscosity; in particular, a larger density

contrast between the ambient and drops will cause the merged droplet to jump

higher [11].

In very recent experiments, the effect of the drops’ elasticity on the coa-

lescence process was studied for both freely suspended drops and sessile drops

with radius O(1) micrometer on the hydrophobic surfaces [8]. They found that

elasticity enhances the curvature of connecting bridge between two merging

drops, and polymer stresses remain confined in a small region around the liq-

uid bridge between the coalescing drops. However, the induced elastic stresses

were found to be insufficient to alter the temporal evolution of the bridge in the

capillary–inertial regime, and hence elasticity did not change the flow regime.

In the present work, we perform numerical simulations to study the effects

of the non-Newtonian viscoelastic properties of two equal-sized static droplets

on the coalescence-induced droplet jumping at large Ohnesorge numbers. Our

studies extend from the viscous-capillary to the inertial-capillary regime, and in

the former case we do observe prominent changes due to elasticity. We use the

Cahn-Hilliard Phase-Field method for capturing the interface between the two

3



phases, and the Giesekus constitutive equation to model the viscoelasticity of

the drops. First, the role of elasticity is investigated by comparing the vertical

velocity and different components of energy for a Newtonian and Oldroyd-B

droplet at the same Ohnesorge number based on the same zero shear viscosity,

while the influence of the liquid shear-thinning rheology is examined by using

Giesekus model.

2. Governing equations and Numerical methods

The numerical method used in this work has been described in detail in

Bazesefidpar et al. [3], so we only give a brief outline here. We consider two

immiscible fluids with different densities and viscosities. The outer fluid is

Newtonian with viscosity µn, whereas the droplets consist of a Giesekus fluid

with solvent viscosity µs, polymeric viscosity µp, and the other non-Newtonian

rheological properties as below. To distinguish between the phases, we introduce

a phase-field variable, where φ = ±1 in the bulk fluids and φ = 0 at the

fluid/fluid interface. This problem can be modelled with the following coupled

equations [35, 1]:

ρ(
∂u

∂t
+ (u · ∇)u) + J · ∇u = −∇p+∇ · τ +∇ · µs(∇u +∇uT ) +G∇φ, (1)

∇ · u = 0, (2)

the Cahn-Hilliard model:

∂φ

∂t
+∇ · (uφ) = ∇ · (M∇G), (3)

G = λ(−∇2φ+
1

η2
φ(φ2 − 1)), (4)

and the Giesekus constitutive model:

τ p + λH(
∂τ p
∂t

+ u · ∇τp − τ p∇u−∇uT τ p) +
αλH
µp

(τ p · τ p) =

µp(∇u +∇uT ), (5)
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τ =
(1 + φ)

2
τ p, (6)

In the above equations, u(x, t) is the velocity vector, p(x, t) is the pressure, and

τ (x, t) is the extra stress due to the polymers, equal to τ p inside the droplet and

0 outside (see eq. 6). In the Cahn-Hilliard equation, G is the chemical potential,

M is the mobility parameter, and η is the capillary width of the interface. In

the Giesekus model, τ p is the polymer stress, λH is the polymer relaxation time,

α is the Giesekus mobility parameter, and the polymeric retardation time can

be related to the polymeric relaxation time by λr = µs

µs+µp
λH . In Eq. (4),

λ is the mixing energy density, and it is related to the surface tension in the

sharp-interface limit [35] by:

σ =
2
√

2

3

λ

η
(7)

Fluid 1 indicates the droplet phase and fluid 2 represents the surrounding fluid

(air). The density ρ and the dynamic viscosity µ fields are expressed using the

phase-field variable as:

ρ =
(1 + φ)

2
ρ1 +

(1− φ)

2
ρ2, (8)

µ =
(1 + φ)

2
µs1 +

(1− φ)

2
µs2 , (9)

The total viscosity of the non-Newtonian phase is µt = µs + µp. The density

satisfies the following relation[1]

∂ρ

∂t
+∇ · ρu = −∇ · J, (10)

where J = − (ρ1−ρ2)
2 M∇G. Boundary conditions imposed on the substrate are,

following Jacqmin [16], Qian et al. [25], the no-slip boundary condition for the

velocities:

u = 0, (11)
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Figure 1: Sketch of the chosen computational domain Ω1.

and the static contact angle θs for the phase-field variable:

n · ∇φ+
1

λ
f ′w(φ) = 0, (12)

fw(φ) = σ cos(θs)
φ(φ2 − 3)

4
+

(σw1
+ σw2

)

2
, (13)

where n is the outward pointing normal vector to the boundary, and fw(φ) is a

function describing the fluid–solid interfacial tension.

A second-order accurate scheme is employed for the temporal discretization of

Eq. (3) and (1) while a semi-implicit splitting scheme is used to treat the

linear parts implicitly and the non-linear parts explicitly [9]. To avoid the

High-Weissenberg number problem (HWNP), the log-conformation reformula-

tion (LCR) of equation Eq. (5) [12, 13] is used and advanced in time by a

second-order total variation diminishing (TVD) Runge-Kutta method [15]. Fi-

nally, we use second-order central differences to approximate spatial derivatives,

except for the advection terms in Eq. (3) and (5), where the fifth-order WENO-

Z is used to improve stability and accuracy [4]

3. Physical model and computational domain

We consider two equal-sized initially static viscoelastic drops touching a

homogeneous surface (Fig. 1) with a static contact angle of 180o. When two

adjacent droplets coalesce on a superhydrophobic surface, the formed liquid
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Figure 2: Average velocity integrated over the droplet volume in time, for the chosen domain

(stars) and a bigger domain Ω2 (solid line), to show independence of the domain size. The

parameters are Oh = 0.0076 and De = 10.

Figure 3: The evaluation of average velocity of the merged viscoelastic droplet for different

Cn numbers.
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bridge impinges on the substrate, and the merged droplet may jump above the

substrate. Here, gravity is neglected, because the droplet radius is assumed

to be much smaller than the capillary length and therefore capillary forces are

expected to dominate.

The capillary-inertial velocity is chosen as the velocity scale [2] uci =
√
σ/ (ρ1r0),

and the droplets initial radius as the length scale. This gives rise to seven

nondimensional numbers. Firstly, the Ohnesorge number Oh =
(
µ1/
√
ρ1σr0

)
representing the relative importance of viscous to capillary-inertial forces; the

Weissenberg number Wi = (λHuci/r0) representing the ratio between elastic

and viscous forces; the Peclet number Pe =
(
2
√

2ucir0η
)
/ (3Mσ) representing

the ratio between the advection and diffusion in the Cahn-Hilliard equation.

Furthermore, the Cahn number Cn = (η/r0) is the ratio between the interface

width and the characteristic length scale; β = µs/ (µs + µp) is the ratio between

the polymeric viscosity and total viscosity; kµ = (µ2/µ1) is the ratio between

the ambient and droplet viscosities; kρ = (ρ2/ρ1) between the ambient and

droplet densities. The different components of the energy are scaled by σr2
0. In

what follows, all quantities will be nondimensional unless indicated otherwise.

To quantify the role of the fluid elasticity on the droplet jumping, we will

measure the mass-averaged velocity of the droplet, defined as:

v =

∫
Ω

1
2 (1 + φ)vz dΩ∫

Ω

1
2 (1 + φ)dΩ

(14)

where Ω is the computational domain (see Fig. 1), and z the direction per-

pendicular to the solid substrate. We also analyze the different components

of the energy during the coalescence and jumping. The total energy ET of an

Oldroyd-B fluid is the sum of the surface energy Es, kinetic energy Ek, and

elastic energy Ee, defined in phase-field framework as [5, 22]:
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Es =

∫
Ω

3Cn

4
√

2

[
| ∇φ |2 +

1

2Cn2
(φ2 − 1)

2
]
dΩ,

Ek =

∫
Ω

1

2
(1 + φ)u · u dΩ,

Ee =

∫
Ω

Oh

2

(1− β)

Wi
tr(c− ln c− I) dΩ,

ET = Es + Ek + Ee,

(15)

where the relationship between polymer stress τp and the conformation tensor

c is

τp =
(1− β)

Wi
(c− I) , (16)

The part of the kinetic energy associated to the vertical velocity component is

most relevant here as it can be associated with the jumping motion, while the

rest is related to interface oscillatory motions [19]. We will therefore consider a

translational kinetic energy, defined as,

Ek,tr =

∫
Ω

1

2
(1 + φ)v2 dΩ (17)

where v is the droplet mass-averaged velocity in z-direction, and Ek,os = Ek −

Ek,tr is the part of the kinetic energy associated with the oscillatory motion.

The numerical setup is as follows. The nondimensional domain size is chosen

of size Ω = [0, 10] × [0, 10] × [0, 8]. Two adjacent droplets with initial radius 1

are placed above the x–y plane at z=0, see the Fig. 1. We impose no-slip and

no-penetration conditions on the two boundaries in the z-direction, with static

contact angles θs = 180o at the bottom wall and ∂φ
∂n = 0 at the top boundary.

Periodic boundary conditions are applied for all variables in the x- and y-

directions. We use 8 grid points across the nominal interface in order to resolve

the sharp gradients, and set the Peclet number to Pe = 6
Cn , according to the

guidelines in Magaletti et al. [21], Xu et al. [31] to approach the sharp-interface

limit.
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Table 1: Experimental fluid properties by Yan et al. [33] at 25oC

r0(µm) ρ1( kgm3 ) µ1(Pas) σ(Nm ) kρ kµ θappa θappr ∆θapp

290 998.2 0.001 0.072 1
839

1
58.8 170.3o 167.7o 2.6o

To ensure that the chosen grid and domain size are sufficient, we performed

the following numerical tests. Firstly, we examined the effect of the computa-

tional domain on the velocity of the merged droplet by performing an additional

simulation on a larger domain Ω2 = [0, 15]× [0, 15]× [0, 9]; the results obtained

on Ω1 match those obtained on the larger domain Ω2, as shown in Fig. 2. We

also tested the grid dependency of the results by comparing the averaged veloc-

ity of the merged viscoelastic droplet for four different resolutions corresponding

to different values of the Cahn number. For this test, the following values of the

dimensionless numbers introduced above were used:

Oh = 0.0076, Wi = 10, β = 0.1, kµ = 0.017, kρ = 0.00119.

Fig. 3 shows that the averaged velocity of the merged drop with Cn = 0.025 is

almost the same as that obtained with the finer grid Cn = 0.02. Higher values

of Cn displays non-negligible differences when the simulation time exceeds 2.

Thus, we choose Cn = 0.025, corresponding to a grid with Nx × Ny × Nz =

760× 760× 608 grid points. This satisfactory convergence is achieved adopting

the scaling between the Peclet number and Cn number suggested by [21, 31].

4. Results

For the results presented here, the density ratio and viscosity ratio are kept

constant ro kρ = 1
839 and kµ = 1

58.8 ., following the values from the experiments

in Yan et al. [33].

4.1. Newtonian droplets - comparison with experiments

The solver has been validated against several Newtonian and viscoelastic

two-phase flow benchmarks in 2D and 3D [3]. Here, we compare the spontaneous
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Figure 4: The coalescence and jumping of two Newtonian droplets on a superhydrophobic

surface at Oh = 0.0076: (a) Numerical results from present work (yz view) (b) Experimental

data of Yan et al. [33].

coalescence and jumping motion of a Newtonian drop on a superhydrophobic

surface with the experimental data of Yan et al. [33]. We choose the same

physical parameters as in the experiment, see Table 1. The influence of the

solid-liquid adhesion on the self-propelled jumping is negligible when the contact

angle hysteresis (∆θapp) is less than 10o [32, 7], so we ignore the contact angle

hysteresis and impose a static contact angle θs = 180o on the bottom wall.

Fig. 4 presents the experimental data [33] for the coalescence of two Newtonian

drops on a superhydrophobic surface and the corresponding numerical results;

the visualization shows that the numerical simulation is able to capture the

coalescence and jumping process accurately in time.

The jumping velocity of the merged water (Newtonian) drop on a superhy-

drophobic surface is constant in the capillary-inertial region (i.e., Oh . 0.1); [2]

reported vj ≈ 0.2 for the water drop at 19oC on a textured superhydrophobic

surface. Later, [33] reduced the level of undesired external disturbances and

measured a velocity vj ≈ 0.26 for self-propelled jumping of water drops upon
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(a)

(b) (c)

Figure 5: Time-dependent quantities of the Newtonian merged drop on a superhydrophobic

surface at Oh = 0.0076: (a) The average velocity, (b) Total and surface energies of the merged

drop (c) Kinetic and translational kinetic energies of the merged drop.

coalescence on a superhydrophobic surface. Fig. 5(a) shows the averaged veloc-

ity of the merged droplet in our simulation. The jumping velocity is measured

from the time the bottom of the merged drop leaves the surface. Liu et al. [19]

suggested that a sensible time for extracting the jumping velocity is the first

pseudo-equilibrium, which corresponds to the time when the axial lengths of

the merged droplet in x and y-directions become equal. These axial lengths are

measured with respect to an axis attached to the center of mass of the merged

drop, and density ratio in their numerical simulation was kρ = 0.02. Following

this criterion, the jumping velocity of the Newtonian drop at Oh = 0.0076 is

vj ≈ 0.21 in our simulations. It should be noted that the criterion of Liu et al.

[19] may work less well at our high density ratios, since the merged droplet’s
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average velocity decreases very rapidly after its maximum, and this may lead us

to underestimate the jumping velocity. The dimensionless time corresponding

to the first pseudo-equilibrium is t ≈ 3.32 (dimensional time t∗ ≈ 1.92ms) with

the droplet leaving the surface at t ≈ 2.71 (t∗ ≈ 1.57ms) in both simulation and

experiment. The averaged velocity at t = 2.71 is v ≈ 0.23, and the maximum

averaged velocity is vmax ≈ 0.26, see Fig. 5 (a).

Fig. 5 (b) presents the time-evolution of the total and surface energy of the

merging and jumping droplet. The total energy of the droplet decreases over

time due to the viscous dissipation, and this decrease is larger in the merging

process and prior to jumping, because there are highly localized velocity gra-

dients around the liquid bridge during its impingement on the substrate. Fig.

5 (c) depicts the total and translational kinetic energy of the merged droplet,

confirming that a small fraction of the released surface energy is converted into

transitional kinetic associated to the jumping motion.

4.2. Viscoelastic droplets - elasticity effect

Most of the existing studies are restricted to experiments with water droplets

and numerical simulation of Newtonian drops; [33] newly investigated the ef-

fect of the liquid internal hydrodynamics by conducting experiment for the

self-propelled jumping upon coalescence on a superhydrophobic surface with

ethanol-water and ethylene-glycol solutions. Their experiment shows that the

properties of the droplet affect the coalescence and jumping process signifi-

cantly. A very recent experimental study, however, addressed the effect of the

drops’ elasticity on the coalescence process [8], and their findings will be re-

ferred to later in this section. In the following, we investigate numerically how

the droplet elasticity (Weissenberg number) influences the jumping process for

different values of the Ohnesorge number. One way to vary the Ohnesorge

number in experiments is to keep the physical properties constant and vary its

radius, and we adopt this approach in our simulation. It should be noted that

other parameters change also with the droplet radius; the parameters for each

case are summarized in Appendix A.
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(a)

(b) (c)

Figure 6: Quantities of the merged Newtonian and Oldroyd-B drops at Wi = 10 and β = 0.1.

N and V refer to Newtonian and Oldroyd-B drops respectively. (a) The averaged velocity (b)

Total and surface energies of the merged drop at Oh = 0.0076 (c) Kinetic and transitional

kinetic energies of the merged drop at Oh = 0.0076.

4.2.1. Small Ohnesorge numbers

To isolate the effect of the droplet elasticity on the coalescence and jumping

on a superhydrophobic surface in the inertial-capillary region, Oh . 0.1, we set

α = 0 in the following simulations. This choice implies that shear-thinning is

eliminated, and the Giesekus model reduces to the Oldroyd-B model. The aver-

age velocities of the merged Newtonian and viscoelastic droplets are compared

at two Ohnesorge numbers, Oh = 0.0076 and Oh = 0.0373. For Newtonian

droplets, these values represent the capillary-inertial regime. The two dimen-

sionless numbers defining the Oldroyd-B model are kept constant, Wi = 10 and
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β = 0.1, while the others vary since we are changing the droplet radius, see

Appendix A.

Fig. 6 (a) shows the time evolution of the average velocity of the merged

droplet for the Newtonian and viscoelastic cases, for both Ohnesorge numbers.

The first observation is that both droplets jump from the surface at these low

Ohnesorge numbers. Let us now consider the blue lines, corresponding to the

smallest Ohnesorge number: Newtonian (solid line) and viscoelastic (dashed

line). We observe that the elasticity of the drop has a negligible effect on the

average velocity prior to and during jumping. However, there is a small qual-

itative difference after jumping, where the averaged velocity remains approxi-

mately constant for the viscoelastic droplet, while the velocity of the Newtonian

droplet decreases in time. For the larger Ohnesorge number (green lines), we

observe that the droplet elasticity increases the maximum averaged velocity.

The total energy is dissipated more rapidly in the Newtonian droplet after de-

parture, while there is less dissipation in the merged viscoelastic droplet, see

Fig. 6 (b). The droplet kinetic energy is presented in Fig. 6 (c): the viscoelastic

droplet has more kinetic energy so that it undergoes larger shape oscillations

than the Newtonian droplet. The oscillations of the viscoelastic droplet are due

to its elasticity and independent of the surface tension, see [17]. The viscoelas-

tic droplet oscillates even at the large Ohnesorge numbers corresponding to a

highly viscous drop [17].An extensional flow occurs when the two viscoelastic

drops are coalescing, so polymer chains stretch and store elastic energy during

the coalescence process, see Fig. 6 (c).

Summarizing, the average and jumping velocity are not considerably affected

by the elasticity of the drops in the inertial-capillary regime. This result is in

line with the experiments of Dekker et al. [8], where elasticity did not consider-

ably influence the coalescence process in the inertial-capillary regime. However,

quantitatively we found that the oscillations are promoted by elasticity, and

that the average velocity decays less rapidly after the droplet departure from

the superhydrophobic surface.
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(a)

(b) (c)

Figure 7: Quantities of the merged Newtonian and Oldroyd-B drops at Wi = 10 and β = 0.1.

N and V refer to Newtonian and Oldroyd-B drops respectively. (a) The averaged velocity

(b) Total and surface energies of the merged drop at Oh = 0.118 (c) Kinetic and transitional

kinetic energies of the merged drop at Oh = 0.118.

4.2.2. Large Ohnesorge numbers

For Newtonian drops, viscous forces become the dominant at larger Ohne-

sorge numbers (Oh & 0.1), known as the viscous regime: both jumping and

averaged velocities decrease rapidly with increasing Ohnesorge number due to

the strong viscous dissipation. Let us now examine whether and how this be-

haviour changes for viscoelastic droplets at Oh & 0.1.

The results from the simulations are reported in Fig. 7. First, we note

that the merged viscoelastic droplet gains much larger average velocity than

the Newtonian one during the coalescence process, as seen by comparing the
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(a)

(b)

Figure 8: The coalescence and jumping of Newtonian and Oldroyd-B drops on a superhy-

drophobic surface at Oh = 0.118, Wi = 10 and β = 0.1 (a) Newtonian drops (b) Oldroyd-B

drops. The trace of the dimensionless polymeric stresses are visualized on the surface of the

polymeric drop.

solid (Newtonian) and dashed (viscoelastic) lines of the same color in panel (a).

Panel (b) of the same figure shows that the released energy is soon damped

at Oh = 0.118 ( t∗ ≈ 4), and the total energy (blue solid line) reaches its

equilibrium value E∗T = 2
2
3 4π consisting of surface energy only (green solid line).

The Newtonian drop resulting from the coalescence reaches a spherical shape

corresponding to its equilibrium, and stays on the surface without jumping, as

shown in Fig. 8.

Let us now consider the polymeric drop (dashed blue and green lines). This

merged polymeric drop has energy available to oscillate and move upwards until

t = 4.0. The kinetic energies of the Newtonian (solid) and Oldroyd-B droplets

(dashed) are depicted in Fig. 7 (c), and both total kinetic and translational

kinetic energies of the polymeric drop are larger than for the Newtonian drop.

The Oldroyd-B drop also has the additional elastic energy due to the presence

of the polymer molecules, see the black dashed line. These are stretched during
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the coalescence and prior to jumping, so that extra elastic energy is stored and

available for the polymeric drop.

A visualisation of the coalescence and jumping of both droplets at Oh =

0.118 is provided in Fig. 8. The polymeric drops merge faster than the New-

tonian drops, and the the bridge formed due to the coalescence reaches the

substrate sooner. The interface (given by φ = 0) of the Oldroyd-B drops is

coloured using the trace of the conformation tensor which indicates the inten-

sity of polymer stretching. As reported in experiments of [8], the polymeric

stresses are seen to be very concentrated around the merging interface and the

capillary bridge. At the present flow regime, however, we observe significant

changes due to elasticity in both the liquid bridge formation and in the merging

and coalescence process. The merged polymeric drop undergoes a large deforma-

tion in all three directions and jumps out of the surface; this oscillatory motion

and jumping is characteristic of the inertial-capillary region and is maintained

at high Oh when elasticity is present. Indeed, the Newtonian drop goes rapidly

towards its equilibrium condition without noticeable oscillations, and remains

on the surface, as expected in the viscous region.

To gain a better understanding on the effect of elasticity on the self-propelled

jumping, the flow field is visualized on the central XZ and Y Z planes inside the

merging drops, see Fig. 9 (a). As concern the Y Z plane, shown in the top row,

we depict the interface, identified by the φ = 0 value of the order parameter (red

contour), velocity field (arrows), and trace of conformation tensor (colormap)

for merging viscoelastic drop at three times, together with the the interface

of merging Newtonian drop (white contour). This illustrates how the shape

of Newtonian and viscoelastic droplets differ, and confirms the localisation of

polymeric stresses at the merging cross-section. Moreover, the bottom row of

the same figure displays contoues of the trace of the conformation tensor for the

viscoelastic drops on the XZ plane at the same dimensionless times as in Fig.

9 (b). The data indicate that polymers are most elongated prior to jumping,

near the bottom wall.
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(a)

(b)

Figure 9: Time evolution of viscoelastic drops coalescence on XZ and Y Z planes on a super-

hydrophobic surface at Oh = 0.118, Wi = 10 and β = 0.1. The interface φ = 0 of the merging

Newtonian drops are depicted at Oh = 0.118 on Y Z plane for the comparison : (a) XZ and

Y Z planes used for the visualization of the flow field (b) The interface of both Newtonian and

viscoelastic drops on Y Z plane at three different times t along with the velocity field and trace

of conformation tensor belong to the viscoelastic drops. The trace of conformation tensor is

visualized on XZ for the viscoelastic drops.

A possible physical explanation for the polymer effect can be as follows.

When the two initially static drops start to merge, the liquid moves driven by

the capillary pressure towards the center of the expanding bridge. Then, due to

the conservation of mass, the liquid is forced to move in the transverseXZ plane,

see the velocity field of the merging viscoelastic drops in Fig. 9 (b) at t = 0.24.

This flow causes the polymer molecules to stretch in the XZ plane and produce

19



extra elastic stresses, which push the liquid bridge connecting the two polymeric

drops to move faster. When the liquid bridge interacts with the substrate at

t ≈ 1, the liquid is induced to move upwards due to the impermeability of

the surface. This upward flow converges toward the XZ plane and causes the

polymers to stretch mainly in the vicinity of the substrate, as shown by the

trace of conformation tensor at t = 1.96 in Fig. 9 (b). The stretched polymers

exert extra elastic stresses on the interface near the substrate, so the merged

polymeric drop jumps out of the surface. The newly-formed larger drop leaves

the surface at t & 3, when the trace of the conformation tensor decreases.

Later, the polymers are mainly stretched at the bottom of the merged drop,

and two small vortices appear in that region so that the polymer molecules

remain stretched. Thus, these extra polymer stresses at the bottom of the drop

push the drop to move upward. The polymers are also significantly stretched in

the XZ plane around the interface, and these extra polymer stresses push the

interface to oscillate in the x-direction, see Fig. 9 (b).

These results reveal that the elasticity of the drop plays an important role at

large Ohnesorge numbers in the coalescence and jumping processes of two ini-

tially static equal-sized polymer drops on a superhydrophobic surface; elasticity

also affects the merged droplet motion after its departure as demonstrated by

the oscillatory motion in highly-viscous yet viscoelastic drops.

4.3. Viscoelastic droplets - effects of polymeric viscosity ratio and shear-thinning

The effect of the shear thinning on the self-propelled jumping of two equal-

sized polymeric drops has been studied by performing simulations at Oh =

0.118, De = 10, β = 0.1 and varying α; the results show that the effect of shear

thinning is minor and negligible for the self-propelled jumping of two equal-sized

polymeric drops even at large Ohnesorge numbers, see Fig. 10.

In addition, we have investigated the effect of the polymeric viscosity ratio β

on the self-propelled jumping at Oh = 0.118 and Wi = 10. Fig. 11 depicts the

variation of the averaged velocity of the droplet for β = 0.1−0.8. The Newtonian

droplet velocity is also shown for comparison. Two regimes can be distinguished:
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Figure 10: The effect of drop shear-thinning α on the averaged velocity at Oh = 0.118,

Wi = 10, and β = 0.1.

as long as β . 0.5, we note a minor influence on the averaged velocity; for

β & 0.6, conversely, the velocity rapidly converges towards the Newtonian one,

so that elasticity effects become negligible. This can be explained by considering

the retardation time, i.e. the relative time it takes for polymer molecules to be

stretched. The retardation time can be related to the polymeric viscosity ratio

by λr = βλH , while the flow time scale time is constant in our simulations since

the droplet radius r0, velocity scale uref =
√

σ
ρ1r0

, and Weissenberg number

Wi are kept constant. Since the retardation time is increasing by increasing β,

the polymers do not have time to stretch and store elastic energy during the

coalescence and jumping when β & 0.6. Thus, the polymeric drops behave like

Newtonian drops at large polymeric viscosity ratios.

5. Conclusions and outlook

In the present study, three-dimensional direct numerical simulations have

been performed to study the self-propelled jumping of two equal-sized polymeric

drops on a superhydrophobic surface with contact angle of 180o. The results

demonstrate that the viscoelastic properties of the droplets have a significant
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Figure 11: The effect of polymeric viscosity ratio β on the averaged velocity at Oh = 0.118

and Wi = 10.

impact on the coalescence and jumping.

At small Ohnesorge numbers (inertial-capillary region), the elasticity effect

is weak before the jumping; however, the averaged velocity of the coalesced drop

does not decay as rapidly as for a Newtonian liquid. Drop shape oscillations are

promoted bythe presence of the polymers.

At large Ohnesorge numbers (Oh & 0.1) however, profound differences be-

tween polymeric and Newtonian drops are observed during the coalescence and

jumping process. The polymeric drops merge faster than the Newtonian drops,

and the merged drop jumps out of the surface in contrast to their Newtonian

counterparts, which remain on the substrate due to the large viscous dissipa-

tion. Our investigation reveals that the polymers are highly stretched at the

cross-section of the merging droplets during coalescence, and these stretched

chains exert extra elastic stresses on the interface of the merging drops in the

vicinity of the wall, hence helping the polymeric drop to jump from the surface.

These results are obtained with a typical value in the literature for the polymeric

viscosity ratio, i.e. β = 0.1; here, we also observe that the merged viscoelastic

drop behaves like a Newtonian drop when β & 0.7. The larger β corresponds
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to larger retardation times in our simulation, so that the polymer molecules do

not have enough time to stretch. Finally, the shear-thinning effect is found to

be negligible in the coalescence and jumping process of two equal-sized drops

on a superhydrophobic surface.

Our results indicate that the elasticity of the droplet can change the viscous

cutoff radius (for example 30µm for water) for the self-propelled jumping of

drops on superhydrophobic surfaces. Thus, it is expected that polymeric drops

jump from a superhydrophobic surface upon their coalescence with radii below

the viscous cutoff radius for Newtonian drops at the same Ohnesorge number.

Moreover, the merged polymeric drop oscillatory motion is promoted by the

elasticity of the drop in both inertial-capillary and viscous-capillary regimes.

In this study, we have neglected the contact angle hysteresis, assuming it to

be smaller than 10o; however, superhydrophobic surfaces may have large contact

angle hysteresis, which might play an important role in the case of polymeric

drops. Studying the effect of the contact angle hysteresis is one of the possible

extensions of this work.
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Appendix A.

In this Appendix, we report the values of the non-dimensional numbers used

in the simulations.
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Table A.2: Dimensionless numbers used in the simulations at small Ohnesorge numbers, see

section 4.2.1

Case Droplets Oh Wi β α θbs kρ kµ

1 Viscoelastic 0.0076 10 0.1 0 180o 1
839

1
58.8

2 Newtonian 0.0076 0 0 0 180o 1
839

1
58.8

3 Viscoelastic 0.0373 10 0.1 0 180o 1
839

1
58.8

4 Newtonian 0.0373 0 0 0 180o 1
839

1
58.8

Table A.3: Dimensionless numbers used in the simulations at large Ohnesorge numbers, see

section 4.2.2

Case Droplets Oh Wi β α θbs kρ kµ

1 Viscoelastic 0.118 10 0.1 0 180o 1
839

1
58.8

2 Newtonian 0.118 0 0 0 180o 1
839

1
58.8

3 Viscoelastic 0.1668 10 0.1 0 180o 1
839

1
58.8

4 Newtonian 0.1668 0 0 0 180o 1
839

1
58.8

5 Viscoelastic 0.3 10 0.1 0 180o 1
839

1
58.8

6 Newtonian 0.3 0 0 0 180o 1
839

1
58.8

Table A.4: Dimensionless numbers used in the simulations focusing on the role of shear

thinning, see section 4.3

Case Droplets Oh Wi β α θbs kρ kµ

1 Viscoelastic 0.118 10 0.1 0 180o 1
839

1
58.8

2 Viscoelastic 0.118 10 0.1 0.2 180o 1
839

1
58.8

3 Viscoelastic 0.118 10 0.1 0.5 180o 1
839

1
58.8
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Table A.5: Dimensionless numbers used in the simulations focusing on the role of the polymer

viscosity ratio, see section 4.3

Case Droplets Oh Wi β α θbs kρ kµ

1 Newtonian 0.118 0 0 0 180o 1
839

1
58.8

2 Viscoelastic 0.118 10 0.1 0 180o 1
839

1
58.8

3 Viscoelastic 0.118 10 0.5 0 180o 1
839

1
58.8

4 Viscoelastic 0.118 10 0.6 0 180o 1
839

1
58.8

5 Viscoelastic 0.118 10 0.7 0 180o 1
839

1
58.8

6 Viscoelastic 0.118 10 0.8 0 180o 1
839

1
58.8
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