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Abstract. The ZX-calculus is a powerful framework for reasoning in quantum computing.
It provides in particular a compact representation of matrices of interest. A peculiar
property of the ZX-calculus is the absence of a formal sum allowing the linear combinations
of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for
any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram.
We introduce a general, inductive definition of the addition of ZX-diagrams, relying on
the construction of controlled diagrams. Based on this addition technique, we provide an
inductive differentiation of ZX-diagrams.

Indeed, given a ZX-diagram with variables in the description of its angles, one can
differentiate the diagram according to one of these variables. Differentiation is ubiquitous
in quantum mechanics and quantum computing (e.g. for solving optimization problems).
Technically, the differentiation of ZX-diagrams is strongly related to summation as witnessed
by the product rules.

We also introduce an alternative, non-inductive, differentiation technique rather based
on the isolation of the variables. Finally, we apply our results to deduce a diagram for an
Ising Hamiltonian.

1. Introduction

ZX-calculus, originally introduced in [CD11], is a graphical language that allows reasoning
about quantum computing. In this language complex computations on qubits are represented
with diagrams made out of elementary generators1. Each diagram corresponds to a linear
transformation between Hilbert spaces of qubit states. A compact set of rewrite rules allows
to transform diagrams into equivalent ones. The notable advantage of ZX-calculus compared

Key words and phrases: ZX-calculus, Addition of ZX-diagrams, Differentiation of ZX-diagrams, Diagram-
matic differentiation.

The work is an extended version of [JPV22].
1We use the TikZit software https://tikzit.github.io to draw ZX-diagrams
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to other representations (e.g. linear maps, circuits, and tensor networks) is that in this
language the computations may be done entirely graphically. A general introduction to the
language alongside the overview of the main applications is available in [vdW20].

Due to its flexibility, ZX-calculus is widely used to address different problems of quantum
computing. For instance, ZX-calculus allowed the derivation of important results in the field of
measurement-based quantum computing (MBQC) [DP10, KvdW19]. It was also successfully
applied to circuit optimization [CDD+20, dBBW20, KvdW20, DKPvdW20], design and
verification of error-correction color codes [GD18], and to the analysis and compilation of
surface codes [Hor11, dBH20, HEMN20].

However, the applications of the ZX-calculus to the rapidly growing field of varia-
tional algorithms [CAB+21] such as Quantum Approximate Optimization Algorithm (QAOA)
[FGG14], Variational Quantum Eigensolver (VQE) [PMS+14] and variational quantum ma-
chine learning are so far limited. Nevertheless, as variational algorithms do not require error
correction, the incoming emergence of NISQ devices makes them an object of particular
attention [Pre18]. We believe that the reason why they are still unexplored with the means of
ZX-calculus is the absence of a convenient way to differentiate parametrized diagrams.
Indeed, the basic building blocks of variational algorithms are parametrized circuits, and
the search for optimal parameter values is a crucial part of these algorithms. In theory,
finding optimal parameters may be NP-hard [BK21]. In practice, the search is usually done
by classical numerical optimization methods and most of them use derivatives [GS17].

The main difficulty for differentiation of ZX-diagrams comes from the product rule:
∂fg = ∂fg + f∂g that involves adding two terms. This rule is crucial to evaluate the
derivative of the sequential composition and the tensor product. As ZX-diagrams are defined
inductively with these two compositions, the derivative of a complex diagram could be
computed out of the derivatives of its parts if we were allowed to use the product rule, and
therefore sum diagrams.

The works [ZG21, TYd21] use explicit sums of diagrams (usually referred to as bags of
diagrams) to represent the derivative of diagrams with multiple occurrences of the parameter.
The major disadvantage of this approach is that there are no rules to manipulate sums of
ZX-diagrams. Therefore, we can’t fully exploit the power of graphical computation (while it’s
still possible to use rewrite rules on summands [SH22]). In this work, we suggest an approach
where the derivative of a parametrized ZX-diagram is another ZX-diagram. Hence we avoid
the extension of the signature with formal sums. In order to tackle sums that appear in
the product rule, we introduce an original technique to perform the addition of diagrams
entirely in the ZX-calculus. For this purpose, we use special diagrams called controlled states
[JPV19]. We suggest an inductive way to represent every ZX-diagram by such a state. As we
know how to sum controlled states [JPV19] the addition for arbitrary diagrams follows. An
inductive definition of the derivative is obtained by an explicit diagrammatic representation
of the product rules.

In an attempt to give a ready-to-use toolbox for differentiation, we provide an easy
and convenient way to compute the derivative for the family of linear diagrams ZX(β)
[JPV19], that is diagrams where angles might depend linearly (with integer coefficients) on
one parameter β. Most of the circuits that are used for variational algorithms belong to
ZX(β) and we believe that our formulas will make their analysis much simpler.

A definition for a derivative similar to our formulas was obtained in the independent work
[WY22]. This work uses W-spiders [Had15] to handle product rules. In contrast to our result,
the diagrammatic differentiation presented in [WY22] maps to a ZX-diagram a diagram
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from another language called algebraic ZX-calculus [Wan20]. The algebraic ZX-calculus is
convenient to represent arbitrary complex numbers, therefore their differentiation procedure
can handle more general families of diagrams than ZX(β). This advantage comes with the
cost of abandoning the legacy of the vanilla ZX-calculus which is by far the most popular
graphical calculus for quantum computing.

In the end, we show how our result together with the Stone’s theorem [Sto32] allows
finding a ZX-diagram representing an Ising Hamiltonian. In variational algorithms Ising
Hamiltonians are typically used in the definition of the loss function for parameter opti-
mization. In practical applications Hamiltonians are usually given as a sum of local terms
H =

∑k
i=1Hi where each Hi acts only on a limited number of qubits. Small individual

terms Hi can be relatively easily represented as diagrams. For instance, for the Hamiltonian

H =
∑

u,v ZuZv diagrams for individual terms are trivial: Hu,v =
π

π
. However, in the

traditional framework there is no graphical procedure that constructs the overall sum H out
of such elementary blocks.

The ability to perform addition directly leads to a procedure for differentiation. On the
other direction, with Stone’s theorem some specific kinds of sums might be straightforwardly
expressed as diagrams if we can compute derivatives. We demonstrate how to combine
our formula for the derivatives and the theorem to find a diagrammatic representation for
example Hamiltonian.

Structure of the paper. In Section 2, we give a brief introduction to the ZX-calculus
followed by some useful lemmas. In Section 3, we provide a general overview of addition
and differentiation in quantum computing. In particular, we show how addition may be
represented in circuit notation. We continue by giving an overview of the potential benefits
coming from using ZX-diagrams to reason about derivatives. This section, alongside additional
examples and explanations, constitutes the major extension of the current work with respect
to the previous version [JPV22].

In the next Section 4 we introduce an inductive procedure for the transformation of a
diagram into a controlled form. We show how this procedure leads to an algorithm for the
addition of ZX-diagrams. In Section 5, we provide two approaches for the differentiation,
including an inductive definition (directly inspired by the product rules) and compact formulas
for derivatives of linear diagrams ZX(β) where β is a vector of parameters. In Section 6, we
show how to apply our formulas to obtain a diagram for an Ising Hamiltonian.

2. ZX-calculus

2.1. Syntax and Semantics. The ZX-diagrams are generated by green spiders α

. . .

. . .
, red

spiders α

. . .

. . .
and Hadamard , where both kinds of spiders have an arbitrary number of

inputs/outputs and are decorated with angles. ZX-diagrams are also made of wires: the
identity , the swap and also the possibility to bend wires with a cup and a cap .
A wire can connect two nodes or, alternatively, have free ends that point either up or down.
Wires with free ends pointing towards the top (towards the bottom) of the diagram are called
inputs (outputs). We denote by D : n→ m a diagram with n inputs and m outputs. Finally,
the empty diagram is denoted with .
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Definition 2.1. ZX-diagrams are inductively defined as follows: for n,m ∈ N and α ∈
R/2πZ,

α

. . .

. . .

n

m

: n→ m α

. . .

. . .

n

m

: n→ m : 1 → 1 : 1 → 1

: 2 → 0 : 0 → 2 : 2 → 2 : 0 → 0

are ZX-diagrams, and for any ZX-diagrams D0 : a → b, D1 : b → c, and D2 : c → d,
D1 ◦D0 : a→ c and D0 ⊗D2 : a+ c→ b+ d are ZX-diagrams. Pictorially:

D1

. . .

. . .

◦ D0

. . .

. . .

=
D1

. . .

D0

. . .

. . .

and D0

. . .

. . .

⊗ D2

. . .

. . .

= D2

. . .

. . .

D0

. . .

. . .

As in most works on ZX-calculus, an empty spider denotes the spider with α = 0. A
diagram with no input/output is called a scalar. To compactly write scalar factors, we
introduce syntactic sugar [−]⊗n. For any scalar d : 0 → 0 the notation d⊗n corresponds to
d⊗ · · · ⊗ d︸ ︷︷ ︸

n

.

Semantically, ZX-diagrams are standardly interpreted as linear maps, and thus they can
be used to represent quantum evolutions.

Definition 2.2. For any ZX-diagram D : n → m, let JDK ∈ M2m,2n(C) be inductively
defined as: JD1 ◦D0K = JD1K ◦ JD0K, JD0 ⊗D2K = JD0K ⊗ JD2K, and
u

www
v

α

. . .

. . .

n

m

}

���
~

= |0⟩⊗m⟨0|⊗n + eiα|1⟩⊗m⟨1|⊗n,

u

www
v

α

. . .

. . .

n

m

}

���
~

= |+⟩⊗m⟨+|⊗n + eiα|−⟩⊗m⟨−|⊗n

r z
= |0⟩⟨0|+ |1⟩⟨1|,

r z
= |+⟩⟨0|+ |−⟩⟨1|, J K = 1

q y
= ⟨00|+ ⟨11|,

r z
= |00⟩+ |11⟩,

r z
=

∑
i,j∈{0,1}

|ij⟩⟨ji|

where bra-ket notations are used: |0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, |+⟩ = |0⟩+|1⟩√

2
, |−⟩ = |0⟩−|1⟩√

2
, |xy⟩ =

|x⟩ ⊗ |y⟩ and ⟨x| = |x⟩† is the adjoint (complex conjugate) of |x⟩.

Example 2.3. Complex numbers can be represented with diagrams:

J K = 2, Jα K = 1 + eiα,

s {
=

√
2,

s
π

α

{
=

√
2eiα,

u

v

}

~ =
1√
2

(2.1)

Sometimes it is meaningful to consider diagrams with angles from a restricted sub-group
G of R/2πZ. Such restrictions lead to fragments of the language, denoted ZXG-calculus
[JPV19]. The standard interpretation associates to each ZXG-diagram D : n→ m a matrix
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JDK ∈ M2m,2n(RG) with elements in the ring RG = Z
[

1√
2
, eiG

]
- the smallest ring that

contains Z, 1√
2

and {eia|a ∈ G} [JPV19].
In particular, the π

2 - (resp. π-) fragment2, also called Clifford (resp. real Clifford)
fragment, enjoys nice properties [Bac14, DP14] but is not universal for quantum computing,
even approximately. Furthermore, any quantum computation that can be expressed in this
fragment can be efficiently simulated on a classical computer. As soon as the group contains
the angle π

4 , the corresponding fragment is approximatively universal for quantum computing:
any 2n×2n unitary transformation can be approximated by a ZX-diagram from this fragment
with arbitrary precision. In particular the π

4 -fragment, also called ‘Clifford+T’ fragment has
be extensively studied [JPV18a, JPVW17, NW18]. Other finitely generated fragments have
been considered in [JPV19].

Notice that for any sub-group G of R/2πZ that contains π
4 , ZXG-diagrams are universal

[JPV19] in the sense that for any matrix M ∈ M2m,2n(RG) there exists a ZXG-diagram
D : n→ m such that JDK =M .

2.2. The calculus. Two ZX-diagrams may have the same interpretation, as a consequence
the language is equipped with a set of rewrite rules (Fig. 1) that allows to transform diagrams.

In addition, ZX-diagrams can be deformed at will: all wires may be bent in any manner
that keeps intact the order of inputs and outputs. It is also allowed to arbitrarily change the
order of wires for greed and red spiders and the Hadamard. Corresponding transformation
rules are aggregated under the paradigm Only topology matters:

= = == =

= ==

As a direct consequence of the axiom (S1), these rules also hold for non-empty spiders.
They also imply that whenever a wire has no free ends, we can draw it in any way, f.e. as a
horizontal line.

We denote ZX ⊢ D1 = D2 if D1 may be transformed to D2 by local application of
rewriting rules.

The ZX-calculus is sound, i.e. the rules preserve the semantics: if ZX ⊢ D1 = D2 then
JD1K = JD2K. The converse property is called completeness. The set of rules (Fig. 1) was
proven complete for the π

4 -fragment [JPV19], and a single extra-rule makes the language
complete for arbitrary diagrams [JPV18b]. Notice that alternative sets of rules have been
shown to be complete for general ZX-diagrams [HNW18, Vil19]. We choose to consider the
rules of Fig. 1 as they have been used to study diagrams with parameters in [JPV18b].

2I.e. the fragment of diagrams which angles are in the group generated by π
2

(resp. π)
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=
(S1)β

. . .

. . .
α+β

. . .

. . .
α

. . .

. . .

. . . =
(S2)

=
(E)

π
4

−π
4

=
(B1)

=
(B2) =

(K)

α

π

α

π -α

π

=
(EU)

π
2

−π
2

π
2

=
(H)α

. . .

. . .

α

. . .

. . .
=

(SUP )

α α+π 2α+π

α

α β

βπ

-γ

γ
=
(C)

α

αβ

β π

γ

-γ

=
(BW )

−π
2

π
4 π

4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π

π

π
2

Figure 1. Axioms for ZX as presented in [JPV19]. All rules stay true flipped
upside down and with inverted colors. Families of equations are given using

‘dots’: . . . means any number of wires,
. . . means at least one wire.

2.3. Useful lemmas. Theorems and demonstrations in this work extensively use triangle:

- a syntactic sugar introduced in [JPV18a]. It corresponds to a non-unitary transfor-

mation:

t |

= |0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨1|. The triangle may be written in terms of red and

green spiders as:
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=
π
4

π
4

−π
4

−π
4

π
2

(2.2)

We also use multiple lemmas introduced in the work [JPV19]:

Lemma 2.4.

= =

⊗2

;

Lemma 2.5.

π π
π

α β α+ β

=

Lemma 2.6.

π

π π
=

Lemma 2.7.

=

Lemma 2.8.

=

Lemma 2.9.
π

π
=

Lemma 2.10.
π

=

Lemma 2.11.

=
π

π

Lemma 2.12.

=

Lemma 2.13.

=

Lemma 2.14.

=

Lemma 2.15.

=

π

Lemma 2.16.

=

Lemma 2.17.

=

ππ

Lemma 2.18.

π

=

and

=

Lemma 2.19.

π π

=

Lemma 2.20.

=
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Lemma 2.21.

=

π

π

=

π

π

Lemma 2.22.

. . .

=

. . .

We also introduce some new lemmas that will be useful in the following sections. The
proofs serve as an illustration of the graphical computation process.

Lemma 2.23.

π π π

β =

π

β

Lemma 2.24.

=β

π
π

β

β

Lemma 2.25.

π π π π π π

=

Proof (lemma 2.23).
π π π

β =
(B1)
2.10
2.4

π

β =
2.7

π

β (2.3)

Proof (lemma 2.25). The left hand side is:

π π π

=
(B1)
2.7

π

π

(2.4)
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For the right hand side we get:

π π π

=
(B1)
2.10

π

π

π

=
2.6

π π

=
2.6
2.11

π

π

=
2.12 π

π

(2.5)

Proof (lemma 2.24). To prove the lemma we adopt a slightly different technique than a usual
sequence of rewrites. The technique consists in verification that the diagrams from the left
hand side and the right hand side lead to the same result when applied on a set of basis

states {|0⟩, |1⟩} corresponding to diagrams and
π
. As was pointed out in [CK17]

for two matrices M1,M2 : C2n → C2m and a basis {|b1⟩, . . . , |b2n⟩} in C2n the equality on
basis input is equivalent to the equality of matrices, i.e.

∀i ∈ [1, . . . , 2n] : M1|bi⟩ =M2|bi⟩ ⇐⇒ M1 ≡M2 (2.6)

Therefore, by demonstrating that rhs
. . .

lhs
. . .

= and rhs
. . .

π

lhs
. . .

π

= we actually

establish that

u

v lhs
. . .

}

~ =

u

v rhs
. . .

}

~.

β

π

β =
(B1)
2.7
2.8

β

π

=
(B1)

β
=

(B1)
π

β

=
(B1)
2.7
2.8

π

β

(2.7)

β

π

π

β =
(B1)
2.9
2.10

π

β + π

=
(S1)

β
=

(S2) β
=

(B1)
2.9
2.10

π

β

π

(2.8)

The lemma condition follows from the completeness of ZX-calculus.

2.4. Linear diagrams. In ZX-diagrams the angles inside spiders are real numbers or
elements of some group G. However, in many equations such as (S1), (K), (H), and (SUP)
we used symbols α and β instead of numbers. The symbolic notation was extremely handy to
define families of equalities, i.e. equalities that hold for any real values of angles. By explicitly
keeping symbols inside spiders we can draw parameterized diagrams. A parameterized diagram
with n different symbols can be interpreted as a function that associates to each element of
the space Rn a well-defined ZX-diagram.
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More precisely, we say that a diagram D is parametrized by β1, . . . , βk if its angles are
some functions on β1, . . . , βk. We denote such a diagram by D(β1, . . . , βk). It is possible
to evaluate a parametrized diagram D(β), β ∈ Rk in a point β̃ ∈ Rk by replacing every
occurrence of βi with the respective value β̃i. The result of the evaluation is a diagram
D
(
β̃
)

from ZXR.
Among parameterized diagrams, we distinguish a family of linear diagrams denoted

ZX(β):

Definition 2.26 (Linear diagrams [JPV18b]). A ZX-diagram is linear in β1, . . . , βk with

constants in L ⊂ R if it is generated by α

. . .

. . .
, α

. . .

. . .
, , , , , , combined by tensor

product and composition such that α is of the form
∑

i niβi + c with ni ∈ Z and c ∈ L.

In other words, in a parameterized linear diagram D = D(β1, . . . , βk) each angle α of a
(red/green) spider is of the form

∑
i niβi + c for some integer ni and c ∈ L

It was shown in [JPV18b] that for L = {nπ4 }n∈Z the Clifford+T axiomatization (Fig. 1)
is complete for linear diagrams.

The family of linear diagrams may appear restricted compared to ZX-diagrams that
allow angles from a more general class of functions. It is, however, sufficient for applications
in variational quantum algorithms as they use circuits where parameters appear in a linear
fashion [Pre18]. More importantly, for this family we are able to demonstrate simple
formulas for the derivative. We believe that such formulas are not obtainable even for a
slightly more general fragment ZXAn where angles belong to the group of affine functions
An = {(β) → cTβ + c0|c ∈ Rn, c0 ∈ R} (i.e. where coefficients are real numbers). Intuitively,
the difficulty comes from the absence of a simple representation of a general matrix over
real numbers in terms of spiders. This restriction is removed in the algebraic ZX-calculus
[Wan20] at the cost of an extended set of generators.

3. Related work

In this section we provide a broader context for addition and differentiation in quantum
computing. In particular, we discuss how the addition of two unitary matrices may appear
in quantum applications and how it can be expressed in the circuit notation [CW12]. We
also review other attempts to manipulate sums of ZX-diagrams.

The differentiation in quantum computing appears in the context of variational algorithms.
We review how derivatives of ZX-diagrams may be helpful for the analysis of these algorithms,
in particular in the detection of barren plateaus and in the design of parameter shift rules.
These ideas point out possible directions for future work.

3.1. Addition in quantum computing.
Addition with circuits. In pure qubit quantum mechanics computations are performed by
unitary transformations. Unitary transformations form a group with respect to multiplication,
but the sum of two unitary transformations Ua and Ub is not unitary.

However, in some context it is meaningful to consider transformations of the form
1
c (Ua + Ub). For instance, the work [CW12] suggests to approximate the evolution of a
quantum state under some Hamiltonian by a linear combination of unitary operators. It was
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shown that such an approach typically outperforms the traditional technique for simulation
based on Trotterization.

The protocol for the addition of the unitaries Ua and Ub in [CW12] is:

qa : |0⟩ H • X • X H b

Ua Ub...

(3.1)

where qa is an ancilla qubit initialized in a zero-state, and we have access to the controlled-
version of the unitary gates Ua and Ub.

The protocol (3.1) can be easily verified. Starting in the state |0⟩|ψ⟩ we obtain:

|0⟩|ψ⟩ → |0⟩+ |1⟩√
2

|ψ⟩ → 1√
2
(|0⟩ ⊗ Ub|ψ⟩+ |1⟩ ⊗ Ua|ψ⟩) (3.2)

→ 1

2
(|0⟩ ⊗ (Ub + Ua)|ψ⟩+ |1⟩ ⊗ (Ub − Ua)|ψ⟩) (3.3)

If the ancilla qubit is measured in the |0⟩ state, the input state |ψ⟩ was successfully transformed
to 1

c (Ua + Ub)|ψ⟩ (c is the normalization constant).
We remark that protocol (3.1) uses an ancilla qubit and post-selection on the measurement

output and, therefore, exceeds the framework of pure qubit computations. We also emphasize
that the circuit involves controlled versions of unitary transformations. In order to be
executed on a quantum computer, the controlled unitaries have to be compiled into a
sequence of elementary gates. An efficient compilation is non-trivial even for a simple
controlled-controlled-not gate usually called Toffoli gate. Interestingly, the use of graphical
representations may enhance the compilation of controlled gates [KvdWK19].

Addition with the ZX-Calculus. In the context of the ZX-calculus, there is no natural
way to perform a linear combination of arbitrary ZX-diagrams. Fundamentally, this deficiency
is due to the absence of a proper physical interpretation for a sum of diagrams. Indeed,
ZX-calculus is a language for a process theory representation of quantum computing - i.e.
each diagram is a process [CK17]. The composition of processes can be interpreted as their
sequential application, the tensor product corresponds to the parallel application, but the
addition doesn’t have a meaningful physical interpretation.

Several attempts were made to address this issue. The first option selected in [TYd21,
SH22] consists in an extension of the formalism from diagrams to bags of diagrams, i.e. formal
sums of diagrams. The use of formal sums means computations and diagram simplifications
cannot be done purely in the context of diagrams, but also require basic calculus.

Independently from our result, [YWS] suggested an alternative protocol for the addition of
two ZX-diagrams. This article uses the algebraic ZXW-calculus instead of vanilla ZX-calculus.

There are some similarities with our work, in the sense that their result can also be
seen as based on a translation to a controlled form. However, their definition of a controlled
form is not equivalent to ours. In addition, instead of inductive procedure, they rely on a
decomposition of a diagram on elementary matrices that have an exponential complexity in
the worst-case. A more detailed comparison of the two approaches is presented in Section 4.3.
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3.2. Differentiation in variational algorithms. In quantum computing a variational
algorithm (VQA) is defined by a parameterized quantum circuit (PQC) (also called ansatz )
and a loss function that helps to discriminate between the different values of the parameters.
Usually, the loss function is given as an expectation of an energy operator in the state
prepared by PQC. Such expectation can be represented as a scalar ZX-diagram with some
angles depending on the parameters.

Many state-of-the-art methods for the optimization of the loss function such as Quantum
Analytic Descent [KB22] and meta-learning optimizers [WSW+21] use derivatives [GS17].
For efficient training it is important to detect deficiencies in the parameter landscape. In
particular, gradient-based methods fail to coverge to an optimal solution in the presence of
so-called barren plateaus - zones with exponentially vanishing gradient values. It was shown
that some specific structure of the cost function [CSV+21] or, alternatively, the structure of
the ansatz itself [MBS+18] may lead to a landscape containing such zones.

As was demonstrated in [ZG21], the diagrammatic representation is beneficial in the
analysis of the barren plateau phenomena. Yet the work [ZG21] pointed out a crucial obstacle
limiting the application of ZX-calculus to variational algorithms - notably the absence of
convenient tools for the addition and differentiation of parametrized diagrams. Due to
this obstacle, in [ZG21] the analysis was limited to diagrams with only two occurrences of
the parameter. In [TYd21] an arbitrary number of parameter occurrences is tackled with
explicitly represented product rules leading to bags of diagrams.

Other than in the analysis of the barren plateau, diagrammatic representation can be
used to design parameter shift rules.

Parameter shift rules. Parameter shift rules appeared as a solution to the problem of
gradient evaluation. Indeed, the gradient of the loss function ∂⟨ψ0|U†(α)OU(α)|ψ0⟩

∂αi
(where O is

the energy operator) in general can’t be directly evaluated on quantum hardware. However,
in some cases the gradient can be expressed as a linear combination of the loss function
values at different points:

∂L

∂αi∗
(α̂) =

m∑
k=1

ϵkL(α
k) (3.4)

where αki =

{
α̂i, ∀i ̸= i∗

α̂i + ϕi, i = i∗
. The values L(αk) can be computed with stochastic

approximation.
Decompositions of the form (3.4) are called parameter shift rules. We remark that the

parameter shift rules lead to an unbiased estimator for the gradient compared to the finite
difference approximation ∂L

∂α (α0) =
L(α0+δ)−L(α0)

δ which, in turn, enhances the parameter
optimization process [MBK21].

The first shift rule was derived for the case U(α) = WeiαHV where W and V don’t
depend on α, while H (called generator) has two eigenvalues +1 and −1 [MNKF18]. It was
further extended to generators with arbitrary symmetric eigenvalues +r and −r [SBG+19]:

∂L

∂α
(α) =

r

4

(
L
(
α+

π

4r

)
− L

(
α− π

4r

))
(3.5)
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For more complex U(α) we can decompose U(α) on a product of elementary matrices
U(α) = E1(α) × · · · × EM (α) and use product rules. Alternatively, more sophisticated
techniques [WIWL22, KE21, ILY21] involve a spectral decomposition of the generator H.
These advanced rules imply a smaller number of elements in the linear combination (3.4)
compared to the decomposition, leading to an economy in the number of calls made to the
quantum computer.

We remark that simply having a ZX-diagram for the derivative of the loss function is
not enough to design new shift rules. We need to further extend the toolbox of ZX-calculus,
for instance, we may need a procedure that compiles a diagram into a linear combination of
other diagrams corresponding to valid quantum expectations. This extension constitutes one
of the possible directions for future work.

4. Addition of ZX-diagrams

The addition is a natural operation on matrices from a Hilbert space. However, it doesn’t
correspond to a physical process, hence it is not reflected in the standard ZX-calculus [CK17].

It is not hard to show that it is not possible directly, from two diagrams D1 and D2

corresponding to two matrices M1 and M2, to obtain a diagram corresponding to the sum
M1 +M2 by just plugging D1 and D2 into a bigger diagram. Indeed, any diagram that
contains a subdiagram representing the 0 matrix also represents a 0 matrix. So if D1

represents a 0 matrix and D2 represents a nonzero matrix, then plugging D1 and D2 into a
bigger diagram will give a zero matrix, and therefore will not represent the sum of the two
matrices.

On the other hand, for any two diagrams D1, D2 : n → m, the universality of the
ZX-calculus guarantees that there exists a diagram D : n→ m such that JDK = JD1K+ JD2K.

We provide in this section a general construction for such a diagram.
The key ingredient is to use controlled versions of the original diagrams, rather than

the original diagrams. As pointed out in [JPV19], one can inductively define the addition
on ’controlled’ versions of the diagrams. A controlled version of a diagram D0 is roughly
speaking a diagram with an extra input such that when this extra input is set to |1⟩ the
diagram behaves as D0 and when it is set to |0⟩ the diagram behaves as a neutral diagram.
Roughly speaking, the addition procedure puts controlled versions of two diagrams aside and
plugs a diagram corresponding to const(|10⟩+ |01⟩) to the inputs.

To build a controlled version of a diagram our construction uses controlled states originally
introduced in [JPV19].

4.1. Controlled states.

Definition 4.1 (Controlled state [JPV19]). A ZX-diagram C : 1 → n is a controlled state if

JCK |0⟩ =
∑

x∈{0,1}n |x⟩ =

t

. . .︸ ︷︷ ︸
n

|

.

Intuitively, a controlled state is a way to encode the state JCK |1⟩. A controlled state
with no outputs is called controlled scalar. For instance, the scalar 0 could be encoded by

the controlled scalar C0 = . Indeed, we can explicitly check that JC0K |0⟩ = 1 and
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JC0K |1⟩ = 0:
u

v
⊗2

}

~ =
2.4

J K = 1,

u

v π
⊗2

}

~ =

s ⊗2
{
× J π K =

2.1
0 (4.1)

It will be more useful in what follows to perform graphical proofs instead of matrix
computation to manipulate controlled states. With these rules, we verify the condition

JCK |0⟩ =
∑

x∈{0,1}n |x⟩ by checking if ZX ⊢ C
. . .

=
. . .

n
. The diagram corresponding to

the encoded state is simply
π

C
. . .

D
. . .

= .

Example 4.2 (Proven in [JPV19]). Diagrams C1/
√
2 = π

4
−π

4

and C2 = are

controlled scalars:

π

C1/
√
2
= π

4
−π

4

π

= and

π

C2 =

π

= (4.2)

representing respectively 1√
2

and 2.

Controlled states have nice properties that allows to perform element-wise addition and
tensor product of corresponding vectors:

Lemma 4.3 (Sum and tensor product [JPV19]). For any controlled states C1, C2 : 1 → n
and C3 : 1 → m the diagrams:

C+ =

. . . . . .

. . .

C1 C2 and C⊗ =

C1 C3

. . . . . .

(4.3)

are controlled states such that JC+K |1⟩ = JC1K |1⟩+JC2K |1⟩ and JC⊗K |1⟩ = JC1K |1⟩⊗JC3K |1⟩.

The previous lemma can be used to add two controlled states. More precisely, if one of
the controlled states encodes a state diagram D1 : 0 → n and the second controlled state

encodes D2 : 0 → n the diagram

π

C+
. . .

D+
. . .

= correspond to the vector JD1K+JD2K. Moreover,

as the construction returns a controlled state we can directly proceed to the addition of new
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terms: for N controlled versions C1, . . . , CN of D1, . . . , DN the diagram:

D =

. . . . . .

. . .

C1 C2

. . .

C3

π

...

. . .

. . . CN (4.4)

correspond to the state JDK = JD1K + · · ·+ JDN K.
We remark that for each number of output wires n the zero-element Cn0 : 1 → n is a

controlled state . . .

n

. Indeed, we can prove the following lemma:

Lemma 4.4. For any controlled state C : 1 → n

. . . . . .
. . .

C Cn0 =

. . .

C and

. . . . . .

C Cm0 =

. . .

Cn+m0

(4.5)

Proof. We start by proving the first equality. The left-hand side is:

. . . . . .

. . .

C (4.6)
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The top part of the diagram can be transformed as follows:

=
2.4
4.4

=
(B1)

=
2.4
2.7

(4.7)

The statement follows from (S2) and (S1).
For the second equality we have:

. . . . . .

C1

m

=
(B1)

. . . . . .

C1

m

(4.8)

The lemma follows from the definition of the controlled state.

We follow in this work the definition of a controlled state in [JPV19]. There exist other
definitions, see e.g. [YWS], which essentially differ in the output of the zero-case.

4.2. Controlizer. The lemma 4.3 provides a way to obtain the sum of two diagrams in a
controlled state form.

The definition and the lemma technically allow only to solve the problem for states rather
than arbitrary matrices, but notice that going from a matrix n→ m to a state 0 → n+m is
just a matter of bending wires. We remark that bending wires alone can’t lead to a procedure
for addition, as there is no obvious way to directly sum state diagrams without controlled
versions.

What remains to be done is to explain how to compute algorithmically, from a state
(diagram) D, a controlled version of the same state (diagram).

We introduce for this the notion of a controlizer - a map that associates diagrams with
the corresponding controlled states.

Notation 4.5. ZX[n,m] denotes the family of all ZX-diagrams with n inputs and m outputs.

The formal definition of the controlizer is:

Definition 4.6 (Controlizer). We say that a map C : ZX[n,m] → ZX[1, n + m] that
associates to every diagram D : n→ m a diagram C(D) : 1 → n+m is a controlizer if the
following conditions hold for any ZX-diagram D:
• C(D) is a controlled state
• The state represents D up to some scalars in the sense that:

JDK =

u

wwwwww
v

. . .
. . . C(D)

π
n

m

⊗n+m
}

������
~

(4.9)
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Several maps satisfy the definition of the controlizer. For instance, the map presented in
[JPV19] that associates to each diagram its normal form is in fact a controlizer. In [YWS]
an alternative controlled state form is constructed from the 2n coefficients of the algebraic
normal form.

In our approach the controlizer is defined by induction over the composition and the
tensor product and doesn’t rely on normal forms. It means that the shape of the controlizer
will follow closely the shape of the original diagram. In terms of complexity, this also implies
that the size of the controlizer output is polynomial in the size of the diagram.

Definition 4.7 (Inductive controlizer). We define the map C : ZX[n,m] → ZX[1, n+m]
that associates to each diagram D : n→ m a diagram C(D) : 1 → n+m as follows:

• For the generators β , , , , , :

C
(

β
)
=

π

β

, C

( )
=

π
, C

( )
=

π

π
π
4

−π
4

C
( )

= C
( )

=
π

, C
( )

=

π

(4.10)

• Generators α

. . .

. . .
and α

. . .

. . .
can be decomposed as follows using the above generators:

C

 α

. . .

. . .

n

m

 = C

 . . .α

n+m

. . .

 , C

 α

. . .

. . .

n

m

 = C

 . . .α

n+m

. . .


• For tensor product D⊗ = D2 ⊗D1 and composition D◦ = D3 ◦D1 where D1 : n → m,
D2 : k → l and D3 : m→ k:

C(D⊗) =
. . .

C(D1)

m

. . .
C(D2)

k ln

. . . . . .

, C(D◦) =
. . . . . .
C(D1)

n

. . .
C(D3)

k

⊗2m

(4.11)

We remark that the output of the inductive controlizer is not unique as it depends on
the decomposition order. For instance, two diagrams that are equivalent up to deformation
(the topology matters rule) will produce different outputs, that are not equivalent up to
deformation. However, the semantics is preserved: both representations will of course
represent the same matrix.

We now verify that our inductive controlizer 4.7 satisfies the definition 4.6:
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Proof. We prove the claim for the generators β , , , , , and both

compositions. The case of α

. . .

. . .
and α

. . .

. . .
is a direct consequence of the axiom (S1).

First, we inductively prove that for all diagrams D the diagram C(D) is controlled state.

• Generators:

C
(

β
)
◦ =

π

β

=
(B1)

π

β

=
4.2
2.10 β

=
2.4

(4.12)

C
( )

◦ =
π

=
(B1) π

=
4.2
2.7

π
=

(B1)
2.4

(4.13)

C
( )

◦ =

π

π
π
4

−π
4

=
(B1)
2.4

π π
4

−π
4

π

=
4.2
2.17

⊗2

=
(H)
2.4

(4.14)

C
( )

◦ =
π

=
(B1)

π =
4.2
2.7

π =
(B1)
2.4

(4.15)

C

( )
◦ =

π

=
(B1)

π

=
4.2
2.6

(B1)

π

π

⊗2

=
2.10

⊗2 ⊗2

=
(B1)
2.4

(4.16)

• Tensor product: it directly follows from lemma (4.3) that if C(D1) and C(D2) are
controlled states, then the diagram C(D1 ⊗D2) from (4.11) is controlled state.
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• Composition: let’s assume that C(D1) and C(D2) are controlled states. We show that
C(D1 ◦D2) is also a controlled state:

C(D1 ◦D2) ◦ =
. . . . . .

C(D1)

n

. . .
C(D3)

k

⊗2m

=
(B1) . . . . . .

C(D1)

n

. . .
C(D3)

k

⊗2m

=
. . .

. . .

n

. . .

k

⊗2mm

=
2.4

. . .

n

. . .

k

(4.17)

Next we show that the map C satisfy the property (4.9), i.e. it correctly encodes the
input diagram.

• Generators:

C
(

β
)
◦

π
= π

β

π

=
(B1)

π

β

π

π

=
4.2
2.8 β

=
2.4

β
(4.18)

C
( )

◦
π
=

π

π

=
(B1) π

π
π

=
4.2
2.9

(4.19)

C
( )

◦
π
=

π

π
π
4

−π
4π

=
(B1)
2.4

π

π

π
4

−π
4

=
4.2
2.16

=
(S2)
2.4

(4.20)
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C
( )

◦
π
=

π

π

=
(B1)

π

π

π
=
4.2
2.9

=
(S2)
2.4

(4.21)

C

( )
◦

π
=

π

π

=
(B1)

π

π
π π

=
4.2

(B1)

⊗2

=
2.8

=
(S2)

(4.22)

• Composition: Let’s assume that the property (4.9) holds for diagrams D1 : n→ m and
D2 : m→ k.The controller for their composition D1 ◦D2 is given by:

. . .
. . . C(D1 ◦D2)

π

n

k

⊗n+ k

=
. . . . . .

C(D1)

n

. . .
C(D2)

k

π ⊗2m
⊗n+ k

=

. . . . . .
C(D1)

n

. . .
C(D2)

k

π

⊗n+m
π

⊗k +m

=

. . .

. . .
D1

n

. . .
D2

k

= D2 ◦D1 (4.23)

• Tensor product: Let’s assume that the property (4.9) holds for diagrams D1 : n→ m
and D2 : k → l. The controller for their tensor D1 ◦D2 is given by:
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. . .
. . . C(D2 ⊗D1)

π

n+ k

m+ l

⊗n+m+ k + l

=

. . .

C(D1)

m

. . . C(D2)

π

l

. . .

. . .

k n⊗n+m+ k + l

=

. . .

C(D1)

m

. . . C(D2)

π

l

. . .

. . .

k n ⊗n+m
π

⊗k + l

(4.24)

The diagram (4.24) is equal to D1

. . .

D2

. . .

k n

. . . . . .

l m

by the induction assumption.

To give a flavor of our computation process we show how to obtain a controlled version
of π :

C

(
π
)

=

⊗2
π

π π
=
2.11
2.4
(S2)

π
=
2.18

=
2.14
2.4

(4.25)

Addition of arbitrary diagrams. The controlizer allows to map every two ZX-diagrams
D1 : n→ m and D2 : n→ m to controlled states C1 : 1 → n+m and C2 : 1 → n+m. The
lemma 4.3 provides a way to obtain a sum of resulting controlled states. By combining this
two results we can recover the diagram for addition of D1 and D2. The addition protocol is
resumed in the following theorem:

Theorem 4.8. For diagrams D1 : n→ m and D2 : n→ m the diagram
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D+ = . . .
. . . C+

π
n

m

⊗n+m

, where C+ = C(D1) C(D2)
. . . . . .

. . .

is such that JD+K = JD1K + JD2K.

Proof (theorem 4.8). The theorem follows from the definition of the controlizer and the
lemma 4.3.

We illustrate the diagrammatic addition with a simple example.

Example 4.9. Using 4.8, we construct a diagram D corresponding to the addition of
and π .

D =
π

π

⊗2

=
2.4

(B1)
2.10

π

π

=
2.6
2.11

(4.26)

=
(B2)
2.14

=
2.16

=
(B1)
2.4

(4.27)

In this example we simplified the diagram with graphical rewriting to obtain a known
result:

r z
+

r
π

z
= (|00⟩+ |11⟩) + (|01⟩+ |10⟩) = 2|++⟩ =

s {
(4.28)

4.3. Discussion. The previous example shows that our inductive procedure leads to large
diagrams, even when the initial diagrams are fairly simple. The resulting diagrams roughly
follow the shape of the initial diagrams, but are still quite different. This defect is however
consistent with intuition. Indeed, contrary to sequential and parallel compositions, the
addition is not a physical operation, hence it is not surprising that can’t be easily incorporated
into the framework of ZX-diagrams. On the positive side, we can rely on the powerful equation
theory of the ZX-calculus to simplify, when it is possible, the diagrams representing the sum
of diagrams.

An alternative approach for the addition in the algebraic ZXW-calculus was presented
in [YWS]. It also relies on the controlled forms of the diagram, but their controlled forms
are different from ours. Notably, contrary to our approach that accepts diagrams with an
arbitrary number of input and output wires, the controlled forms in [YWS] are defined only
for two families of diagrams: state diagrams ZX[0, n] and diagrams ZX[m,m] that correspond
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to square matrices. Controlled matrices [YWS] are built from the decomposition of the initial
diagram D on a product of diagrams for so-called elementary matrices [WY21]. In the general
case, the decomposition on elementary matrices seems to require an explicit computation of
the matrix corresponding to the diagram. Therefore, although for given controlled forms the
addition from [YWS] is done diagrammatically with the help of W-spider, the computation
of the controlled forms uses the semantics. In contrast, in our inductive procedure the entire
process is maintained in the graphical framework.

However, in some special cases of practical importance the approach suggested in [YWS]
is beneficial. For instance, as was shown in [YWS] that for local Hamiltonians made out of
Pauli tensors the decomposition on elementary matrices is straightforward. As a consequence,
the controlled versions are easy to compute and the overall procedure leads to better-looking
diagrams.

5. Differentiation of ZX-diagrams

A basic definition of the derivative is the derivative for a smooth function f : R → R:
∂f

∂x
(x0) = lim

δ→0

f(x0 + δ)− f(x0)

δ
(5.1)

In traditional calculus the derivative usually is computed from the decomposition of the
function f : R → R on a sum, product, and composition of elementary functions. Derivatives
for compositions of function functions are computed using linearity and the product rules:
∂(f ◦ g) = f ◦ ∂g + ∂f ◦ g and similarly for the tensor product.

A parameterized ZX-diagram D(β) can be understood as a function f : R → ZX that
associates to each real value β ∈ R a ZX-diagram. In the context of variational algorithms,
we consider the derivatives over the parameters.

In order to keep the notations simple in what follows we restrict our attention to the
set of linear diagrams over one variable, denoted by ZX(β). We denote the corresponding
matrices by M(β). The elements of matrices in M(β) belong to the ring generated by
complex numbers and the smooth functions eiA where A = {kβ | k ∈ Z} is the group of
affine functions with integer coefficients. We remark that even if we restrict the consideration
to diagrams over one variable, all results are easily extended to the case of partial derivatives
∂βi for linear diagrams with an arbitrary number of variables mutatis mutandis.

The sum for the matrices in M(β) is naturally defined by entry-wise addition. Therefore,
we can define the derivative in M(β) by specifying the general definition for monoidal
categories with sums given in [TYd21]:

Definition 5.1 (Derivative in M(β)). A derivative ∂M in M(β) is a linear unary operator
on M(β) that associates to a matrix L ∈ M(β), L : n→ m another matrix L′ ∈ M(β), L′ :
n→ m of the same dimensions. It satisfies the following axioms:
◦-product rule : ∂M [A ◦B] = ∂M [A] ◦B +A ◦ ∂M [B]
⊗-product rule : ∂M [A⊗B] = ∂M [A]⊗B +A⊗ ∂M [B]

Rather than defining the derivative as a limit of finite difference and deriving the
product rules, the work [TYd21] suggests an axiomatic definition that proclaims product
rules as the fundamental property of the derivative operator. We remark that the entry-wise
differentiation of matrix elements satisfies this definition.

Although our theorem 4.8 provides a fully diagrammatic way for the addition of diagrams,
we avoid extending the language with a formal introduction of a sum operator in order
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to circumvent unnecessary complications. Therefore, the general definition from [TYd21]
doesn’t apply. Instead, we suggest an alternative semantics for the derivative in the ZX-
calculus requiring the coherence between the derivative of a diagram and the derivative of
the corresponding linear map:

Definition 5.2 (ZX-derivative). A derivative ∂ZX : ZX[n,m] → ZX[n,m] is a unary operator
that commutes with the standard interpretation:

J∂ZXDK = ∂M JDK (5.2)

where ∂M is an (arbitrary) fixed derivative in M(β) satisfying the definition (5.1).

The property (5.2) is called diagrammatic differentiation.

5.1. Diagrammatic differentiation with controlizers. The derivative in M(β) is defined
through product rules that involve sums that will be translated to the diagrammatic framework
using controlizers.

Notation 5.3. In what follows we denote by C any map that satisfies the definition 4.6 of
controlizer, for instance the one of 4.7.

Definition 5.4. Given a controlizer C, the C-derivative is the map ∆ : ZX(β) → ZX(β)
that associates to a parameterized diagram D : n→ m another diagram ∆(D) : 1 → n+m
defined as follows:

• Generators: For parametrized spiders:

∆
(

β
)
=

β
, ∆

(
−β
)

=

−β

π

(5.3)

∆

 kβ

. . .

. . .

n

m

 = ∆

 . . .

. . .

n

m

β

β

...k

 , ∆

 kβ

. . .

. . .

n

m

 = ∆

 kβ

. . .

. . .

n

m

 (5.4)

For all other generators g : n→ m that do not contain an instance of the variable β, we

define ∆(g) = . . .︸ ︷︷ ︸
n+m

.

• Tensor product: for D1 : n→ m and D2 : k → l the diagram ∆(D1 ⊗D2) is:

∆(D1 ⊗D2) =
C(D2)

m

. . .

∆(D1)

lkn

. . . . . .

∆(D2)C(D1)

. . .
. . .. . .

(5.5)
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• Composition: for D1 : n→ m and D2 : m→ k the diagram ∆(D2 ◦D1) is:

∆(D2 ◦D1) =
C(D2)

k

. . .

∆(D1)

n

∆(D2)C(D1)

. . .. . .

⊗2m

(5.6)

As should be clear from the definition, the C-derivative of a diagram is not derivative of
a diagram. Rather, it corresponds to a controlled-version of the derivative.

A simple verification shows that for any generator G the C-derivative ∆(G) is a controlled
state. From lemma 4.3 it follows that for every diagram D : n → m the C-derivative
∆(D) : 1 → n + m is a controlled state. Moreover, as was proven in lemma 4.4 the C-

derivative . . .︸ ︷︷ ︸
n+m

of generators that are independent on β is precisely the zero-element

Cn+m0 for the addition of controlled states. The same lemma implies, in particular, that the

C-derivative of any diagram D : n→ m that is independent on β is . . .︸ ︷︷ ︸
n+m

.

Similarly to controlizers, a step-by-step application of the map ∆ may lead to different
diagrams depending on the order of decomposition on tensor products and compositions.
However, all possible outputs are semantically equivalent and, by the completeness of
ZX-calculus, are equivalent as diagrams.

By combining C-derivatives and controlizers we can reproduce the semantics of product
rules in a graphical representation:

Definition 5.5. Given a C-derivative ∆, let ∂C : ZX(β) → ZX(β) be the unary operator
such that for any diagram D : n→ m

∂C [D] = . . .
. . . ∆(D)

π
n

m

⊗n+m
π
π
2 (5.7)

Theorem 5.6. The operator ∂C satisfies the definition (5.2) of diagrammatic differentiation.

Proof (theorem 5.6). We give the proof by induction over tensor product and composition.

• Generators: First, we show that ∂M
[r

β
z]

= ieiβ|−⟩ and ∂M

[t
−β

|]
= −ie−iβ|−⟩.

Indeed, we have:

∂M

r
β

z
= ∂M

(
|+⟩+ eiβ|−⟩

)
= ieiβ|−⟩ (5.8)

∂M

t
−β

|

= ∂M

(
|+⟩+ e−iβ|−⟩

)
= −ie−iβ|−⟩ (5.9)
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For the diagrams ∂C
(

β
)

and ∂C

(
−β
)

we verify the property of diagrammatic

differentiation:
u

ww
v
π
π
2 β

π
}

��
~ =

u

v β

ππ
π
2

}

~ = ieiβ|−⟩ (5.10)

u

wwww
v

π
π
2 −β

π

π
}

����
~

=

u

v
−β

π

π

ππ
π
2

}

~ = −ie−iβ|−⟩ (5.11)

For a generator g : n→ m that doesn’t depend on β:

J∂C(g)K =

u

wwwww
v

π

. . .

π
π
2

n + m + 2 . . .

n

m

}

�����
~

=
(S1)

J π ⊗ . . .K =
(
0
)
n×m (5.12)

• Tensor product: Let’s assume that J∂C(D1)K = ∂M JD1K and J∂C(D2)K = ∂M JD2K for
D1 : n→ m and D2 : l → k. For D = D1 ⊗D2:

J∂C(D)K =

u

wwwwwwwww
v

. . .
. . .

n+ k

m+ l

⊗n+ k +m+ l
π
π
2

. . .

∆(D)

π

. . .

}

���������
~

(5.13)

By applying the definition 5.4 of the C-derivative for the tensor product we obtain the
diagram:

u

wwwwwwwwwwwwwwww
v

m

. . .

k

l

n

. . . . . .. . .
. . .

C(D2)∆(D1) ∆(D2)C(D1)

π
⊗n+ k +m+ l

π
π
2

}

����������������
~

(5.14)
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We denote by . . .. . .
T

k + ln+m

the part of the diagram surrounded by the red frame.

According to the definition, C-derivatives ∆(D1), ∆(D2) and controlizer outputs C (D1),
C (D2) are controlled states. Therefore, from lemma 4.3 we get:

u

ww
v . . .. . .

T

k + ln+m

}

��
~ =

u

w
v ∆(D2)

π

. . .

C(D1)

π

. . .

}

�
~ +

u

w
v ∆(D1)

π

. . .

C(D2)

π

. . .

}

�
~ (5.15)

Meanwhile, by bending wires we see that the resting part of the diagram (5.14) is:

B =
. . .

. . .

⊗k + l
π
π
2

m

k

l

n

. . .

⊗n+m

. . . (5.16)

The sum in M(β) is distributive over the composition. Therefore,
u

wwwww
v

. . .
. . .

⊗k + l
π
π
2

m

k

l

n

. . .
⊗n+m

. . .

T

}

�����
~

= (5.17)

u

wwww
v

. . .
. . .

⊗k + l
π
π
2

m

k

l

n

. . .
. . .

⊗n+m
∆(D2)C(D1)

ππ
}

����
~

(5.18)

+

u

wwww
v

. . .
. . .

⊗k + l
π
π
2

m

k

l

n

. . .
. . .

⊗n+m
C(D2)∆(D1)

ππ
}

����
~

(5.19)

The claim follows from the induction assumption and the definition of controlizer.
• Composition: Following the same reasoning as for the tensor product we obtain for
D1 : n→ m and D2 : m→ l

∂C [D2 ◦D1] = . . .

. . .π
π
2

m l

n

. . .
⊗n+ k + 2m

T

(5.20)
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where the diagram T is exactly the same as in (5.15). On more time, by distributivity of
the sum in M(β) over the composition we obtain

J∂C [D2 ◦D1]K = . . .
. . .

⊗n+m

π
π
2

l

n

. . .

⊗m+ l

∆(D1)
C(D2)

π
π

(5.21)

+ . . .
. . .

⊗n+m

π
π
2

l

n

. . .

⊗m+ l

C(D1)
∆(D2)

π
π

(5.22)

The claim follows from the definition of controlizer an the induction assumption.

We consider a simple example to illustrate how to perform the inductive procedure.

Example 5.7. We apply the definition 5.5 to the simple scalar diagram
−β β

π
=

−β β

π
.

Notice that C
(

⊗
)
=

π

π
π
4

−π
4

π

π
π
4

−π
4

=
2.12
(2.2)
2.6

ππ
, moreover C( π

) was

already found in the example 4.25. We obtain a diagram for C
(

π

)
:

ππ
=
2.18

=
2.18

⊗2

=
2.16

⊗2

(5.23)
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We know from 4.4 that ∆
(

π

)
= . By definition, ∆

(
−β β

)
= π

β

π

−β β −β

⊗3

and ∂C

−β β

π

 = π

β

π

−β β −β

π
π
2

π
⊗2

5.2. Formula for derivatives in ZX(β). Although perfectly correct, the differentiation
procedure described above leads to very puzzling output even for small diagrams (see example
5.7). In this section we provide a simpler approach to obtain the derivative of a diagram in
ZX(β) written in a special form. We formalize it in definitions ∂ZX and ∂P of unary operators
that satisfy the property of diagrammatic differentiation (5.2).

First, we remark that even in the inductive procedure the effort can be significantly
reduced if we separate the parts that depend on the parameter from the rest of the diagram
that is constant on β. Indeed, for constant diagrams A : k → l and B : m→ k that do not
depend on β, the C-derivative is the controlled version of the zero diagrams Ck+l0 and Cm+k

0 .
Therefore, for a parameterized diagram D(β) : n→ m the lemma 4.4 implies :

∆(D(β)⊗A) =
C(A)

m

. . .

∆(D(β))

lkn

. . . . . . . . .. . .. . .

, ∆(D(β) ◦A) =
C(B)

k

. . .

∆(D(β))

n

. . .

⊗2m

(5.24)

These expressions are significantly simpler that the general case (5.4) where both parts of
the compositions depend on β.

We want to further explore this property to find simplified formulas for the derivative.

Let’s denote by Xβ(n,m) the family of diagrams β . . . β︸ ︷︷ ︸
n

−β
. . .

−β︸ ︷︷ ︸
m

from ZX(β).
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Claim 5.8. Using the rules of ZX-calculus, each diagram D(β) from ZX(β) may be
transformed into the form

D(β) = D2

D1
Xβ(n,m)

. . .. . .

. . .

. . .

= D2

D1
β −β. . .

. . .

. . .

. . .

β −β . . .

(5.25)

where n, m are some integer numbers and D1, D2 are constant with respect to β. We call
diagrams in this form β-factored.

A rigorous demonstration of claim 5.8 may be found in [JPV18b]. It essentially follows
from the (H) rule to transform any green spider into a red spider, the (S1) rule to separate
the β part from the rest of the diagram, and the paradigm Only topology matters to rearrange
the diagram.

The diagram Xβ(n,m) has a particularly regular form, so we expect it to have a nice-
looking derivative. We would like to develop the intuition from the semantics ∂M JXβ(n,m)K.

5.2.1. Intuition. Due to the form obtained in the previous claim, it remains to find the
derivative of Xβ(n,m) to obtain the desired results.

For reasons that will become more clear later, we first focus on a variant of Xβ(n,m)
with green spiders instead of red spiders.

We denote by |β⟩ = |0⟩+ eiβ|1⟩ the state
s

β
{

and by | − β⟩ = |0⟩+ e−iβ|1⟩ the state
t

−β
|

.

We also introduce the notation:

|β(n,m)⟩ = |β⟩⊗n ⊗ | − β⟩⊗m =
∑

x∈{0,1}n+m

eiβ(|x
+|−|x−|)|x+⟩ ⊗ |x−⟩ (5.26)

where x+ ∈ {0, 1}n corresponds to the first n qubits that are in the state |β⟩⊗n and
x− ∈ {0, 1}m corresponds to the last m qubits that are in the state | − β⟩⊗m. The notation
|x| : {0, 1}k → Z+ stands for the Hamming weight of the binary string x.

By applying entrywise differentiation to the vector |β(n,m)⟩, we obtain the following
result:

∂M (|β(n,m)⟩) =
∑

x∈{0,1}n+m

i(|x+| − |x−|)eiβ(|x+|−|x−|)|x+⟩ ⊗ |x−⟩ (5.27)

We observe that ∂M (|β(n,m)⟩) = iM∆|β(n,m)⟩ where M∆ : 2n+m → 2n+m is a linear
map such that M∆ : |x⟩ → (|x+| − |x−|)|x⟩.

Therefore, obtaining the derivative of (|β(n,m)⟩) requires the ability to produce the
matrix M∆.

The first step is finding a diagram for the controlled-triangle Dλ : 2 → 2. Semantically,

we want the diagram Dλ to apply the triangle to the second input if the first one is

in the |1⟩ state and do nothing otherwise. We denote the matrix corresponding to Dλ by
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Mλ. Crucially, when the matrix Mλ is applied to a vector |b⟩ ⊗ (k|0⟩+ |1⟩) for b ∈ {0, 1}
the coefficient k is modified depending on the value of b:

|b⟩ ⊗ (k|0⟩+ |1⟩) Mλ−−→ |b⟩ ⊗ ((k + b)|0⟩+ |1⟩) (5.28)

Similarly, when the input vector is |b⟩ ⊗ (k|0⟩ − |1⟩) the value of b is subtracted from k:

|b⟩ ⊗ (k|0⟩+ |1⟩) Mλ−−→ |b⟩ ⊗ ((k − b)|0⟩ − |1⟩) (5.29)

We remark the matrix Mλ is not norm-preserving, so it doesn’t correspond to a valid
quantum gate. However, it doesn’t matter as ZX-diagrams are universal for general linear
maps of dimensions 2n × 2m.

We prove that Dλ = Λ =
π

π

by explicitly checking cases when the first

input is in |0⟩ and in |1⟩ states.
For the |0⟩-case we have:

π

π

=
(B1)
(H)

π

π

⊗3

=
2.21

⊗3

=
2.14
2.4

(5.30)

When the first input is in the |1⟩ state we get:

π

π

π

=
2.6

(B1)
(H)

π
⊗3

=
2.13

π
⊗3

=
2.14
2.4

π (5.31)

It turns out that the matrix M∆ can be written as an evolution in n+m+ 1 space with
one ancilla input followed by a projection on n+m dimensional space. The ancilla input
is used to accumulate the coefficient αx of the basis state |x⟩. We suggest a construction
in which the coefficient αx is recovered from the projection ⟨0|ψa⟩ of the state |ψa⟩ of the
ancilla input.

To be exact, we design an iterative procedure that multiplies the input vector |b0, . . . , bm+1⟩
by the matrix M∆. Initially, we set |ψa⟩ = |1⟩. Then, for i ∈ [1, . . . , n] we apply
the transformation Mλ to |bi⟩|ψa⟩ controlled by the input i. After n applications the
state |ψa⟩ becomes |ψa⟩ = (

∑n
i=1 bi) |0⟩ + |1⟩. To proceed further we apply Z matrix

to |ψa⟩ and obtain |ψa⟩ = (
∑n

i=1 bi) |0⟩ − |1⟩. Then the state |ψa⟩ is transformed to
|ψa⟩ =

(∑n
i=1 bi −

∑m
i=n+1 bi

)
|0⟩− |1⟩ by iterative application of Mλ to |bi⟩|ψa⟩. Finally, the
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coefficient αx is:

αx = ⟨0|ψa⟩ =

(
n∑
i=1

bi −
m∑

i=n+1

bi

)
(5.32)

As the original input wires are used only in control, the output of such a procedure is
αx|b0, . . . , bn+m⟩.

This procedure can be directly translated in a diagram Dλ;

Dλ =

. . .

. . .

π

n m

π

Λ

Λ

Λ

Λ

...

...

=

π

π

π

π

π

...

...

π. . . =
(B1)
2.9
2.8
2.14

π

π

π

π

π

...

...

π

⊗2

⊗n+m− 1

. . . (5.33)

The diagram for the derivative of Xβ(n,m) = β . . . β −β
. . .

−β
can be obtained by

conjugating every input with Hadamard boxes:

∂M

s
β β. . . −β −β. . .

{
= ∂M

t
β β. . . −β −β. . .

|

=
q

. . .
y
◦ ∂M

s
β β. . . −β −β. . .

{

(5.34)

=
π
π
2

q
. . .

y
◦

u

ww
v

β β. . . −β −β. . .

Dλ

. . .

}

��
~ =

u

wwww
v

π
π
2

β β. . . −β −β. . .

Dλ

. . .

}

����
~

(5.35)
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By applying the rule (H) to the final we obtain

∂M JXβ(n,m)K =

u

wwww
v

π

π
2

⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m

π . . .⊗3

}

����
~

(5.36)

Notice that the Hadamard boxes from Dλ have disappeared in the expression of
∂M JXβ(n,m)K, which explains why we chose initially red spiders instead of green spiders.

5.2.2. Diagrammatic differentiation of β-factored forms. Motivated by the simplicity of the
result (5.36), we suggest an alternative non-inductive definition for derivatives of diagrams
in β-factored forms:

Definition 5.9. Given a diagram D(β) = D2 ◦ (D1 ⊗ Xβ(n,m)) in β-factored form, let
∂ZX[D] = D2 ◦ (D1 ⊗ ∂ZX[Xβ(n,m)]) where

∂ZX[Xβ(n,m)] = ∂ZX

 β . . . β︸ ︷︷ ︸
n

−β
. . .

−β︸ ︷︷ ︸
m

 (5.37)

=
π

π
2

⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m

π . . .⊗3

(5.38)

Although our definition is inspired by the intuitive reflection presented above, we provide
a rigorous diagrammatic demonstration of the soundness of our definition. More precisely,
we prove the following theorem:

Theorem 5.10. The operator ∂ZX[−] defined at (5.9) satisfies the property of diagrammatic
differentiation: for any diagram D(β) ∈ ZX(β) in β-factored form,

J∂ZXD(β)K = ∂M JD(β)K (5.39)

We remark that according to the definition 5.2 the derivative D′ : n→ m of a diagram
D : n→ m that is constant on β is such that JD′K = ∂M JDK = (0)n×m. Therefore, theorem
5.10 is a direct consequence of the following lemma:

Lemma 5.11. For any n,m:

J∂ZXXβ(n,m)K = ∂M JXβ(n,m)K (5.40)

Proof. We prove the lemma by induction. We provide the demonstration for n = n+ 1, the
proof for m = m+ 1 is directly obtainable in the same way.

Base: We already know that ∂M
r

β
z
= ieiβ|−⟩. Thus, for the case n = 1,m = 0 the

lemma statement follows from:

J∂ZXXβ(1, 0)K =

u

v
π π π

β
⊗3

π
π
2

}

~ =
2.23
2.4

u

ww
v

⊗2
π
π
2

π

β

}

��
~ = ieiβ|−⟩ (5.41)
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Step: By induction, we assume that the equation (5.40) holds for some n and m. We
show that under this assumption J∂ZXXβ(n+ 1,m)K = ∂M JXβ(n+ 1,m)K.

In order to prove the induction we will proceed in three steps. Firstly we apply the
product rule to the matrix ∂M JXβ(n+ 1,m)K:

∂M JXβ(n+ 1,m)K = ∂M JXβ(1, 0)K ⊗ JXβ(n,m)K + JXβ(1, 0)K ⊗ ∂M JXβ(n,m)K
= J∂ZX [Xβ(1, 0)]⊗Xβ(n,m)K + JXβ(1, 0)⊗ ∂ZX [Xβ(n,m)]K (5.42)

where the second equality follows from the inductive assumption.
Secondly, we show the last sum in the equation (5.42) can be represented diagrammatically

with a controlled state, i.e. the following claim holds:

Claim 5.12. We can find a controlled state X̃ : 1 → n + 1 + m and a constant scalar
c ∈ ZXπ

2
such that

u

wwww
v

π

X̃
. . .

c

}

����
~

= J∂ZX [Xβ(1, 0)]⊗Xβ(n,m)K + JXβ(1, 0)⊗ ∂ZX [Xβ(n,m)]K (5.43)

Finally, we will show that we can transform the diagram ∂ZXXβ(n+1,m) to

u

wwww
v

π

X̃
. . .

c

}

����
~

with a sequence of graphical rewrites:

Claim 5.13.

∂ZXXβ(n+ 1,m) =

π

X̃
. . .

c (5.44)

As the rewrite rules preserve the semantics, it follows from the claims above that:

J∂ZXXβ(n+ 1,m)K =
5.13

u

wwww
v

π

X̃
. . .

c

}

����
~

=
5.12

J∂ZX [Xβ(1, 0)]⊗Xβ(n,m)K + JXβ(1, 0)⊗ ∂ZX [Xβ(n,m)]K

=
5.42

∂M JXβ(n+ 1,m)K (5.45)
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Proofs. While proving the claims 5.12 and 5.13 we will repeatedly use the following lemmas:

Lemma 5.14.

π. . .

π

π

=

π. . . π

Proof. The right hand side transformation:

π. . .

π

π

=
(S1)
2.19

π. . .

π

π

=
2.6

. . .

π π

=
2.12

π

. . .

π π =
2.22

π

. . .

π π =
2.18
(S1)

π

. . .

π

=
2.14
2.22

π

. . .

π =
2.12

π. . . π

(5.46)

Lemma 5.15. Diagrams:

C±β =

π

±β
, C

(n,m)
β =

⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m

π π (5.47)

are controlled states such that

JC±βK |1⟩ =
s

±β
{
,

r
C

(n,m)
β

z
|1⟩ =

t
π

−π
2

⊗(n+m−1)

∂ZX[X(n,m)]

|

(5.48)

Proof. For the diagram Cπβ the claim follows directly from the definition. For the diagram
C

(n,m)
β we check two cases:
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C
(n,m)
β

. . .

:
⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m

π π

⊗2

=
(B1)
2.10

⊗n+m

π π . . . π π

β β

π π π π

−β −β

n m

π

⊗2

=
(B1) ⊗n+m

π π . . . π π π π π π

n m

π

⊗(2 + n+m)

=
2.21

⊗n+m
π

⊗(2 + 2n+ 2m)

. . . =
2.4

. . .

π

C
(n,m)
β

. . .

:
⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m
π

π π

⊗2

=
(B1)
2.8

⊗n+m

π π π . . . π π

β β

π π π π

−β −β

n m

π

⊗2 + n+m

claim 5.12. We introduce the diagram:

X̃ = C
(1,0)
β

C+β

. . .
C+β C−β. . . C

(n,m)
β (5.49)
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where C±β and C(n,m)
β are defined in the previous lemma (5.15). From these definitions and

the lemma (4.3) follows that

r
X̃

z
|1⟩ =

r
C

(1,0)
β

z
|1⟩ ⊗ JC+βK |1⟩ ⊗ · · · ⊗ JC−βK |1⟩+ JC+βK |1⟩ ⊗

r
C

(n,m)
β

z
|1⟩

=

t
π

−π
2

⊗(n+m)
|

(J∂ZX [Xβ(1, 0)]⊗Xβ(n,m)K + JXβ(1, 0)⊗ ∂ZX [Xβ(n,m)]K)

(5.50)

Therefore the claim holds for the controlled state (5.49) and the scalar c = π
π
2

⊗(n+m− 2)

claim 5.13. Firstly, we simplify the expression X̃ ◦
π

:

=

⊗n+m

π π π . . . π

β

π π

−β

n m

ππ

β

π

π

β

π

−β
. . .

. . .

. . .
π π π

β

π

=
2.6

⊗n+m

π π π . . . π

β

π π

−β

n m

β

π

β

π

−β
. . .

. . .

. . .
π π π

β

π

=
⊗n+m β −β

β

. . .

π π π . . . π π π

n m

β −β

. . .

π π

ππ

π

β

=
2.11
2.6

π π . . . π π π

n m

. . .

π

β

π

−β
. . .

π

β −β⊗n+m β

ππ

π

β

=
2.24

⊗n+m

π π . . . π π π

n m

. . .ππ

π π π

. . .

π

β −ββ

= 1

(5.51)
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We apply the lemma 5.14 to parts in the red frame and obtain:

1 =
⊗n+m

π π . . . π π π

n m

. . .ππ

. . .

π

β −ββ

=
2.11

⊗n+m

π π . . . π π π

n m

. . .πππ

. . .β −ββ (5.52)

The claim holds for the scalar c =
π
π
2

⊗(n+m− 2)

5.3. Simplified formula for paired spiders. Variational quantum algorithms use gradients
in the search for optimal parameter values. The objective minimized by these algorithms can
be expressed as ⟨ψ(β)|H|ψ(β)⟩ where the diagram for ⟨ψ(β)| = (|ψ(β)⟩)† is obtained out of
the diagram for |ψ(β)⟩ by flipping upside down followed by the change of signs in spiders.

Therefore, parameters in the diagram for ⟨ψ(β)|H|ψ(β)⟩ appear in pairs
−β β .

We suggest a more compact formula for diagrams in what we call pair-factored form:

D2 ◦ (D1 ⊗ Y (n)). In this expression Yβ(n) =

(
−β β

)
. . .

(
−β β

)
︸ ︷︷ ︸

n

.

Lemma 5.16. The diagram:

∂P (Yβ(n)) =

⊗3

⊗2n− 1

π π π π π π. . .

−β β −β β

π
π
2 (5.53)

satisfies J∂P (Yβ(n))K = ∂M JYβ(n)K.

The lemma (5.16) can be proven by applying the same approach as in the proof of the
formula (5.11) for individual spiders. We leave the exact proof to the reader.

It is possible to extend 5.16 to find the derivative for Xβ(n,m) when n ̸= m. Indeed,
it is always possible to transform a diagram into an equivalent diagram that has the same

number of occurrences of β and −β, using the fact that
±β

= . For instance, if n > m:

∂P (Xβ(n,m)) = σ ◦

 ∂P (Yβ(n))
. . . . . .

n−m 2m

⊗n−m

 where σ is some wire permutation and

∂P (Yβ(n))
. . . . . .

n−m 2m

⊗n−m

=
(B1)
2.4

⊗3

⊗2m− 1

ππ π π π. . .

β −β β

π
π
2

n−m 2m

ππ

β

ππ . . .

(5.54)
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Example 5.17. We apply 5.16 to the same diagram as in 5.7:

∂P

(
−β β

π

)
=

⊗3
π π π

−β β

π

π
π
2 =

⊗3
π

π−β β

π

π
π
2 = π−2β

π

β

π
π
2

⊗2

(5.55)

We observe that using the formula for the pair-factored form (5.53) we obtain a much
more compact result than with the inductive procedure (see the example 5.7). Even if both
approaches lead to diagrams with the same semantics, in practice the diagrams obtained with
the formulas (5.53) and (5.38) are less verbose. For this reason they are easier to manipulate.

5.4. Discussion. Contrary to derivatives defined in [TYd21] and [ZG21] in our approaches
a derivative of a ZX-diagram is another ZX-diagram.

In the inductive approach we proceed by integration of the product rules using controlizers.
We also observe that as the derivative of a constant diagram is trivial, it is beneficial to
"factor-out" the part that depends on the parameter. We adopted this approach in formulas
for diagrams in β-factored form and pair-factored forms. To derive the formulas, we got the
intuition in the desired semantics of the diagrams. Thenceforth, our formulas were rigorously
proven by induction.

A result similar to our simplified formula for β-factored forms was independently derived
in [WY22]. The major difference between our formula and the method shown in [WY22]
is the considered language. Indeed, in our work we operate ZX-diagrams while Wang and
Yeung consider diagrams from the more expressive algebraic ZX-calculus.

The difficulty to represent derivatives for non-linear diagrams follows from the fact
that there is no simple way to represent real numbers in the vanilla ZX-calculus. In the
algebraic ZX-calculus this restriction is removed. As a consequence, when an algebraic
ZX-diagram is parameterized by an arbitrary derivable function f(x), the differentiated
algebraic ZX-diagram is parametrized by f ′(x).

6. Diagrammatic representation of Ising Hamiltonians

The addition of diagrams naturally appears in the representation of Hamiltonians. Usually,
Hamiltonians are given as a weighted sum of Pauli tensors (see [Ves22] for an introduction
to Hamiltonians):

H =
∑
k

αkσ
0
k ⊗ · · · ⊗ σnk , αk ∈ R, σqk = I or X or Y or Z (6.1)

Pauli tensors have a particularly simple decomposition on elementary matrices. There-
fore, the procedure described in [YWS] is well-suited for the construction of diagrammatic
representation for such Hamiltonians.

In addition, the work [YWS] also suggests a way to exponentiate diagrams representing
Hamiltonians. The exponentiate of a Hamiltonian H is a unitary eiθH . The exponentiation
is done with the aid of the Cayley-Hamilton theorem. The Cayley-Hamilton theorem
allows to decompose the exponent eiθH on a linear combination of Hk = H × · · · ×H︸ ︷︷ ︸

k

for

k ∈ [1, . . . , 2n].
We remark that in a particular case when H =

∑
iHi is a sum of commuting terms it is

usually straightforward to obtain eiθH as a product of individual eiθHi . However, if some
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local terms in H don’t commute the product decomposition doesn’t apply. For instance, this
is the case for modified mixer Hamiltonians used in the extension of QAOA to constrained
optimization problems [HWO+19].

In this section, we will also consider an inverse problem. Using Stone’s theorem, we
demonstrate how to obtain a diagram for H given the derivative of the diagram for eiθH .

The Stone theorem relating the derivative of a unitary group eiγH to its generator H
was used before in [TYd21]. However, in [TYd21] the derivatives were defined as formal
sums of diagrams. As a consequence, the work [TYd21] didn’t suggest a single diagram
representation for a Hamiltonian but rather a representation as a sum of diagrams.

We remark that for an Ising Hamiltonian H the diagram DU (β) of the linear map
U(β) = eiβH is easy to find. For Hamiltonians with integer coefficients the matrix U(β) =
eiβH belongs to M(β). It satisfies the definition of a strongly continuous one-parameter
unitary group:

Definition 6.1 (Unitary group [TYd21]). A one-parameter unitary group is a unitary matrix
U : n → n in M(β) with U(0) = idn and U(β)U(β′) = U(β + β′) for all β, β′ ∈ R. It is
strongly continuous when limβ→β0 U(β) = U(β0) for all β0 ∈ R.

Theorem 6.2 (Stone ([Sto32])). There is a one-to-one correspondence between strongly
continuous one-parameter unitary groups U : n → n in M(β) and self-adjoint matrices
H : n→ n in M. The bijection is given explicitly by U(β) = eiβH and H = −i(∂MU)(0).

We use the bijection from Stone’s theorem to find the diagram h ∈ ZXR such that
JhK = H. Using the property U(0) = idn we obtain:

H = −i[∂MU(β)](0) = −i⊗ J[∂ZXDU ] (β)K (0) = −i⊗ J[∂ZXDU ] (0)K

=

t
π

−π
2

[∂ZXDU ] (0)

|

= JhK (6.2)

where the third equality is due to the fact that the evaluation commutes with the standard
interpretation.

We give an example of a diagram for an Ising Hamiltonian obtained via our approach.

Example 6.3. Let H : 2 → 2 be the Hamiltonian given by H = Z1 − Z2 + Z1Z2. The
diagram DU (β) for U(β) = eiβH is:

DU (β) =
β

−β
−2β

β

π
=

β −β−ββ

π

−β

(6.3)

Using the formula (5.38) we find the derivative of DU(β):

∂ZXDU(β) =

π π π π π

β −β

π π

−β
π

π
2

⊗3

⊗2

π

π π

−β

ππ π

β (6.4)

h =
π

−π
2

[
∂ZXDU(β)

]
β→0

=

π π π π π π ππ ππ

(6.5)
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It is of course possible to obtain a diagram for H using the addition procedure we
obtained earlier, rather than going through computing its exponential and then differentiating.
However, in the case when H is Ising, the exponential of H is typically easier to obtain than
H itself.

7. Discussions

In this work, we have introduced an inductive definition for addition of ZX-diagrams, that
we have then used to introduce an inductive definition of the differentiation of ZX-diagrams.
Addition and differentiation are essential tools for the development and the study of quantum
algorithms, but, as a matter of fact, both of them are leading to large diagrams, even when
the initial diagrams are fairly simple.

In sections 5.2 and 5.3, we have shown that instead of simplifying the resulting diagrams
a posteriori, one can a priori put the initial diagrams in an appropriate form. While this
approach is not inductive anymore, it seems to ease the differentiation of diagrams in practice.
As an application we have shown that our result allows the construction of diagrams for Ising
Hamiltonians and for derivatives of parametrized circuits. Therefore, it becomes possible
to study variational algorithms entirely within the ZX-calculus. In particular, we can use
rewrite rules to simplify such expressions as ⟨ψ(β̂)|Hf |ψ(β̂)⟩ and ∂⟨ψ(β̂)|Hf |ψ(β̂)⟩

∂β . We believe
that it will lead to a better understanding of the potential of variational algorithms and of
their applications to real-world problems.
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