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SUPERSOLVABLE POSETS AND FIBER-TYPE ABELIAN ARRANGEMENTS

CHRISTIN BIBBY AND EMANUELE DELUCCHI

ABSTRACT. We present a combinatorial analysis of fiber bundles of generalized configuration spaces on

connected abelian Lie groups. These bundles are akin to those of Fadell–Neuwirth for configuration spaces,

and their existence is detected by a combinatorial property of an associated finite partially ordered set. This is

consistent with Terao’s fibration theorem connecting bundles of hyperplane arrangements to Stanley’s lattice

supersolvability. We obtain a combinatorially determined class of K(π, 1) toric and elliptic arrangements.

Under a stronger combinatorial condition, we prove a factorization of the Poincaré polynomial when the Lie

group is noncompact. In the case of toric arrangements, this provides an analogue of Falk–Randell’s formula

relating the Poincaré polynomial to the lower central series of the fundamental group.

1. INTRODUCTION

The fiber bundles studied by Fadell and Neuwirth [FN62] provide a fundamental tool in the study of

configuration spaces on manifolds. In the case of configurations of points in the plane C, these bundles

can be generalized to complements of certain arrangements of hyperplanes in a complex vector space

known as “fiber-type” [FR85]. Such arrangement complements are K(π, 1)s and exhibit a noteworthy

relationship between the Poincaré polynomial and the lower central series of the fundamental group,

first observed in the case of configuration spaces by Kohno [Koh85] and proved in general by Falk and

Randell [FR85]. Terao [Ter86] showed that a linear hyperplane arrangement is fiber-type if and only

if the poset of intersections satisfies a purely combinatorial condition, which was defined by Stanley

[Sta72] and motivated by the structure of the lattice of subgroups in a supersolvable group.

Much less is known for generalized configuration spaces on manifolds other than Euclidean space. An

abelian arrangement is a finite set of subgroup cosets in a connected abelian Lie group (Definition 3.1.1).

The complement of the union of all elements of the arrangement inside the ambient Lie group is the

manifold of interest here. An arrangement is called fiber-type if either it consists of single points, or if its

complement fibers over the complement of a lower-dimensional fiber-type arrangement. The resulting

tower of fibrations generalizes the one associated to configuration spaces.

The combinatorial data of an arrangement is the poset of layers, i.e., the set of all connected compo-

nents of intersections of elements of the arrangement, partially ordered by inclusion. The significance

of this poset was first recognized by Zaslavsky [Zas77]. In this context we are able to define a notion of

supersolvability (Definition 2.5.1) based on a suitable extension of the concept of modularity in lattices

(Definition 2.4.1). A key difference here is that, for some topological consequences, we need a stronger

condition which we call strict supersolvability (Definition 5.1.4).

Theorem A (Fibration Theorem, Theorem 3.4.3 and Theorem 5.3.1). An essential abelian arrangement

is fiber-type if and only if its poset of layers is supersolvable. If the poset of layers is strictly supersolvable

then the arrangement bundles can be pulled back from Fadell–Neuwirth’s bundles of configuration spaces.
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The latter part of Theorem A was first observed by Cohen [Coh01] in the case of hyperplane ar-

rangements. This allows one to pull back properties of the bundle, such as a description of monodromy

or a section of the configuration space bundle (the latter exists for all connected abelian Lie groups,

see Corollary 5.3.3). We leave open these questions when an arrangement is not strictly supersolvable

(Question 5.3.8).

As a motivating example for Theorem A we consider Dowling posets as defined by the first author

and Gadish in [BG21]. These arise in the study of orbit configuration spaces – an equivariant analogue

to ordinary configuration spaces – and generalize the lattices of Dowling [Dow73]. Xicoténcatl [XM97]

established an equivariant analogue of Fadell–Neuwirth’s bundles for orbit configuration spaces, corre-

sponding to the fact that Dowling posets are supersolvable (Proposition 2.6.1).

Since the work of Brieskorn and Deligne [Bri73, Del72], a long standing problem in arrangement

theory is to classify which arrangement complements are K(π, 1). As a corollary to Theorem A, we

obtain a combinatorially determined class of K(π, 1) toric and elliptic arrangements (i.e., when the Lie

group is C× or (S1)2). Using the aforementioned bundle section for strictly supersolvable arrangements,

this also yields a description of the fundamental group.

Corollary B (Corollary 3.4.4 and Corollary 5.3.4). If the poset of layers of a linear, toric, or elliptic

arrangement is supersolvable, then the arrangement complement is a K(π, 1) space. If the poset is strictly

supersolvable, then the fundamental group is an iterated semidirect product of free groups.

On the purely combinatorial side, we give an abstract definition of a geometric poset (Definition 4.1.1)

that seems to provide the right level of generality for a study of posets of layers of arrangements, and

that reduces to the well-known notion in the case of (semi)lattices, see [WW86]. Geometric posets

support an equivalent definition of supersolvability (Theorem 4.1.4) which, for posets of layers of affine

hyperplane arrangements, agrees with the definition given by Falk and Terao [FT97]. We prove that

a geometric semilattice is supersolvable if and only if its canonical extension to a geometric lattice is

supersolvable (Theorem 4.2.4). The topological consequence of this is an affine analogue of Terao’s

fibration theorem (Theorem 4.3.3).

Stanley [Sta72] proved that the characteristic polynomial of a supersolvable lattice has positive inte-

ger roots, and we observe the same phenomenon for strictly supersolvable posets. Through a formula of

Orlik and Solomon [OS80] for complex hyperplane arrangements and Liu, Tran, and Yoshinaga [LTY21]

for noncompact abelian Lie group arrangements, this yields a factorization of the Poincaré polynomial

for arrangement complements when the poset of layers is strictly supersolvable.

Theorem C (Polynomial Factorization, Theorem 5.2.1 and Corollary 5.2.6). Let P be a strictly supersolv-

able poset. Then there is a partition A1 ⊔ · · · ⊔An of the atoms of P such that the characteristic polynomial

of P factors as

χP(t) =

n
∏

i=1

(t− |Ai|).

If P is the poset of layers for an essential arrangement in Gn where G = (S1)d × Rv with v > 0, then the

Poincaré polynomial of the arrangement complement is

Poin(t) =

n
∏

i=1

(

(1 + t)d + |Ai|t
d+v−1

)

.
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The poset of layers of every abelian Lie group arrangement A is the quotient of a geometric semilat-

tice by the action of a free abelian group (see Example 4.4.4 for a precise statement). We prove that

a geometric semilattice is supersolvable if and only if its quotient by a suitable group action is super-

solvable (Theorem 4.4.12). Topologically, this relates the fiber-type property of an abelian arrangement

complement with that of a covering space (Corollary 4.4.13 and Corollary 4.4.14). Combinatorially,

this shows that our notion of supersolvability is a natural extension of the classical one for matroids to

the context of group actions of semimatroids, see [DD21].

Now consider a noncompact abelian Lie group and an arrangement bundle for which the algebraic

monodromy is trivial. This includes all strictly supersolvable toric arrangements (Remark 5.3.7). In

fact, strict supersolvability is necessary for the monodromy to be trivial, and we obtain a tensor decom-

position of the cohomology algebra for such arrangements (Theorem 5.3.6) which can in principle be

expressed combinatorially. Finally, for toric arrangements, a combination of our results about Poincaré

polynomial factorization, existence of a section, and trivial monodromy yields a formula akin to Falk

and Randell’s [FR85] lower central series formula.

Theorem D (Lower Central Series Formula for Toric Arrangements, Thm. 5.3.10). Let A be a strictly

supersolvable toric arrangement and let A1 ⊔ · · · ⊔ An be the induced partition of the atoms in its poset

of layers. For j ≥ 1, let ϕj be the rank of the jth successive quotient in the lower central series of the

fundamental group of the complement of A. Then

∞
∏

j=1

(1− tj)ϕj =

n
∏

i=1

(1− (|Ai|+ 1)t).
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2. SUPERSOLVABLE LOCALLY GEOMETRIC POSETS

We recall basic ideas about posets and supersolvable geometric lattices. We then introduce the

definitions of M-ideal (Definition 2.4.1) and supersolvability (Definition 2.5.1), extending the notions

of modular elements in and supersolvability of geometric lattices to our setting of locally geometric

posets. We conclude this section with a motivating example: Dowling posets (Proposition 2.6.1).
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2.1. Generalities about posets. Let P be a partially ordered set (or “poset”) with partial order relation

<. For x, y ∈ P write x ≤ y when either x < y or x = y, and x ⋖ y when x < y and x ≤ z < y implies

x = z. Given any x ∈ P let P<x := {y ∈ P : y < x}, partially ordered by the restriction of <. The

posets P≤x, P>x and P≥x are defined analogously. The interval between two elements x, y ∈ P is the

set [x, y] := P≥x ∩ P≤y.

Let P,Q be posets. A poset morphism f : P → Q is an order-preserving map (i.e., we require that

x ≤ y implies f(x) ≤ f(y) for all x, y ∈ P). We call f a poset isomorphism if f is bijective and its inverse

is a poset morphism. An automorphism of a poset P is any isomorphism P → P.

A chain in P is any C ⊆ P such that either c1 ≤ c2 or c1 ≥ c2 for all c1, c2 ∈ C. The length of a chain

C is |C| − 1. The poset P is chain-finite if all chains in P have finite length. An antichain in P is any

subset whose elements are pairwise incomparable.

Call P bounded below if it contains a unique minimum element, which we denote by 0̂. In this case,

the rank rk(x) of an element x ∈ P is the maximum length of any chain in P≤x. The set of atoms of a

bounded-below poset P is

A(P) := {x ∈ P : rk(x) = 1}.

If any two maximal chains in the same interval of P have equal length, P is said to be graded. Equiv-

alently, the assignment x 7→ rk(x) defines a function rk : P 7→ Z≥0 such that rk(0̂) = 0 and rk(y) =

rk(x) + 1 whenever x ⋖ y. If such a function exists, it is unique, and it is called the rank function of P.

If any two maximal elements in P have the same rank, then P is called pure.

For any two elements x, y ∈ P, we define x∨ y to be the set of minimal upper bounds and x∧ y to be

the set of maximal lower bounds. That is:

x ∨ y := min{z ∈ P : z ≥ x and z ≥ y},

x ∧ y := max{z ∈ P : z ≤ x and z ≤ y}.

More generally, denote by
∧

T and
∨

T the sets of minimal upper bounds and maximal lower bounds

of a set T ⊆ P.

A complement of an element x in a chain-finite poset P is any z ∈ P such that x ∨ z ⊆ maxP and

x ∧ z ⊆ minP. Given a subset X ⊆ P we say that z ∈ P is a complement to X if z is a complement of

every x ∈ X . (Notice that this definition generalizes the usual one for lattices.)

2.2. Locally geometric posets. Recall that a lattice is a poset L in which any pair of elements x, y ∈ L

has a unique minimum upper bound (|x∨ y| = 1) and a unique maximum lower bound (|x∧ y| = 1). In

this case we abuse notation and write, e.g., a = x∨y for a ∈ x∨y. A meet-semilattice is a poset in which

any pair of elements has a unique maximum lower bound. Note that any chain-finite meet-semilattice

(hence also any chain-finite lattice) is bounded below.

Definition 2.2.1. A chain-finite lattice L is called geometric if and only if, for all x, y ∈ L:

x⋖ y if and only if there is an atom a ∈ A(L) with a 6≤ x, y = x ∨ a.

A geometric lattice L is necessarily ranked and furthermore it is upper semimodular, meaning that

for any x, y ∈ L:

rk(x) + rk(y) ≥ rk(x ∨ y) + rk(x ∧ y).

Definition 2.2.2. A graded, bounded below poset P is locally geometric if, for every x ∈ P, the

subposet P≤x is a geometric lattice.
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Remark 2.2.3. We do not require P itself to even be a (semi)lattice. If P is a lattice, then it is locally

geometric if and only if it is geometric.

Example 2.2.4. A classical example of a geometric lattice is a Boolean lattice Bn, the set of all subsets of

[n] = {1, 2, . . . , n} ordered by inclusion. A simplicial poset, in which every closed interval is isomorphic

to a Boolean lattice, is then a locally geometric poset. The Hasse diagram of one such example is

depicted in Figure 1; observe that this is a locally geometric poset that is not a lattice nor a semilattice.

FIGURE 1. Hasse diagram of a locally geometric poset.

Remark 2.2.5. Let P be a locally geometric poset, and suppose that x, y ∈ P are such that x ∨ y is

nonempty. Then

(1) x and y have a (unique) greatest lower bound x ∧ y, and

(2) for any z ∈ x ∨ y, rk(x) + rk(y) ≥ rk(z) + rk(x ∧ y).

The reason is that both properties must hold in the subposet P≤z whenever z ∈ x ∨ y.

Remark 2.2.6. If P is locally geometric, then so are P≤x and P≥x for any x ∈ P.

2.3. Supersolvable geometric lattices. There are several equivalent definitions for a modular element

in a geometric lattice (see eg. [Bry75, Theorem 3.3]), and the following, due to Stanley [Sta72], is most

useful for us. For this we need some more terminology. Let L be a chain-finite lattice. Then L has a

unique minimal element 0̂ as well as a unique maximal element, which we denote by 1̂. Let x ∈ L. The

complements of x in L are the elements y ∈ L such that x ∧ y = 0̂ and x ∨ y = 1̂.

Definition 2.3.1. An element x in a geometric lattice L is modular if the complements of x form an

antichain.

Remark 2.3.2. The following are equivalent for an element x of a geometric lattice L:

(1) x is modular in L;

(2) rk(x) + rk(y) = rk(x ∨ y) + rk(x ∧ y) for all y ∈ L;

(3) (u ∨ y) ∧ x = u ∨ (y ∧ x) for all u ≤ x and all y ∈ L.

All equivalences are well-known in the finite case. The proof of (1)⇔(2) given in [Sta72, Theorem 1]

for the finite case carries over to the chain-finite setting using [Aig97, Theorem 2.29 and 6.4.(iii)]. The

equivalence (1)⇔(3) is proved in the chain-finite setting in [CR70, Proposition 2.8].

Example 2.3.3. Let L = Π4 be the set of partitions of {1, 2, 3, 4} partially ordered by refinement, whose

Hasse diagram is depicted in Figure 2. The partition 123|4 is modular because its set of complements

{14|2|3, 24|1|3, 34|1|2} is an antichain.

The partition 12|34 is not modular because both 13|24 and 13|2|4 are complements of 12|34 while

13|2|4 < 13|24. One can alternatively see that 12|34 is not modular from the inequality rk(12|34) +

rk(13|24) = 4 > 3 = rk(1234) + rk(1|2|3|4).
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1|2|3|4

12|3|4 13|2|4 14|2|3 23|1|4 24|1|3 34|1|2

123|4 124|3 12|34 14|23 13|24 134|2 234|1

1234

FIGURE 2. The lattice Π4 of partitions of {1, 2, 3, 4}.

The following definition extends to the chain-finite case Stanley’s criterion for when a finite geometric

lattice is supersolvable [Sta72, Corollary 2.3]. We will later further extend it to locally geometric posets.

Definition 2.3.4. A geometric lattice L is supersolvable if there is a chain 0̂ = y0 < y1 < · · · < yn = 1̂

where each yi is a modular element with rk(yi) = i.

Example 2.3.5. In a Boolean lattice, the least upper bound of two subsets is their union while the

greatest lower bound is their intersection. It is easy to see that every element is a modular element,

which implies that a Boolean lattice is supersolvable.

Example 2.3.6. The partition lattice Πn is the collection of set partitions of [n] = {1, 2, . . . , n} ordered

by refinement. The modular elements of Πn correspond to partitions with at most one nonsingleton

block, and one can build a chain of these elements to see that Πn is supersolvable.

2.4. M-ideals. Let P be a locally geometric poset. An order ideal in P is a downward-closed subset. An

order ideal is pure if all maximal elements have the same rank. An order ideal Q is join-closed if T ⊆ Q

implies
∨

T ⊆ Q.

Here we introduce M-ideals to generalize the notion of modular elements beyond lattices. Our

perspective is to rather generalize the order ideal generated by a modular element and how this ideal

interacts with the entire poset. In the lattice case this ideal is principal and is therefore determined by

its unique maximal element; in general this will not be the case. The motivation for our definition is

geometric (see Theorem 3.3.1).

Definition 2.4.1. An M-ideal of a locally geometric poset P is a pure, join-closed order ideal Q ⊆ P

such that:

(1) if y ∈ Q and a ∈ A(P) such that a ∨ y = ∅ then a ∈ Q, and

(2) for every x ∈ max(P), there is some y ∈ max(Q) such that y is a modular element in the

geometric lattice P≤x.

Remark 2.4.2. Let Q ⊆ P be an M-ideal, and let x ∈ max(P). Since Q is join-closed, the y ∈ max(Q)

which is modular in P≤x, guaranteed by Definition 2.4.1.(2), is necessarily unique.

Example 2.4.3. In every locally geometric poset P, both P and {0̂} are M-ideals.
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Example 2.4.4. Consider the poset P in Figure 3. Both P≤1 and P≤3 are M-ideals in P. On the other

hand, P≤2 is not an M-ideal, since max(P≤2) = {2}, max(P) = {a, b}, and 2 /∈ P≤b.

0̂

1 2 3

a b

FIGURE 3. In the poset P depicted here, the ideals P≤1 and P≤3 are M-ideals, while

P≤2 is not (see Example 2.4.4).

The following lemma shows that our definition of an M-ideal extends the definition of a modular

element in a geometric lattice.

Lemma 2.4.5. An order ideal Q in a geometric lattice L is an M-ideal if and only if Q = L≤y for some

modular element y.

Proof. Let L be a geometric lattice. Since joins are always nonempty in a lattice, an order ideal Q is

join-closed if and only if Q = L≤y for some y. Any such ideal is pure and satisfies condition Defi-

nition 2.4.1.(1). Since there is a unique maximum in the lattice L, condition Definition 2.4.1.(2) is

equivalent to requiring that y be modular in L. �

We conclude this subsection with several properties of M-ideals to be used later in this paper.

Lemma 2.4.6. Let Q be an M-ideal in a locally geometric poset P with rk(Q) = rk(P) − 1, and let a ∈ P.

Then a ∈ A(P) \A(Q) if and only if a ∧ y = 0̂ for all y ∈ max(Q).

Proof. First, suppose that a ∈ A(P) \ A(Q), and let y ∈ max(Q). If a ∧ y 6= 0̂, then a ∧ y = a since

a ∈ A(P). However, this implies a ≤ y, and thus a ∈ Q because Q is an order ideal. This is a

contradiction; therefore a ∧ y = 0̂.

Now suppose that a ∧ y = 0̂ for all y ∈ max(Q). This means, in particular, that a 6≤ y for any

y ∈ max(Q). Thus a /∈ Q, and we need to show that a ∈ A(P). Now let x ∈ max(P) be such that a ≤ x.

By Definition 2.4.1.(2), there is some y ∈ max(Q) such that y ≤ x and y is modular in P≤x. Since a 6≤ y

and rk(y) = rk(x) − 1, we must have a ∧ y = 0̂ and a ∨ y = x in P≤x. By modularity of y in P≤x, this

implies rk(a) = rk(x) + rk(0̂)− rk(y) = 1. Thus, a ∈ A(P). �

Proposition 2.4.7. If Q is an M-ideal of a locally geometric poset P with rk(Q) = rk(P) − 1, then for any

x ∈ P \ Q, there is some y ∈ Q such that x covers y and y is modular in P≤x.

Proof. Let x̂ ∈ max(P) be such that x̂ ≥ x. Let ŷ ∈ max(Q) be such that x̂ covers ŷ, guaranteed

by Definition 2.4.1.(2). We have x̂ ∈ ŷ ∨ x, because x /∈ Q implies x 6≤ ŷ. Let y := ŷ ∧ x. Via

Remark 2.3.2.(2), modularity of ŷ in P≤x̂ implies rk(ŷ) + rk(x) = rk(y) + rk(x̂) and since rk(x̂) −

rk(ŷ) = 1, this shows that x ⋗ y. In order to show that y is modular in P≤x, we check the condition in
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Remark 2.3.2.(3). Let u ≤ y and let z ∈ P≤x. Then in the lattice P≤x

u ∨ (z ∧ y) = u ∨ (z ∧ (x ∧ ŷ)) = u ∨ (z ∧ ŷ)

= (u ∨ z) ∧ ŷ

= (u ∨ z) ∧ (x ∧ ŷ) = (u ∨ z) ∧ y,

where the middle equality holds by modularity of ŷ in P≤x̂ (note that u ≤ ŷ), the second and fourth

equalities hold because z ≤ x and u∨ z ≤ x, while the first and last equalities are by definition of y. �

Corollary 2.4.8. Let Q be an M-ideal of a locally geometric poset P with rk(Q) = rk(P)− 1. Then

(†) for any two distinct a1, a2 ∈ A(P) \A(Q) and every x ∈ a1 ∨ a2 there is a3 ∈ A(Q) with x > a3.

Proof. Note that x ∈ P \ Q (otherwise the fact that Q is downward-closed would imply a1, a2 ∈ Q) and

rk(x) = 2 by Remark 2.2.5.(2). An application of Proposition 2.4.7 to x gives some y ⋖ x, y ∈ Q. Since

rk(x) = 2 and rk is a rank function, rk(y) = 1 and so a3 := y satisfies the claim. �

Corollary 2.4.9. Let L be a geometric lattice, let y ∈ L with y 6= 1̂ and let Q := L≤y. Then y is a modular

element of L of rank rk(y) = rk(L)− 1 if and only if (†) above holds for Q.

Proof. By Lemma 2.4.5, y being modular of rank rk(L) − 1 is equivalent to Q being an M-ideal of rank

rk(L)− 1 and then Corollary 2.4.8 implies that (†) holds. On the other hand, assume (†). We prove that

the complements of y in L all have rank one, implying both that y is modular and that rk(y) = rk(L)−1.

Let z be a complement to y in L. Then z > 0̂. If rk(z) > 1, there is some z′ ≤ z with rk(z′) = 2, and

every atom below z′ is in L \ Q (otherwise z ∧ y > 0̂), contradicting (†). Thus rk(z) = 1 as was to be

shown. �

2.5. Supersolvability. We are now prepared to present our definition of a supersolvable locally geo-

metric poset, which extends the definition of a supersolvable geometric lattice (cf. Definition 2.3.4).

Definition 2.5.1. A locally geometric poset P is supersolvable if there is a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P

where each Qi is an M-ideal of Qi+1 with rk(Qi) = i.

Example 2.5.2. Recall the poset P from Example 2.4.4 (see also Figure 3). It is supersolvable via the

chain 0̂ ⊂ P≤1 ⊂ P.

Proposition 2.5.3. If L is a geometric lattice, then L satisfies Definition 2.5.1 if and only if it satisfies

Definition 2.3.4.

Proof. Via Lemma 2.4.5, a geometric lattice L satisfies Definition 2.5.1 if and only if there is a chain

0̂ ⊂ Q≤y1
⊂ · · · ⊂ Q≤yn

= L

with each yi a modular element of rank i. In particular, this is equivalent to the existence of a maximal

chain of modular elements 0̂ < y1 < · · · < yn = 1̂ as required by Definition 2.3.4. �

Remark 2.5.4. If a locally geometric poset is supersolvable, then every closed interval P≤x is a su-

persolvable geometric lattice. However, this “local” supersolvability is not enough for P itself to be

supersolvable, as demonstrated in the following example.
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Example 2.5.5. Consider the poset P whose Hasse diagram is depicted in Figure 4, which is the Boolean

algebra on three generators with the maximum element removed. Every closed interval in P is super-

solvable (since every Boolean lattice is), however it is not itself supersolvable. Indeed, the only proper

order ideals which are pure and join-closed are principal, that is, P≤x for some rank-one element x.

However, such an order ideal cannot satisfy Definition 2.4.1.(2) since no single element is covered by

all maximal elements.

This particular poset describes the intersection data of an affine hyperplane arrangement, explic-

itly the de-cone of an arrangement A of four generic hyperplanes in C3. The arrangement A is not

supersolvable either; this is not a coincidence and will be made explicit in Theorem 4.2.4.

0̂

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

FIGURE 4. This locally geometric poset is “locally” supersolvable but not supersolvable

(see Example 2.5.5).

2.6. Dowling posets. Dowling posets [BG21] form a class of locally geometric posets which motivates

the general definition of supersolvability. These generalize partition lattices and Dowling lattices, which

are known to be supersolvable geometric lattices [Sta72, Dow73]. To define these posets, let us fix a

positive integer n, a finite group G, and a finite G-set S. Denote [n] = {1, 2, . . . , n}.

Given a subset B ⊆ [n], a G-coloring is a function b : B → G. Define an equivalence relation on

G-colorings of B where (b : B → G) ∼ (b′ : B → G) whenever b′ = bg for some g ∈ G. Note that if

B = {k} is a singleton then all G-colorings are equivalent. A partial G-partition of [n] is a collection

β = {(B1, b1), . . . , (Bℓ, bℓ)} where {B1, . . . , Bℓ} is a partition of some subset T ⊆ [n] and each bi is a

chosen equivalence class of G-colorings on Bi. Given such a partial G-partition, denote Zβ = [n]\∪iBi.

Let Dn(G,S) be the set of pairs (β, z) where β is a partial G-partition of [n] and z : Zβ → S. This set

is partially ordered via the covering relations:

• (β ∪ {(A, a), (B, b)}, z) ≺ (β ∪ {(A ∪B, a ∪ bg)}, z) whenever g ∈ G, and

• (β ∪ {(B, b)}, z) ≺ (β, z′) whenever z′ : B ∪ Zβ → S satisfies z′|Zβ
= z and z′|B = f ◦ b for

some G-equivariant function f : G → S.

As shown in [BG21, Theorem A], this is a locally geometric poset whose maximal intervals are products

of partition and Dowling lattices.

Proposition 2.6.1. For any positive integer n, finite group G, and finite G-set S, the Dowling poset

Dn(G,S) is supersolvable.

Proof. We proceed by induction on n. The case n = 1 is immediate, so let n > 1. There is an injective

map of posets Dn−1(G,S) → Dn(G,S) defined by ι(β, z) = (β ∪ {n}, z). The image Q := im(ι) is a
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pure, join-closed order ideal of Dn(G,S), isomorphic to Dn−1(G,S), and so by induction it suffices to

prove that Q satisfies the conditions of Definitions 2.4.1.(1) and 2.4.1.(2).

Using the description of atoms in Dn(G,S) from [BG21, Lemma 2.5.1], we see that the atoms which

are not in Q are of the following form:

• a G-partition of [n] whose only nonzero singleton block is {i, n}, for some i < n, or

• the partition of [n− 1] into singletons along with any function z : {n} → S.

In each case, it is straightforward to check that such an atom has a unique minimal upper bound with

an element of the form (β ∪ {n}, z).

Finally, to see Definition 2.4.1.(2), we consider two cases: either S is empty or nonempty. If S is

nonempty, then the maximal elements of Dn(G,S) are of the form (∅, z), and the interval Dn(G,S)≤(∅,z)

is isomorphic to the product of Dowling lattices Dz−1(Gs)(Gs) where Gs ∈ S/G. In particular, the

element ({n}, z|Z−{n}) is a modular element of this interval and also a maximal element of Q. If S

is empty, then every maximal interval is isomorphic to a partition lattice Πn, of which a corank-one

element with singleton {n} is modular. �

These Dowling posets were defined to describe the intersection data of a collection of submanifolds

whose complement is an orbit configuration space – an equivariant analogue of configuration spaces

first studied by Xicoténcatl [XM97]. The supersolvability of these posets, and Xicoténcatl’s study of fiber

bundles on orbit configurations, hints at a much larger phenomenon that we study in the next section.

3. TOPOLOGICAL FIBRATIONS OF ARRANGEMENTS

In this section, we establish a topological interpretation of an M-ideal, generalizing Terao’s Fibra-

tion Theorem [Ter86] on hyperplane arrangements. First, we fix notation and terminology to be used

throughout.

3.1. Arrangements. Fix a finite-dimensional connected abelian Lie group G, so that G ∼= (S1)d × Rv

for some nonnegative integers d, v. Also fix a finite-rank free abelian group Γ and T = Hom(Γ,G).

Note that the group operation on G induces a group operation on T , which we denote by +. For sets

U, V ⊆ T , let U + V := {t+ s : t ∈ U, s ∈ V } ⊆ T . If U = {t}, we abbreviate t+ V = U + V , which is a

translation of V by t.

Definition 3.1.1. An abelian Lie group arrangement, or an abelian arrangement for short, is a collec-

tion {Hα : α ∈ A} for some finite set A ⊆ Γ, where

Hα := {t ∈ T : t(α) = 0}.

The complement of A is denoted by

M(A) := T \
⋃

α∈A

Hα.

Linear, toric, and elliptic arrangements are abelian Lie group arrangements with G = C, C× or a

complex elliptic curve, respectively (here G ∼= (S1)d × Rv for (d, v) = (0, 2), (1, 1), and (2, 0)).

We will often refer to an arrangement {Hα : α ∈ A} simply by A when there is no confusion.

Definition 3.1.2. A layer of an arrangement A is a nonempty connected component of an intersection
⋂

α∈S Hα where S ⊆ A. The set P(A) of layers, partially ordered by reverse inclusion, is called the

poset of layers.
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Example 3.1.3 (Graphic arrangements and configuration spaces). Every finite simple graph determines

an abelian Lie group arrangement in the following way. Let G be a finite simple graph with vertex set

[n] = {1, 2, . . . , n} and edge set E. Let Γ be a free abelian group with basis β1, . . . , βn. Given two

elements 1 ≤ i < j ≤ n, define αi,j = βi − βj ∈ Γ and abbreviate Hi,j := Hαi,j
⊆ Hom(Γ,G). Now

let AG := {Hi,j : {i, j} ∈ E}, the arrangement associated to the graph G. In the case that G = Kn is

the complete graph on n vertices, the complement M(AKn
) is the configuration space of n-tuples of

distinct points in G, denoted by Confn(G). For an arbitrary simple graph, the complement is sometimes

called a partial configuration space, allowing points to collide.

The poset of layers of AKn
is isomorphic to the partition lattice Πn, which we saw in Example 2.3.6

was supersolvable. More generally, the poset of layers for a graphic arrangement AG is supersolvable if

and only if the graph G is chordal [Sta72].

By convention, T is the unique minimum element of P(A), thought of as the empty intersection. The

poset of layers for an abelian arrangement can be realized as the quotient of a geometric semilattice by

a translative group action (see [DD21, Lemma 9.8] and Definition 4.4.1 below) and hence P(A) is a

locally geometric poset. The atoms of P(A) are precisely the connected components of the Hα, where

α ∈ A. Note that if K is the connected component of an intersection X = ∩α∈SHα passing through the

identity of T , then every connected component of X is of the form t+K for some t ∈ T .

Definition-Assumption 3.1.4. We call an arrangement essential if A generates a full subgroup of

Γ. The arrangement is irredundant if, for distinct α and β, Hα and Hβ do not share a connected

component. All arrangements that we will consider will be essential and irredundant.

Example 3.1.5. Let Γ = Z2 and A = {α1 = (1, 0), α2 = (0, 1), α3 = (1, 2)}. Let G = S1 × Rv and

consider an arrangement in T . If v = 0 or v = 1, we may identify T with (S1)2 or (C×)2, respectively.

Figure 5 depicts the arrangement in (S1)2 and the Hasse diagram for its poset of layers in either case.

T

H1 H2 H3

(1, 1) (1,−1)

FIGURE 5. The arrangement A from Example 3.1.5 is depicted on the left, with H1 in

green, H2 in red, and H3 in blue. Its poset of layers P(A) is depicted on the right.

Definition 3.1.6. A subgroup Y of T will be called admissible if there is a direct sum decomposition

Γ = Γ′ ⊕ Γ′′ such that Γ′ has rank 1 and Y is the image of the injection ε∗ : Hom(Γ′,G) → Hom(Γ,G)

induced by the projection ε : Γ → Γ′. Choose a generator Γ′ = 〈β0〉, and define for α ∈ Γ a nonnegative

integer c(α) such that ε(α) = ±c(α)β0.

If Y is admissible, the corresponding projection

p : T → T/Y ∼= Hom(Γ/Γ′,G)
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is a section of the map induced by the quotient

q : Γ → Γ/Γ′.

This allows us to define the sub-arrangement

AY := {α ∈ A : Hα ⊇ Y } = {α ∈ A : c(α) = 0}

Remark 3.1.7. The set of atoms A(AY ) consists of all connected components of the Hα with α ∈ AY .

These are the atoms of A that either contain Y or are disjoint from it. For any α 6∈ AY , every connected

component of Hα will intersect Y nontrivially. In particular, the poset of layers P(AY ) may be viewed

as a subposet of P(A). Moreover, if Y ∈ P(A), then the maximal elements of P(AY ) are cosets of Y .

The set

A/Y := q(AY ) ⊆ Γ/Γ′

defines an arrangement in T/Y . The map p : T → T/Y restricts to a map on arrangement complements

p̄ : M(A) → M(A/Y ) and induces an isomorphism of posets

P(AY ) ∼= P(A/Y ).

Following the terminology of Terao [Ter86], associated to the arrangement A and the projection p

we define the horizontal set by

Hor := {X ∈ P>T : p(X) = T/Y },

the bad set by

Bad :=
⋃

X∈P>T

X/∈Hor

p(X) ∩M(A/Y ),

and for t ∈ T ,

Pt := {X ∈ P>T : (t+ Y ) ∩X 6= ∅}.

Example 3.1.8. Consider the arrangement from Example 3.1.5 (see also Figure 5) with Γ = Z2, A =

{α1 = (1, 0), α2 = (0, 1), α3 = (1, 2)}, and G = S1 × Rv. Abbreviate Hi = Hαi
for i = 1, 2, 3, and let

Y = H1. Then AY = {α1} and the projection M(A) → M(A/Y ) is depicted in Figure 6.

As the picture suggests, this map is a fibration with fiber homeomorphic to T with three points

removed. In this case, the bad set is empty (Bad = ∅) while the horizontal set and Pt (for t ∈ M(A))

are both equal to {H2, H3}.

Example 3.1.9. Consider again the arrangement A from Example 3.1.8, but take Y = H2. The projec-

tion M(A) → M(A/Y ) is depicted in Figure 7, from which it is evident that this map is not a fibration.

Indeed, the fiber over a point t ∈ M(A/Y ) is homeomorphic to T with two punctures, except the one

case that t = −1 and the fiber is homeomorphic to T with a single puncture.

In this example, the bad set is nonempty: Bad = {−1}, the horizontal set is Hor = {H1, H3},

and the set Pt is equal to {H1, H3} for all t ∈ M(A/Y ) except t = −1, for which we have P−1 =

{H1, H3, (1,−1)}.
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⊇

H1

H3

H2

FIGURE 6. The restriction of the projection S1 × S1 → S1 to the complement of the

arrangement A from Example 3.1.8 is a fibration whose fibers are homeomorphic to

the circle S1 with three punctures.

⊇

−1 t 6= −1

FIGURE 7. The restriction of the projection S1 × S1 → S1 (left) is not a fibration, as

indicated by the two non-homeomorphic fibers presented (right). See Example 3.1.9.

3.2. Characterization of fibrations. In this section, we describe conditions on an admissible subgroup

Y which will imply that the map p̄ : M(A) → M(A/Y ) is a fiber bundle (see Proposition 3.2.5).

Lemma 3.2.1. If α ∈ A \AY , then for any t ∈ T the intersection (t+ Y ) ∩Hα is a set of c(α)d points. If

α ∈ AY , then for any t /∈ Hα the intersection (t+ Y ) ∩Hα is empty.

Proof. Since Γ′ is a direct summand of Γ we have a direct sum decomposition Γ = Γ′ ⊕ Γ′′, with

Γ′′ = Γ/Γ′. Recall from Definition 3.1.6 our choice of β0 such that Γ′ = 〈β0〉. Without loss of generality

suppose that for our α ∈ Γ the nonnegative integer c(α) satisfies

α = (c(α)β0) + α′′

with α′′ ∈ Γ′′.

The layer Y ⊆ T consists of all homomorphisms x ∈ T = Hom(Γ,G) with x(Γ′′) = 0. Thus,

Y ∩Hα = {x ∈ T : x(Γ′′) = 0 and c(α)x(β0) = 0}

(the second condition is equivalent to x(α) = 0). This intersection thus equals Y when α ∈ AY (i.e,

when c(α) = 0). Otherwise, it is in bijection with the possible choices for x(β0), namely of the set of all

g ∈ G with c(α)g = 0. This set has c(α)d elements (as finite-order elements of G must lay in the factor

(S1)d).

Now let t ∈ T and consider

(t+ Y ) ∩Hα = {t+ x ∈ T : x(Γ′′) = 0 and (t+ x)(α) = 0}
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The last condition is equivalent to c(α)(t(β0) +G x(β0)) +G t(α′′) = 0 (here +G denotes the group

operation in G). If α ∈ AY then c(α) = 0 and the latter equation can only be satisfied if t(α′′) = 0, i.e.,

if t ∈ Hα. The second part of the claim follows.

If α ∈ A\AY , then c(α) 6= 0 and so there is g ∈ G = (S1)d×Rv such that c(α)(t(β0)+G g) = −t(α′′).

Let x ∈ T be defined by setting x(Γ′′) = {0} and x(β0) = g. Then the assignment Y ∩Hα → (t+Y )∩Hα,

x 7→ (t+ x+ x) is a bijection and shows that (t+ Y ) ∩Hα and Y ∩Hα have the same cardinality. �

Lemma 3.2.2. The horizontal set with respect to the projection p : T → T/Y is

Hor = A(A \AY ).

Proof. Let X ∈ P>T , and let X0 = t +X be a translate of X which is a (proper) subgroup of T . Since

every Hα contains the identity, X0 ∈ P. Then

X ∈ Hor ⇐⇒ p(X) = T/Y ⇐⇒ p(X0) = T/Y ⇐⇒ X0 + Y = T

⇐⇒ X0 6⊇ Y and rk(X0) = 1

⇐⇒ X0 ∈ A(A \AY ) ⇐⇒ X ∈ A(A \AY ),

where the last claim holds because X and X0 are necessarily connected components of the same Hα

(for some α ∈ A \AY ). �

Lemma 3.2.3. For any t ∈ M(A),

Hor ⊆ Pt(1)

⊆ {X ∈ P : p(X) ∩M(A/Y ) 6= ∅}(2)

= {X ∈ P : X ∧ Y ′ = T for all Y ′ ∈ maxP(AY )}(3)

Proof. Combining Lemmas 3.2.1 and 3.2.2, we have Hor = A(A \AY ) ⊆ Pt, establishing (1).

For (2), consider X ∈ Pt and let u ∈ (t + Y ) ∩ X . Then u ∈ X implies p(u) ∈ p(X), and u ∈ t + Y

implies p(u) = p(t) ∈ M(A/Y ). Thus, p(u) ∈ p(X) ∩M(A/Y ).

For (3), first assume that X ∈ P and X ∧ Y ′ 6= T for some Y ′ ∈ maxP(AY ). Then there is some

H ∈ A(P) such that X ⊆ H and Y ′ ⊆ H . Now, X ⊆ H implies p(X) ∩M(A/Y ) ⊆ p(H) ∩M(A/Y ).

Since Y ′ ⊆ H , we must have p(H) ∩M(A/Y ) = ∅. Therefore, p(X) ∩M(A/Y ) = ∅.

Conversely, suppose that p(X)∩M(A/Y ) = ∅. Then there exists H ∈ A(AY ) such that p(X) ⊆ p(H).

But then X ⊆ H and Y ′ ⊆ H for some Y ′ ∈ maxP(AY ), implying that X ∧ Y ′ 6= T . �

The reason the set Bad is named such is that points not in this set have “good” fibers, as we will see

in the following lemma.

Lemma 3.2.4. For any t ∈ M(A), the following statements are equivalent.

(1) p(t) /∈ Bad

(2) Pt = Hor

(3) For any distinct α, β ∈ A \AY , the intersection (t+ Y ) ∩Hα ∩Hβ is empty.

(4) The fiber p̄−1(p(t)) is homeomorphic to G with
∑

α∈A\AY
c(α)d points removed.

Proof.

(1) =⇒ (2): By Lemma 3.2.3, we need only show that Pt ⊆ Hor. Let X ∈ Pt, so that (t+ Y ) ∩X 6= ∅,

and fix u ∈ (t + Y ) ∩X . Then since u ∈ t+ Y , we have p(u) = p(t). However, u ∈ X implies
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p(t) = p(u) ∈ p(X), and t ∈ M(A) implies p(t) ∈ M(A/Y ), so p(t) ∈ p(X) ∩M(A/Y ). Since

p(t) /∈ Bad, this implies X ∈ Hor.

(2) =⇒ (1): Suppose that p(t) ∈ Bad, and let X ∈ P>T \ Hor such that p(t) ∈ p(X) ∩M(A/Y ). Since

p(t) ∈ p(X), we have u ∈ X such that p(t) = p(u), hence u = t + y for some y ∈ Y . Thus,

(t+ Y ) ∩X 6= ∅ and so X ∈ Pt, contradicting Pt = Hor.

(2) =⇒ (3): If (t+Y )∩(Hα∩Hβ) is nonempty, then there is a connected component X of Hα∩Hβ such

that X ∈ Pt. But if Pt = Hor then Lemma 3.2.2 implies that X ∈ A(A\AY ). In particular, X is a

connected component of both Hα and Hβ , contradicting the assumption that A is irredundant.

(3) =⇒ (2): By Lemma 3.2.3, we need only show that Pt ⊆ Hor. Suppose not, and let X ∈ Pt \ Hor.

By Lemma 3.2.2, we have rk(X) > 1, so pick distinct α, β ∈ A such that Hα ∩Hβ ⊇ X . Then

(t + Y ) ∩ X 6= ∅ implies that each of (t + Y ) ∩ Hα, (t + Y ) ∩ Hβ , and (t + Y ) ∩ (Hα ∩ Hα)

is nonempty. The first two of these being nonempty implies α, β ∈ A \ AY via Lemma 3.2.1,

which contradicts assumption (3).

(3) ⇐⇒ (4): We have:

p̄−1(p(t)) = (t+ Y ) ∩M(A)

= (t+ Y ) \
⋃

X∈Pt

((t+ Y ) ∩X)

= (t+ Y ) \
⋃

α∈A\AY

((t+ Y ) ∩Hα)

∼= G \ {k points}, with k =

∣

∣

∣

∣

∣

∣

⋃

α∈A\AY

((t+ Y ) ∩Hα)

∣

∣

∣

∣

∣

∣

where the third equality holds by Lemma 3.2.2 and Lemma 3.2.3(1). Then Lemma 3.2.1 implies

that k =
∑

α∈A\AY
c(α)d if and only if the sets (t + Y ) ∩ Hα are pairwise disjoint, which is

precisely condition (3).

�

When the statements in Lemma 3.2.4 hold for all t ∈ M(A), we obtain a useful description of the

horizontal set Hor and relate it back to M-ideals.

Proposition 3.2.5. The following statements are equivalent.

(1) P(AY ) is an M-ideal of P(A) with rk(P(AY )) = rk(P(A))− 1.

(2) Hor = {X ∈ P : X ∧ Y ′ = T for all Y ′ ∈ maxP(AY )}.

(3) Pt = Hor for any t ∈ M(A).

(4) Pt does not depend on t ∈ M(A).

(5) Bad = ∅.

Proof.

(1) =⇒ (2): This follows by Lemmas 2.4.6 and 3.2.2.

(2) =⇒ (1): It is clear that P(AY ) is a pure, join-closed, order ideal of P := P(A). Definition 2.4.1.(1)

follows from Lemma 3.2.1.

To show that Definition 2.4.1.(2) holds, let X ∈ max(P). Since P(AY ) is join-closed, the

set P(AY ) ∩ P≤X is a sublattice of P≤X and thus has a unique maximum element W . Let

Z ∈ P≤X be a complement of W , so that W ∧ Z = T and W ∨ Z = X in P≤X . Let Y ′ ∈
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maxP(AY ) = maxP(AY ) and U ∈ Y ′ ∧ Z. Then U ∈ P(AY ) ∩ P≤X and hence U ≤ W . But

W ∧ Z = T , so the fact that U ≤ W and U ≤ Z implies U = T . Therefore, Y ′ ∧ Z = T

for any Y ′ ∈ maxP(AY ), which by (2) and Lemma 3.2.2 implies that rk(Z) = 1. Since any

complement Z of W in P≤X has rank one, the complements of W form an antichain. This

means that W is a modular element of P≤X . Moreover, modularity of W in P≤X implies

rk(W ) = rk(X) + rk(T ) − rk(Z) = rk(P) − 1. In particular, W ∈ maxP(AY ) and the rank of

P(AY ) is equal to rk(P)− 1.

(2) =⇒ (3): This follows immediately from Lemma 3.2.3.

(3) =⇒ (4): Immediate.

(4) =⇒ (5): Note that Bad 6= M(A/Y ), and so there is some t1 ∈ M(A) such that p(t1) /∈ Bad and

hence Pt1 = Hor (by Lemma 3.2.4). Then for any t2 ∈ M(A), we have Pt2 = Pt1 = Hor and

hence p(t2) /∈ Bad (by Lemma 3.2.4). Thus, Bad = ∅.

(5) =⇒ (2): If Bad = ∅, then {X ∈ P>T : p(X) ∩ M(A/Y ) 6= ∅} ⊆ Hor. The result follows by

Lemma 3.2.3.

�

Example 3.2.6. Recall the arrangement A from Examples 3.1.8 and 3.1.9. As observed there, the

subgroup Y = H1 satisfies the conditions (3) and (5) in Proposition 3.2.5, while the subgroup H2 does

not. This agrees with our observation in Example 2.4.4 that in the poset of layers P = P(A), the order

ideal P≤H1
is an M-ideal while P≤H2

is not.

3.3. Fiber bundles. We now are in the position to extend Terao’s Fibration Theorem [Ter86] from

hyperplane arrangements to abelian arrangements.

Theorem 3.3.1 (Fibration Theorem). The following statements are equivalent.

(1) P(AY ) is an M-ideal of P(A) with rk(P(AY )) = rk(P(A))− 1.

(2) There exists an integer ℓ such that for any u ∈ M(A/Y ), the fiber p̄−1(u) is homeomorphic to G

with ℓ points removed.

(3) p̄ : M(A) → M(A/Y ) is a fiber bundle.

Proof.

(1) ⇐⇒ (2): Follows from Lemma 3.2.4 and Proposition 3.2.5.

(2) =⇒ (3): We need to show that the projection p̄ : M(A) → M(A/Y ) is locally trivial, so let u ∈

M(A/Y ). Since Γ′ is a direct summand of Γ, we have a homeomorphism T ∼= (T/Y )×Y giving

a trivialization of the projection p : T → T/Y . Through the identification p−1(u) ∼= {u} × Y ,

we write p̄−1(u) ∼= ({u} × Y ) \ {(u, v1), . . . , (u, vℓ)} for some v1, . . . , vℓ ∈ Y .

By Lemma 3.2.4.(3), for each 1 ≤ i ≤ ℓ, there is a unique Hi ∈ A(A) such that (u, vi) ∈

({u} × Y ) ∩Hi. Then for each i, there are neighborhoods Ui around u in T/Y , Vi around vi in

Y , and W around 0 in the tangent space τ(u,vi)T such that (Ui × Vi) ∩M(A) ∼= W ∩ (τ(u,vi)T \

τ(u,vi)Hi). Let us pick a neighborhood U around u in M(A/Y ) small enough so that U may

play the role of Ui above for each i. By construction, the sets Vi are pairwise disjoint.

Now, for each i, we may define a map θi : U × Vi → Vi such that θi(Hi ∩ (U × Vi)) = vi and

such that, for any w ∈ U , the restriction θi|w×Vi
: w × Vi → Vi is a homeomorphism fixing the

boundary of Vi. Extend this to a homeomorphism θ : U ×Y → U ×Y by θ(w, y) = (w, θi(w, y))

when y ∈ Vi and θ(w, y) = (w, y) if y /∈ ∪iVi.
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Finally, consider p̄ : M(A) → M(A/Y ). The above map θ restricts to a homeomorphism

p̄−1(U) ∼= U × p̄−1(u).

(3) =⇒ (2): Immediate.

�

(u, v1)

(u, v2)

(u, v3)

(u, v4)

U

u

V1

V2

V3

V4

U

θ
∼=

⊃

p̄

FIGURE 8. A picture guide to the proof of local triviality in Theorem 3.3.1, (2) =⇒ (3).

Corollary 3.3.2. For any α ∈ A \ AY , the projection p : T → T/Y restricts to a covering map p|Hα
:

Hα → T/Y.

Proof. Pick u ∈ T/Y , and choose a neighborhood U of u as in the proof of Theorem 3.3.1.(2) =⇒ (3),

and consider the map θ defined there (see also Figure 8). Suppose we numbered the preimages of

u so that (u, v1), . . . , (u, vm) denote the elements of p−1(u) ∩ Hα. Then for each i = 1, . . . ,m the

homeomorphism θ−1
i maps U × {vi} homeomorphically to the component of p−1(U) ∩ Hα containing

(u, vi). This proves the claim. �

Corollary 3.3.3. If Y is an admissible subgroup of T for which P(AY ) is an M-ideal of P(A) and dim(Y ) =

dim(G), then Y is a layer of A.

Proof. Because each Hα contains the identity of T , there is some Y0 ∈ maxP(AY ) which contains Y . As

a consequence of Theorem 3.3.1.(1), rk(Y0) = rk(P(A))− 1. Now

dim(Y0) = dim(G)(rk(P(A))− rk(Y0)) = dim(G) = dim(Y ),

so we must have Y = Y0 ∈ P(A). �

Remark 3.3.4. In our fibration theorem, like Terao’s [Ter86], we require P(AY ) to be a corank-one

subposet of P(A). We conjecture that an M-ideal of any rank in P(A) will give rise to a fiber bundle, with

fiber homeomorphic to the complement of an affine abelian arrangement, as is the case for hyperplane

arrangements [Par00].
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3.4. Fiber-type arrangements.

Definition 3.4.1. We inductively define an arrangement A ⊆ Γ to be fiber-type if rkΓ = 1 or there

exists a rank-one split direct summand Γ′ ⊆ Γ and B ⊆ Γ/Γ′ such that B is fiber-type and the pro-

jection p : Hom(Γ,G) → Hom(Γ/Γ′,G) restricts to a fibration p̄ : M(A) → M(B) whose fibers are

homeomorphic to G with finitely many points removed.

Remark 3.4.2. Following Corollary 3.3.3, if M(A) → M(B) is a fiber bundle, then B = A/Y for some

layer Y ∈ P(A).

Theorem 3.4.3. An essential arrangement A is fiber-type if and only if its poset of layers P(A) is super-

solvable.

Proof. In both directions, we proceed by induction. It is clear that when rkΓ = 1, every choice of A is

both fiber-type and supersolvable.

Now, suppose that A is fiber-type. Let Γ′ and B be as in Definition 3.4.1, then let T = Hom(Γ,G)

and Y = ker(p̄). By induction, B is supersolvable via a chain 0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = P(B) where

each Qi is an M-ideal of rank i in Qi+1. Through the isomorphism P(B) = P(A/Y ) ∼= P(AY ) ⊆ P(A),

we may view each Qi as a subposet in P(A). Since P(AY ) is an M-ideal of rank rk(P(A))− 1 in P(A) by

Theorem 3.3.1, the chain of Qi’s satisfies the conditions of Definition 2.5.1.

Conversely, suppose that A is supersolvable via a chain 0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P(A) of M-ideals.

Since A is essential, the identity of T is a maximal element of P(A), Definition 2.4.1.(2) implies that

there is a unique Y ∈ max(Qn−1) that contains the identity of T . We will prove that P(AY ) = Qn−1;

then Theorem 3.3.1 and induction will imply the fiber-type property. Since both P(AY ) and Qn−1 are

join-closed order ideals, it suffices to prove that A(AY ) = A(Qn−1). This follows from the observation

that both of these sets are equal to {H ∈ A(P) : H ≤ Y or H ∨ Y = ∅} (cf. Remark 3.1.7). �

Corollary 3.4.4. The complement of a supersolvable linear, toric, or elliptic arrangement is a K(π, 1)

space.

Proof. If rkΓ = 1, then M(A) ∼= G \ {finitely many points} is K(π, 1) when G = C, C× or (S1)2. Now

suppose that M(A) → M(B) is a fiber bundle with fiber F ∼= G \ {finitely many points}, a K(π, 1) as

above, and B is supersolvable. By induction, M(B) is K(π, 1). Using the homotopy long exact sequence

for the fibration, one has for i > 1 an exact sequence

0 = πi(F ) → πi(M(A)) → πi(M(B)) = 0

Thus, πi(M(A)) = 0 for i > 1. �

Example 3.4.5. The arrangement A from Example 3.1.8 is fiber-type, since in Example 2.5.2 it was

determined that its poset of layers is supersolvable.

4. GEOMETRIC POSETS

Up to this point, we have worked with locally geometric posets. Now we introduce a “global” no-

tion of geometricity (Definition 4.1.1). This leads to several interesting results. First, we establish an

equivalent definition of an M-ideal (Theorem 4.1.4) for geometric posets. We then turn our attention to

geometric semilattices. We show that a geometric semilattice is supersolvable if and only if its canoni-

cal extension to a geometric lattice is supersolvable (Theorem 4.2.4), and this has applications to affine

hyperplane arrangements (Theorem 4.3.3). We then prove that supersolvability is preserved under the

quotient by a group action (Theorem 4.4.12), which has applications to covers of abelian arrangements.
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4.1. Geometric posets and their supersolvability. The following definition extends the notion of

geometric beyond semilattices. Indeed, a geometric semilattice in the sense of [WW86] is precisely a

semilattice satisfying condition (‡‡), as can be seen easily from comparing (‡‡) with [WW86, (G4)].

Definition 4.1.1. A locally geometric poset P is geometric if for all x, y ∈ P:

(‡‡) if rk(x) < rk(y) and I ⊆ A(P) is such that
∨

I ∋ y and |I| = rk(y), then there is a ∈ I such that

a 6≤ x and a ∨ x 6= ∅.

Example 4.1.2. As an illustration of condition (‡‡) in Definition 4.1.1 consider the case of an arrange-

ment of lines in the plane, e.g., as in Figure 9. If two lines meet at a point y and a third line, that we call

x, misses the point y, the first two lines cannot both be parallel to the third. In the intersection poset of

the given line arrangement we will have a rank-two element y that is the join of the (independent) set

I given by the first two lines. The line x has rank one less than y and must intersect one of the two lines

in I (which we’d call a in the statement of (‡‡)). In Figure 9 this situation is illustrated with I = {a, b}.

e1

e2

y a
b

x

x ∨ a

FIGURE 9. An arrangement of lines (it should be thought of as repeating periodically

in vertical and horizontal direction, generating an infinite line arrangement).

Example 4.1.3. Other posets encountered already, for instance in Figures 1 and 3, are geometric posets.

We shall see in Corollary 4.4.7 that the poset of layers for any abelian Lie group arrangement is geo-

metric.

For geometric posets, supersolvability can be characterized using partitions of atoms, in a way remi-

niscent of [FT97, Remark 2.6].

Theorem 4.1.4. Let P be a geometric poset, and let Q be a pure, join-closed, proper order ideal of P. Then

Q is an M-ideal with rk(Q) = rk(P)− 1 if and only if

(†) for any two distinct a1, a2 ∈ A(P) \A(Q) and every x ∈ a1 ∨ a2 there is a3 ∈ A(Q) with x > a3.

Proof. By Corollary 2.4.8, we need only show (†) implies that Q is an M-ideal. For Definition 2.4.1.(1),

let y ∈ max(Q) and a ∈ A(P) \ A(Q). Take x ∈ max(P) such that a < x. Take I ⊆ A(Q) such that

a∨
∨

I ∋ x, and |I| = rk(x)− 1. By condition (‡‡), there exists b ∈ I ∪{a} such that b 6≤ y and b∨y 6= ∅.

Since Q is join-closed and y is maximal in Q, we cannot have b ∈ Q and hence b = a. In particular,

a ∨ y 6= ∅.

For Definition 2.4.1.(2), take x ∈ maxP and note that Q′ := P≤x ∩ Q is a join-closed order ideal

in P≤x, hence it is of the form P≤y for some y < x. Now (†) holds for Q′ in the geometric lattice

P≤x, hence Corollary 2.4.9 shows that y is modular of rank rk(P) − 1 in P≤x. This also shows that

rk(Q) = rk(P)− 1. �
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As an immediate consequence we obtain the desired characterization of supersolvability in geometric

posets.

Corollary 4.1.5. Let P be a geometric poset. Then P is supersolvable if and only if there is a chain

{0̂} = Q0 ⊂ Q1 ⊂ . . . ⊂ Qn = P of pure, join-closed order ideals of P with rk(Qi) = i and so that (†) holds

for Qi−1 in Qi, for all i = 1, . . . , n.

4.2. Supersolvable geometric semilattices. A main source of intuition on geometric semilattices

comes from finite-dimensional vector spaces. The poset of intersections of any arrangement of hy-

perplanes in a vector space is a geometric semilattice, as is the poset of all affine subspaces of a finite-

dimensional vector space. This suggests that geometric semilattices should be an “affine” counterpart

to geometric lattices (among whose main examples we find posets of intersections of arrangements of

linear hyperplanes). The following structure theorem is an abstract counterpart to this linear-affine

relationship.

Theorem 4.2.1 (Wachs-Walker [WW86]). A poset P is a geometric semilattice if and only if P = L \L≥a

where L is a geometric lattice and a is an atom of L. The poset L and the element a are uniquely determined

by P, up to isomorphism.

We will use this theorem to relate M-ideals in geometric semilattices to the classical notion of modular

elements in geometric lattices.

For the remainder of this section let P be a chain-finite geometric semilattice and let L be a geometric

lattice with an atom a0 ∈ A(L) such that P = L\L≥a0
. The meet operation coincides in L and P. When

needed, we will distinguish the join operations as ∨P and ∨L.

Lemma 4.2.2. A subposet Q of a geometric semilattice P = L \ L≥a0
is a pure, join-closed order ideal

satisfying Definition 2.4.1.(1) in P if and only if Q = P≤x := {p ∈ P : p ≤L x} for some x ∈ L≥a0
.

Proof. First, assume x ∈ L≥a0
and let Q = P≤x. Clearly Q is a pure, join-closed order ideal. To verify

Definition 2.4.1.(1), let a ∈ A(P) and y ∈ Q such that a ∨P y = ∅. This means that a ∨L y ≥ a0, and

hence a ∨L y = a0 ∨L a ∨L y ≥ a0 ∨L y > y. Since a ∨L y covers y, we must have a ∨L y = a0 ∨L y.

Thus, a ≤ a ∨L y = a0 ∨L y ≤ x and hence a ∈ Q.

Conversely, assume that Q is a pure, join-closed order ideal of P satisfying Definition 2.4.1.(1), and

let u =:
∨

L
Q and x := u ∨L a0. It is clear that Q ⊆ P≤x, but to obtain equality we consider two cases:

either u < x or u = x.

If u < x, then u ∈ P and hence Q = P≤u. We thus need to show that P≤x ⊆ P≤u. Let y ∈ P≤x, so

y ∈ P and y ≤ x = u ∨L a0. To argue by contradiction, suppose that y 6≤ u. Then there exists a ∈ A(P)

such that a ≤ y and a 6≤ u. This implies u⋖ u∨L a ≤ u∨L a0, where the latter inequality holds because

a ≤ y ≤ u ∨L a0. Since u ⋖ u ∨L a0, this implies that u ∨L a = u ∨L a0 ≥ a0. However, u ∨L a ≥ a0

implies u ∨P a = ∅, contradicting the assumption that Q = P≤u satisfies Definition 2.4.1.(1).

For the second case, suppose u = x ≥ a0. Then, e.g., by [Aig97, Theorem 2.29 and 6.4.(iii)], there

exists a set I ⊆ A(Q) such that x = a0 ∨L

∨

L
I and rk(x) = |I| + 1. But then

∨

L
I 6≥ a0, and hence

∨

P
I 6= ∅. Since Q is join-closed, this means y :=

∨

P
I ∈ Q. Moreover, since y∨L a0 = x, we have y⋖x.

Now suppose that a ∈ A(P≤x) \A(Q). Since Q satisfies Definition 2.4.1.(1), we must have a ∨L y 6≥ a0,

so the second inequality in the following chain is strict x ≥ a0 ∨L a ∨L y > a ∨L y > y, contradicting

the fact that y ⋖ x. This means that no such a can exist, i.e. A(P≤x) ⊆ A(Q). Since Q is join-closed and

every element of P≤x is a join of atoms, we must then have P≤x ⊆ Q. �
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Lemma 4.2.3. Let P = L \L≥a0
be a geometric semilattice, x ∈ L≥a0

, and Q = P≤x. If z is a complement

to x in L, then z ∈ P and z is a complement to maxQ in P. Moreover, every complement to maxQ in P is

a complement to x in L.

Proof. Let z be a complement to x in L. From x∧L z = 0̂ we have z ∈ P. Now consider any m ∈ maxQ.

In particular, m∨L a0 = x. Then m∨L z⋖ (a0 ∨Lm∨L z) = x∨L z = 1̂, where the first inequality holds

because L is a geometric lattice (see Definition 2.2.1). In particular m ∨P z ⊆ maxP. On the other

hand, we have x ∧L z ≥ m ∧L z = m ∧P z, thus x ∧L z = 0̂ implies m ∧P z = 0̂.

Let z ∈ P be a complement to maxQ in P. For every q ∈ maxQ we have q ∨L a0 = x, and q ∨L z ≥ p

for some p ∈ maxP. Thus, x ∨L z = (a0 ∨L q ∨L z) ≥ a0 ∨L p = 1̂. On the other hand, surely

x∧ z ⊆ P≤x = Q and thus there is q ∈ maxQ such that x∧ z ≤ q. But then, x∧ z = x∧ z ∧ z ≤ q∧ z = 0̂.

This proves that z is a complement to x in L. �

Theorem 4.2.4. Let P = L \ L≥a0
be a geometric semilattice. A subposet Q of P is an M-ideal if and only

if Q = P≤x for some modular element x in L with x ≥ a0. Consequently, P is supersolvable if and only if

L is supersolvable via a chain of modular elements passing through a0.

Proof. By Lemma 4.2.2, it suffices to prove that for x ∈ L≥a0
, the order ideal Q = P≤x satisfies Defini-

tion 2.4.1.(2) if and only if x is modular in L.

First, suppose that Q is an M-ideal, and we show that x is modular in L. If x is not modular in L

there are two complements z′, z′′ of x in L such that z′ ≤ z′′. By Lemma 4.2.3, z′, z′′ ∈ P and both

are complements in P to every y ∈ maxQ. Since Q is an M-ideal we can choose m ∈ maxP≥z′′ and

y ∈ maxQ≤m. Then y is modular in P≤m and z′, z′′ are comparable complements of y in P≤m – a

contradiction. Thus, x is a modular element in L.

Now assume that x is modular in L. Take m ∈ maxP and consider y := x ∧L m. Since m ⋖ 1̂,

modularity of x implies rk(x) − rk(y) = 1 and hence y ⋖ x. Thus y ∈ maxQ, and x ∧ z = y ∧ z for all

z ∈ P≤m (indeed: by modularity (x ∧ z) ∨ y = x ∧ (z ∨ y) ≥ y, and since z ∨ y 6≥ x since z ∨ y ∈ Pm,

y ⋖ x implies (x ∧ z) ∨ y = y, hence (x ∧ z) ≤ y and the claim follows). In particular, for z ∈ P≤m we

have that z ∧ y = 0̂ implies z ∧ x = 0. Since trivially z ∨ y = 1̂ implies z ∨ x = 1̂, we have that every

complement of y in P≤m is a complement of x in L, thus modularity of x implies modularity of y.

The claim about supersolvability follows because the chain 0̂ ⊂ P≤x1
⊂ · · · ⊂ P≤xn

= P will satisfy

Definition 2.5.1 in P if and only if the chain 0̂ ⊂ L≤a0
⊂ L≤x1

⊂ · · · ⊂ L≤xn
= L does in L. �

4.3. Affine hyperplane arrangements. Let V ∼= Cn be a complex vector space, and let A be an ar-

rangement of affine hyperplanes in V . Associated to A is a polynomial fA ∈ C[x1, . . . , xn] whose

solution set is the union of the hyperplanes in A. Denote by fcA ∈ C[x0, x1, . . . , xn] the homogenization

of fA. The cone of A, denoted by cA, is the linear hyperplane arrangement in Cn+1 whose hyperplanes

are the (linear) components of the solution set of fcA. The cone cA has one more hyperplane than A

does, namely H0 = ker(x0). This coning construction can be reversed to define the de-cone dA of any

linear hyperplane arrangement, see [OT92].

Remark 4.3.1. The poset of layers of the affine arrangement A has the structure of a geometric semi-

lattice since P(A) ∼= P(cA) \ P(cA)≥H0
. Note that Corollary 4.1.5 shows that P(A) is supersolvable

according to Definition 2.5.1 exactly when A is supersolvable in the sense of the definition given by

Falk and Terao [FT97, Remark 2.6].

The following extends Definition 3.4.1 to affine arrangements:
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Definition 4.3.2. We inductively define an affine hyperplane arrangement A in a complex vector space

V to be fiber-type if either dim(V ) = 1 or there is a choice of coordinates V ∼= Cn and an arrangement

B in Cn−1 such that the projection p : Cn → Cn−1 onto the first (n − 1) coordinates restricts to a fiber

bundle M(A) → M(B) whose fibers are homeomorphic to C with finitely many points removed.

This definition allows us to be obtain an affine analogue to Terao’s Fibration Theorem [Ter86].

Theorem 4.3.3. Let A be an essential arrangement of affine hyperplanes in a complex vector space. Then

P(A) is supersolvable if and only if A is fiber-type.

Proof. We proceed by induction on the rank of A. Notice that every rank-one locally geometric poset is

supersolvable, and every rank-one affine arrangement is fiber-type. Let H0 be the additional hyperplane

in cA so that P(A) = P(cA)\P(cA)≥H0
, which under our choice of coordinates on Cn+1 will be the first

coordinate hyperplane.

Assume that P(A) is supersolvable, which implies by Theorem 4.2.4 that there is a modular chain

0̂ < H0 = Y1 < Y2 < · · · < Yn−1 < Yn = 1̂ in P(cA). Abbreviate Y := Yn−1.

Then we may pick coordinates on the ambient vector space of cA so that the projection p : Cn+1 →

Cn is the quotient by Y , and so that this restricts to a fiber bundle M(cA) → M(cA/Y ). The following

composition is then a fiber bundle

M(A)× C× M(cA) M(cA/Y ) M(d(cA/Y ))× C×
∼= p ∼=

((x1, . . . , xn), x0) (x0, x0x1, . . . , x0xn) (x0, x0x1, . . . , x0xn−1) ((x1, . . . , xn−1), x0)

where the first and last maps are the standard cone/de-cone homeomorphisms (see eg. [OT92, Propo-

sition 5.1]). The subbundle obtained by setting x0 = 1 is then a fiber bundle M(A) → M(d(cA/Y )).

Now P(cA/Y ) is isomorphic to the subposet P(cA)≤Y , therefore cA/Y is supersolvable via the chain

of modular elements 0̂ < H0/Y < Y2/Y < · · · < Yn−1/Y , and its de-cone d(cA/Y ) with respect to

H0/Y is supersolvable by Theorem 4.2.4. By induction, d(cA/Y ) is fiber-type. Therefore, A will also

be fiber-type.

Conversely, assume that A is fiber-type, and choose coordinates so that the projection Cn → Cn−1

restricts to a fiber bundle p : M(A) → M(B) for some fiber-type arrangement B in Cn−1. The composi-

tion

M(cA) M(A)× C× M(B)× C× M(cB)
∼= p× id ∼=

(x0, x1, . . . , xn)
((

x1

x0

, . . . , xn

x0

)

, x0

) ((

x1

x0

, . . . , xn−1

x0

)

, x0

)

(x0, x1, . . . , xn−1)

is then a fiber bundle, which we denote by p̂. This fiber bundle is the quotient by some dimension-one

modular element Y ∈ P(cA), which is necessarily contained in the additional hyperplane H0. Since

B is fiber-type, P(B) is supersolvable by induction. Then by Theorem 4.2.4, P(cB) is supersolvable

via a chain of modular elements passing through the additional hyperplane p̂(H0) of cB. Via the poset

isomorphism P(cA)≤Y
∼= P(cB) induced by p̂, and using modularity of Y in P(cA), [Zie91, Proposition

2.2.1a)] yields a chain of modular elements in P(cA) passing through H0.

Again by Theorem 4.2.4, we conclude that P(A) is supersolvable. �
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4.4. Group quotients and topological covers. In the following we study the behaviour of supersolv-

ability of posets with respect to certain types of group actions.

Let G be a group. An action of G on a poset P is any group homomorphism G → Aut(P) from G to

the group of automorphisms of P. Given a group element g ∈ G it is customary to denote the associated

automorphism by g : P → P. For x ∈ P we will then often write gx for g(x). Following [DD21], we will

focus on the following special type of action.

Definition 4.4.1. Let P be a poset with an action of a group G. We call the action translative if

x ∨ gx 6= ∅ implies x = gx for every x ∈ P and every g ∈ G.

Translative actions were introduced in [DR18] in order to model periodic hyperplane arrangements,

as we illustrate in the next example.

Example 4.4.2. Consider the periodic arrangement of lines represented in Figure 9. The standard

generators e1, e2 of the group G = Z2 act via the traslations given by the arrow in the picture. This

action is translative. Indeed, for any g ∈ G and any line x, the lines gx and x have the same direction.

Hence, if they intersect (i.e., if x ∨ gx 6= ∅), they must be identical (x = gx).

Write Gx = {gx : g ∈ G} for the orbit of an x ∈ P under G. If a group G acts on a poset P we define

the set of orbits P/G := {Gx : x ∈ P}. On it we consider the relation given by Gx ≤ Gy if there is g ∈ G

with x ≤ gy.

Lemma 4.4.3 ([DD21, Lemmas 2.12 and 2.13]). Let P be a poset with a translative action of a group

G. Then the relation ≤ on P/G is a partial order relation. Moreover, for every z ∈ P the function

fz : P≤z → (P/G)≤Gz, p 7→ Gp, defines an isomorphism of posets.

Example 4.4.4 ([DD21, Section 9]). Let A be an abelian Lie group arrangement of rank n in G =

(S1)d × Rv. Then the lift of all Hα, α ∈ A to the universal cover of T is an arrangement A↾ of affine

subspaces in R(d+v)n. Its poset of layers P(A↾) is a geometric semilattice and the action on A↾ of the

group of deck transformations induces a translative action of Znd on P(A↾). Then, P(A) is isomorphic

to the quotient P(A↾)/Zdn. For instance, Figure 9 depicts the arrangement A↾ for the toric arrangement

A of Figure 8.

Example 4.4.5. Let Γ1 be a finitely-generated free abelian group, and let Γ2 be a subgroup of Γ1 of

finite index. Let G be a connected abelian Lie group and let A ⊆ Γ2 be a finite subset. Call P1, P2

the posets of layers of the arrangements defined by A in T1 := Hom(Γ1,G), resp. T2 := Hom(Γ2,G).

Now since G is a product of copies of the injective Z-modules S1 and R, G is injective itself and

so Hom(−,G) is exact. This implies that the inclusion Γ2 →֒ Γ1 induces a covering map T1 → T2

whose group of deck transformations is the discrete subgroup G of T1 that is the image of the inclusion

Hom(Γ1/Γ2,G) →֒ Hom(Γ1,G). Recall that A ⊆ Γ2, thus for every α ∈ A and g ∈ G one has g(α) = 0.

This implies GHα = Hα for every α ∈ A, and so G acts on P1. Moreover, since every layer Y of A in T1

is a coset of a subgroup, its image under a deck transformation is another coset of the same subgroup –

hence either identical or disjoint with Y . This shows that the induced action of the deck transformations

is translative on P1, and P2 is the quotient of P1 by this action.

Lemma 4.4.6. Let P be a locally geometric poset with a translative action of a group G. Then, P/G is a

locally geometric poset. Moreover, if P is geometric then so is P/G.
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Proof. The first claim is an immediate corollary of Lemma 4.4.3. For the second claim, suppose P

satisfies (‡‡) and let f : P → P/G denote the quotient map. Let x, y ∈ P/G with rk(x) < rk(y) and

choose I ⊆ A(P/G) with rk(y) = |I| and y ∈
∨

I. Choose y′ ∈ f−1(y) and x′ ∈ f−1(x). Since the

G-action preserves rank, rk(x) = rk(x′) and rk(y) = rk(y′). Let I ′ be the preimage of I under the local

isomorphism P≤y′ ≃ (P/G)≤y given by Lemma 4.4.3. Then |I ′| = rk(y′) > rk(x′). Using property (‡‡)

in P we can choose a′ ∈ I ′ such that a′ 6≤ z and a′ ∨ x′ 6= ∅. Choose z′ ∈ a′ ∨ x′ and let a := f(a′) ∈ I.

Now f(z′) ≥ a and f(z′) ≥ f(x′) = x. Moreover, a ∈ I and, with Lemma 4.4.3 applied to P≤z′ , a 6≤ x.

Thus P/G satisfies (‡‡). �

Corollary 4.4.7. Let A be any abelian Lie group arrangement. Then the poset P(A) is geometric.

Proof. The claim follows from Lemma 4.4.6 because P(A) is a quotient of a geometric semilattice (see

[DD21, Lemma 9.2.(ii)]) by a translative action, and geometric semilattices are geometric posets. �

Lemma 4.4.8. Let P be a poset with a translative action of a group G. Then, for all x1, x2 ∈ P,

Gx1 ∨P/G Gx2 =





⋃

g1,g2∈G

g1x1 ∨P g2x2





/

G.

Proof. Let z ∈ g1x1 ∨P g2x2 for some g1, g2 ∈ P. In particular, Gz ≥ Gxi for i = 1, 2 and, for every

Gp ∈ P/G with Gz ≥ Gp ≥ Gxi, i = 1, 2, it must be z ≥P f−1
z (p) ≥P gixi, i = 1, 2 (where fz is the

isomorphism of Lemma 4.4.3). Then, by definition of z, f−1
z (p) = z. This means Gp = Gz and proves

the right-to-left inclusion in the claim.

For the left-to-right inclusion, let Gz ∈ Gx ∨P/G Gy. Then, by definition, there are g1, g2 ∈ G with

z ≥ gixi for i = 1, 2. Now for every p ∈ P with z ≥ p ≥ gixi, i = 1, 2, we must have Gxi ≤ fz(p) ≤

fz(z) = Gz (again fz is the isomorphism of Lemma 4.4.3). Now Gz ∈ Gx1 ∨Gx2 implies fz(p) = fz(z),

and bijectivity of fz shows p = z, whence z ∈ g1x1 ∨P g2x2. �

Lemma 4.4.9. Let P be a chain-finite poset with an action of a group G and let Q be a G-invariant subposet

(i.e., GQ = Q).

(i) Q is an order ideal if and only if Q/G is.

(ii) Q is pure if and only if Q/G is.

(iii) If the action is translative, Q is join-closed if and only if Q/G is.

Proof. Since G acts by order-preserving automorphisms, (i) is immediate and (ii) follows since those

automorphisms preserve chain length. Claim (iii) is a consequence of Lemma 4.4.8. �

Lemma 4.4.10. Let P be a locally geometric poset with a translative action of a group G and let Q be

a G-invariant subposet of P. If Q ⊆ P satisfies Definition 2.4.1.(1), then so does Q/G ⊆ P/G. When P

satisfies (‡‡), the converse also holds.

Proof. Let Definition 2.4.1.(1) hold for Q, and consider Gy ∈ Q/G, Ga ∈ A(P/G) such that Gy ∨P/G

Ga = ∅. Then y ∈ Q, a ∈ A(P) and, by Lemma 4.4.8, y ∨P a = ∅. By assumption then a ∈ Q and so

Ga ∈ Q/G.

For the reverse implication, suppose that P satisfies (‡‡) and let Definition 2.4.1.(1) hold for Q/G.

Pick y ∈ Q, a ∈ A(P) such that y ∨P a = ∅. Now if Gp ∈ Gy ∨Ga then we can choose p and g ∈ G such

that p ∈ y ∨ ga. Since the action preserves rank, rk(gy) < rk(p) and rk(ga) = 1. Because P is locally

geometric, then, y⋖ p. Now translativity and (‡‡) imply that gy ∨P ga 6= ∅ contradicting the choice of y

and a. Therefore Gy ∨Ga = ∅ and by assumption Ga ∈ Q/G, which means a ∈ Q. �
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Lemma 4.4.11. Let P be a locally geometric poset with a translative action of a group G and let Q be a

G-invariant subposet of P. Then, Q ⊆ P satisfies Definition 2.4.1.(2) if and only if Q/G ⊆ P/G does.

Proof. For every Gx ∈ maxP/G, Lemma 4.4.3 shows that the quotient map defines a poset isomorphism

between P≤x and (P/G)≤Gx. In particular, given y ∈ P≤x, every complement of some Gy ∈ (P/G)≤Gx

is the orbit of a complement of y, and viceversa. Therefore y is modular in P≤x if and only if Gy is

modular in (P/G)≤Gx. Moreover, obviously y ∈ Q if and only if Gy ∈ Q/G. Noting that the orbit of

every x ∈ maxP is maximal in P/G proves the claim. �

Theorem 4.4.12. Let P be a locally geometric poset with a translative action of a group G and let Q be a

G-invariant subposet of P. If Q is an M-ideal in P, then Q/G is an M-ideal in P/G. Moreover, if P satisfies

(‡‡), the converse also holds.

Proof. This is a combination of Lemmas 4.4.10 and 4.4.11. �

Corollary 4.4.13. Let Γ1 be a finitely-generated free abelian group, and let Γ2 be a subgroup of Γ1 of finite

index. Let G be an abelian Lie group and let A ⊆ Γ2 be a finite subset. Call P1, P2 the posets of layers of

the arrangements defined by A in Hom(Γ1,G), resp. Hom(Γ2,G). Then P1 is supersolvable if and only if

P2 is.

Proof. Both posets are geometric by Corollary 4.4.7. From Example 4.4.5 we know that P2 is the quo-

tient of P1 by the translative action of the group G of deck transformations of the covering Hom(Γ1,G) →

Hom(Γ2,G), and that GHα = Hα for every α ∈ A. The last item implies that maxP(AY ) is G-invariant

for every layer Y ∈ P1. In particular, if P1 is supersolvable, all members of the associated chain of

M-ideals are G-invariant. On the other hand, if P2 is supersolvable, the preimage of every element

of the associated chain of M-ideals is obviously G-invariant. Now the claimed equivalence follows by

Theorem 4.4.12. �

Corollary 4.4.14. Recall the setup of Example 4.4.4. For every abelian Lie group arrangement A, the poset

P(A↾) is supersolvable if and only if P(A) is.

Proof. The proof is similar to that of Corollary 4.4.13. We already know that both posets are geometric.

For every α ∈ A the group G = Zdn of deck transformations acts on the union of all lifts of Hα to the

universal cover of T . Hence maxP(AY ) is G-invariant for all layers Y ∈ P(A↾). Thus, all M-ideals of

P(A↾) are G-invariant. On the other hand, obviously the lift of every M-ideal of P(A) is G-invariant.

The claimed equivalence follows by Theorem 4.4.12. �

Remark 4.4.15. Example 4.4.4 describes the lift of an abelian arrangement to the universal cover of its

ambient space. Corollary 4.4.14 can be generalized to other covering spaces in the following way. Let

G1, G2 be two connected abelian Lie groups and suppose that G2 is a topological cover of G1. Then G1

is isomorphic to the quotient G2/L, where L is a discrete subgroup of G2. Let Γ be a finitely generated

free Abelian group. Then Hom(Γ,−) is exact, hence Hom(Γ,G1) is the quotient of the topological group

Hom(Γ,G2) by its discrete subgroup Hom(Γ, L). In particular, Hom(Γ,G2) is a topological covering of

Hom(Γ,G1).

Let A ⊆ Γ be a finite subset. Call P1 the poset of layers of the arrangement defined by A in

Hom(Γ,G1), and let P2 be the poset of layers of the lift of that arrangement to the cover Hom(Γ,G2) of

Hom(Γ,G1). Then, P1 is supersolvable if and only if P2 is. This follows from Corollary 4.4.14 because

G1 and G2 have the same universal cover, thus both arrangements lift to the same A↾.
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5. STRICT SUPERSOLVABILITY AND CONFIGURATION SPACES

5.1. Definitions. Several phenomena that are well-known about supersolvable geometric lattices in

fact do not hold in our general setting. The difficulty lies in Definition 2.4.1.(1), which may be rephrased

as requiring |a∨ y| ≥ 1 for any y ∈ Q and a ∈ A(P) \A(Q). If instead we require such a and y to have a

unique minimal upper bound, these phenomena do indeed appear. In other words, we need a stronger

notion than an M-ideal, which we define next.

Definition 5.1.1. A TM-ideal of a locally geometric poset P is a pure, join-closed, order ideal Q ⊆ P

such that:

(1) |a ∨ y| = 1 whenever y ∈ Q and a ∈ A(P) \A(Q).

(2) for every x ∈ max(P), there is some y ∈ max(Q) such that y is a modular element in the

geometric lattice P≤x.

Example 5.1.2. {0̂} and P are always TM-ideals of P.

Remark 5.1.3. When P is the poset of layers for an abelian arrangement A in T , Definition 5.1.1 has

the following topological interpretation. Let Y be an admissible subgroup of T for which P(AY ) is an

M-ideal of P(A). The following statements are equivalent.

(1) P(AY ) is a TM-ideal of P(A) with rk(P(AY )) = rk(P(A)) − 1.

(2) For every Y ′ ∈ maxP(AY ) and H ∈ A(A \AY ), the intersection Y ′ ∩H is connected.

Definition 5.1.4. A locally geometric poset P is strictly supersolvable if there is a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P

where each Qi is a TM-ideal of Qi+1 with rk(Qi) = i.

Example 5.1.5. Any rank-one locally geometric poset is strictly supersolvable.

Example 5.1.6. The poset P from Example 2.4.4 (see Figure 3) is not strictly supersolvable. Indeed, its

only proper M-ideals are P≤1 and P≤3, and the fact that |1 ∨ 3| = 2 means neither is a TM-ideal.

Example 5.1.7. Let Γ = Z2 and A = {α1 = (1, 0), α2 = (0, 2), α3 = (1, 2)}. Let G = S1 × Rv and

consider an arrangement in T . If v = 0 or v = 1, we may identify T with (S1)2 or (C×)2, respectively.

Figure 8 depicts the arrangement in (S1)2 and Figure 10 depicts the Hasse diagram for its poset of

layers. This poset has a proper TM-ideal, whose maximal elements are the connected components of

H2, which is shown in the left of Figure 10. Thus, P(A) is strictly supersolvable.

Note, however, that the fiber bundle depicted in Figure 8 corresponds to the M-ideal P(A)≤Hα1
in

the right of Figure 10, which is not a TM-ideal since Hα1
∩Hα3

is disconnected.

Example 5.1.8. Dowling posets are strictly supersolvable; see the proof of Proposition 2.6.1.

Proposition 5.1.9. Let P be a geometric semilattice. Then Q is an M-ideal of P if and only if Q is a TM-ideal

of P. Consequently, P is supersolvable if and only if it is strictly supersolvable.

Proof. In a geometric semilattice, if two elements have an upper bound then they have a unique minimal

upper bound. This means that Definition 2.4.1.(1) implies Definition 5.1.1.(1) for geometric semilat-

tices, hence every M-ideal is a TM-ideal. �
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FIGURE 10. The Hasse diagram for the poset of layers of the arrangement A from

Example 5.1.7. The elements of a TM-ideal colored in red (left); the elements of an

M-ideal that is not a TM-ideal are colored in blue (right).

5.2. Characteristic polynomial. The characteristic polynomial of any bounded-below poset P with a

rank function rk is defined as

χP(t) :=
∑

x∈P

µP(x)t
rk(P)−rk(x),

where µP is iteratively defined by µP(0̂) = 1 and for any x ∈ P\ 0̂ one has
∑

y∈P≤x
µP(y) = 0. A feature

of supersolvable geometric lattices is that their characteristic polynomial decomposes into linear factors

over Z. We show that this is true also for strictly supersolvable posets.

Theorem 5.2.1. Let Q be a TM-ideal of a locally geometric poset P with rk(Q) = rk(P) − 1, and let

a = |A(P) \A(Q)|. Then

χP(t) = χQ(t) · (t− a).

In particular, if P is strictly supersolvable via the chain of TM-ideals 0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P, and

ai = |A(Qi) \A(Qi−1)| for each i, then

χP(t) =
n
∏

i=1

(t− ai).

Proof. The second claim, for strictly supersolvable posets, follows from the first by induction. Thus, we

need only consider a TM-ideal Q in a locally geometric poset P.

Let x ∈ P \ Q. By Proposition 2.4.7 and Remark 2.4.2, there is a unique y ∈ Q such that x covers

y, and this y is a modular element of P≤x. Thus, χP≤x
(t) = χQ≤y

(t)(t − |Ax|) by [Sta72, Theorem

2], where Ax = A(P≤x) \ A(Q). Extracting the constant term of each side of this equation yields

µP(x) = −µQ(y)|Ax|. Moreover, for y ∈ Q, the sets {Ax : x ∈ P \ Q, y ⋖ x} partition A(P) \ A(Q) by

Definition 5.1.1.(1). This means that for each y ∈ Q,
∑

x∈P\Q
y⋖x

|Ax| = a.
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Therefore,

χP(t) =
∑

x∈P

µP(x)t
rk(P)−rk(x)

=
∑

y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑

y∈Q

∑

x∈P\Q
y⋖x

µP(x)t
rk(P)−rk(x)

=
∑

y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑

y∈Q

∑

x∈P\Q
y⋖x

−µQ(y)|Ax|t
rk(P)−rk(x)

=
∑

y∈Q

µQ(y)t
rk(Q)+1−rk(y) +

∑

y∈Q

−aµQ(y)t
rk(Q)−rk(y)

=
∑

y∈Q

µQ(y)t
rk(Q)−rk(y)(t− a) = χQ(t) · (t− a).

�

Remark 5.2.2. The complete factorization in the case of strictly supersolvable posets could be proved

directly using [Hal17, Theorem 4.4] and the partition of A(P) whose blocks are the sets A(Qi)\A(Qi−1).

This was carried out in the example of Dowling posets in [BG21, Theorem B] and is straightforward to

generalize to our setting.

Remark 5.2.3. The assumption that Q is a TM-ideal in Theorem 5.2.1 is necessary, as demonstrated

in the following examples. Accordingly, a poset being supersolvable is not enough for its characteristic

polynomial to factor completely over Z.

Example 5.2.4. Consider the poset P depicted in Figure 10 (see also Example 5.1.7). Its characteristic

polynomial is

χP(t) = t2 − 4t+ 4 = (t− 2)(t− 2).

This agrees with the fact that the TM-ideal Q colored in red in Figure 10 has χQ(t) = t − 2 and

|A(P)\A(Q)| = 2. On the other hand, the M-ideal Q′ colored in blue in Figure 10 is not a TM-ideal, and

we see that χQ′(t) = t− 1 does not divide χP(t).

Example 5.2.5. Consider again the poset P in Figure 3, see also Example 2.4.4. It is supersolvable, with

{0̂, 1} and {0̂, 3} both M-ideals. However, it is not strictly supersolvable and its characteristic polynomial

χP(t) = t2 − 3t+ 3 does not factor over the integers.

Corollary 5.2.6. Let G ∼= (S1)d × Rv with v > 0, let Γ be a free abelian group with rkΓ = n, let A be

an essential arrangement in T = Hom(Γ,G) whose poset of layers is strictly supersolvable via the chain of

TM-ideals 0̂ ⊂ Q1 ⊂ · · · ⊂ Qn = P(A), and let ai = |A(Qi) \A(Qi−1)| for each i.

Then the Poincaré polynomial of M(A) factors as:

∑

j≥0

rkHj(M(A);Z)tj =

n
∏

i=1

(

(1 + t)d + ait
d+v−1

)

.

Proof. By [LTY21, Theorem 7.8], the Poincaré polynomial of M(A) is given by

∑

j≥0

rkHj(M(A);Z)tj = (−td+v−1)nχP(A)

(

−
(1 + t)d

td+v−1

)

.

The result then follows from the formula of Theorem 5.2.1. �
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5.3. Topological fibrations. Recall from Example 3.1.3 the configuration space Confn(G), viewed as

the complement of an abelian arrangement. Cohen [Coh01, Theorem 1.1.5] observed that fiber bundles

of hyperplane arrangement complements can be pulled back from the classical Fadell–Neuwirth bundles

of configuration spaces [FN62] defined by dropping the last point in a configuration. We see the same

phenomenon when our arrangement bundle corresponds to a TM-ideal, but an M-ideal is not sufficient.

As in §3, we assume throughout that G is a connected abelian Lie group, T = Hom(Γ,G) for some

finite-rank free abelian group Γ, Y is an admissible subgroup of T , and A is an essential arrangement

in T .

Theorem 5.3.1. Suppose that P(AY ) is a TM-ideal of P(A). Then there exists a map g : M(A/Y ) →

Confℓ(G) such that p is the pullback of the Fadell–Neuwirth bundle Confℓ+1(G) → Confℓ(G) along the

map g.

Proof. Write A \ AY = {α1, . . . , αs}, and for each 1 ≤ i ≤ s write Hαi
= ⊔ci

j=1Hαi,j , where ci is the

number of connected components of Hαi
. By Definition 5.1.1.(1), the covering map in Corollary 3.3.2

restricts to a homeomorphism pi,j := p|Hαi,j
: Hαi,j → T/Y for each 1 ≤ i ≤ s and 1 ≤ j ≤ ci.

We can choose coordinates (e.g., as in the proof of Lemma 3.2.1) such that pi,j is the projection along

the last coordinate, sending (t, r) 7→ t. Since pi,j is a homeomorphism, there are continuous functions

ri,j : T/Y → G such that p−1
i,j : T/Y → Hαi,j sends t 7→ (t, ri,j(t)). Then the product of the ri,j defines

a continuous map ĝ : T/Y → Gℓ, where ℓ =
∑

i ci. Lemma 3.2.1 guarantees that for any t ∈ M(A/Y ),

the points ri,j(t) are all distinct. Therefore, ĝ restricts to a continuous map g : M(A/Y ) → Confℓ(G).

Notice that the two fiber bundles form a commutative square as depicted in Figure 11, where the

map h : M(A) → Confℓ+1(G) is defined, for (t, z) ∈ M(A) ⊆ T ∼= (T/Y )×G, by (t, z) 7→ (g(t), z). We

now show that this square satisfies the universal property of a pullback.

X

M(A) Confℓ+1(G)

M(A/Y ) Confℓ(G)

f2
f

f1

h

p π

g

FIGURE 11. Pullback diagram in the proof of Theorem 5.3.1

Let X be a topological space and f1, f2 two continuous functions such that g ◦ f1 = π ◦ f2. The map

f : X → M(A), x 7→ (f1(x), (f2(x))ℓ+1)

is well-defined because f1(x) ∈ M(A/Y ) and (f2(x))ℓ+1 does not coincide with any of the coordinates

of g(f1(x)) = (π ◦ f2)(x) = (f2(x)1, . . . f2(x)ℓ), i.e. the punctures of the fiber p−1(t). It is continuous

because the fi are, and commutes with p and h, since by definition p ◦ f = f1 and h ◦ f = (g ◦

f1, (f2)ℓ+1) = (π ◦ f2, (f2)ℓ+1) = f2. �

Remark 5.3.2. The idea to have in mind for the map g of Theorem 5.3.1 is that it should pick out the

punctures in the fiber over a point of M(A/Y ). If P(AY ) is an M-ideal but not a TM-ideal, then there

is some H ∈ A(A \ AY ) such that H ∩ Y is not connected. The nontrivial monodromy of the covering

map H → T/Y then obstructs the existence of the desired map r within the proof. We will see below

(Theorem 5.3.6) that trivial monodromy implies that the M-ideal P(AY ) is in fact a TM-ideal.
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Corollary 5.3.3. If P(AY ) is a TM-ideal of P(A), then the fiber bundle M(A) → M(A/Y ) admits a

section.

Proof. By Theorem 5.3.1 it suffices to prove that the bundle Confℓ+1(G) → Confℓ(G) has a section. For

v > 0 this follows from [Coh10, Example 4.1]. For the general case, note that this bundle is isomorphic

to the bundle π × id : Confℓ(G \ 0)× G → Confℓ−1(G \ 0)× G (see eg. [FN62, Theorem 4]). In order

to obtain a section of π, fix a coordinate direction in G. Given x = (x1, . . . , xℓ−1) ∈ Confℓ−1(G \ 0) let

µ(x) be the minimum of the (finite) set of (nonzero) distances of the xi from 0 in G. Then a section of

π is obtained by mapping x to (x1, . . . , xℓ−1, xℓ), where xℓ is the point of G at distance
µ(x)
2 from 0 in

the chosen coordinate direction. �

Corollary 5.3.4. The fundamental group of a strictly supersolvable linear, toric, or elliptic arrangement

has the structure of an iterated semidirect product of free groups.

Proof. We proceed by induction on the rank of Γ. If rk(Γ) = 1, then M(A) ∼= G \ {finitely many points}

with G = C, C×, or (S1)2, hence the fundamental group of M(A) is isomorphic to a free group. Now for

rk(Γ) > 1, there is a strictly supersolvable arrangement B for which M(A) → M(B) is a fiber bundle

with F ∼= G \ {finitely many points}. Using the homotopy long exact sequence for the fibration and

Corollary 3.4.4, we have a short exact sequence of fundamental groups

0 → π1(F ) → π1(M(A)) → π1(M(B)) → 0.

Corollary 5.3.3 implies that this short exact sequence is split, and hence

π1(M(A)) ∼= π1(F )⋊ π1(M(B)).

Since π1(F ) is a free group the result follows by induction. �

Lemma 5.3.5. Assume that G ∼= (S1)d × Rv and v > 0. The inclusion ι : M(A) → T induces a surjective

map of fundamental groups ι∗ : π1(M(A)) → π1(T ).

Proof. The product structure of G induces a decomposition

Hom(Γ,G) = Hom(Γ, (S1)d)×Hom(Γ,Rv).

Thus, every t ∈ Hom(Γ,G) is a pair t = (z, x) with z ∈ Hom(Γ, (S1)d) and x ∈ Hom(Γ,Rv). Now α ∈ Γ

is in ker(t) if and only if α ∈ ker(z) ∩ ker(x). Let M(AR) denote the complement of the arrangement

defined by A in Hom(Γ,Rv) ≃ Rvn. Let r ∈ M(AR). Then for all α ∈ A we have α 6∈ ker(r :

Γ → Rv) and so α 6∈ ker((z, r) : Γ → (S1)d × Rv) for every z ∈ Hom(Γ, (S1)d) ≃ (S1)dn. Thus

π−1
R

(r) ⊆ M(A), where πR denotes the natural projection T → Rvn induced by the projection G → Rv.

By definition of πR, we have T ≃ π−1
R

(r) × Rvn, hence the inclusion j : π−1
R

(r) →֒ T induces an

isomorphism of fundamental groups. Since j factors as a composition of inclusions Tc →֒ M(A) →֒ T ,

the homomorphism ι∗ : π1(M(A)) → π1(T ) is surjective as claimed. �

Theorem 5.3.6. Assume that G ∼= (S1)d × Rv and v > 0. Let Y be an admissible subgroup of T for

which M(A) → M(A/Y ) is a fiber bundle with fiber F . If the monodromy action of π1(M(A/Y )) on

H∗(F ;Z) is trivial, then P(AY ) is a TM-ideal of P(A). Consequently, the conclusions of Theorem 5.3.1 and

Corollary 5.3.3 hold, as well as the following tensor decomposition of vector spaces:

H∗(M(A);Q) ∼= H∗(M(A/Y );Q)⊗H∗(F ;Q).
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Proof. The conclusions of Theorem 5.3.1 and Corollary 5.3.3 will hold as long as P(AY ) is a TM-ideal

of P(A). The triviality of the monodromy action implies that the E2 term of the Serre spectral sequence

of the fiber bundle M(A) → M(A/Y ) can be expressed as the above tensor product. Since this tensor

product has Hilbert series equal to that of H∗(M(A);Q) via Corollary 5.2.6, the differentials must be

trivial. It remains to prove that if the monodromy action is trivial, then P(AY ) is a TM-ideal of P(A).

By Lemma 3.2.1 and Remark 5.1.3, if P(AY ) is not a TM-ideal, then there is H ∈ A \ AY such that

H ∩ Y is disconnected, hence it contains two points y0, y1 in distinct connected components. Since H

is path-connected, we can let γ denote a path from y0 to y1 in H . Then, p(γ) is a closed path in T/Y .

The element of π1(T/Y ) defined by the class of p(γ) determines a continuous map f : Y → Y with

f(y0) = y1 (by uniqueness of lifting).

The inclusions ι : M(A/Y ) →֒ T/Y and M(A) →֒ T define a bundle map from the fibration M(A) →

M(A/Y ) with fiber F to the trivial fibration T → T/Y with fiber Y .

By Lemma 5.3.5, there is a closed path γ′ in M(A/Y ) whose homotopy class maps to the class of

p(γ) under ι∗. The element of π1(M(A/Y )) defined by γ′ acts on F via f ′ := f|F , the restriction of f .

Now it is enough to prove that f ′ acts nontrivially on the cohomology of F .

Write k := dimG. The pair (Y, F ) has the (co)homology of a wedge of k-spheres, one for each punc-

ture of F . Thus we can consider the generators e0, e1 of Hk(Y, F ) corresponding to y0, y1. The map g

induced by f on Hk(Y, F ) satisfies g(e0) = e1. The functions f, f ′, g define the following automorphism

of the long exact sequence of the pair (Y, F ). (Note that v > 0 implies that the homological dimension

of G – hence of Y – is strictly less than k.)

· · · Hk−1(F ) Hk(Y, F ) Hk(Y ) = 0 · · ·

· · · Hk−1(F ) Hk(Y, F ) Hk(Y ) = 0 · · ·

∂

(f ′)∗ g

Since e0 ∈ Hk(Y, F ) is in the kernel of the differential, there is a ∈ Hk−1(F ) with ∂(a) = e0. Now

(f ′)∗(a) must map under ∂ to e1 = g(e0). Since e0 6= e1, we have a 6= (f ′)∗(a), showing that the action

of γ′ ∈ π1(A/Y ) on Hk−1(F ) is nontrivial. �

Remark 5.3.7. Let G = S1 × R. Then Confℓ(G) is equal to the complement of a fiber-type hyperplane

arrangement, namely the arrangement in Cℓ containing all diagonal and coordinate hyperplanes. As

such, the monodromy action of π1(Confℓ−1(G)) on the cohomology of the fiber G \ {ℓ − 1 points}

is trivial [FR85, Proposition 2.5]. Using Theorem 5.3.6, this implies a converse of Theorem 5.3.1:

whenever a toric arrangement bundle M(A) → M(A/Y ) is pulled back from a configuration space bundle

Confℓ(G) → Confℓ−1(G), P(AY ) is a TM-ideal of P(A).

Question 5.3.8. Let G be any connected abelian Lie group and Γ a finitely generated free abelian

group. Let A be an arrangement in T = Hom(Γ,G), and let Y be an admissible subgroup of T for

which M(A) → M(A/Y ) is a fiber bundle with fiber F . What is the monodromy action of π1(M(A/Y ))

on the cohomology of the fiber F?

We conclude with a formula relating the cohomology of a fiber-type toric arrangement with the lower

central series of its fundamental group. For this, recall the lower central series of a group.
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Definition 5.3.9. Let G be a group. The lower central series of G is defined as G = G1 ⊇ G2 ⊆

G3 ⊇ · · · where Gj+1 = [Gj ,G] for all j ≥ 1. For each j, let G(j) := Gj/Gj−1. When G is a finitely

generated group, each G(j) is a finitely-generated abelian group [MKS66, Theorem 5.4]. Then, we let

ϕj(G) denote the rank of G(j) as an abelian group.

Note that G(1) is the abelianization of G. In particular, if X is a topological space and G = π1(X) is

finitely generated, then G(1) ∼= H1(X) and ϕ1 is the first Betti number of X .

Theorem 5.3.10. Let A be a strictly supersolvable toric arrangement via the chain of TM-ideals P(A) =

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q1 ⊃ Q0 = 0̂. Let ai = |A(Qi) \ A(Qi−1)| for each i = 1, 2, . . . , n. Let G = π1(M(A))

be the fundamental group of the arrangement complement, and for each j ≥ 1 abbreviate ϕj = ϕj(G).

Then each G(j) is a free abelian group and

∞
∏

j=1

(1− tj)ϕj =
n
∏

i=1

(1 − (ai + 1)t),

which by Corollary 5.2.6 is equal to the Poincaré polynomial of M(A).

Proof. We proceed by induction on n, with both the base case and the inductive step relying on the fol-

lowing identity from [MKS66, p. 330 and Corollary 5.12.(iv)]. Let Fr be the free group on r generators,

and let Nr,j = ϕj(Fr). Then

(⋆)

∞
∏

j=1

(1 − tj)Nr,j = 1− rt.

Now, our base case is an arrangement of a1 points in C×, whose complement is the complement of

a1 +1 points in C. Thus, the fundamental group is a free group on r = a1 +1 generators, for which the

groups Fr(j) are free abelian and (⋆) is precisely the desired formula.

Now for n > 1, let Y ∈ P(A) be the subgroup for which Qn−1 = P(AY ). Let F be the fiber of the

bundle M(A) → M(A/Y ), so that π1(F ) ∼= Fr with r = an + 1. By Corollary 3.4.4 and Corollary 5.3.3,

we have a split short exact sequence of fundamental groups

1 π1(F ) π1(M(A)) π1(M(A/Y )) 1

Abbreviate G = π1(M(A)), ϕj = ϕj(G), G′ = π1(M(A/Y )), and ϕ′
j = ϕj(G

′). Then [FR85, Corollary

3.6] implies G(j) ∼= G′(j) ⊕ Fr(j) for every j ≥ 1. By our inductive hypothesis, each G(j) is a direct

sum of free abelian groups, hence it is also free abelian. This direct sum decomposition also implies

ϕj = ϕ′
j +Nr,j for every j ≥ 1, thus

∞
∏

j=1

(1− tj)ϕj =
∞
∏

j=1

(1− tj)ϕ
′
j

∞
∏

j=1

(1− tj)Nr,j

which by induction and (⋆) is equal to

n−1
∏

i=1

(1− (ai + 1)t)(1− (an + 1)t).

�
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