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We numerically study the density of topological defects for a two-dimensional assembly of parti-
cles driven over quenched disorder as a function of quench rate through the nonequilibrium phase
transition from a plastic disordered flowing state to a moving anisotropic crystal. A dynamical
ordering transition of this type occurs for vortices in type-II superconductors, colloids, and other
particle-like systems in the presence of random disorder. We find that on the ordered side of the
transition, the density of topological defects ρd scales as a power law, ρd ∝ 1/tβq , where tq is the time
duration of the quench across the transition. This type of scaling is predicted in the Kibble-Zurek
mechanism for varied quench rates across a continuous phase transition. We show that scaling with
the same exponent holds for varied strengths of quenched disorder. The value of the exponent can be
connected to the directed percolation universality class. Our results suggest that the Kibble-Zurek
mechanism can be applied to general nonequilibrium phase transitions.

INTRODUCTION

In systems that exhibit second-order phase transitions,
a disordered phase on one side of the transition, such as
a liquid or glass state, can be characterized by the pres-
ence of topological defects, while on the other side of the
transition, there is an ordered or defect-free state such
as a crystal. The defect-free ordered phase arises when
the parameter controlling the transition is changed very
slowly, so that the system remains in the adiabatic limit.
If the rate of change through the transition increases, a
portion of the topological defects do not have time to
annihilate, and persist on the ordered side of the transi-
tion. A scenario for understanding the behavior for var-
ied quench rates across a continuous phase transition is
the Kibble-Zurek (KZ) mechanism, which predicts a uni-
versal power law for the defect density ρd ∝ t−βq , where
tq is the time duration of the quench through the transi-
tion, so that slower quenches produce fewer defects [1–4].
The KZ mechanism has been studied in a variety of sys-
tems at the transition into an ordered phase, where the
scaling exponents can be related to the universality class
of the underlying phase transition [5–11].

The KZ scenario has generally been applied to sys-
tems that have equilibrium phase transitions; however,
there have been recent proposals to use the KZ scenario
to address transitions between different nonequilibrium
steady states [12–17], such as those that occur in op-
tical systems or for Rayleigh-Bènard convection, where
defects can arise in otherwise hexagonal ordered lattices.
Another class of nonequilibrium systems consist of as-
semblies of particles driven over quenched disorder that
also exhibit behavior consistent with a continuous phase
transition from a disordered state to an ordered state
[18–22] or from a dynamical fluctuating state to a non-

fluctuating state [23–26]. An open question is whether
the KZ scenario could also apply to nonequilibrium phase
transitions for varied sweep rates through the transition.
Nonequilibrium systems have several features that could
make them ideal for studying the KZ scenario. They
often contain very well defined topological defects, and
the transition can occur at T = 0, so that thermal ef-
fects such as critical coarsening on the ordered side of
the transition are absent.

One of the best examples of a system that shows evi-
dence for a continuous nonequilibrium phase transition as
a function of a continuously changing driving parameter
from a disordered fluctuating state with a high density of
topological defects to a dynamically ordered nonfluctuat-
ing state in which topological defects are scarce or absent
is superconducting vortices driven over quenched disorder
[18, 19, 27–38]. At T = 0 and in the absence of quenched
disorder, a superconducting vortex system forms a tri-
angular lattice free of defects; however, when quenched
disorder is present, a disordered state containing numer-
ous topological defects can appear that can be charac-
terized as a vortex glass [39]. A finite external drive
in the form of an applied current causes vortices in the
disordered state to depin and move [21, 39]. For drives
above depinning, the system enters a strongly fluctuating
or plastically flowing state in which there is a fluctuat-
ing number of topological defects, while at higher drives,
there is a critical driving force above which the vortices
dynamically order into a state with zero or a small num-
ber of topological defects [19, 21, 29–34]. This ordered
state is not isotropic but takes the form of a moving
anisotropic crystal [21, 30, 31, 33, 34] or a moving smec-
tic state [29, 31–35]. Here, a small number of topological
defects in the form of dislocations are present which have
their Burgers vectors aligned in the direction of the drive.
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The critical drive amplitude at which the ordering tran-
sition occurs is a function of vortex density and disorder
strength [21]. The ordering transition has been observed
experimentally by direct imaging [33, 36], neutron scat-
tering [27], changes in the noise [34, 35, 38], and changes
in transport curve features [18, 21, 28–30, 34, 37]. This
same type of dynamical ordering transition is general to
the broader class of particle-like assemblies driven over
quenched disorder, and it has been studied for colloidal
particles moving over disordered landscapes [20, 21, 40–
42], moving Wigner crystals [43], sliding charged sys-
tems [44], driven pattern forming states [45, 46], driven
dislocations [47], and magnetic skyrmions moving over
quenched disorder [48]. Since the transition from the dis-
ordered state to the ordered state is controlled by chang-
ing the driving amplitude, the number of topological de-
fects on the ordered side of the transition can be mea-
sured for varied drive sweep rates across the transition
to test the predictions of the KZ scenario.

Here, we numerically examine the density of defects in
driven vortex and colloidal systems at T = 0 for varied
driving sweep rates through the dynamical ordering tran-
sition. We find that the defect density obeys ρd ∝ τβq ,
where tq is the time required to go through the transi-
tion, consistent with the KZ scenario. The same behav-
ior appears for various values of the quenched disorder
and for both vortices and colloids moving over a ran-
dom substrate. The exponent we find in both systems is
β ≈ 0.39, which is consistent with an underlying transi-
tion that falls in a directed percolation (DP) universality
class, which often describes nonequilibrium phase tran-
sitions from fluctuating states to non-fluctuating states
[23, 24, 26]. These results could be tested experimentally
in superconducting vortex systems, colloids, or other
driven systems with quenched disorder. Our results also
imply that the KZ mechanism could be applied generally
to nonequilibrium phase transitions in the same way that
it has been applied to equilibrium phase transitions, and
that it could be tested in many other types of driven sys-
tems that show dynamical continuous transitions from
disordered to ordered states.

RESULTS

Modeling and characterization of the nonequilibrium
phase transition
We use a well-established simulation model for super-
conducting vortices driven over random disorder. The
vortices are represented as repulsively interacting point
particles which undergo a dynamical ordering transition
from a disordered plastic flow phase to a moving ordered
crystal or smectic state [19, 21, 29, 30, 34, 35]. We con-
sider a two-dimensional (2D) system of size L× L, with
L = 36λ in units of the London penetration depth, con-
taining a fixed number N of vortices produced by an

external magnetic field B = Bẑ. The vortex density is
nv = N/L2. The motion of vortex i at position Ri is
obtained by integrating the overdamped equation of mo-
tion

η
dRi

dt
= Fvv + Fppi + Fd, (1)

where the damping constant η = 1.0. The vortex-vortex
interaction force Fvvi =

∑N
j=1 f0K1(Rij/λ)R̂ij , whereK1

is the modified Bessel function, Rij = |Ri − Rj | is the

distance between vortex i and i, R̂ij = (Ri −Rj)/Rij ,
f0 = φ20/2πµ0λ

3, µ0 is the permeability of free space,
and φ0 = h/2e is the elementary flux quantum. The
modified Bessel function K1 falls off exponentially for
Rij/λ > 1.0. The vortices are confined to the x, y plane
and the magnetic field is applied in the z-direction. The
quenched disorder is modeled by Np randomly placed
harmonically attractive pinning sites of radius rp with

Fppi = −
∑Np

k=1(Fp/rp)(Ri−R(p)
k )Θ(rp−|Ri−R(p)

k |)R̂
(p)
ik

where Fp is the maximum pinning force, R
(p)
k is the loca-

tion of pinning site k, and R̂
(p)
ik = (Ri−R(p)

k )/|Ri−R(p)
k |.

The pinning density is np = Np/L
2. The driving force Fd

is applied uniformly to all the vortices, and corresponds
experimentally to a Lorentz force Fd = B× J = FDf0x̂,
where J is the applied current. The initial vortex con-
figurations are obtained using simulated annealing. We
increase the magnitude of the dimensionless driving force
from FD = 0 to a final maximum value over a total
time of tq in increments of ∆FD = 0.002. Time is re-
ported in dimensionless units achieved by scaling time
by τ = η/f0. We characterize the system by measuring
the average velocity per vortex in the driving direction,
〈V 〉 = N−1

∑N
i vi · x̂ and the fraction of sixfold coordi-

nated vortices P6 = N−1
∑N
i δ(zi − 6), where zi is the

coordination number of vortex i obtained from a Voronoi
construction. We also compute the fraction of topological
defects PD = 1− P6.
Numerical results
Figure 1 illustrates the effect of changing FD in the adi-
abatic limit for a system with nv = 1.0, np = 0.5,
Fp = 0.4, and rp = 0.3. In Fig. 1(a) we plot the av-
erage vortex velocity 〈V 〉 along with d〈V 〉/dFD versus
FD for tq = 7.5 × 106. If tq is increased to a larger
value, the curves remain nearly unchanged. Figure 1(b)
shows the corresponding fraction of sixfold coordinated
vortices P6 versus FD, where we would have P6 = 1 for
a triangular lattice. A depinning transition occurs near
FD = 0.06, and for FD < 0.225 we find P6 ≈ 0.64, in-
dicating a highly defected or disordered state in which
the vortices are undergoing plastic flow. In Fig. 2(a) we
show a Voronoi plot of a snapshot of the vortex positions
from the system in Fig. 1 at FD = 0.1, where numer-
ous dislocations are present. As Fig. 1(b) indicates, for
FD > 0.4 there is a regime in which P6 increases un-
til it reaches the value P6 = 0.98, where the vortices
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FIG. 1. Dynamical phase transition in a supercon-
ducting vortex system. (a) The velocity 〈V 〉 versus applied
drive FD (blue) and the corresponding d〈V 〉/dFD vs FD (red)
for a 2D superconducting vortex system with quenched disor-
der at vortex density nv = 1.0, pinning density np = 0.5, pin-
ning force Fp = 0.4, and pinning radius rp = 0.3. The curves
are obtained for a quench time of tq = 7.5×106, which is con-
sidered the adiabatic limit. (b) The corresponding fraction
of sixfold coordinated vortices P6 vs FD. A nonequilibrium
transition from a disordered state to an ordered state occurs
for FD ≈ 0.3. (c) Dynamical phase diagram as a function of
Fp versus FD for the same system highlighting the disordered
phase (green) and the dynamically ordered phase (blue). The
arrow indicates the direction in which the transition is crossed
at different sweep rates.
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y

FIG. 2. Vortex configurations on either side of the dy-
namical phase transition. Voronoi constructions of snap-
shots of the vortex positions in the system from Fig. 1 with
nv = 1.0, np = 0.5, Fp = 0.4, rp = 0.3, and tq = 7.5 × 106.
White polygons are sixfold coordinated, red polygons are sev-
enfold coordinated, and blue polygons are fivefold coordi-
nated. (a) FD = 0.1 in the disordered phase with numerous
defects. (b) FD = 1.5 in the dynamically ordered phase. The
vortex lattice is aligned in the driving direction and there is
a small number of aligned dislocations.
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FIG. 3. Transition from the disordered to the ordered
state for superconducting vortices as a function of
quenching speed. (a) P6 versus FD for the system in Fig. 1
with nv = 1.0, np = 0.5, Fp = 0.4, and rp = 0.3 at tq =
7.5×106, 3×106, 7.5×105, 3×105, 7.5×104, 3×104, 7.5×103,
3 × 103, and 750, from top to bottom. (b) The final defect
density PD = 1 − P6 at FD = 1.5 in the same system versus
tq. The solid line is a power-law fit with β = −0.385. (c)
PD versus tq for the same system at different values of Fp =
0.2 (blue squares), 0.4 (red circles), 0.6 (green diamonds),
0.8 (blue up triangles), 1.0 (orange right triangles), and 1.2
(purple down triangles). The solid line is a power law fit with
β = −0.39.

form an anisotropic triangular lattice of the type shown
in Fig. 2(b) at FD = 1.5 in the ordered state. Here
the lattice is aligned in the driving direction and con-
tains a small number of aligned dislocations, forming a
smectic state as studied previously [29–31, 33, 34]. The
critical force for the transition from the disordered state
to the dynamically ordered phase is F cD ≈ 0.3. We do
not observe any hysteresis across the transition, which
has features consistent with a second-order transition.
In Fig. 1(a), there is a peak in d〈V 〉/dFD in the plas-
tic flow phase near FD = 0.15 followed by a satura-
tion near FD = 0.3 to d〈V 〉/dFD ≈ 1.0, in agreement
with previous studies of the dynamical ordering transi-
tion [18, 28, 30, 35, 37, 38]. The critical driving force
for dynamic ordering also depends on the strength of the
disorder, as shown in Fig. 1(c) where we plot a dynamical
phase diagram for the system in Fig. 1(a,b) as a function
of Fp versus FD at tq = 7.5 × 106. The disordered and
ordered phases are highlighted, and the arrow illustrates
the direction in which we sweep across the transition at
different rates.

Now that we have established the driving force which
separates the disordered and ordered phases, we can cross
this transition for varied tq. In Fig. 3(a) we plot P6 versus
FD for the system in Fig. 1 at tq = 7.5×106, 3×106, 7.5×
105, 3×105, 7.5×104, 3×104, 7.5×103, 3×103, and 750,
showing that as the quench rate increases and tq becomes
smaller, the fraction of six-fold coordinated particles on
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FIG. 4. Final ordering of lattice at different quenching
speeds. Voronoi plots of the final FD = 1.5 state for the
system in Fig. 3(a,b) with nv = 1.0, np = 0.5, Fp = 0.4, and
rp = 0.3 at (a) tq = 7.5× 103, (b) 3× 104, (c) 7.5× 104, and
(d) 3× 105. The number of defects is larger for smaller tq or
a faster sweep rate.

the ordered side of the critical transition value F cD = 0.3
drops.

We illustrate Voronoi plots of the final FD = 1.5 state
for the system in Fig. 3 at tq = 7.5 × 103 in Fig. 4(a),
tq = 3 × 104 in Fig. 4(b), tq = 7.5 × 104 in Fig. 4(c),
and 3 × 105 in Fig. 4(d), indicating that the number of
remaining defects is larger for smaller tq. Figure 2(b)
shows the same sample in the adiabatic limit with tq =
7.5 × 106. The defects that appear on the ordered side
of the transition generally take the form of dislocations
composed of pairs of fivefold and sevenfold coordinated
particles. At larger tq, the dislocations have their Burgers
vectors oriented in the direction of drive, giving rise to
a smectic ordering in which the system can be regarded
as a set of one-dimensional (1D) moving channels. In
Fig. 3(b) we plot PD = 1−P6, the density of topological
defects at the final FD = 1.5 state on the ordered side
of the transition, versus tq. We find PD ∝ tβq , where
the solid line indicates a fit with β = −0.385. The KZ
scenario predicts a power law decay of PD with increasing
tq. If we choose a final value of FD which is closer to but
still above the critical transition drive Fc, the scaling
is not as good at smaller tq but we still find the same
exponent for the larger values of tq.

The plots of PD versus tq in Fig 3(c) indicate that
the same scaling behavior remains robust over a range of
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FIG. 5. Transition from the disordered to the ordered
state for colloidal particles as a function of quenching
speed. (a) P6 versus FD for a colloidal system with colloid
density nc = 1.0, np = 0.5, Fp = 1.0, and rp = 0.35 at
tq = 3×106, 7.5×105, 3.0×105, 7.5×104, 3.0×104, 7.5×103,
750, 300, and 75, from top to bottom. (b) The defect density
PD vs tq for the system in (a) obtained at FD = 2.5. The
solid line is a power-law fit with β = −0.39.

different values of Fp from Fp = 0.2 to Fp = 1.2. Since
Fc varies with Fp, for each sample we select a final value
of FD that is the same distance above Fc for consistency.
The straight line is a power-law fit with β = 0.39. For
large Fp, the scaling at larger values of tq is not as good
because more defects become trapped by the pinning.

In addition to superconducting vortices, we have also
considered colloidal particles driven over quenched dis-
order. Here we use the same type of overdamped simu-
lations but replace the particle-particle interactions by
the Yukawa or screened Coulomb potential U(rij) =
A exp(−κrij)/rij [49], with κ = 1.0 and A = 0.1. The
colloidal particles experience a stronger short-range re-
pulsion than the vortices. In experiments, various types
of random quenched disorder can be introduced along
with an external driving force [42, 50], and the number
of topological defects can be measured with imaging tech-
niques [50, 51]. In Fig. 5(a) we show P6 versus FD in a
colloidal system with colloidal density nc = 1.0, np = 0.5,
Fp = 1.0, and rp = 0.35 at tq = 3 × 106, 7.5 × 105,
3.0×105, 7.5×104, 3.0×104, 7.5×103, 750, 300, and 75,
where the final P6 decreases for smaller tq. In Fig. 5(b)
we plot the final value of PD at FD = 2.5 versus tq for
the system in Fig. 5(a). The solid line is a power-law fit
with β = −0.39, similar to the exponent obtained for the
vortex case.

DISCUSSION

We can ask whether the scaling exponent we obtain can
be related to possible universality classes of the dynam-
ical transition. In the KZ scenario, the scaling exponent
obeys β = (D − d)ν/(1 + zν), where ν and z are crit-
ical exponents associated with the universality class of
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FIG. 6. Defect density scaling in the vortex and
colloid systems. Dimensionless scaling plots of PD versus
FD/t

α
q , where tq is the quench time and where α = 0.625. (a)

The vortex system from Fig. 3(a). (b) The colloidal system
from Fig. 5(a).

the underlying phase transition, D is the spatial dimen-
sion of the system, and d is the dimension of the defect.
For a 2D Ising model with D = 2, β = 2/3, which is
not what we observe; however, since the defects in our
sample are all aligned in the driving direction, our sys-
tem is closer to coupled 1D channels, which would give
β = 1/3. Recent simulations of certain quenched 2D spin
ice models give β = 0.31 [52]. A more likely candidate
for the universality class of a nonequilibrium system is
directed percolation (DP) [23], where the critical expo-
nents depend on the effective dimension of the dynamics.
If we assume dynamics of dimension 1+1, we would have
z = 1.58 and ν = 1.097 [23], giving β = 0.401, which is
in agreement with the values we observe. We argue that
the 1 + 1 dynamics may be relevant since the topological
defects are mostly aligned in a single direction on the or-
dered side of the transition, and the relevant length scale
could be the distance between the defects in the direction
of drive rather than perpendicular to the drive.

In the KZ scenario, the lag time between the nonequi-
librium and equilibrium value is given by the freeze-out
time t̂ ∝ tzνq /(1 + zν) [4]. Since the value of the driving
force FD is a function of time, and since FD and tq are
dimensionless, this implies that the defect fraction should
scale as PD ∝ FD/t

α
q , where tq is the quench time. In

Fig. 6(a) we illustrate this scaling for the vortex system
from Fig. 3(a) and in Fig. 6(b) we show the scaling for
the colloidal system from Fig. 5(a). In each case, the
scaling exponent is α = 0.625. The KZ prediction gives
zν/(1+zν) = α, where plugging in the scaling exponents
for 1+1 directed percolation [23] leads to α = 0.632, con-
sistent with the exponents we find.

To better understand why the dynamics is 1+1 dimen-
sional, in Fig. 7(a) we illustrate the colloidal positions
and trajectories on the disordered side of the transition
for a subset of the system in Fig. 5 at FD = 0.25 and

x(a)

y

x(c)

y

x(b)

y

x(d)

y

FIG. 7. Disordered and 1+1 dimensional flow below
and above the dynamical phase transition. (a) The col-
loid positions (red circles) and trajectories (lines) for a subset
of the system in Fig. 5 with nc = 1.0, np = 0.5, Fp = 1.0,
and rp = 0.35 at tq = 7.5 × 105 and FD = 0.25, showing 2D
disordered flow. (b) The corresponding Voronoi plot showing
a high defect density. (c) The colloid positions and trajecto-
ries in the same system at FD = 1.5 showing 1D channeling.
(d) The corresponding Voronoi plot showing that all of the
topological defects are aligned in the same direction.

tQ = 7.5 × 105, showing strongly disordered flow occur-
ring in both the x and y directions. The corresponding
Voronoi plot in Fig. 7(b) contains a high defect density,
similar to what is observed in the vortex system in the
disordered phase. Figure 7(c) shows the positions and
trajectories of the colloids on the ordered side of the tran-
sition at FD = 1.5. Here the dynamics are strictly 1D
in character, and the topological defects are all aligned
in the direction of drive as shown in Fig. 7(d). In the-
oretical work for particles moving over random disorder
in 2D, it is argued that the strongly driven case can be
considered as a series of coupled 1D channels that slide
past one another to form a moving smectic state [31, 32].
This 1D channeling could explain why the dynamics pro-
duce scaling exponents consistent with 1 + 1 DP rather
than 2 + 1 DP.

In conclusion, we have investigated the evolution of
the density of defects across a dynamical disorder to or-
der nonequilibrium phase transition for driven particles
moving over quenched disorder as we vary the quench
rate. We find that the defect density scales as a power
law with quench rate, in agreement with the predictions
of the Kibble-Zurek scenario. For both superconducting
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vortices and colloidal assemblies, we find a scaling expo-
nent of β ≈ −0.39, which is consistent with an underly-
ing transition that falls in the 1+ 1 directed percolation
universality class since the ordered system forms a mov-
ing smectic state in which the defects are aligned in 1D
chains. Experimentally, our predictions could be tested
in superconducting vortex systems using various imaging
and transport measures that have previously been shown
to be correlated with the number of defects in the vortex
lattice [28]. Direct imaging of the dynamics is feasible
using colloidal systems, and it would also be possible to
consider ac drives which would avoid edge effects. Our
results suggest that the Kibble-Zurek scenario can be ap-
plied to more general non-equilibrium continuous phase
transitions, particularly those between disordered and or-
dered states. Our results also imply that a system un-
dergoing a directed percolation transition could exhibit
features of the Kibble-Zurek scenario provided that some
type of well-defined defect structure can be identified.
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