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APPLICATIONS OF THE QUANTIFICATION

OF SUPER WEAK COMPACTNESS

G. GRELIER, M. RAJA

Dedicated to our friend Gilles Godefroy with admiration and gratitude.

Abstract. We introduce a measure of super weak noncompactness Γ defined for bounded
linear operators and subsets in Banach spaces that allows to state and prove a characterization
of the Banach spaces which are subspaces of a Hilbert generated space. The use of super weak
compactness and Γ casts light on the structure of these Banach spaces and complements the
work of Argyros, Fabian, Farmaki, Godefroy, Hájek, Montesinos,
Troyanski and Zizler on this subject. A particular kind of relatively super weakly compact
sets, namely uniformly weakly null sets, plays an important role and exhibits connections
with Banach-Saks type properties.

1. Introduction

Along the paper X is a real Banach space, its unit ball is denoted BX and X∗ stands for
the dual. In general, our notation is quite standard and the knowledge requirements minimal,
however we can address the reader to [24, 36] for any unexplained notation or concept. Ul-
trapowers are a powerful tool to provide brief equivalent definitions of the main notions here
(see [33] for an account of that method in Banach space theory). Here we will consider only
ultrafilters on N, although the theory is much richer allowing arbitrary cardinals. Given a
free ultrafilter U , recall that XU is the quotient of ℓ∞(X) by the subspace of those (xn)n∈N
such that limn,U ‖xn‖ = 0. A Banach space is said to be super-reflexive if for some (or,

equivalently, any) nontrivial ultrafilter U on N, its ultrapower XU is reflexive. The most rep-
resentative results on super-reflexive Banach spaces are James’ characterizations [35], Enflo’s
uniformly convex renorming [20] and Pisier’s applications to Banach valued martingales and
renormings with power type modulus [42]. See the books [7, 24] for an account on the theory
of super-reflexive spaces.

Beauzamy [5] introduced an operator version of super-reflexivity under the name of uni-
formly convexifying property (of an operator), but it was later renamed. An operator T :
X → Y is said to super weakly compact (SWC) if the induced operator TU : XU → Y U is
weakly compact for any ultrafilter U (equivalently, a free ultrafilter on N). Note that we can
think of taking ultrapowers for a fixed ultrafilter U as a funtor on the category of Banach
spaces. The set of super weakly compact operators is an operator ideal denoted by W

super.
Notably, W

super is a symmetric ideal, that is, T ∈ W
super if and only if T ∗ ∈ W

super. See
[5, 6, 19, 32] for more properties of Wsuper and its relation with other operator ideals. See also
[49] for characterizations in terms of martingale type and cotype, and [13] for a nonlinear char-
acterization. All the operators considered in this paper are supposed to be linear and bounded.
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A localized version of super-reflexivity was introduced by the second named author in [43]
for convex sets (and, somehow more generally, for non-linear maps) with the name of finitely
dentable sets. The more natural name super weakly compactness was introduced in [14].
Given a set A ⊂ X we will denote AU the subset of XU whose elements have a representative
in AN. A set A ⊂ X is said to be relatively super weakly compact (relatively SWC) if AU is
a relatively weakly compact subset of XU for some (or, equivalently, any) free ultrafilter U .
Moreover, A ⊂ X is said to be super weakly compact (SWC, of course) if it is relatively super
weakly compact and weakly closed. The class of SWC sets lies strictly between the norm
compact and the weakly compact subsets. The theory of SWC sets has been developed during
the last 15 years in a series of papers [43, 14, 15, 44, 50, 16, 47, 48, 38, 30].

Super weak compactness is more widespread than it may appear. For instance, any weakly
compact operator with range L1(µ) (µ any measure) or domain C(K) (K any Hausdorff com-
pact) is super weakly compact, see [38, Proposition 6.1]. Actually, some results in Banach
space theory could be understood in terms of super weak compactness. As for instance, the
classic Szlenk result establishing that a weakly convergent sequence in L1(µ) has a subse-
quence whose Cesàro means converge (to the same limit) is a consequence of two facts: the
weakly compact subsets of L1(µ) are SWC; and the SWC sets have the Banach-Saks property
[38, Corollary 6.3]. In relation with the structure of nonseparable Banach spaces, the second
named author [44] showed the role of SWC generated (and strongly generated) Banach spaces
among the subspaces of Hilbert generated spaces.

The aim of this paper is to show that, actually, super weak compactness and, particularly,
its quantification, may cast light on the structure of the subspaces of Hilbert generated Banach
spaces. Indeed, we have realized that several “technical hypotheses” in papers of Troyanski
[46], Argyros and Farmaki [3], and the series by Fabian, Godefroy, Hájek, Montesinos and
Zizler [27, 23, 22, 26] on the structure of Hilbert generated spaces and uniformly Gâteaux
renorming, can be understood in terms of a quantified version of super weak compactness.

For a better understanding of our main result, we will state firstly the “non uniform version”
with the help of a measure of weak noncompactness. Let A ⊂ X be a bounded set, then take

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗}.

We have that a set A is relatively weakly compact if and only if γ(A) = 0. This measure has
been studied in [25, 29, 11], see also [34, Section 3.6], and there are several measures of weak
noncompactness that turn out to be equivalent [1].

Theorem 1.1 ([8, 28]). For a Banach space X the following statements are equivalent:

(i) X is a subspace of a WCG space;
(ii) (BX∗ , w∗) is an Eberlein compact;

(iii) For every ε > 0 there are sets (Aε
n) such that BX =

⋃∞
n=1 A

ε
n and γ(Aε

n) < ε.

The equivalence (i)⇔(ii) is due to Benyamini, Rudin and Wage [8]. The inner characteri-
zation (iii) was obtained by Fabian, Montesinos and Zizler [28]. Recall that WCG stands for
weakly compactly generated, that is, a Banach space that contains a weakly compact subset
whose linear span is dense. Thanks to the celebrated interpolation result of Davis, Figiel,
Johnson and Pe lczyński [17] (see also [24, Theorem 13.22]), a Banach space X is WCG if and
only if there exists a reflexive space Z and an operator T : Z → X with dense range. Moreover,
if the space Z can be taken a Hilbert space, we say that X is Hilbert generated. The name
Eberlein applies to the compact spaces which are homeomorphic to a weakly compact set of



APPLICATIONS OF THE QUANTIFICATION OF SUPER WEAK COMPACTNESS 3

a Banach space. It is well known after Amir and Lindenstrauss (see [24, Corollary 13.17], for
instance) that an Eberlein compact embeds as a weakly (equivalent, bounded and pointwise)
compact subset of c0(I) for I large enough. If such an embedding can be done into a Hilbert
space ℓ2(I), then the compact is said to be uniformly Eberlein. Note that the third statement
in Theorem 1.1 is actually an internal characterization as it is written in terms of the space
X, not an over-space or its dual. A different matter is if the computation of γ requieres the
use of the over-space X∗∗, as we will see later there are equivalent definitions of γ that does
not appeal to the bidual space.

Let us prepare the way to state the uniform analogue of Theorem 1.1. We will requiere the
following measure of super weak noncompactness: for a bounded set A ⊂ X take

Γ(A) := γ(AU )

where U is a free ultrafilter and γ is computed in XU . Later we will see that Γ does not
depend, essentially, on the choice of the ultrafilter U . Obviously, we have that A is relatively
SWC if and only if Γ(A) = 0, and an operator T : X → Y is SWC if and only if Γ(T (BX)) = 0.
Now we are ready to state our main result. Please, note the parallelism with Theorem 1.1.

Theorem 1.2. For a Banach space X the following statements are equivalent:

(i) X is a subspace of a Hilbert generated space;
(ii) (BX∗ , w∗) is a uniform Eberlein compact;

(iii) For every ε > 0 there are sets (Aε
n) such that BX =

⋃∞
n=1 A

ε
n and Γ(Aε

n) < ε.

Again, the equivalence (i)⇔(ii) goes back to Benyamini, Rudin and Wage [8]. Moreover,
there are also some other equivalent conditions in terms of uniformly Gâteaux renorming
coming from [27, 23, 22, 26] (see also [34]) that would spoil the nice analogy with Theorem
1.1. We will say more on this matter later. Also, in relation with our Theorem 1.2, we
will prove that we can change BX in (iii) by any linearly dense subset of X, see Theorem
5.2. Also, in order to apply statement (iii) is quite relevant the fact that Γ can be computed
in several fashions, some of them without ultrapowers neither over-spaces, see Proposition 3.2.

Previous works on uniformly Gâteaux renorming by Fabian, Godefroy, Hájek and Zizler [22],
as well as early results by Troyanski [46], unawarely contain estimations of Γ. The explanation
will come through the following result.

Proposition 1.3. Let A ⊂ X a bounded subset and consider the two following numbers:

(ε1) is the infimum of the ε > 0 such that there is n1 ∈ N such that for every x∗ ∈ BX∗

then

|{x ∈ A : |x∗(x)| > ε}| ≤ n1;

(ε2) is the infimum of the ε > 0 such that there is n2 ∈ N such that for any finite set B ⊂ A
with |B| ≥ n2 then

∥

∥

∥

∥

∥

1

|B|

∑

x∈B

x

∥

∥

∥

∥

∥

< ε.

Then ε1 = ε2 and in such a case Γ(A) ≤ ε1.

The sets satisfying the statements of Proposition 1.3 with ε1 = ε2 = 0 will be called
uniformly weakly null sets. Note that a uniformly weakly null set becomes SWC by adding
{0}. Together with unit balls of super-reflexive spaces, uniformly weakly null sets are the
most prototypical examples of SWC sets. As we will see, SWC sets with some reasonable
discreteness assumption are uniformly weakly null. Note that the second statement (ε2) is a
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sort of uniform Banach-Saks property (with unique limit 0). That will allow us to apply re-
sults of infinite combinatorics, such as the Erdös-Magidor [21] and Mercourakis [40] selections.

The structure of the paper is as follows. Section 2 covers some new aspects on super
weak compactness with special emphasis on uniformly weakly null sets. There, we show that
the Eberlein-Šmulian theorem fails for super weak compactness. In section 3, we study the
properties of the measure Γ and we show several different ways to compute or estimate it.
Our results depends on some equivalent forms for γ, that may be of independent interest.
Section 4 deals with the application of Γ to operators. In particular, we prove a quantified
version of the symmetry of the ideal Wsuper, as well as a quantified version of Beauzamy’s
renorming to make uniformly convex a super weakly compact operator. Section 5 is devoted
to the proof of Theorem 1.2, actually a more general version, and an application to Jordan
algebras. Finally, section 6 contains more results on uniformly weakly null sets. We investigate
when a Schauder basis is uniformly weakly null, and the relation of uniformly weakly null sets
with the representation of uniformly Eberlein compacts. Let us point out that the atypically
long list of references is a consequence of the, hitherto unnoticed, transversality of super weak
compactness in Banach space theory.

2. Some remarks on super weak compactness

One big issue dealing with super weak compactness is the lack of representation for (XU )∗,
except when X is super-reflexive. In such a case, (XU )∗ = (X∗)U . Otherwise, (X∗)U is a
proper subspace of (XU )∗. The identification is done by the assignment

〈(x∗n), (xn)〉 := lim
n,U

x∗n(xn).

A subset B ⊂ BX∗ is called a boundary (of X) if for every x ∈ X there exists x∗ ∈ B such
that ‖x‖ = x∗(x). A norming subspace Z ∈ X∗ is called a boundary if BZ = Z ∩ BX∗ is a
boundary in the previous sense. We have the following.

Theorem 2.1. Let X be Banach space and let U be any free ultrafilter. Then (X∗)U is a
boundary for XU . Therefore, the relatively weakly compact subsets of XU are exactly those
which are relative compact for the topology of pointwise convergence on the elements from
(X∗)U .

Proof. Indeed, for every n ∈ N take x∗n such that x∗n(xn) = ‖xn‖. The second statement
comes from Pfitzner’s solution [41] to Godefroy’s boundary problem.

The most typical example of SWC set is the unit ball of a super-reflexive Banach space.
Now we will introduce another family of (relatively) SWC sets which will be more relevant to
the results of this paper. We say that a subset A ⊂ X is uniformly weakly null if for every
ε > 0 there is n(ε) ∈ N such that, for every x∗ ∈ BX∗ ,

|{x ∈ A : |x∗(x)| > ε}| ≤ n(ε).

Note that any sequence made of different points of a uniformly weakly null set is a weakly null
sequence. Therefore, uniformly weakly null sets are relatively weakly compact (and become
weakly compact just by adding 0). We have something better.

Theorem 2.2. Let A ⊂ X be a uniformly weakly null set and let U be any free ultrafilter.
Then AU is uniformly weakly null in XU and, therefore, A is relatively super weakly compact
in X.
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Proof. Let x1, . . . , xn ∈ AU be different vectors, x∗ ∈ B(XU )∗ and ε > 0 such that |x∗(xk)| > ε

for every 1 ≤ k ≤ n. We claim that for ε′ < ε, there are different elements x1, . . . , xn ∈ A and
x∗ ∈ BX∗ with |x∗(xk)| > ε′. Indeed, the proof that X is finitely representable in XU (see [7,
p. 222] for instance), provides those x1, . . . , xn ∈ X in such a way that Y = span{x1, . . . , xn}
and Y = span{x1, . . . , xn} are ε/ε′-isomorphic. Moreover, the vector xk is found on the “co-
ordinates” of xk, so we may assume xk ∈ A for all k. Then T : Y → Y be the isomorphism.
Let x∗ be the Hahn-Banach extension of (ε′/ε)x∗ ◦ T . Then, x∗ ∈ BX∗ and |x∗(xk)| > ε′ for
all 1 ≤ k ≤ n as desired. That claim shows that AU have to be uniformly weakly null. Now
we have AU is weakly compact in XU and thus A is SWC.

A sequence (xn) that is a uniformly weakly null set is called uniformly weakly null sequence.
A sequence (xn) is uniformly weakly convergent to x if (xn − x) is a uniformly weakly null
sequence. The fact that a uniformly weakly convergent sequence together its limit is a super
weakly compact set was noted in [16]. Uniformly weakly convergent sequences are closely
related to the Banach-Saks property. A sequence (xn) is said to be Cesàro convergent if the
sequence of its arithmetic means

n−1
n
∑

k=1

xk

converges (in norm) to some x ∈ X. A set A ⊂ X is said to have the Banach-Saks property
if every sequence (xn) ⊂ A has a Cesàro convergent subsequence. Recall that relatively
SWC sets are Banach-Saks [38, Corollary 2.4]. The relations between both properties is an
interesting topic, although we will not deal here with the Banach-Saks property in general.
Let us introduce the following “ephemeral” definition. A set A ⊂ X is said to be uniformly
Banach-Saks null if for every ε > 0 there is n(ε) such that whenever B ⊂ A is finite with
|B| ≥ n(ε) then

|B|−1

∥

∥

∥

∥

∥

∑

x∈B

x

∥

∥

∥

∥

∥

< ε.

Proposition 1.3 has the following consequence.

Corollary 2.3. Let A ⊂ X be a bounded subset. Then A is uniformly Banach-Saks null if
and only if it is uniformly weakly null.

Proof of Proposition 1.3. Let r > 0 such that A ⊂ rBX . Take ε > ε1 and fix the
corresponding number n1. For n > n1 and any B ⊂ A with |B| = n we have

|x∗(
∑

x∈B

x)| < n1r + (n− n1)ε

for every x∗ ∈ BX∗ . Therefore

n−1

∥

∥

∥

∥

∥

∑

x∈B

x

∥

∥

∥

∥

∥

<
n1r

n
+

(

1 −
n1

n

)

ε

Since the bound can be taken arbitrarily closed to ε independently from B if n is large enough,
we have that ε2 ≤ ε1. That proves the equality ε1 = ε2 in case ε1 = 0. Assume now that
ε1 > 0 and take 0 < ε < ε1. Then, for every n ∈ N we can find C ⊂ A with |C| = 2n and
x∗ ∈ BX∗ such that x∗(x) > ε or x∗(x) < −ε for all x ∈ C. Since at least one half of the
elements satisfies the same inequality, we may find B ⊂ C such that |B| = n and

|x∗(
∑

x∈B

x)| > nε.
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Therefore, we have

n−1

∥

∥

∥

∥

∥

∑

x∈B

x

∥

∥

∥

∥

∥

> ε,

that implies ε2 ≥ ε1. Now, note that the first statement implies

A
w∗

⊂ A ∪ ε1BX∗∗ ⊂ X + ε1BX∗∗

and so γ(A) ≤ ε1. In order to pass to Γ, just follow the ideas in the proof of Theorem 2.2 or
check that the property of the second statement is stable by ultrapowers. In any case, we get
that Γ(A) ≤ ε1.

Remark 2.4. The proof of the equivalence shows that it is enough to check condition (ε2) for
x∗ from a norming subset of BX∗ .

Mercourakis [40] improvement of the Erdös-Magidor [21] dichotomy for bounded sequences
can be stated in this way (see also [39] for related results and references).

Theorem 2.5 (Mercourakis). Let (xn) ⊂ X a bounded sequence. Then there exists a subse-
quence (xnk

) of (xn) for which one of the following statements holds:

(i) either, (xnk
) is uniformly weakly convergent;

(ii) or, no subsequence of (xnk
) is Cesàro convergent.

The celebrated Eberlein-Šmulian theorem, see [24] for instance, says that weak compactness
is determined by sequences. As an application, we get that there is no Eberlein-Šmulian
for super weak compactness. That is, the fact that every sequence has a relatively SWC
subsequence does not imply that the set is relatively SWC.

Corollary 2.6. Let A ⊂ X be a relatively super weakly compact set. Then every sequence
(xn) ⊂ A contains a uniformly weakly convergent subsequence. However, this property does
not characterize the super weakly compactness. Actually, it characterizes the Banach-Saks
property.

Proof. For a Banach-Saks set the dichotomy 2.5 always produces a uniformly weakly con-
vergent subsequence. On the other hand, every uniformly convergent sequence is Cesàro
convergent. Therefore, the Banach-Saks property is characterized by sequences. The other
statements follow from the fact that relatively SWC sets are Banach-Saks and there exist
Banach-Saks sets which are not relatively SWC [38, Corollary 2.5].

3. Different ways to quantify SWC

Measures of noncompactness can be defined in very general settings. Here we will restrict
ourselves to the frame of topological vector spaces. Let X be a topological vector space and
let K be a vector bornology of compact subsets (that just means the class is stable under
some elementary operations). A measure of noncompactness associated to K is a nonnegative
function µ defined on the bounded subsets of X that satisfies the following properties:

(1) µ(A) = µ(A)
(2) µ(A) = 0 if and only if A ∈ K

(3) µ(A ∪B) = max{µ(A), µ(B)}
(4) µ(λA) = |λ|µ(A) for all λ ∈ R

(5) µ(A + B) ≤ µ(A) + µ(B)
(6) there exists k > 0 such that µ(conv(A)) ≤ k µ(A)
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This list of conditions comes from the usual requirements in literature [2] and some proper-
ties enjoyed by several measures that are interesting for Banach space geometry, such as γ or
the family of measures introduced in [37] in relation with the Szlenk index. Condition (6) is
usually the most tricky and necessarily requieres that the class K be stable by closed convex
hulls (Krein-type theorem).

The quantification of the super weak non-compactness is linked to the quantification of
the weak non-compactness. De Blasi (see [1], for instance) introduced a measure of weak
noncompactness ω as follows

ω(A) = inf{ε > 0 : ∃K ⊂ X weakly compact, A ⊂ K + εBX}.

It is not hard to check that ω enjoys all the properties above. In particular, we have

ω(conv(A)) = ω(A),

that is, its “convexifiability constant” is 1. Another quite natural way to measure weak
noncompactness, is the function γ mentioned in the introduction

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗} = sup{d(X,x∗∗) : x∗∗ ∈ A
w∗

}.

It is easy to check that γ(A) ≤ ω(A) for any bounded set A ⊂ X. However, there is no
constant c > 0 such that ω(A) ≤ c γ(A) in general, see [1, Corollary 3.4]. That fact says that
ω and γ are not equivalent. The measure γ was introduced in [25] where the authors also
proved ([29] independently, see also [34, Theorem 3.64]) that

γ(conv(A)) ≤ 2 γ(A)

for any bounded A ⊂ X. Notably, there are many different equivalent ways to deal with
γ which are interesting to us because they have a “super” version. The following contains
the quantified version of two classic James’ characterizations of relative weak compactness
together with the quantified version of Grothendieck’s commutation of limits criterion.

Proposition 3.1. Let A ⊂ X be a bounded set. Consider the following numbers:

(γ1) = γ(A);
(γ2) the supremum of the numbers ε ≥ 0 such that there are sequences (xn) ⊂ A and

(x∗n) ⊂ BX∗ such that x∗n(xm) = 0 if m < n and x∗n(xm) ≥ ε if m ≥ n;
(γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C

such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;
(γ4) the infimum of the numbers ε ≥ 0 such that

| lim
n

lim
m

x∗n(xm) − lim
m

lim
n

x∗n(xm)| ≤ ε

whenever (xn) ⊂ A, (x∗n) ⊂ BX∗ and the iterated limits exist.

Then γ1 ≤ γ2 ≤ γ3 ≤ γ4 ≤ 2γ1.

Proof. Take ε < γ(A) and let x∗∗ ∈ A
w∗

with d(X,x∗∗) > ε. We will build sequences
satisfying the second statement for such an ε. Indeed, there exists x∗1 ∈ BX∗ with |x∗∗(x∗1)| > ε.
Now take x1 ∈ A such that x∗1(x1) ≥ ε. Assume we have xk and x∗k already built for 1 ≤ k < n
and it is satisfied x∗∗(x∗k) > ε. An elementary application of Helly’s theorem [24, p. 159] to
X∗∗ allows us to choose x∗n ∈ BX∗ such that x∗n(xk) = 0 for 1 ≤ k < n and x∗∗(x∗n) > ε. Now
we take

xn ∈ A ∩ {x ∈ X : x∗k(x) > ε, 1 ≤ k ≤ n}

since the set is nonempty. That finishes the construction of the sequence and proves γ1 ≤ γ2.
The inequality γ2 ≤ γ3 follows straight. In order to prove γ3 ≤ γ4, take ε < γ3, and sequence
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(xn) as in the statement (γ3). For every n ∈ N, take x∗n ∈ BX∗ such that x∗n(y) ≤ ε + x∗n(z)
for every y ∈ conv{x1, . . . , xn} and z ∈ conv{xn+1, xn+2, . . . }. The sequences satisfies the
following property

x∗n(xp) ≤ ε + x∗n(xq)

whenever p ≤ n < q. Passing to a subsequence, we may assume the existence of the limits
limn x

∗
n(xm) and limm x∗n(xm), as well as the existence of the iterated limits. In such a case

we will get
lim
m

lim
n

x∗n(xm) ≤ ε + lim
n

lim
m

x∗n(xm)

which implies ε ≤ γ4, and therefore γ3 ≤ γ4. Finally, γ4 ≤ 2γ1 is proved in [1].

Now we will state the “super” version of Proposition 3.1, for which we prefer to avoid a
uniform version of Grothendieck’s commutation of limits (fourth statement).

Proposition 3.2. Let A ⊂ X. Consider the following numbers:

(Γ1) = γ(AU ) measured in XU for U a free ultrafilter;
(Γ2) the infimum of the numbers ε > 0 such that there are no arbitrarily long sequences

(xk)n1 ⊂ A, (x∗k)n1 ⊂ BX∗ with x∗k(xj) = 0 if j < k and x∗k(xj) > ε if j ≥ k;
(Γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C

such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;

Then Γ1 ≤ Γ2 ≤ Γ3 ≤ 2Γ1.

Proof. The fact Γ1 ≤ Γ2 follows straight by applying finite representatibity to inequality
ε1 ≤ ε2 in Proposition 3.1. It is quite easy to get Γ2 ≤ Γ3, and Γ3 ≤ 2Γ1 follows using the
standard ultrapower technique, (see also Theorem 3.4 below where the convex case is consid-
ered).

Recall that Γ1 is the measure introduced at the introduction

Γ(A) := γ(AU )

that depends on the choice of U . From now on, we will assume the free ultrafilter U is fixed
when speaking of Γ or dealing with the ultrapowers. Note that the equivalent measures Γ2

and Γ3 does not depend on any ultrafilter. Moreover, Γ3 does not involves explicitly the dual
space. In next section we will use Γs(A) = Γ2 as an alternative to Γ(A).

Proposition 3.3. Let T : X → Y be an operator and let A ⊂ X be a bounded set. Then
Γ(T (A)) ≤ ‖T‖Γ(A).

Proof. Firstly, we will prove a similar statement for γ. Consider T ∗∗ : X∗∗ → Y ∗∗ which is
weak∗ to weak∗ continuous. For any bounded set A ⊂ X we have

T (A)
w∗

= T ∗∗(A
w∗

) ⊂ T (X) + εT ∗∗(BX∗∗) ⊂ Y + ε‖T‖BY ∗∗

where ε > γ(A). Therefore γ(T (A)) ≤ ‖T‖ γ(A). In order to prove the statement for Γ,
consider the induced operator TU : XU → Y U . Then we have

Γ(T (A)) = γ(TU (AU )) ≤ ‖TU ‖γ(AU ) = ‖T‖Γ(A),

as we wished.

In order to state the results from our paper [30] that we will need later, it is necessary to
introduce a certain number of quantities related to sets in Banach spaces. Let us denote by H

the set of all the open half-spaces of X, that is, all the sets of the form H = {x ∈ X, x∗(x) > α},
with x∗ ∈ X∗ and α ∈ R. A slice of of D ⊂ X is a set of the form D ∩H 6= ∅, where H ∈ H.
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We say that a bounded closed convex set C ⊂ X is dentable if for any nonempty closed convex
subset D ⊂ C has (nonempty) slices of arbitrarily small diameter. If C is dentable we may
consider the following set derivation:

[D]′ε = {x ∈ D : diam(D ∩H) > ε, for any H ∈ H s.t. x ∈ H}.

Clearly, [D]′ε is what remains of D after removing all the slices of D of diameter at most ε.
Consider the sequence of sets defined by [C]0ε = C and, for every n ∈ N, inductively by

[C]nε = [[C]n−1
ε ]′ε.

If there is an n in N such that [C]n−1
ε 6= ∅ and [C]nε = ∅ we set Dz(C, ε) = n. We say that C is

finitely dentable if Dz(C, ε) is finite for every ε > 0. Given a convex set C ⊂ X, let us denote
by Dent(C) the infimum of the numbers ε > 0 such that C has nonempty slices contained in
balls of radius less than ε, and take ∆(C) = sup{Dent(B) : B ⊂ C}. The measure ∆ was
introduced in [12] as a way to quantify the lack of Radon-Nikodym property (RNP). Let ε > 0.
A function f : X → R is said to be ε-uniformly convex with respect to some metric d if there
is δ > 0 such that whenever d(x, y) ≥ ε, then

f

(

x + y

2

)

≤
f(x) + f(y)

2
− δ.

No mention to an explicit metric d means that we are using the norm metric. The function is
said to be just uniformly convex if it is ε-uniformly convex for all ε > 0.

Theorem 3.4 ([30]). Let C ⊂ X be a bounded closed convex subset. Consider the following
numbers:

(η1) = Γ(C);
(η2) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C

such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;
(η3) the supremum of the ε > 0 such that there are ε-separated dyadic trees in C of arbitrary

height;
(η4) = ∆(CU );
(η5) the infimum of the ε > 0 such that Dz(C, ε) < ω;
(η6) the infimum of the ε > 0 such that C supports a convex bounded ε-uniformly convex

function.

Then η1 ≤ η2 ≤ 2η3 ≤ 2η4 ≤ 2η1 and η4 ≤ 2η5 ≤ 2η6 ≤ 2η2.

Let us finish this section by showing that Γ fulfils the all requirements for a genuine measure
of noncompactness listed at the beginning.

Proposition 3.5. The function Γ defined on bounded subsets of X has the following properties:

(1) Γ(A) = Γ(A);
(2) Γ(A) = 0 if and only if A is SWC;
(3) Γ(A ∪B) = max{Γ(A),Γ(B)};
(4) Γ(λA) = |λ|Γ(A) for all λ ∈ R;
(5) Γ(A + B) ≤ Γ(A) + Γ(B);
(6) Γ(conv(A)) ≤ 4 Γ(A).

Proof. (1) and (2) follow straightly from the definition of Γ. (3), (4) and (5) follow from set
identities: (A∪B)U = AU ∪BU , (λA)U = λAU and (A+B)U = AU +BU . Statement (6), the
most tricky, was proved in [30, Theorem 6.7].
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4. Quantifying uniform convexity for operators

In this section we will discuss the application of the measure of weak noncompactness. For
an operator T : X → Y , we will write Γ(T ) := Γ(T (BX)). We have the following.

Proposition 4.1. Let A ⊂ X be convex symmetric bounded set with Γ(A) < ε. Then there
exists a Banach space Z and an operator T : Z → X such that ‖T‖ = 1, A ⊂ T (BZ) and
Γ(T ) < ε.

Proof. Without loss of generality we may assume that A is closed. Then, just take Z =
span(A), endow it with the norm given by the Minkowski functional of A and take T the
identity operator.

If we consider the alternative measure of weak noncompactness Γs introduced after Propo-
sition 3.2, we have the following quantified version of the symmetry of the operator ideal
W

super.

Theorem 4.2. Let T : X → Y and operator. Then Γs(T
∗) = Γs(T ).

Proof. We will assume firstly that Γs(T ) > 0. Take 0 < ε < Γs(T ). Then, for every N ∈ N

there are elements (xn)Nn=1 ⊂ BX and (x∗n)Nn=1 ⊂ BX∗ such that

〈x∗n, T (xm)〉 = 0 for m < n,

〈x∗n, T (xm)〉 ≥ ε for m ≥ n.

But this is exactly the same that

〈T ∗(x∗n), xm〉 = 0 for m < n,

〈T ∗(x∗n), xm〉 ≥ ε for m ≥ n.

By reversing the order of 1, . . . , N , we get Γs(T
∗) ≥ ε. That gives Γs(T

∗) ≥ Γs(T ). Suppose
now that Γs(T

∗) > 0 and take 0 < ε < Γs(T
∗). Then, for every N ∈ N there are elements

(x∗∗n )Nn=1 ⊂ BX∗∗ and (x∗n)Nn=1 ⊂ BX∗ such that

〈x∗∗n , T ∗(x∗m)〉 = 0 for m < n,

〈x∗∗n , T ∗(xm)〉 ≥ ε for m ≥ n.

Fix λ > 1. Helly’s theorem [24, p. 159] allows us to find (xn)Nn=1 ⊂ λBX such that

〈x∗∗n , T ∗(x∗m)〉 = 〈xn, T
∗(x∗m)〉

for every 1 ≤ n,m ≤ N . That implies Γs(T ) ≥ λ−1ε, after reversing the order of 1, . . . , N . By
the arbitrarily choice of constants, we get Γs(T ) ≥ Γs(T

∗).
So far we have proved that Γs(T ) > 0 if and only if Γs(T

∗) > 0 and, in such a case, Γs(T ) =
Γs(T

∗). That also implies Γs(T ) = 0 if and only if Γs(T
∗) = 0, therefore the proof is complete.

Corollary 4.3. Let T : X → Y be an operator. Then 2−1Γ(T ) ≤ Γ(T ∗) ≤ 2Γ(T ).

Remark 4.4. Using γ2 as a measure of weak noncompactness for sets and operators, the
quantified version of Gantmacher theorem [1] would become an equality.

De Blasi’s measure applied to operators does not satisfy a similar quantified Gantmacher
result, as observed in [1] after an example from [4], neither does the measure on super weak
noncompactness introduced by Tu [48], inspired by De Blasi’s definition, as

σ(T ) = inf{ε > 0 : ∃K ⊂ Y,K is SWC, T (BX) ⊂ K + εBY }
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Indeed, Tu shows provides a sequence of operators Tn such that and σ(T ∗
n) = 1 for all n ∈ N

and limn σ(Tn) = 0.

Now we will consider a notion of uniform convexity for operators. In order to make notation
shorter, for a convex function f we will write

∆f (x, y) =
f(x) + f(y)

2
− f

(

x + y

2

)

.

An operator T : X → Y is called uniformly convex if for every ε > 0 there is a δ > 0 such that
‖T (x)−T (y)‖ ≤ ε whenever x, y ∈ BX are such that ∆‖·‖2(x, y) < δ. An operator T : X → Y
is called uniformly convexifying if it becomes uniformly convex after a suitable renorming of
X. It turns out that the class of uniformly convexifying operators agrees with W

super.

We will say that T is ε-uniformly convex (ε-UC) if there is δ > 0 such that ‖T (x)−T (y)‖ ≤ ε
whenever x, y ∈ BX are such that ∆‖·‖2(x, y) < δ. The following result contains two alternative
forms of the ε-UC property that we will need later.

Lemma 4.5. For an operator T : X → Y and ε > 0, the following statements are equivalent:

(i) T is ε-UC;
(ii) lim supn ‖T (xn) − T (yn)‖ ≤ ε whenever xn, yn ∈ BX are such

lim
n

∆‖·‖2(xn, yn) = 0;

(iii) there is δ > 0 such that ‖T (x) − T (y)‖ ≤ ε whenever x, y ∈ X are such that ‖x‖ =
‖y‖ = 1 and ‖x + y‖ > 2(1 − δ).

Proof. The proof is left to the reader.

For the construction of a quantified uniformly convex norm we will use this result.

Theorem 4.6 ([30]). Let (X, ‖ · ‖) be a Banach space, let f : X → [0,+∞] be a proper convex
function and let C ⊂ dom(f) be a bounded convex set. Assume f is Lipschitz on C. Then
given δ > 0 there exists an equivalent norm ||| · ||| on X and ζ > 0 such that ∆f (x, y) < δ
whenever x, y ∈ C satisfy ∆|||·|||2(x, y) < ζ. Therefore, if f was moreover ε-uniformly convex

for some ε > 0 (with respect to a pseudo-metric) on C, then ||| · |||2 would be ε-uniformly convex
on C (with respect to the same pseudo-metric).

We are ready to prove the quantified Beauzamy’s renorming result.

Theorem 4.7. Let (X, ‖ · ‖) be a Banach space, and let T : X → Y be an operator such that
Γ(T ) < ε. Then there exists an equivalent norm ||| · ||| on X such that ||| · ||| ≤ ‖ · ‖ and such that
T is ε-UC on (X, ||| · |||).
Moreover, in case X and Y are dual Banach spaces and T is an adjoint operator, then the
norm ||| · ||| making T is ε-UC can be taken to be a dual one.

Proof. Take Γ(T ) = ε′ < ε and 1 < λ < ε/ε′. By Theorem 3.4, the set B = λT (BX) supports
a convex bounded ε-uniformly convex function f that we may assume it is also Lipschitz, see
[30, Proposition 5.4]. The function f ◦ T is ε-uniformly convex with respect to the pseudo-
metric d(x, y) = ‖T (x) − T (y)‖ on λBX . By Theorem 4.6, there is an equivalent norm ‖ · ‖u
on X that is ε-uniformly convex with respect to d on the set λBX . All the norms defined by
the formula

||| · |||2 = λ−2‖ · ‖2 + ξ‖ · ‖2u
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are ε-uniformly convex with respect to d on the set λBX . By taking ξ > 0 small enough we
may assume that

λ−1‖ · ‖ ≤ ||| · ||| ≤ ‖ · ‖.

Since the unit ball of ||| · ||| contains λBX , we get that T becomes ε-UC when X is endowed
with ||| · |||.
Assume now that X and Y are dual spaces and T is an adjoint operator, and therefore it
is weak∗ to weak∗ continuous. By the first part, we may assume that X is already endowed

with a (non dual) norm such that T is ε-UC. We claim that the norm |||.||| on X having BX
w∗

as the unit ball makes T ε-UC too. By Lemma 4.5 there is δ > 0 such that x, y ∈ BX and
‖x + y‖ > 2(1 − δ) implies ‖T (x) − T (y)‖ ≤ ε. Therefore, diam(T (H ∩ BX)) ≤ ε whenever
H is a halfspace such that H ∩ (1 − δ)BX = ∅. Take x, y ∈ X with |||x||| = |||y||| = 1 and
|||x + y||| > 2(1 − δ/2). Note that the condition implies that the segment [x, y] does not meet

(1 − δ)BX
w∗

Take H a weak∗-open halfspace such that [x, y] ∩ (1 − δ)BX
w∗

= ∅. We have

‖x− y‖ ≤ diam(H ∩BX
w∗

). Now, by the weak∗ to weak∗-continuity of T we have

T (H ∩BX
w∗

) ⊂ T (H ∩BX)
w∗

.

As diam(T (H ∩BX)
w∗

) = diam(T (H ∩BX)) ≤ ε by the weak∗ semicontinuity of the norm of
Y and the previous observation, we get that ‖T (x) − T (y)‖ ≤ ε as wished.

5. Proof of the main result and consequences

The norm of the Banach space (X, ‖·‖) is said uniformly Gateaux smooth if for every h ∈ X

sup{‖x + th‖ + ‖x− th‖ − 2 : x ∈ SX} = o(t) when t → 0.

It is well known [18, Theorem 6.7] that the norm on X is uniformly Gâteaux smooth if and only
if the dual norm on X∗ is weak∗ uniformly rotund (W∗UR), that is, weak∗-limn(x∗n − y∗n) = 0
whenever x∗n, y

∗
n ∈ BX∗ are such that limn ∆‖·‖2(x∗n, y

∗
n) = 0.

Lemma 5.1. Let A ⊂ X be a subset and let ε > 0. Assume that A =
⋃∞

k=1Ak with Ak

bounded and Γ(Ak) < ε for every k ∈ N. Then, there exists an equivalent norm ||| · ||| on X
such that the dual norm on X has the following property: whenever (x∗n), (y∗n) ⊂ BX∗ are such
that limn ∆‖·‖2(x∗n, y

∗
n) = 0, then

lim sup
n

|x∗n(x) − y∗n(x)| ≤ 8ε

for every x ∈ A.

Proof. Let Bk be the symmetric convex hull of Ak. By Proposition 3.5, we have Γ(Bk) < 4ε.
Let Tk : Zk → X the operator given by Proposition 4.1 such that Γ(Tk) < 4ε and Ak ⊂ Bk ⊂
Tk(BZk

). Now, by Corollary 4.3 Γ(T ∗
k ) < 8ε, and, by Theorem 4.7, T ∗

k became 8ε-UC with an
equivalent dual norm ‖ · ‖k ≤ ‖ · ‖. Consider the equivalent dual norm on X∗ defined by the
formula

||| · |||2 =

∞
∑

k=1

2−k‖ · ‖2k.

Suppose given (x∗n), (y∗n) ⊂ BX∗ with limn ∆‖·‖2(x∗n, y
∗
n) = 0. Then, for every k ∈ N, we have

limn ∆‖·‖2
k

(x∗n, y
∗
n) = 0 and therefore lim supn ‖T

∗
k (x∗n) − T ∗

k (y∗n)‖ ≤ 8ε on Z∗
k . In particular,

for every z ∈ Zk, we get

lim sup
n

|〈Tk(z), x∗n〉 − 〈Tk(z), y∗n〉| = lim sup
n

|〈z, T ∗
k (x∗n)〉 − 〈z, T ∗

k (y∗n)〉| ≤ 8ε.
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Having in mind that Ak ⊂ T (BZk
), we obtain lim supn |x

∗
n(x) − y∗n(x)| ≤ 8ε for every x ∈ Ak.

Since this is true for every k ∈ N, the lemma is proved.

Instead of proving Theorem 1.2, we will prove of the following, being both equivalent thanks
to [8].

Theorem 5.2. Let X be a Banach space. The following statements are equivalent:

(i) X is a subspace of a Hilbert generated space;
(ii) For every ε > 0 there are sets (Bε

n) such that BX =
⋃∞

n=1B
ε
n and Γ(Bε

n) < ε;
(iii) There exists a linearly dense set A ⊂ X such that for every ε > 0 it can be decomposed

as A =
⋃∞

n=1A
ε
n where each Aε

n is bounded and Γ(Aε
n) < ε;

(iv) X admits an equivalent uniformly Gâteaux norm.

Proof. (i)⇒(ii) It is enough to prove statement (ii) for a Hilbert generated space since that
property is clearly inherited by subspaces. Let H be a Hilbert space and T : H → X an
operator with dense range. For every 0 < ε′ < ε we have

BX ⊂
∞
⋃

n=1

(nT (BH) + ε′BX).

We have Γ(nT (BH) + ε′BX) ≤ ε′ and we can take Bε
n = BX ∩ (nT (BH) + ε′BX).

(ii)⇒(iii) It is obvious.
(iii)⇒(iv) By Lemma 5.1, for every k ∈ N there exists an equivalent dual norm ‖ · ‖k on X∗

such that: whenever (x∗n), (y∗n) ⊂ BX∗ are such that limn ∆‖·‖2
k

(x∗n, y
∗
n) = 0, then

lim sup
n

|x∗n(x) − y∗n(x)| ≤ 1/k

for every x ∈ A. The dual norm defined by

||| · |||2 =
∞
∑

k=1

2−k‖ · ‖2k

satisfies then lim supn |x
∗
n(x) − y∗n(x)| = 0 whenever x ∈ span(A) and (x∗n), (y∗n) ⊂ BX∗ are

such that limn ∆|||·|||2(x
∗
n, y

∗
n) = 0. As the sequences (x∗n), (y∗n) are bounded and span(A) is

dense, we have lim supn |x
∗
n(x) − y∗n(x)| = 0 for every x ∈ X. Therefore, the norm ||| · ||| is

W∗UR and its predual norm on X is uniformly Gâteaux.
(iv)⇔(i) It was proved in [23] (see also [34, Theorem 6.30]).

The result of Fabian, Godefroy and Zizler [23] (see also [34, Theorem 6.30]) gives actually
more information: the linearly dense set can be decomposed, for every ε > 0 in countably many
pieces which are uniformly weakly null up to ε in the sense of Proposition 1.3. That cannot
be done on every set generally, however it applies to Markushevich bases as a consequence of
the following dual interpretation of [3].

Proposition 5.3. Let X be a subspace of a Hilbert generated Banach space and let A ⊂ X be
a bounded set such that 0 is its only cluster point and A ∪ {0} is weakly compact. Then, for
every ε > 0 there is a decomposition A =

⋃∞
n=1A

ε
n such that for every n ∈ N and for every

x∗ ∈ BX∗ then

|{x ∈ Aε
n : |x∗(x)| > ε}| ≤ n.

Proof. Without loss of generality we may assume A ⊂ C(K) where K is uniform Eberlein.
Indeed, take K = (BX∗ , w∗) that is uniform Eberlein after a result from [8]. Consider the
embedding of K into ℓ∞(A) given by K ∋ t → (f(t))f∈A and note that, actually, it take



14 G. GRELIER, M. RAJA

values into c0(A). By [3] (see also [34, Theorem 6.33]), there is a decomposition of the index
set A =

⋃∞
n=1A

ε
n such that for every t ∈ K

|{f ∈ Aε
n : |f(t)| > ε}| ≤ n.

Since K is a norming set on C(K), we get the conclusion for every norm one functional, see
Remark 2.4.

It is interesting to investigate the case where statement (iii) Theorem 5.2 happens without
countable decomposition of the linearly dense set, that is, when that set is relatively SWC.
Let us recall that a Banach space X that contains a linearly dense SWC set is called super
weakly compactly generated (super WCG). That condition is equivalent to the existence of a
super weakly compact operator into X with dense range. See [44] for the renorming properties
of super WCG Banach spaces.

Theorem 5.4. Let X be a Banach space. The following are equivalent:

(i) X is super WCG;
(ii) X has a Markushevich basis {xi, x

∗
i }i∈I such that {xi : i ∈ I} ∪ {0} is SWC;

(iii) There exists an one-to-one bounded linear operator T : X∗ → c0(I), for some set I,
which is weak∗ to pointwise continuous and SWC.

Proof. (i)⇒(ii) Without loss of generality we may assume that X is generated by a balanced
convex SWC set K. The proof of existence of Markushevich basis on WCG spaces allows the
choice {xi : i ∈ I} ⊂ K, see [24, Theorem 13.16]. Clearly, the only cluster point of {xi : i ∈ I}
is 0, and thus {xi : i ∈ I} ∪ {0} is SWC.
(ii)⇒(iii) We may assume that {x∗i : i ∈ I} is uniformly bounded. Define T (x∗) = (x∗(xi))i∈I
which, initially, takes values into ℓ∞(I). It can be proved that T (X∗) ⊂ c0(I), see [24, Theorem
12.20] for the details. In order to see that T is SWC, we will see that T ∗ is SWC. Indeed, T ∗

takes the basis (ei)i∈I of ℓ1(I) to the set {xi : i ∈ I}. Since Bℓ1(I) is the closed convex hull of
(ei)i∈I , we deduce that T (Bℓ1(I)) is contained in the balanced convex hull of {xi : i ∈ I}, and
therefore it is relatively SWC.
(iii)⇒(i) Consider the adjoint operator T ∗ : ℓ1(I) → X∗∗, which is SWC, and note that every
element from (ei)i∈I , the basis of ℓ1(I), goes through T ∗∗ to a weak∗ continuous element of
X∗∗. Therefore T ∗({ei : i ∈ I}) ⊂ X, and thus T ∗(ℓ1(I)) ⊂ X. Now, as T is one-to-one, T ∗

has a dense range and therefore X is super WCG.

Remark 5.5. Recall that being X super WCG is equivalent to the existence of an equivalent
strongly uniformly Gâteaux norm on X [44, Theorem 1.6].

Now we will give an application to Jordan algebras. We refer the reader to [31] for the nec-
essary definitions. In [31] the authors have proved that the measures of weak noncompactness
γ and ω (De Blasi’s measure) agree on a JBW∗-triple predual. The next result shows that we
can add Γ to them.

Proposition 5.6. Let X be JBW∗-triple predual. Then ω, γ and Γ agree on X.

Proof. Let A ⊂ X be bounded and take ε > γ(A). Since γ = ω by [31], there is K ⊂ X
weakly compact such that A ⊂ K + εBX . By [38, Theorem 6.3], K is SWC. Therefore, the
inclusion A ⊂ K+εBX implies Γ(A) ≤ ε. We deduce Γ(A) ≤ γ(A). Since the other inequality
always holds Γ(A) = γ(A) = ω(A).

This result implies for a JBW∗-triple predual that the notions of WCG and super WCG are
equivalent. Moreover, in [31, Theorem 9.3] the authors provide characterizations for JBW∗-
triple predual to be WCG or strongly WCG. It turns out that in such cases the spaces become
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super WCG or strongly super WCG (S2WCG), respectively, which implies nice geometrical
properties under renorming, see Theorem 1.6 and Theorem 1.9 in [44].

6. More on uniformly weakly null sets

A set that contains a sequence equivalent to the basis of ℓ1 cannot be uniformly weakly
null. Whether a Schauder basis is a uniformly weakly null set or not will be characterized
among the symmetric basis. Recall that an unconditional Schauder basis is said symmetric if
it is uniformly equivalent to all its permutations. The following is a result due to Troyanski
[45] reformulated in our terms.

Theorem 6.1. Let X be a Banach space with a symmetric basis (ei)i∈I . Then the following
statements are equivalent:

(i) {ei : i ∈ I} is uniformly weakly null;
(ii) {ei : i ∈ I} ∪ {0} is SWC;

(iii) 0 is a weak cluster point of {ei : i ∈ I};
(iv) X is not isomorphic to ℓ1(I).

In case I is not countable (equivalently, X is not separable), these conditions characterize the
existence of an equivalent uniformly Gâteaux norm on X.

Proof. Note that (i)⇔(iv) and characterization of uniform Gâteaux renorming for Banach
spaces with symmetric bases is the original result of Troyanski [45], see also [34, Lemma 7.52]
and [34, Theorem 7.54]. Clearly (i)⇒(ii) and (i)⇒(iii). On the other hand, assume (iii) and
let cs ≥ 1 the symmetric unconditionality constant of the basis. For every ε > 0 there are
indices (ik)nk=1 ⊂ I and positive numbers λk, 1 ≤ k ≤ n, with

∑n
k=1 λk = 1 such that

‖
n
∑

k=1

λkeik‖ ≤ ε.

Consider a cyclic permutation λ1
k = λk+1 if k < n and λ1

n = λ1. Then we have

‖
n
∑

k=1

λ1
keik‖ ≤ csε.

If we take the other n − 2 cyclic permutations obtained by iterating the first one, the sum
gives

‖
n
∑

k=1

eik‖ ≤ ‖
n
∑

k=1

λkeik‖ + ‖
n
∑

k=1

λ1
keik‖ + · · · + ‖

n
∑

k=1

λ
(n−1)
k eik‖ ≤ n cs ε.

Again, by the symmetry of the basis, for any J ⊂ I with n elements we have

n−1‖
∑

i∈J

ei‖ ≤ c2s ε

that implies {ei : i ∈ I} is uniformly weakly null. Finally, assume (ii). By Corollary 2.6, there
exists an infinite sequence in the set {ei : i ∈ I} which is uniformly weakly convergent. Since
the unique allowed cluster point is 0, the sequence is uniformly weakly null. That behavior
can easily be extended to all the basis (ei)i∈I by the symmetry.

Without the hypothesis of symmetry for the basis, we have the following result.

Proposition 6.2. Let X be a Banach space with nontrivial type. Then every unconditional
seminormalized basic sequence (or set) is uniformly weakly null.



16 G. GRELIER, M. RAJA

Proof. Let (en) be an unconditional basic sequence with unconditionality constant cu ≥ 1,
let p ∈ (1, 2] be the type of X and cτ the type constant. Without loss of generality we may
assume (en) is normalized. We have

‖
∑

n∈F

en‖ ≤ cu ‖
∑

n∈F

ǫnen‖

whenever ǫn ∈ {−1, 1} and F ⊂ N finite. Let (rn(t)) denote the sequence of Rademacher
functions. Applying the definition of type we get

‖
∑

n∈F

en‖ ≤ cu

∫ 1

0
‖
∑

n∈F

rn(t) en‖ dt ≤ cucτ (
∑

n∈F

‖en‖
p)1/p = cucτ n

1/p

that implies (en) is a uniformly weakly null set.

In [38] it is proved a result about the coordinate combinatoric behavior of the SWC compact
subsets of c0(N) that are made up of characteristic functions. The following result shows that
uniformly weakly null subsets in c0(I) made up of characteristic functions are more boring.

Proposition 6.3. Let F be a family of finite subsets of a set I. Then A = {χF : F ∈ F}
is uniformly weakly null as a subset of c0(I) if and only if there is a Hilbert space H and
an operator T : H → c0(I) such that A is covered by the image of an orthonormal basis
of H. Moreover, an analogous result fails if c0(I) is replaced by another space with a long
unconditional basis.

Proof. Consider the Hilbert space H = ℓ2(A) with the basis {ex : x ∈ A}. As A is uniformly
weakly null, there exists N such that

|{i ∈ I : |xi| > 0}| ≤ N

for every x = (xi)i∈I ∈ A. That implies that the assignation ex → x can be extended to a
linear operator. Indeed, for (ax)x∈A ⊂ R finitely supported, the sum

∑

x∈A axx takes values
in c0(I) and the bound

|(
∑

x∈A

axx)i| ≤
∑

xi 6=0

|ax| ≤ N sup
x∈A

{|ax|} ≤ N‖
∑

x∈A

axex‖

implies that the operator

T ((ax)x∈A) =
∑

x∈A

axx

can be extended to all (ax)x∈A ∈ H with ‖T‖ ≤ N . On the other hand, if the set A is covered
by the image of an orthonormal basis of a Hilbert space H through an operator T , fix for every
x ∈ A an element ex ∈ H such that (ex)x∈A is orthonormal. The fact that A is uniformly
weakly null follows easily from the fact that

‖x1 + · · · + xn‖ ≤ ‖T‖ ‖ex1
+ · · · + exn

‖ = ‖T‖n1/2

for different points x1, . . . , xn ∈ A. For the last statement, we claim that c0(I) cannot be re-
placed by ℓ3/2(I). Indeed, the canonical basis of ℓ3/2(I) is a uniformly weakly null set, however
it cannot be covered by the image of an operator from a Hilbert space (for I uncountable).
Otherwise ℓ3/2(I) would be Hilbert generated, which is not the case by [22, p. 316].

Remark 6.4. According to a classic result of Davis, Johnson, Lindenstrauss and Pe lczyński
[17], every relatively weakly compact set whose unique accumulation point is 0 (like as in the
hypothesis of Proposition 5.3) is the image through an operator of an unconditional basis in a
reflexive space.
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The second named author proved that convex SWC sets considered with the weak topology
are uniformly Eberlein [43]. These last results will deal with a more restrictive property.
Following [23], we say that a compact subset K ⊂ E in a locally convex space is linearly
uniformly Eberlein if there exists a linear injection T : E → c0(I) which is continuous to the
pointwise topology of c0(I) and for every ε > 0 there is n(ε) such that

|{i ∈ I : |T (x)i| > ε}| ≤ n(ε)

for every x ∈ K. In case K is moreover convex, we say that K is affinely uniformly Eberlein
if an affine map can be defined on K with values on c0(I) with similar properties.

Proposition 6.5. Let X be a Banach space. Then X contains a linearly dense uniformly
weakly null set if and only if (BX∗ , w∗) is linearly uniformly Eberlein.

Proof. Let A ⊂ X be uniformly weakly null. Observe that T : X∗ → c0(A) given by T (x∗) =
(x∗(x))x∈A is well defined, one-to-one, and linearly represents BX∗ as uniform Eberlein. On
the other hand, if T : X∗ → c0(I) witnesses that (BX∗ , w∗) is linearly uniformly Eberlein,
then the coordinate maps define elements {xi : i ∈ I} ⊂ X, as they are weak∗ continuous. It
is not difficult to check that {xi : i ∈ I} is uniformly weakly null and linearly dense.

Remark 6.6. Note that (BX∗ , w∗) can be uniformly Eberlein but not linearly uniformly Eber-
lein. For that, just take a uniformly Gâteaux Banach space which is not WCG, for instance,
Rosenthal’s non WCG subspace of some L1(µ) space, see [22] for more details.

This is the main question we cannot answer with the techniques of this paper.

Problem 6.7. Is every super WCG Banach space generated by a uniformly weakly null set?

Next result is motivated by [22, Theorem 4].

Theorem 6.8. Let K ⊂ X be a super weakly compact convex subset of density (equivalently,
weight) ω1. Then K is affinely uniformly Eberlein.

Proof. Let Z be a reflexive Banach space and T : Z → X a one-to-one super weakly compact
operator such that K ⊂ T (BZ), [43, Theorem 1.3]. Then K is linearly homeomorphic to a
weakly compact subset of Z of density ω1. Without loss of generality we may assume that Z
has density ω1 too. Now, T ∗ : X∗ → Z∗ is a super weakly compact operator with dense range.
We deduce that Z∗ is super WCG and thus it is a uniformly Gâteaux renormable Banach
space of density ω1. By [22, Theorem 4], BZ is linearly uniformly Eberlein, which implies that
K is affinely uniformly Eberlein.

There are stronger results for weakly compact convex sets of weight strictly less than ω1,
that is, the compact is metrizable. For instance, Keller’s theorem, see [10], showing an affine
homeomorphism to the Hilbert cube.
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