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Below the roughening transition, crystal surfaces exhibit nanoscale line defects, steps, that move
by exchanging atoms with their environment. In homoepitaxy, we analytically show how the motion
of a step train in vacuum under strong desorption can be approximately described by nonlinear laws
that depend on local geometric features such as the curvature of each step, as well as suitably defined
effective terrace widths. We assume that each step edge, a free boundary, can be represented by
a smooth curve in a fixed reference plane for sufficiently long times. Besides surface diffusion
and evaporation, the processes under consideration include kinetic step-step interactions in slowly
varying geometries, material deposition on the surface from above, attachment and detachment of
atoms at steps, step edge diffusion, and step permeability. Our methodology relies on boundary
integral equations for the adatom fluxes responsible for step flow. By applying asymptotics, which
effectively treat the diffusive term of the free boundary problem as a singular perturbation, we
describe an intimate connection of universal character between step kinetics and local geometry.

I. INTRODUCTION

Epitaxial growth comprises a multitude of kinetic pro-
cesses and thermodynamic effects such as atom hopping and
elastic effects on crystal surfaces [1–3]. In homoepitaxial
growth, in particular, the deposited material is the same as
the one of the substrate, in contrast to heteroepitaxy. At
temperatures below the roughening transition, the crystal
surface morphological evolution at the nanoscale is driven
by the motion of line defects which resemble steps and have
atomic height [3, 4]. This step flow regime is evident in nu-
merous experimental observations of crystal growth in vac-
uum or in solution (see, e.g., [5–14]). The reliable descrip-
tion of step dynamics is essential in the predictive modeling
of nanostructure evolution, with applications that span mi-
croelectronics, energy storage, catalysis and drug design.

A widely known theory of step motion is the Burton-
Cabrera-Frank (BCF) model [15]; see also the earlier works
by Kossel and Stranski [16, 17] and an important extension
by Chernov [18]. The BCF model has been successfully ap-
plied to many epitaxial phenomena [4, 19], including relax-
ation and coarsening [20–24], bunching instabilities [3, 25–
27], stochastic nanoscale fluctuations [3, 28–33] and evolu-
tion of crystal facets [22, 34–37]. By the BCF theory, each
step moves by exchanging atoms with its environment as
adsorbed atoms (adatoms) diffuse on the adjacent terraces.
The projection of the step edge onto a fixed crystal plane of
reference is viewed as a free boundary. In surface relaxation,
the energy of the whole step configuration decreases with
time [1, 2]. This picture has been enriched with step free-
energy anisotropy, material deposition from above, evapora-
tion, step edge diffusion and step permeability; for reviews,
see [1–4]. Notably, the normal step velocity, v⊥, at every
point of the step free boundary is dictated by mass conser-
vation; v⊥ is proportional to the total mass flux into the step.
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Because of adatom diffusion on terraces, the step velocity at
each point thus depends on the entire step configuration. In
this paper, we show how in homoepitaxy v⊥ can be expressed
in terms of local geometric features of the step curve under
certain physically motivated assumptions.

Geometric models for the motion of free boundaries are not
uncommon, and are physically transparent and computation-
ally appealing [38–44]. Such equations are usually speculated
via thermodynamics and mass conservation. Regarding the
step flow regime, the connection of geometric motion laws
to the BCF model [15] is largely unexplored. If the density
as well as the mobility of kinks along the step edge are high
enough then the normal step velocity v⊥ is allowed to be
pointwise regulated by a geometric Gibbs-Thomson-type re-
lation; see, e.g., [13, 43]. The plausible emergence of such a
view in the two-dimensional (2D) setting from the BCF the-
ory, by which the diffusion of adatoms on terraces couples
v⊥ to the global geometry, is the subject of our study here.

In this paper, we analytically derive simplified, geometric-
type laws for the motion of a step train in vacuum by use
of a BCF-type model in 2D. Our analysis indicates how the
competition of adatom diffusion and evaporation can dra-
matically affect the form of the step velocity law. We obtain
effective parameters that enter this law in the limit of strong
desorption, in the presence of several other kinetic processes.
The emergence of such parameters as an asymptotic limit of
the BCF theory has apparently not been described before.

We assume that the step curves are smooth and the step
geometry is slowly varying for long enough times. We also
posit that the desorption rate, τ−1, is sufficiently large so
that the associated diffusion length, Lev =

√
Dsτ , is small

compared to the linear size and radius of curvature of the
step and the widths of the neighboring terraces, where Ds

is the terrace diffusivity. We employ an asymptotic method
that is justified by the length scale separation of this system.

In particular, we show how a geometric-type step velocity
law can emerge as an asymptotic limit from terrace diffu-
sion, desorption, and atom attachment and detachment at
the step edge, in the step configuration. Our result illustrates
how this velocity is coupled to effective widths of adjacent
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terraces. In the special case of a single step, our finding re-
duces to a version of motion by curvature. We enrich this
asymptotic result with kinetic effects such as the Ehrlich-
Schwoebel barrier [45, 46], step permeability [47], and step
edge diffusion [25, 48].

Our approach relies on the conversion of the BCF-type mo-
tion laws to a system of boundary integral equations for the
adatom mass fluxes perpendicular to the two sides of each
step edge. An ingredient of this formalism is Green’s func-
tion for terrace diffusion with desorption, in the quasi-steady
approximation. Because of desorption, Green’s function de-
cays with a length scale equal to Lev. Integral formalisms
for epitaxy can also be found in [29, 49], but their underly-
ing settings involve the full diffusion equation (in spacetime)
with objectives different from ours. In these works, as well
as in this paper, the spatial nonlocality due to surface dif-
fusion is captured by the boundary integral terms. In [49],
however, desorption is not considered. On the other hand,
in [29] desorption is taken into account through the suitable
time scale of the associated propagator, while the strong-
desorption limit (which is of interest here) is not studied.

The role of evaporation in the kinetics of stepped surfaces
has been pointed out by BCF [15]. By explicitly solving a
version of their model, these authors demonstrated that the
lateral speed of a single circular step becomes linear with
curvature for sufficiently strong desorption [15]. Since then,
step motion laws of similar character in more complicated
geometries are often speculated physically, yet without direct
recourse to desorption; see, e.g., [39].

For strong desorption, the diffusion length Lev roughly ex-
presses the width of a curved strip in the terraces adjacent to
the step as a boundary layer of adatom diffusion; see Fig 1.
The adatom density varies appreciably in the direction nor-
mal to the step inside this layer, according to the boundary
condition of atom attachment and detachment at the step
edge. Away from this layer, the adatom density approaches
some constant value fixed by the material deposition from
above, except for points close to another step. In this vein,
for each point of the step edge, Lev defines the linear size of
a “domain of influence” (circular disk in Fig. 1) for the local
step velocity. The smallness of this domain in comparison to
the linear size and radius of curvature of the step shape and
the widths of the neighboring terraces, enables the reduction
of the BCF-type equations to a geometric motion law. The
step velocity determined in this way is only affected by pa-
rameters of the boundary condition on the step curve inside
this domain, in the vicinity of the respective step edge point.

More precisely, the full BCF-type step velocity equals [4]

v⊥(x) = M
[
c̄(x)−

(
eµs(x)/T − 1

)]
at every point x of the step curve, in the absence of step edge
diffusion. In this relation, c̄(x) is the adatom supersatura-
tion at the step edge, defined as a suitable kinetic average of
the local adatom density relative to an equilibrium concen-
tration of a straight step; M is the step mobility; µs(x) is
the step chemical potential which comes from the variation
of the total step free energy; and T is the absolute tem-
perature (in units with kB = 1). The supersaturation c̄(x)
is determined from solving the adatom diffusion equation,
which includes desorption, on terraces; thus, c̄(x) should
depend on the whole geometry. Our analysis shows how,
for strong enough desorption and sufficiently wide terraces,

FIG. 1. Schematic of geometry and the role of strong desorption.
Solid curves: Step edges, Γ(i) (top view); i = 1, 2, . . .. Interior of
dashed curves: Boundary layer of width Li for adatom diffusion
along entire step i; Li is of the order of Lev =

√
Dsτ . This

layer is formed by much smaller regions, shown as circular disks
of centers x on step i, e.g., x = x1, x2, x3. The normal step
velocity v⊥(x) = vi,⊥(x) of step i is affected by parameters of
kinetic boundary conditions at this step in each respective disk.

v⊥(x) approximately reduces to a form that only depends
on µs(x) and combinations of kinetic lengths and effective
terrace widths.

Hence, a highlight of our approach is the replacement of
the adatom supersaturation at the step by a simple expres-
sion involving the step chemical potential via asymptotics. A
geometric law for the step velocity emerges if the step chem-
ical potential is dominated by step stiffness. The parameters
of this effective description are obtained explicitly, and can
be useful in the modeling of step flow in various settings.

Our treatment points to open problems. The presence
or formation of corners in the step curve cannot be treated
by our asymptotics. Another interesting issue is the effect
of stochastic step fluctuations. In the case of heteroepi-
taxy, not addressed here, one might expect that even in the
strong desorption limit of that setting the step velocity law
would retain a nonlocal term due to long-range elasticity
(see, e.g., [50]). Since we invoke elements of the BCF theory,
we do not directly address the connection of geometric mo-
tion laws for steps to the atomistic dynamics on the lattice.
Crystal growth in aqueous solutions lies beyond our scope.

The remainder of this paper is organized as follows. In
Sec. II we review the BCF theory, particularly the joint ef-
fect of adatom diffusion and desorption. In Sec. III, we focus
on the case with strong desorption for concentric circular
steps, as an extension of the BCF study [15]. Section IV
introduces the boundary integral formalism of step flow, and
the derivation of a basic asymptotic formula for the step
velocity in 2D. This formula accounts for kinetic step-step
interactions. In Sec. V, we provide extensions of these re-
sults to include step edge diffusion and step permeability.
Section VI presents numerical simulations for validation of
our method, and discussion of predictions and limitations. In
Sec. VII, we conclude the paper with a summary of results.

II. REVIEW OF BCF MODEL

In this section, we review elements of the BCF model by
including desorption and step permeability. We assume that
the terraces between steps are much wider than the diffusion
length Lev. This setting favors the localization of the terrace
adatom density and flux near each step edge. Aspects of this
localization are outlined via boundary layer theory in the end
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of this section; see also Sec. III.
We note in passing that, from an atomistic view, the BCF

theory relies on the diluteness of the adatom system on the
crystal lattice. Hence, a necessary condition for using the
BCF model in our treatment is that the Péclet number Pe =
FA2/Ds is small, where A is the atomic area [51].

A. Adatom diffusion and step energy

We consider a monotone step train in 2D. For a top view of
the configuration, see Fig. 1. The projections of the terraces
on a fixed crystallographic plane, say, the xy plane, are the
regions Ω(i) where i = 0, 1, . . . N ; Ω(N) is unbounded and
corresponds to the material substrate. The terrace region
Ω(i) is bounded by the smooth step curves Γ(i) and Γ(i+1);
Γ(0) reduces to the origin and Γ(N+1) denotes a curve ap-
proaching infinity. For definiteness, suppose that the steps
are descending with increasing i. The total number of the
actual steps is not necessarily conserved. We assume that
this number is an arbitrary constant N in the time interval
of interest.

Let ci(x, t) denote the density of adatoms on the i-th ter-
race, Ω(i), at time t. This ci(x, t) satisfies

∂ci
∂t

= F +Ds

(
∆− L−2

ev

)
ci , x in Ω(i) . (1)

In the above, Ds is the terrace diffusion constant, F is the
deposition flux (number of atoms per unit area per time),
and the term proportional to L−2

ev amounts to evaporation
or desorption with constant rate τ−1; Lev =

√
Dsτ and ∆

denotes the 2D Laplacian. We assume that the adatom dif-
fusion is isotropic, and atoms are deposited on the surface
from above at a constant rate.

In the spirit of BCF [15], we employ the quasi-steady ap-
proximation for the concentration field ci(x, t). Accordingly,
we set ∂ci/∂t ' 0 in Eq. (1), and determine the step velocity
through the adatom fluxes at the step. In other words, we as-
sume that terrace diffusion is fast compared to other kinetic
processes. In this vein, the solution of the diffusion equation
on each terrace is replaced by a steady state. At each point
x, the density ci(x, t) evolves with time only through the lo-
cation of steps at time t. Hence, the velocity of each step is
determined by the instantaneous geometry of all steps (and
not its history). For ease of notation, we will suppress the
time (t-) dependence of ci and related variables.

Equation (1) is supplemented with suitable boundary con-
ditions, which account for kinetic processes at the steps.
BCF require that the adatom density have a local equilib-
rium value at the step edge (Dirichlet condition) [15]. Typi-
cal extensions of this condition dictate that the adatom flux
normal to each side of the step curve be linear with the re-
spective limiting values of the adatom concentration. Hence,
at the steps (labeled by index j = i, i+ 1) bounding the ith
terrace we impose the Robin-type conditions [1, 18, 45–47]

±ν(j)(x) · ∇ci(x)· = 1

L±ad

[
ci(x)− ceq

j (x)
]

± 1

Lp
[cj(x)− cj−1(x)] , (2a)

where x lies in curve Γ(j); j = i (+ sign) or j = i + 1 (−
sign), and ν(j) is the unit normal vector on Γ(j) that points

toward lower terraces, outward from the whole structure.
The left-hand side of Eq. (2a) displays a quantity equal to
1/Ds times the adatom flux normal to Γ(j) outward from
terrace Ω(i). On the right-hand side of Eq. (2a), the first
term expresses the deviation of ci(x) from the local equilib-
rium adatom density, ceq

j (x); while the second term accounts

for step permeability [47]. The quantity L±ad denotes the (ki-

netic) attachment-detachment length L±ad = Ds/k
± where

k± is the kinetic parameter with units of velocity for atom
exchange between a step edge and the lower (+) or upper
(−) terrace. The asymmetry of this exchange expresses the
Ehrlich-Schwoebel barrier [45, 46]. For a positive Ehrlich-
Schwoebel barrier, we have k+ > k− and thus L+

ad < L−ad.
We include step permeability via the length Lp = Ds/kp,
where kp is a kinetic parameter for the direct hopping of
atoms from the vicinity of a step to the adjacent terrace.

Because the outermost terrace, Ω(N), is an unbounded re-
gion we need to include a boundary condition for the adatom
density as |x| → ∞. This condition accounts for the balance,
or equilibration, between deposition and desorption, viz.,

lim
|x|→∞

cN (x) = FL2
ev/Ds = Fτ (x in Ω(N)) . (2b)

More generally, the adatom density ci(x) with i < N should
approach this limit away from steps, if the width of the ter-
race Ω(i) is much larger than Lev; see Sec. II B.

Next, we describe the velocity law of the free boundary.
By mass conservation, the (normal) i-th step velocity vi,⊥(x)

in the direction of ν(i)(x) on curve Γ(i) is driven by the total
flux of adatoms from the neighboring terraces to the step. In
the absence of step edge diffusion, vi,⊥(x) is given by [15]

vi,⊥(x) = DsA {∇ci(x)−∇ci−1(x)} · ν(i)(x)

where x lies in Γ(i). Recall that A denotes the atomic area.
At this stage, we need to specify the local equilibrium

adatom concentration ceq
i which enters Eq. (2a). This quan-

tity expresses thermodynamic effects, which may include the
step stiffness as well as elastic-dipole and entropic repulsive
interactions between steps [1, 4]. By invoking the Gibbs-
Thomson relation [4], we write (in units with kB = 1)

ceq
i (x) = cs exp

(
µi(x)

T

)
, x in Γ(i) . (3a)

Here, µi(x) is the chemical potential of the i-th step and
cs is the (fixed) equilibrium adatom density of an isolated
straight step. The step chemical potential, µi(x), a ther-
modynamic force, is given by the variation with respect to
the step shape of the total step free energy, Est, which de-
pends on the overall geometry of the system (at any given
time t). For example, suppose that the step curve Γ(i) can
be described by r = ri(θ) in polar coordinates (r, θ) with
−π < θ ≤ π. Accordingly, µ = µi equals [25]

µ = A
δEst

δr
, (3b)

where all step curves other than r = ri are frozen. This
formula expresses the variational derivative of Est with re-
spect to the polar-distance function r = ri(θ). Therefore, in
principle µ = µi is a function of the polar angle, θ. If the
contribution of the step stiffness, γ̃, which comes from the
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line tension of step i, dominates in µi then µi ' γ̃κi where κi
is the (local) step curvature. Our analysis in this paper does
not rely on the precise dependence of ceq

i on x. In Sec. VI A,
however, we use a particular choice of γ̃ in order to carry out
numerical simulations and validate our approach.

In addition, we shift the adatom concentration field, ci(x),
by a constant in order to transform the BCF-type equations
into a form independent of the deposition flux, F . Recall
that Pe = FA2/Ds � 1. We define the variables

Ci(x) = ci(x)− Fτ , Ceq
i (x) = ceq

i (x)− Fτ , all i ,

which leaves invariant the adatom flux, J i = −Ds∇ci. The
governing equations for the shifted concentration Ci(x) read

∆Ci(x) = L−2
ev Ci , x in Ω(i) , (4a)

±ν(j)(x)·∇Ci(x) =
1

L±ad

[
Ci(x)− Ceq

j (x)
]

± 1

Lp
[Cj(x)− Cj−1(x)] , x in Γ(j) , (4b)

lim
|x|→∞

CN (x) = 0 . (4c)

In Eq. (4b), we set j = i (+ sign) or j = i+1 (− sign), in cor-
respondence to Eq. (2a). Of course, Ci(x) must be bounded.
We recognize Eq. (4a) as the modified Helmholtz equation.
The form of the step velocity law in the transformed variables
remains intact, viz.,

vi,⊥(x) = DsA {∇Ci(x)−∇Ci−1(x)} · ν(i)(x) . (4d)

We now comment on the validity of the quasi-steady ap-
proximation from the perspective of continuous adatom dif-
fusion. This simplification is expected to hold for sufficiently
long times, t. In particular, we are interested in the regime
where t� τ and the length Lev =

√
Dsτ is small compared

to the linear size of the step curve. Regarding the external
deposition flux F , the Péclet number Pe = FA2/Ds must
be small (as mentioned above) [51]. We should also add the
assumption that e−t/τFτ , which signifies the effect of de-
position in the time domain, is small compared to typical
adatom concentration values on either side of the step edge.

B. Strong desorption and scale separation

Next, we delineate the role of strong desorption by direct
recourse to the system of Eqs. (4a)–(4d). Let us neglect step
permeability for simplicity, taking Lp =∞.

For strong desorption, it is tempting to directly take the
limit Lev → 0 (τ → 0) in Eq. (4a). The naive approach of
eliminating the diffusive term (∆Ci) everywhere in the ith
terrace would not allow Ci to satisfy the boundary conditions
at the bounding steps, labeled by i and i + 1; cf. Eq. (4b).
This observation calls for treating the diffusive term as a sin-
gular perturbation of the (free) boundary value problem [52].

Therefore, the enforcement of the boundary conditions for
atom attachment and detachment upon the shifted adatom
density Ci(x) motivates the use of relatively thin boundary
layers around the step edges. Each layer lies in the vicinity of
the whole step curve, and has a width of the order of Lev (see
Fig. 1). Let us briefly consider local curvilinear coordinates

in the directions perpendicular and tangential to a step edge.
Adopting the language of boundary layer theory [52], we can
assert that Ci(x) changes rapidly, at the scale of Lev, in the
perpendicular direction but varies slowly in the tangential
direction inside the inner region. This density decays to zero
in the outer region.

This view suggests that the normal step velocity vi,⊥(x) of
the i-th step at point x is only affected by parameters such as
the shifted equilibrium adatom concentration Ceq

i (y) of the
boundary condition for atom attachment and detachment at
points y of the step in the vicinity of x. Consequently, a
geometric motion law for the step can emerge if the step
chemical potential µi(x) has a dominant contribution from
the step stiffness; see also Sec. III.

We will describe this reduction via asymptotics on integral
equations for the adatom flux normal to steps. The alternate
approach of applying boundary layer theory, or separation of
the spatial variables into fast and slow [53], to the free bound-
ary problem for the diffusion equation on terraces is feasible
but lies beyond the scope of this paper (see Sec. VI C 3).

III. THE PARADIGM OF RADIAL GEOMETRY

In this section, we study the geometry with concentric cir-
cular steps as an example of how step motion can be approx-
imately reduced to local geometric laws. The radial setting
is prototypical since it allows us to explicitly solve the multi-
step boundary value problem of adatom diffusion formulated
in Sec. II A, which forms an extension of the one-step case
studied in [15]. We formally apply asymptotics to the explicit
solution by assuming that the diffusion length Lev is small
enough. Our leading-order asymptotic result has a generic
form, which offers insight into the more general 2D setting.
We also discuss the idea of the shifted adatom density local-
ization near step edges as a way of motivating the boundary
integral formalism of Sec. IV. For simplicity, in this section
we neglect step permeability, taking Lp = ∞ in Eq. (4b).
Step permeability is studied in some detail in Sec. V B.

A. Explicit solution and asymptotics

Consider the setting in which the step curves Γ(i) are
concentric circles with center at the origin and radii ri(t)
(i = 1, 2, . . . , N); cf. Fig. 1. The non-extremal i-th terrace
Ω(i) is the annulus bounded by circles Γ(i) and Γ(i+1) for
i = 1, 2, . . . , N − 1. The extremal terrace Ω(0) is the circu-
lar disk of radius r1(t) while the terrace Ω(N) is unbounded,
containing the points at distance r > rN (t) from the ori-
gin. Similar formulations without desorption can be found
in [22, 54, 55]. Notably, equations of motion for circular steps
under desorption are described in [56], with emphasis on con-
nections between simplified versions of these equations and
their full continuum limits.

First, we explicitly solve the boundary value problem im-
plied by Eqs. (4a)–(4c), in regard to the modified Helmholtz
equation for the shifted concentration Ci(x). We seek a rota-
tionally symmetric solution for Ci(x), which we denote Ci(r)
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by abusing notation. This density satisfies the problem

1

r
∂r(r∂rCi) = L−2

ev Ci , ri(t) < r < ri+1(t) ,

±∂rCi(r)
∣∣
r=rj

=
1

L±ad

[
Ci(rj)− Ceq

j

]
for j = i (+ sign) and j = i + 1 (− sign) where i =
0, 1, . . . , N . Here, we take r0 = 0 and rN+1 = ∞; and
use the symbol ∂r = ∂/∂r. Regarding the terraces Ω(0) and
Ω(N), the same boundary condition is applied at r = r1 (for
Ω(0), with the − sign), and at r = rN (for Ω(N), with the
+ sign). In addition, the density C0(r) must be bounded at
the origin while CN (r)→ 0 as r →∞.

By solving the equation for Ci(r), we find (i = 0, . . . , N)

Ci(r) = ai I0(r/Lev) + biK0(r/Lev) , ri(t) < r < ri+1(t) ,

where In and Kn are the n-th order modified Bessel functions
of the first and second kind, respectively [57]. We need to
take b0 = 0 and aN = 0, since K0(R)→∞ (logarithmically)
as R→ 0 and I0(R)→∞ (exponentially) as R→∞.

The coefficients ai and bi can be determined explicitly by
use of the atom attachment and detachment (Robin-type)
condition at the steps Γ(i) and Γ(i+1) which bound the terrace
Ω(i). After some algebra, we obtain (i = 1, 2, . . . , N − 1)

ai =
1

Λi

[(
K1(Ri)

Lev
+
K0(Ri)

L+
ad

)
Ceq
i+1

L−ad

+

(
K1(Ri+1)

Lev
− K0(Ri+1)

L−ad

)
Ceq
i

L+
ad

]
, (5a)

bi =
1

Λi

[(
I1(Ri+1)

Lev
+
I0(Ri+1)

L−ad

)
Ceq
i

L+
ad

+

(
I1(Ri)

Lev
− I0(Ri)

L+
ad

)
Ceq
i+1

L−ad

]
(i 6= 0, N) . (5b)

Furthermore, for i = 0, we have b0 = 0 and

a0 =

[
I0(R1)

L−ad

+
I1(R1)

Lev

]−1
Ceq

1

L−ad

; (5c)

while, for i = N , we have aN = 0 and

bN =

[
K0(RN )

L+
ad

+
K1(RN )

Lev

]−1
Ceq
N

L+
ad

. (5d)

In the above, we introduce the nondimensional step radii
Ri = ri/Lev (i = 1, 2, . . . , N), and also define the quantities

Λi =

(
K1(Ri)

Lev
+
K0(Ri)

L+
ad

)(
I1(Ri+1)

Lev
+
I0(Ri+1)

L−ad

)
−
(
I1(Ri)

Lev
− I0(Ri)

L+
ad

)(
K1(Ri+1)

Lev
− K0(Ri+1)

L−ad

)
,

for i = 1, . . . , N − 1.
To determine the step velocities in terms of the step radii,

we should compute the total (radial) adatom flux into each
curve Γ(i). This flux is defined by J tot

i = −Ds[∂rCi−1(r) −
∂rCi(r)] at r = ri, and is given by the formula (i = 1, . . . , N)

J tot
i =

Ds

Lev
[(ai − ai−1)I1(Ri) + (bi−1 − bi)K1(Ri)] . (6)

The i-th step velocity in the radial direction is vi,⊥ = AJ tot
i .

By Eq. (6), J tot
i is a sum of contributions each of which is

proportional to Ceq
j for j = i, i± 1. Hence, we can write

J tot
i =

Ds

Lev

(
AiC

eq
i +Bi+C

eq
i+1 +Bi−C

eq
i−1

)
; i = 2, . . . , N−1.

The coefficients Ai and Bi± can be explicitly expressed in
terms of step radii; see Appendix A for a matrix formalism.
We omit the respective exact formulas for Ai and Bi± here.

Next, we focus on step configurations in which all terrace
widths are large compared to Lev, viz., ri − ri−1 � Lev for
i = 1, 2, . . . , N (where r0 = 0). We seek the leading-order
asymptotic formula for each step velocity vi,⊥ via the flux
J tot
i . This task calls for the asymptotic evaluation of the

coefficients Ai and Bi± for Ri −Ri−1 � 1.
By invoking the large-argument approximations for In(R)

and Kn(R), i.e., In(R) ' eR/
√

2πR and Kn(R) '
e−R

√
π/(2R) as R→∞ [57], we compute

Λi =
eRi+1−Ri

2
√
RiRi+1

(
1

Lev
+

1

L+
ad

)(
1

Lev
+

1

L−ad

)
{1 + o(1)}

if Ri+1−Ri � 1 for all i. Here, the the symbol o(1) accounts
for neglected terms which involve negative powers of Ri+1

and Ri; i = 1, . . . , N −1. Notably, the approximate formula
for Λi is invariant under the interchange of L+

ad and L−ad.
Similarly, we obtain approximate formulas for Ai and Bi±.

The substitution of these asymptotic formulas into the ex-
pression for the total adatom flux J tot

i in turn furnishes

vi,⊥ '
2ADsLev

(Lev + L+
ad)(Lev + L−ad)

{
−
(

1 +
L+

ad + L−ad

2Lev

)
Ceq
i

+ e−(Ri+1−Ri)

√
Ri+1

Ri
Ceq
i+1

+e−(Ri−Ri−1)

√
Ri−1

Ri
Ceq
i−1

}
, (7)

if i = 2, . . . , N − 1. Note that the contributions of Ceq
i±1 are

exponentially small in this formula, since |Ri±1 − Ri| � 1.
Equation (7) can be extended to the remaining steps Γ(i),
namely, the curve Γ(1) (for i = 1) and curve Γ(N) (i = N).
We omit the resulting expressions here.

A special case is the geometry with a single, isolated cir-
cular step. The (radial) velocity of this step becomes

v⊥ ' −ADs

(
1

Lev + L−ad

+
1

Lev + L+
ad

)
Ceq ,

where Ceq = cs exp(µ/T ) − Fτ and the step chemical po-
tential, µ, comes from the variation of the isotropic step free
energy. The linearization of this exponential for |µ| � T
with L+

ad = L−ad � Lev yields a formula consistent with the
result by BCF [15]. In particular, suppose that µ is domi-
nated by the step stiffness, γ̃, and Fτ > cs. The step velocity
is thus reduced to the form

v⊥ ' v∞
(

1− rc

r

)
,

where v∞ denotes the velocity of an isolated straight step and
rc is the radius of a “critical nucleus” [15]. In our setting,
we must define

v∞ = −ADs

(
1

L+
ad + Lev

+
1

L−ad + Lev

)
(cs − Fτ)
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and

rc =
cs

Fτ − cs
γ̃

T
.

Hence, in this limit v⊥ is linear with the step curvature.
A few further remarks on Eq. (7) are in order. First, for

each i the terms proportional to Ceq
j with j = i± 1 describe

kinetic step-step interactions. Second, in many situations of
interest the condition |Ri±1 − Ri| � Ri holds for some i;

thus, the corresponding factors
√
Ri±1/Ri can be replaced

by unity. Third, the coefficients of Ceq
j for j = i and j = i±1

were computed to the leading order in the scaled terrace
widths |Ri±1 − Ri|. In fact, for the coefficient of Ceq

i we
neglected terms that involve negative powers of Ri and Ri±1

which, although small compared to the leading-order term
of this coefficient, can be much larger than the displayed
coefficients for Ceq

i±1. Thus, our asymptotic formula is viewed
as a formal description of distinct physical contributions of
equilibrium densities to the step velocity.

A generic feature of Eq. (7) unfolds. Specifically, the con-
tributions of Ceq

i±1 to step velocity vi,⊥ decay exponentially
with |ri±1 − ri|/Lev. This behavior is indicative of the ef-
fect of the diffusion boundary layer in the vicinity of each
step (Sec. II B); the steps i± 1 lie in the outer region of step
i. Suppose that elastic-dipole and other step-step interac-
tions are neglected in the step chemical potential µi, which
controls Ceq

i . Consequently, we explicitly verify that steps
separated by terraces (circular annuli) that are large com-
pared to Lev are decoupled in their motion because of the
effect of strong desorption. The emerging step velocity is
linear in the curvature (inverse radius) of the step edge.

B. Localization via desorption in non-radial geometry

At the risk of redundancy we now repeat the idea about the
role of strong desorption in the general 2D setting. Our dis-
cussion motivates the boundary integral formalism (Sec. IV).

In the non-radial case, the diffusion equation of the BCF
model cannot be solved exactly even in the quasi-steady
limit. However, key physical aspects of desorption under-
lying the analysis of the radial geometry persist in the more
general 2D setting. Specifically, the diffusive flux connecting
any two points separated by a distance much larger than Lev

on each terrace is negligible. Hence, the dominant contri-
bution to the step velocity at any given point x of the step
curve comes from a neighborhood of x that has linear size
comparable to the diffusion length Lev (cf. Fig. 1).

This localization of the adatom concentration, and normal
adatom flux, at the step is intimately related to the presence
of a boundary layer in the sense of Sec. II B. Our goal is to
derive a step velocity law analogous to Eq. (7) in the non-
radial setting by exploiting this property.

To this end, we will employ a method that directly extracts
information only about the fluxes normal to the step edges.
This method is described in Sec. IV. The starting point is the
exact conversion of Eqs. (4a)–(4c) into a system of boundary
integral equations for the shifted adatom density on each side
of every step edge.

The joint effect of terrace diffusion and desorption is ex-
pressed through the kernel in the boundary integral equa-
tions. It is worthwhile to describe this kernel, denoted by

G(x,y). This G comes from the fundamental solution, or
Green’s function, of Eq. (4a) in the plane (infinite terrace);
and is rotationally symmetric in x − y. If we define G via
the equation {∆x − L−2

ev }G(x,y) = δ(x − y), where ∆x is
the Laplacian in x, and resort to Bessel functions, we find

G(x,y) = − 1

2π
K0

(
|x− y|
Lev

)
(8)

for all points x, y with x 6= y. Recall that K0(z) is the
zeroth-order modified Bessel function of the second kind [57].

Evidently,
√
|x− y|G(x,y) decays exponentially with the

scaled distance |x− y|/Lev for |x− y| � Lev [57].

IV. BOUNDARY INTEGRAL FORMALISM AND
ASYMPTOTICS

In this section, our task is twofold. First, we exactly con-
vert the BCF-type free boundary problem of Sec. II for the
shifted adatom concentration field on the terraces into a sys-
tem of boundary integral equations for the adatom flux nor-
mal to steps. An advantage of this formalism is that it cir-
cumvents the need to compute the adatom concentration and
flux in the terraces. Second, we apply asymptotic methods to
the ensuing boundary integral equations when the diffusion
length Lev is sufficiently small (thus, desorption is strong).
We are able to obtain analytical expressions for the adatom
fluxes normal to step edges. This approach allows us to de-
rive a local geometric law for the step velocity. The inter-
ested reader may find our main result for the step velocity
in Sec. IV C, skipping the related derivations.

We posit that the step curves are smooth for long enough
times, in the time interval of interest [58]. In our formalism,
we allow for step energy anisotropy; hence, the free energy
of each step may depend on the step orientation in the fixed
crystallographic plane of reference. This anisotropy is as-
sumed to be compatible with our step curve smoothness hy-
pothesis. In addition, we set Lp =∞ in Eq. (4b), neglecting
permeability. We will include this effect in Sec. V B.

A. General integral formalism

In this subsection, we derive boundary integral equations
along the step curves by using the BCF model [15] and
elements of potential theory [59, 60]. Consider the i-th
terrace Ω(i) which is bounded by curves Γ(i) and Γ(i+1)

(i = 1, . . . , N). To simplify notation, let C(x) = Ci(x)
denote the shifted adatom density in the fixed terrace Ω(i),
suppressing the terrace index for the density.

First, we derive an integral representation for the shifted
density C in the i-th terrace Ω(i) in terms of the values
of C and its normal derivative at the bounding steps via
Green’s function G, Eq. (8) [59–61]. Following the standard
approach, let us fix a point x in Ω(i), multiply both sides of
Eq. (4a) byG(x,y), and suitably integrate over a “punctured

region” Ω̃(i) which comes from the terrace Ω(i) by removal
of a small circular disk centered at x; see Fig. 2. Integration
by parts in the resulting equation yields the line integral∫

∂Ω̃(i)

{
G(x,y)

∂C(y)

∂νout
− ∂G(x,y)

∂νout
C(y)

}
dsy = 0 ,
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FIG. 2. Geometry for derivation of boundary integral equations.
For the i-th terrace (Ω(i)), the fixed observation point x is ex-
cluded from integration by removal of a small circular disk (grey
shaded region) centered at x. The unit normal ν along the ter-

race boundary, consisting of curves Γ(i) and Γ(i+1), points outward
from the whole structure. The unit normal νout points outward
from the punctured i-th terrace. The ± signs on each side of a
step indicate the convention, relative to ν, adopted in Eqs. (11)
and (12).

which is defined along the boundary (∂Ω̃(i)) of Ω̃(i). Hence,
the line integral is carried out along the smooth curves
Γ(i),Γ(i+1) and the small circle centered at x. Note that
∂Q/∂νout (Q = C, G) denotes the derivative of function Q

along the boundary of Ω̃(i) in the direction of the unit normal
vector νout that points outward from Ω̃(i). In the line inte-
gral, the functions C and ∂C/∂νout, evaluated at the point y
of the boundary, are the limits of C(z) and νout(y) ·∇C(z),
respectively, as z approaches y from the i-th terrace. By
contracting the small circle to the point x, we obtain [60, 61]∫

∂Ω(i)

{
G(x,y)

∂C(y)

∂νout
− ∂G(x,y)

∂νout
C(y)

}
dsy = −C(x) .

The integration path is the boundary of terrace Ω(i), which
consists solely of curves Γ(i) and Γ(i+1).

We now introduce operator notation for later algebraic
convenience. To this end, for each step curve we use the unit
normal vector ν pointing outward from the whole structure;
see Fig. 2. Hence, we write ∂Q/∂νout = ∂Q/∂ν on Γ(i+1) and
∂Q/∂νout = −∂Q/∂ν on Γ(i) (for Q = C, G). Accordingly,
the equation for C(x) is recast to the form

Ŝi+1

[
∂C

∂ν

]
(x)− Ŝi

[
∂C

∂ν

]
(x)

− D̂i+1[C](x) + D̂i[C](x) = −C(x) (9)

where x lies in Ω(i). By adopting the formalism of potential

theory [60], we recognize Ŝj and D̂j (j = i, i + 1) as single-
and double-layer potential operators, respectively, along step
curve Γ(j). For a physically admissible density or normal-flux
function f on step curve Γ(j), these operators are defined via

Ŝj [f ](x) =

∫
Γ(j)

G(x,y)f(y) dsy , (10a)

D̂j [g](x) =

∫
Γ(j)

∂G(x,y)

∂ν(y)
g(y) dsy (10b)

where x may lie anywhere, with the exception of curve Γ(j)

in Eq. (10b). In Eq. (9), the operators Ŝj and D̂j act on
functions f and g identified with the boundary values of ν ·
∇C(z) and C(z), respectively, as z approaches the curve
Γ(j) from inside Ω(i). These one-sided limits are implied by

the notation for the shifted density, C = Ci. Evidently, the
single- and double-layer potentials in Eq. (10) with f = ν·∇C
and g = C have the dimension of the adatom concentration.

We should add a few comments. First, recall that terraces
Ω(i) are labeled by i = 0, 1, . . . , N . Equation (9) is derived
for points x in non-extremal terraces, if 1 ≤ i ≤ N − 1.
This description can be extended to extremal terraces Ω(i)

(for i = 0, N) via the convention that Ŝj and D̂j are zero for
j = 0, N . Second, the adatom density and its normal deriva-
tive can be discontinuous across step edges. The jump in the
adatom flux normal to a step is needed for a nonzero step ve-
locity. The one-sided shifted adatom density is related to the
respective normal derivative via Robin-type condition (4b).

Third, the integrand of the double-layer potential D̂j [g](x),

seen in Eq. (10b), has a singularity in y as x approaches Γ(j).
To obtain the desired boundary integral equations, we

need to separate the contribution of the aforementioned sin-
gularity. Hence, in Eq. (9) we let x approach any point x̃ of
step curve Γ(j) (j = i, i + 1) from terrace Ω(i). We invoke
the limit [60]

lim
x→x̃
D̂j [g](x) = ∓1

2
g(x̃) + /̂Dj [g](x̃) , x̃ in Γ(j) ,

for j = i (− sign) or j = i + 1 (+ sign) [62]. The first term
of the limit represents the contribution of the singularity. In

the second term, we introduce the operator /̂Dj defined by

/̂Dj [g](x̃) =

∫
Γ(j)

∂G(x̃,y)

∂ν(y)
g(y) dsy , x̃ in Γ(j) . (10c)

This integral is well defined along a smooth curve Γ(j).
Thus, Eq. (9) yields two distinct relations, depending on

the step curve in which x̃ lies. Dropping the tilde, we obtain

Ŝi+1

[(
∂C

∂ν

)−]
(x)− Ŝi

[(
∂C

∂ν

)+]
(x)

− D̂i+1[C−](x) + /̂Di[C+](x) = −1

2
C+(x) (11a)

for x lying in curve Γ(i); and

Ŝi+1

[(
∂C

∂ν

)−]
(x)− Ŝi

[(
∂C

∂ν

)+]
(x)

− /̂Di+1[C−](x) + D̂i[C+](x) = −1

2
C−(x) (11b)

for x in curve Γ(i+1). The symbol Q± (Q = C, ∂C/∂ν) for
the shifted density and its normal derivative along a step
edge denotes the boundary value of Q on each side of the
step edge relative to the unit normal ν (see Fig. 2). Recall
that the vector ν points outward from the whole structure.
Although we currently focus on the steps bounding terrace
Ω(i), our choice of notation will be useful later, when we
compute the step velocity by an asymptotic method.

Equation (11) is not in the desired form as yet, since both
the shifted adatom density and normal flux are used. How-
ever, the step velocity is driven by the total flux into the step
edge. Hence, it is advantageous to eliminate C± by use of
Robin-type boundary conditions (4b). After some algebra,
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we recast Eq. (11) to the following relations:

(
Ŝi+1 + L−adD̂i+1

)[(∂C
∂ν

)−]
(x)

+
(
−Ŝi + 1

2L
+
adÎ + L+

ad
/̂Di
)[(∂C

∂ν

)+]
(x)

=
(
− 1

2 Î − /̂Di
)

[Ceq
i ](x) + D̂i+1[Ceq

i+1](x) (12a)

for points x in Γ(i); and

(
Ŝi+1 − 1

2L
−
adÎ + L−ad

/̂Di+1

)[(∂C
∂ν

)−]
(x̆)

+
(
−Ŝi + L+

adD̂i
)[(∂C

∂ν

)+]
(x̆)

=
(
− 1

2 Î + /̂Di+1

)
[Ceq
i+1](x̆)− D̂i[Ceq

i ](x̆) (12b)

for x̆ in Γ(i+1). In the above, Î is the identity operator. In
these equations, the unknown functions (of y) are the normal
derivatives (∂C/∂ν)± on the sides of the steps bounding the
i-th terrace. These functions are integrated along step curves
Γ(i) and Γ(i+1).

By integral equations (12a) and (12b), one can in princi-
ple determine the fluxes from terrace Ω(i) into the bounding
step edges in terms of the equilibrium concentrations Ceq

i and
Ceq
i+1. This formalism is an exact consequence of the BCF-

type free boundary problem of Sec. II in the quasi-steady
approach. Hence, by complementing these integral relations
with the respective equations for terrace Ω(i−1), one can ob-
tain the step velocity of the ith step edge, Γ(i). The local
step velocity law will eventually emerge via asymptotics in
the limit of sufficiently small Lev.

B. Leading-order asymptotics

Next, we simplify Eq. (12) when the diffusion length Lev

is small compared to the linear size and radius of curvature
of each step curve. We focus on the leading-order formulas
of this limit. The core idea is that for strong desorption the
system is characterized by a length scale separation, namely,
the adatom flux along the step varies slowly in the scale of
Lev. The step geometry is also assumed to be slowly varying,
which means that step edges bounding a terrace are treated
as almost locally parallel to each other. We repeat that the
interested reader may directly seek the main result for the
step velocity in Sec. IV C, skipping details of our scheme.

The ideas of strong desorption and slowly varying step
geometry are used for the derivation of asymptotic formu-
las for the normal derivatives (∂C/∂ν)± along a step curve,
in the spirit of the radial case (Sec. III). The step velocity
law can be obtained accordingly. The procedure has two
main ingredients. First, for fixed yet arbitrary points lying
in the step edges bounding the ith terrace, in Eq. (12) we
replace the spatially varying functions (∂C/∂ν)± and Ceq

j

(j = i, i + 1) by suitably chosen constants in the integrals
for the single- and double-layer potentials. This approxima-
tion can be justified, because the integration kernels decay
exponentially with the distance |x − y| scaled by the diffu-
sion length Lev. Second, for slowly varying step geometry

we develop a scheme that yields a closed system of equations
for (∂C/∂ν)±. To this end, we invoke the distance of a point
from a curve, as shown in Fig. 3, which leads to the notion
of the effective terrace width. Our resulting asymptotic for-
mula for the velocity vi,⊥ of the ith step forms a nontrivial
extension of Eq. (7) of the radial setting.

FIG. 3. Schematic on manipulations for Eqs. (13) and (14).

Points in steps Γ(i) and Γ(i+1), which bound the ith terrace Ω(i),
are mapped to points of minimal distance along Γ(i+1) and Γ(i),
respectively. The point x lying in Γ(i) is mapped to the point
y(i+1)(x) of Γ(i+1) that minimizes the distance from x to the

points of Γ(i+1). Similarly, the point x̆ of Γ(i+1) is mapped to
y(i)(x̆) in Γ(i). We let x̆ be y(i+1)(x). Each mapping is assumed
to be one-to-one.

1. Approximation scheme

Consider the integrals of Eq. (12) in regard to the steps
bounding the ith terrace. By asymptotics for Laplace-type
integrals [63], we need to single out the values y∗ of the
integration variable y (along any step edge) that minimize
the distance |y − x| from a given point x in the same or
a neighboring step. This task calls for distinguishing the
following cases. If the observation point x and integration
variable y lie in the same step then y∗ = x. Otherwise, y∗ is
the point of the step that minimizes the distance of all points
of this step from x. In this case, |y∗ − x| is defined as the
distance of x from the respective step curve. More generally,
for any point x of the plane we employ the notation (Fig. 3)

y∗ = y∗(x) = y(j)(x) for y∗ in Γ(j) ,

assuming that y∗ is uniquely defined. In the special case
with both x and y lying in Γ(j), we must set y(j)(x) = x.

Accordingly, in Eq. (12) we apply the approximation

K̂j [f ](x) ' K̂j [1](x) f(y∗(x)) ; K̂ = Ŝ , D̂ , /̂D (j = i, i+ 1) .

Here, f stands for (∂C/∂ν)±, Ceq
i or Ceq

i+1. Hence, Eq. (12)
is approximately reduced to the following system:

(
Ŝi+1[1](x) + L−adD̂i+1[1](x)

) (∂C
∂ν

)−
(y(i+1)(x))

+
(
−Ŝi[1](x) + 1

2L
+
ad + L+

ad
/̂Di[1](x)

)(∂C
∂ν

)+

(x)

'
(
− 1

2 − /̂Di[1](x)
)
Ceq
i (x) + {D̂i+1[1](x)}Ceq

i+1(y(i+1)(x))

(13a)
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for any point x in curve Γ(i); and(
Ŝi+1[1](x̆)− 1

2L
−
ad + L−ad

/̂Di+1[1](x̆)
)(∂C

∂ν

)−
(x̆)

+
(
−Ŝi[1](x̆) + L+

adD̂i[1](x̆)
)(∂C

∂ν

)+

(y(i)(x̆))

'
(
− 1

2 + /̂Di+1[1](x̆)
)
Ceq
i+1(x̆)− {D̂i[1](x̆)}Ceq

i (y(i)(x̆))

(13b)

for any point x̆ in Γ(i+1). Equation (13) does not pro-
vide a closed system as yet, since the one-sided derivatives
(∂C/∂ν)± are evaluated at a total of four points of the two
steps. The system of equations appears under-determined.

To achieve closure, we assume that the step geometry is
slowly varying, inspired by the radial case (Sec. III A). First,
we choose x̆ to be the point y∗(x) = y(i+1)(x), along curve
Γ(i+1) (Fig. 3). Second, we approximate y(i)(x̆) (in Γ(i)) by

y(i)(x̆) = y(i)(y(i+1)(x)) ' x

in the arguments of (∂C/∂ν)+ and Ceq
i in Eq. (13b), since

steps bounding a terrace are treated as nearly parallel to each
other. This simplifying assumption permeates our analysis.

Accordingly, we obtain a system of linear equations for
(∂C/∂ν)+ at point x of step curve Γ(i), and (∂C/∂ν)− at
point y∗(x) = y(i+1)(x) of curve Γ(i+1). The system reads

(
Ŝi+1[1](x) + L−adD̂i+1[1](x)

) (∂C
∂ν

)−
(y∗(x))

+
(
−Ŝi[1](x) + 1

2L
+
ad + L+

ad
/̂Di[1](x)

)(∂C
∂ν

)+

(x)

'
(
− 1

2 − /̂Di[1](x)
)
Ceq
i (x) + {D̂i+1[1](x)}Ceq

i+1(y∗(x)) ,

(14a)

[
Ŝi+1[1](y∗(x))− 1

2L
−
ad + L−ad

/̂Di+1[1](y∗(x))
](∂C

∂ν

)−
(y∗(x))

+
[
−Ŝi[1](y∗(x)) + L+

adD̂i[1](y∗(x))
](∂C

∂ν

)+

(x)

'
(
− 1

2 + /̂Di+1[1](y∗)
)
Ceq
i+1(y∗)− {D̂i[1](y∗)}C

eq
i (x) .

(14b)

This system pertains to terrace Ω(i). Recall that the velocity
of the ith step is determined by the total mass flux into the
step. Thus, the above equations should be supplemented
with their counterparts for (∂C/∂ν)+ at point x of step curve
Γ(i−1), and (∂C/∂ν)− at point y(i)(x) of curve Γ(i). Notably,
in the radial setting, when the step line tension is isotropic
and each step curve Γ(i) is a circle, Eq. (14) reduces to the
exact result of Sec. III A. In this case, the single- and double-
layer potential terms can be evaluated by use of modified
Bessel functions; see Appendix A.

2. Simplified formulas for adatom flux

Next, we derive the step velocity law through asymptotic
formulas for the fluxes normal to steps. We apply the ap-
proximations for strong desorption and slowly varying step
geometry introduced in Sec. IV B 1.

Consider Eq. (14), in regard to the steps bounding the ith
terrace Ω(i), keeping also in mind its counterpart for terrace
Ω(i−1). By analogy with the radial setting (Sec. III A), we ex-
plicitly solve Eq. (14) by retaining terms that express kinetic
interactions between adjacent steps to the leading order for
strong desorption. In this sense, we keep terms of the order
of exp[−wj(x)/Lev], where x lies in Γ(i) and

wj(x) = |y(j)(x)− x| , j = i± 1 . (15)

The length wj(x) is an effective terrace width measuring the

distance of point x on Γ(i) from step j. Our labeling of ef-
fective terrace widths here is algebraically convenient, and
differs from the labeling of terraces. We restore the stan-
dard labeling in Sec. IV C. For fixed step i, we neglect terms
that scale as exp[−lwi±1(x)/Lev], l > 1. The definition of
length wj(x) can be extended to any point x of the step
configuration, where index j refers to a neighboring step.

This procedure can be illustrated by the determinant D of
the matrix coefficients of system (14), viz.,

D ={Ŝi+1[1](x) + L−adD̂i+1[1](x)}{−Ŝi[1](y∗) + L+
adD̂i[1](y∗)}

−
{
Ŝi+1[1](y∗)− 1

2L
−
ad + L−ad

/̂Di+1[1](y∗)
}

×
{
−Ŝi[1](x) + 1

2L
+
ad + L+

ad
/̂Di[1](x)

}
.

Here, x lies in step curve Γ(i) and y∗ = y∗(x) = y(i+1)(x) is
the point of curve Γ(i+1) with minimal distance from x. A

key observation is that the term Ŝj [1](z) is of the order of Lev

if z is in Γ(j) but behaves as Lev exp[−wj(x)/Lev] otherwise,

while D̂j [1](z) scales as exp[−wj(x)/Lev]; z = x, y∗(x). On

the other hand, /̂Dj [1](z) is of the order of Lev times the local
curvature, as we show below. Accordingly, we approximate

D ' −
{
Ŝi+1[1](y∗)− 1

2L
−
ad + L−ad

/̂Di+1[1](y∗)
}

×
{
−Ŝi[1](x) + 1

2L
+
ad + L+

ad
/̂Di[1](x)

}
,

neglecting terms of the order of exp[−2wi±1(x)/Lev]. We
solve system (14) for (∂C/∂ν)+, approximating the remain-
ing determinant in a fashion similar to the calculation for D.
Thus, we find
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(
∂C

∂ν

)+

(x) '
{

1
2L

+
ad − Ŝi[1](x) + L+

ad
/̂Di[1](x)

}−1 {
− 1

2L
−
ad + Ŝi+1[1](y(i+1)(x)) + L−ad

/̂Di+1[1](y(i+1)(x))
}−1

×
{
−Ceq

i (x)
(

1
2 + /̂Di[1](x)

) [
− 1

2L
−
ad + Ŝi+1[1](y(i+1)(x)) + L−ad

/̂Di+1[1](y(i+1)(x))
]

+Ceq
i+1(y(i+1)(x))

[
Ŝi+1[1](y(i+1)(x)) D̂i+1[1](x) + 1

2 Ŝi+1[1](x)− /̂Di+1[1](y(i+1)(x)) Ŝi+1[1](x)
]}

, (16a)

where x lies in the ith step, Γ(i); see Fig. 2.
The next task is to find an expression for (∂C/∂ν)− on the

ith step. This task can be carried out without much effort
by using the formula for (∂C/∂ν)−(y∗) from the solution of
Eq. (14) under suitable replacements. To this end, we assume

a one-to-one correspondence of every point x in a step to
the minimal-distance points y∗ = y∗(x) in an adjacent step.
Hence, we solve for (∂C/∂ν)− at point y∗ and then replace
i by i−1 and y∗ = y(i)(x) by x; thus, y∗ becomes y(i−1)(x)
in our formula eventually. The result of this manipulation is

(
∂C

∂ν

)−
(x) '

{
1
2L

+
ad − Ŝi−1[1](y(i−1)(x)) + L+

ad
/̂Di−1[1](y(i−1)(x))

}−1 {
− 1

2L
−
ad + Ŝi[1](x) + L−ad

/̂Di[1](x)
}−1

×
{
Ceq
i (x)

(
− 1

2 + /̂Di[1](x)
) [

1
2L

+
ad − Ŝi−1[1](y(i−1)(x)) + L+

ad
/̂Di−1[1](y(i−1)(x))

]
−Ceq

i−1(y(i−1)(x))
[
−Ŝi−1[1](y(i−1)(x))D̂i−1[1](x) + 1

2 Ŝi−1[1](x) + /̂Di−1[1](y(i−1)(x))Ŝi−1[1](x)
]}

, (16b)

where x lies in Γ(i). By Eqs. (16a) and (16b), we can compute
the velocity of the ith step in terms of single- and double-
layer potentials applied to unity; recall Eq. (4d).

3. Asymptotics for single- and double-layer potentials

Next, we evaluate the single- and double-layer potential
contributions in Eq. (16), where the point x lies in Γ(i); cf.
Eq. (10). Regarding integration with respect to y along step
edge Γ(j) (j = i, i ± 1), we employ the signed arclength
parametrization of curve Γ(j). Thus, we set

y = yj(ς) ; yj(0) =

{
y(j)(x) , j = i± 1
x , j = i

.

In the above, ς is a (dimensionless) signed arclength that is
scaled by Lev. This ς ranges from −Lj/(2Lev) to Lj/(2Lev)

where Lj is the length of curve Γ(j). Our goal is to develop
asymptotic formulas when Lev is small compared to the step
edge linear size and radius of curvature.

We start with the potentials in which both the evaluation
point yj(0) and the integration variable y lie in the same

step edge Γ(j) (j = i, i ± 1). For the single-layer potential

Ŝj [1], in particular, we need an approximation for the dis-
tance between two points on the step edge as ς → 0. The
desired approximation is |yj(ς)− yj(0)| ' |ς|Lev, by neglect

of terms of the order of |ς|3. Hence, a change of the integra-
tion variable from y to ς(y) yields

Ŝj [1](yj(0)) ' −Lev

2π

∫ Lj
2Lev

−
Lj

2Lev

K0 (|ς|) dς .

We have dropped terms of the order of Lev[Levκj(yj(0)]2

where κj(y) is the curvature of Γ(j) at y. For Lj/Lev � 1,

we obtain

Ŝj [1](yj(0)) ' −Lev

2π

∫ ∞
−∞

K0(|ς|) dς = −Lev

2
, (17a)

neglecting terms of the order of
√
Lev/Lj exp[−Lj/(2Lev)].

In this vein, regarding the double-layer potential, we have

/̂Dj [1](yj(0)) =
1

2π

∫ Lj
2Lev

−
Lj

2Lev

dς K1

( |yj(ς)− yj(0)|
Lev

)
×

(yj(ς)− yj(0)) · νj(ς)
|yj(ς)− yj(0)|

.

We approximate |yj(ς)− yj(0)| in the kernel argument in a
way similar to the single-layer potential case. In addition,
we need an approximation of (yj(ς) − yj(0)) · νj(ς), as ς
approaches 0. The Taylor expansion of this function yields

(yj(ς)− yj(0)) · νj(ς)
|yj(ς)− yj(0)|

' 1

2
|ς|Levκj(yj(0)) as ς → 0 ,

where the local curvature κj of step j is evaluated at point
yj(0). In the spirit of the derivation of Eq. (17a), we obtain

/̂Dj [1](yj(0)) ' Lev

2π

∫ ∞
−∞
|ς|K1(|ς|)κj(yj(0))

2
dς

=
1

4
Levκj(yj(0)) . (17b)

Next, in regard to Eq. (16) let us consider the potentials

Ŝj±1[1](yj) and D̂j±1[1](yj) for which the evaluation point

yj = yj(0) in Γ(j) and the respective integration variable y
lie in different steps, separated by a terrace. In Eq. (16), this
situation arises for j = i. We will address this problem more
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generally, considering the step j coupled with a neighboring
step k (k = j ± 1). Hence, for each j we carry out the
integration in y = yk(ς) along the curve Γ(k) adjacent to
Γ(j). Recall that yi(0) = x. The effective terrace widths
wk(yj(0)) are involved in this calculation; cf. Eq. (15). We
assume that each wk is larger than Lev.

First, we have the approximation

|yk(ς)− yj(0)| '
√
w2
k − (−1± wk κk)L2

evς
2 , k = j ± 1 ,

where wk = wk(yj(0)) and κk = κk(yj(0)). Note that
(1 ∓ wkκk) > 0, since |ς| is let to become arbitrarily large
eventually in our asymptotics. This implies that the ter-
race width should not exceed the local radius of curvature.
Without further ado, for the single-layer potential we obtain

Ŝk[1](yj(0)) ' −Lev

2π
(1∓ wkκk)

−1/2

×
∫ ∞
−∞

K0

(√
w2
k

L2
ev

+ ς2
)
dς

= −Lev

2
(1∓ wkκk)

−1/2
e−

wk
Lev . (18a)

The key feature of this formula is the exponential decay with
the scaled terrace width, wk/Lev. This result is consistent
with the findings for the radial setting via an exact solu-
tion; cf. Eq. (7). The factor (1∓ wkκk)−1/2 here reduces to√
Ri±1/Ri which appears in the radial case, if k = i± 1.

Lastly, we consider the terms involving D̂k, viz.,

D̂k[1](yj(0)) =
1

2π

∫ Lk
2Lev

− Lk
2Lev

dς K1

( |yk(ς)− yj(0)|
Lev

)
×

(yk(ς)− yj(0)) · νk(ς)

|yk(ς)− yj(0)|
.

Thus, we need an approximation for (yk(ς)−yj(0))·νk(ς). To

incorporate the approximations for the Ŝk and D̂k terms into
the overall result consistently, we seek a two-term asymptotic

formula for D̂k[1](yj(0)). By a Taylor expansion, we find

(yk(ς)− yj(0)) · νk(ς) ' ±wk +
1

2
(1∓ wkκk) (Levκk)Levς

2 ,

where the upper (lower) sign corresponds to k = j+1 (j−1).
Consequently, our computation yields

D̂k[1](yj(0)) ' 1

π

∫ ∞
wk
Lev

dς K1(ς)

(
±wk/Lev√

1∓ wkκk
√
ς2 − w2

k/L
2
ev

+
1

2

Levκk
√
ς2 − w2

k/L
2
ev√

1∓ wkκk

)

=
1

2
(±1 + Levκk/2) (1∓ wkκk)−1/2e−

wk
Lev . (18b)

So far, we replaced the single- and double-layer potentials
by simplified formulas. The remaining task is to express the
step velocity in terms of the approximate normal fluxes.

C. Emerging step velocity law

Next, we combine the ingredients of our approximation
in order to express the step velocity in terms of the local
curvature. The substitution of the formulas from Eqs. (17)
and (18) into Eq. (16), and the subsequent use of mass con-
servation statement (4d), yield

vi,⊥ ' DsA

{
−Ceq

i

(
1 + 1

2Levκi

L+
ad + Lev + 1

2L
+
adLevκi

+
1− 1

2Levκi

L−ad + Lev − 1
2L
−
adLevκi

)

+ Ceq
i+1 (1− w̄iκi+1)−1/2 2Lev(

L+
ad + Lev + 1

2L
+
adLevκi

) (
L−ad + Lev + 1

2L
−
adLevκi+1

) e− w̄i
Lev

+Ceq
i−1 (1 + w̄i−1κi−1)−1/2 2Lev(

L+
ad + Lev + 1

2L
+
adLevκi−1

) (
L−ad + Lev + 1

2L
−
adLevκi

)e− w̄i−1
Lev

}
. (19a)

The velocity vi,⊥ is evaluated at point x of the ith step edge.
In the above, the labeling of effective terrace widths w̄j is the

same as the one for terraces Ω(j). We employ the notation
w̄i = wi+1(x) = |y(i+1)(x) − x| and w̄i−1 = wi−1(x) =
|y(i−1)(x) − x| where y(j)(x) is the point on step j with
minimal distance from x (j = i ± 1). In a similar vein, the
local curvature κj and equilibrium density Ceq

j of the jth

step are evaluated at the point y(j)(x) (j = i, i ± 1); recall
that y(i)(x) = x.

We consider Eq. (19a) as a highlight of our results. This

formula can be readily extended to the extremal steps Γ(1)

and Γ(N) by removing the i−1 and i+ 1 terms, respectively.
For an isolated step (if N = 1), Eq. (19a) readily becomes

v⊥ ' −DsAC
eq

{
1 + 1

2Levκ

L+
ad + Lev + 1

2L
+
adLevκ

+
1− 1

2Levκ

L−ad + Lev − 1
2L
−
adLevκ

}
; (19b)

κ = κi and Ceq = Ceq
i for i = 1. For a comparison of
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step motion by this formula with neglect of the Levκ term
to the boundary integral formulation of Eq. (12), the reader
is referred to Sec. VI A.

A few remarks on Eqs. (19a) and (19b) are in order.
First, the local step curvature enters these approximations
in the following two distinct ways: (i) thermodynamically,
by the equilibrium step edge (shifted) concentration Ceq

j

(j = i, i ± 1) which depends on the step stiffness through
the step chemical potential; and (ii) kinetically, through the
terms of the form Levκj and (1 ∓ w̄κj)

−1/2. We empha-
size that there is no approximation in our use of Ceq

j with
the exception of its slow variation along the step edge. A

noteworthy feature of our analysis is that it singles out the
above kinetic contributions naturally, by relating them to the
asymptotic regime of strong desorption. Second, as is ex-
pected by mere inspection, the scaled step velocity vi,⊥/C

eq
i

of an isolated step in Eq. (19b) is invariant under the inter-
change of L±ad provided the sign of curvature κi is reversed.

Third, it is tempting to compare the results of this section
to Eq. (7) of the radial case. We realize that the step velocity
vi,⊥(x) here reduces to the one obtained for the radial ge-
ometry if the (non-dimensional) quantity Levκj in Eq. (19a)
is neglected while L±ad are kept fixed. In this vein, we obtain

vi,⊥ ' DsA

{
−Ceq

i

(
1

L+
ad + Lev

+
1

L−ad + Lev

)
+ Ceq

i+1 (1− w̄iκi+1)−1/2 2Lev(
L+

ad + Lev

) (
L−ad + Lev

) e− w̄i
Lev

+Ceq
i−1 (1 + w̄i−1κi−1)−1/2 2Lev(

L+
ad + Lev

) (
L−ad + Lev

)e− w̄i−1
Lev

}
, (19c)

which forms a generalization of the step velocity law of the
radial setting (Sec. III A). This formula reduces to Eq. (7)
if the steps are concentric circles with radii ri = 1/κi =
LevRi in our notation, where w̄i = ri+1 − ri = Lev(Ri+1 −
Ri); see Sec. III A. Note in passing that the aforementioned
discrepancy between the formulas of the two geometries, for
nonzero yet small Levκj , manifests only in the respective
correction terms. This discrepancy can be remedied if we
include more terms in the expansions used for the Bessel
functions in the radial case.

We stress that our analysis treats each step curve as a given
smooth boundary, and formally produces an asymptotic for-
mula for the step velocity for small enough diffusive length
Lev. Some aspects of our results, particularly the relevant
kinetic lengths, are discussed in Sec. VI B. The consistency of
this approach with the well-posedness of step motion, when
each step edge is viewed as a free boundary, is not addressed
by our approach. The kinetic role of the step curvature, as
this appears in our asymptotic results, is further discussed
in Sec. VI C.

V. ADDITIONAL KINETIC EFFECTS

In this section, we outline extensions of our formalism. In
particular, we incorporate the kinetic effects of step edge dif-
fusion and step transparency (permeability) into the bound-
ary integral equations. We show how these modifications
affect the step velocity law in the limit of strong desorption.

A. Step edge diffusion

In step edge diffusion, atoms that have already attached to
the step may move along its edge with a possibly orientation-
dependent diffusivity, De [25, 48, 64, 65]. This process can be
included in the mass conservation statement for the motion
of steps. Accordingly, the step velocity in the direction of the

local normal vector ν pointing to the lower terrace becomes

v⊥ = AJ⊥ +
a

L2
evcs

∂ς (De∂ςC
eq) . (20)

Here, J⊥ = Dsν · {(∇C)+− (∇C)−} is the total normal flux
into the step, ∂ς is the dimensionless tangential derivative
along the step edge (where the arclength is scaled by Lev),
cs is the equilibrium adatom density of a straight step, and
A is the atomic area. Evidently, for a given step curve, the
normal flux J⊥ can be determined from the boundary value
problem for adatom diffusion on the adjacent terraces (see
Sec. II A). This problem for J⊥ can be tackled separately
from the edge diffusion process. Of course, in the course of
time evolution, edge diffusion (via De) alters the step shape.

For our purposes, the velocity v⊥ has two distinct contri-
butions. In the limit of strong desorption, the term pertain-
ing to AJ⊥ comes from the framework of Sec. IV, and is given
by Eq (19a). On the other hand, the edge diffusion term of
Eq. (20) involves tangential derivatives of Ceq. If the step
chemical potential µ is dominated by the step stiffness γ̃ with
|µ| � T , we can formally approximate ∂ςC

eq ' csT−1∂ς(γ̃κ)
in Eq. (20). Hence, the emerging velocity v⊥ depends on the
local curvature κ and the derivative ∂ς(De∂ς(γ̃κ)).

Intuitively, we expect that step edge diffusion has a reg-
ularizing effect on the adatom equilibrium density, ceq. In
particular, say, for constant De, this process causes µ and
thus ceq to vary more slowly along the step. This effect
should improve the accuracy of our asymptotic formulas.

B. Step transparency

So far, we have assumed that adatoms are exchanged be-
tween neighboring terraces only via atom attachment and
detachment at steps; see Eq. (2a) with Lp =∞. In the pres-
ence of step permeability, when the length Lp is finite, we
allow for the direct mass exchange between terraces [47]. In
principle, this mechanism eventually alters the total adatom
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flux into the step, and thus the step velocity. Intuitively,
we expect this effect to be pronounced when strong enough
step permeability (small enough length Lp) is combined with
sufficiently high step edge barrier asymmetry. This behav-
ior is simply demonstrated in Fig. 4. Here, we capture this
effect in a prototypical setting by considering only the term
that couples the step velocity with the equilibrium adatom
density of the same step.

The procedure used in Sec. IV B for the setting with im-
permeable steps can be applied when Lp is finite. We will
explicitly show how the length Lp affects the emerging step
velocity law for strong desorption by neglecting kinetic step-
step interactions in the formalism.

Consider the geometry of Fig. 2. By boundary condi-
tion (2a) we obtain

C̃+ =
L+

adL
−
ad

[(
∂C
∂ν

)+ − (∂C∂ν )−]+ L+
adLp

(
∂C
∂ν

)+
L+

ad + L−ad + Lp

, (21a)

C̃− =
L+

adL
−
ad

[(
∂C
∂ν

)+ − (∂C∂ν )−]− L−adLp

(
∂C
∂ν

)−
L+

ad + L−ad + Lp

, (21b)

where C̃ = C − Ceq denotes the deviation of the shifted
adatom density C from the equilibrium value Ceq at point
x of a step curve. Notice that each of the limiting values
C̃± depends on the fluxes at both sides of the same step.
Hence, the procedure of Sec. IV B implies that the result-
ing system of boundary integral equations for the one-sided
normal fluxes couples all steps simultaneously, rather than
merely coupling the step to its nearest neighbors. In other
words, in the presence of step permeability Eq. (14) should
be replaced by a system of equations that couples all steps.
Since our focus here is on local approximations for strong
desorption, we omit writing out the resulting system.

In the aforementioned framework of approximations, we
neglect all terms that produce couplings of the fluxes at a
given step to those of adjacent steps. Thus, the system of
equations for permeable steps becomes local, similar to the
situation described by Eq. (19b).

We further simplify the governing equations by neglect-
ing the kinetic curvature contributions to the adatom fluxes.
Thus, our asymptotics yield

C± ' ∓Lev

(
∂C

∂ν

)±
,

at point x of a step curve. The combination of the last rela-
tion and Eq. (21) furnishes the one-sided fluxes (cf. Fig. 2)

−Ds

(
∂C

∂ν

)+

' Ds

(1− α+)L+
ad + α+L−ad + Lev

Ceq, (22a)

−Ds

(
∂C

∂ν

)−
' − Ds

(1− α−)L−ad + α−L+
ad + Lev

Ceq, (22b)

where the (non-dimensional) kinetic parameters α± are

α± =

(
1 +

L∓ad

L±ad

+
Lp

L±ad

+
Lp

Lev

L∓ad

L±ad

)−1

. (22c)

Note that 0 < α± < 1, and α± → 0 if Lp →∞.
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FIG. 4. Plots of magnitude of normalized adatom flux δJ defined
by Eq. (23) as a function of Ehrlich-Schwoebel barrier parameter
L+

ad/L
−
ad. We use distinct values of step permeability parameter

`p = Lp/L
+
ad (`p = 10, 1, 0.1, 0.001); and desorption parameter

Lev/L
+
ad = 1. Smaller values of `p imply more permeable steps.

We comment on Eq. (22) for fixed Ceq. Evidently, the flux
in each side of the permeable step depends on an effective
attachment-detachment length equal to (1−α±)L±ad+α±L∓ad,
which is a convex-type combination of the original lengths
L+

ad and L−ad. Our asymptotic formulas reveal that if L−ad >

L+
ad, which occurs for a positive Ehrlich-Schwoebel bar-

rier [45, 46], the magnitude of the normal flux from the upper
terrace (‘−’ side of step) increases as Lp decreases, i.e., as
steps become more transparent. In contrast, the normal flux
into the lower terrace (‘+’ side of step) decreases.

Next, we describe the difference of the total adatom flux
into a permeable step from its counterpart for an imperme-
able step. We choose to express this difference in units of
J0 = DsC

eq/L+
ad. Therefore, we consider the quantity

δJ =
Jper
⊥ − J imp

⊥
J0

, (23)

where JK
⊥ = Ds{(∂νC)+− (∂νC)−} for permeable (K=‘per’)

or impermeable (K=‘imp’) steps. In this computation, we
invoke approximate formulas (22a) and (22b). In Fig. 4, we
display plots of |δJ | as a function of the parameter L+

ad/L
−
ad

which signifies the positive Ehrlich-Schwoebel barrier, for dif-
ferent values of `p = Lp/L

+
ad, which measures step trans-

parency, with fixed value of Lev/L
+
ad (Lev/L

+
ad = 1) which

expresses the desorption strength. Note that small values of
L+

ad/L
−
ad amount to high step edge edge barrier asymmetry.

Small values of `p with fixed length L+
ad imply strong step

transparency. We conclude that the effect of step permeabil-
ity on the (scaled) total flux into the step is favored by small
values of L+

ad/L
−
ad, when the barrier asymmetry is apprecia-

ble. In addition, the ratio Lev/L
+
ad must not be too small.

These results can be refined analytically by a close inspection
of our approximate formulas for the flux. We choose not to
pursue this task here.
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VI. DISCUSSION

In this section, we discuss the validity and implications
of our approach. By use of an ad hoc anisotropic step free
energy, we check numerically the accuracy of our asymptotic
formula for the velocity of a single step (see Sec. VI A). We
also discuss implications of our main results, particularly the
significance of the kinetic lengths entering the simplified, lo-
cal step velocity law (Sec. VI B). Furthermore, we outline
limitations of our approach, which inspire other, open prob-
lems (Sec. VI C). For example, we discuss the possible break-
down of our hypothesis for smooth step curves; the char-
acter of possible correction terms, to higher orders in the
length Lev; and the effect of surface electromigration which
can modify the integral equation formalism.

A. On the numerical validation of our approximations

Next, we carry out numerical simulations in order to check
the accuracy of asymptotic formula (19b) for an isolated step
(if N = 1) by neglecting the term Levκ. In particular, using
suitable coordinates (r, ϑ) for the step curve, we compare the
approximate prediction for r(ϑ) at sufficiently long times to
the corresponding result computed from solving Eq. (12) of
the boundary integral formalism by quadrature. Our numer-
ics capture the late-time morphological evolution of the step
curve, after any transient effects become negligible.

Let us review briefly the notion of the anisotropic step free
energy [4, 25]. For an isolated step Γ, the total energy is

Est =

∫
Γ

γ(ν(y)) dsy ,

where γ(ν) is the step free energy per unit length (line ten-
sion) at the point y through the local normal vector ν to Γ.
Assuming that curve Γ is described locally as the graph of
function x(y), we write µ = A δEst

δx = Aγ̃κ, where γ̃ is the step
stiffness. Abusing notation, we write γ̃(ϑ) = γ(ϑ) + γ′′(ϑ)
where ϑ is the angle between the normal vector to Γ and the
positive x axis; the prime denotes differentiation with respect
to the argument. Recall that µ enters Ceq via relation (3a)
with ceq = Ceq + Fτ ; here, we have ceq = ceq

1 (since N = 1).
Motivated by [43], in numerics we use the following model

of step stiffness as a function of the step orientation angle ϑ:

Aγ̃(ϑ)

T
= {1− 0.99 cos(6ϑ)}L (24)

where L has the dimension of length. We use small enough
yet nonzero value of Fτ so that adatom diffusion reaches the
quasi-steady regime at long times. If we start from a smooth
initial step shape close to a circle, we expect that the step
curve approaches a limit, which we view as a ‘kinetic Wulff
shape’ of the growth process [66]. By our choice of γ̃(ϑ) the
kinetic Wullf shape will resemble a regularized hexagon, with
slightly rounded corners and slightly curved edges.

We proceed to elaborate on our numerical simulations. We
use an initial circular step shape with radius R0 = L; cf.
Eq. (24). Subsequently, we scale all length scales and spatial
coordinates of our system by this R0; alternatively, set R0 =
1 = L throughout. We assume that the step edge barrier is
symmetric, and thus set L−ad = L+

ad = Lad with Lad/R
0 = 1.

FIG. 5. Snapshots of step shape at long time via numerical sim-
ulations by use of: asymptotic formula (19b) with Levκ = 0 (top
left panel); and boundary integral equations (12a) and (12b) via
quadrature. A single isolated step is used. The same scaled time
t/t0 is used for the snapshots. The initial shape is a circle of ra-
dius R0. The axes correspond to scaled spatial coordinates (x, y):
X = x/R0 and Y = y/R0. Top left panel: The result is indepen-
dent of parameter Lev/R

0. Remaining plots (boundary integrals
by quadrature): Lev/R

0 = 0.2, 0.4, 0.6, 0.8, 1.

We also take (R0)2Fτ = 3 and cs = (R0)−2. Let us scale
time by t0 where Dst0/[R

0(Lad + Lev)] = 0.5.

With our choice of parameters, our goal is to indicate that
desorption may plausibly enable the emergence of local ge-
ometric laws during step motion, under suitable conditions.
The physical roles of these parameters can be outlined as
follows. The stiffness γ̃ is modeled phenomenologically to
capture the formation of smoothed corners in the step shape.
We allow for barely enough deposition flux F on the surface
from above so that growth can balance out desorption at
intermediate times, although growth becomes appreciable at
long times. We apply mixed kinetics in the sense that surface
diffusion in the inner terraces is balanced out by the attach-
ment and detachment of atoms at steps. In this regime, we
show numerically that there exists a time window in which
local geometric laws can occur during step shape evolution.
In practice, this time interval should be controlled by t0,
which in principle depends on the temperature and mate-
rial, and the initial geometry. We have not made any effort
to implement parameters of specific materials here.

In our numerical simulations, we let the step shape evolve
with time according to approximate Eq. (19b); or, alterna-
tively, according to the boundary integrals of Eq. (12) for
a few distinct values of the parameter Lev/R

0. The respec-
tive step shape, at the same scaled time t/t0, is depicted
in Fig. 5. We observe that in each case the step shape has
practically converged to a steady state. There are no sig-
nificant differences between any of the generated shapes for
the chosen values of Lev/R

0 (see comment below). Note
that our leading-order formula (19b) for the step velocity,
with the kinetic contribution Levκ set to zero, produces the
same late-time shape, regardless of the value that we use for
Lev/R

0. This result is shown in the top left panel of Fig. 5.
The independence of this outcome from Lev/R

0 is expected
since the simplified step velocity from Eq. (19b) depends on
the parameters Ds, Lad and Lev alone, through the ratio
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FIG. 6. Plots of maximum relative error over scaled time in regard
to asymptotic formula (19b) with Levκ = 0. Numerical simula-
tions based on Eq. (19b) are compared to simulations based on
quadrature for the boundary integral formalism of Eq. (12). The
following values of Lev/R

0 are used: Lev/R
0 = 0.2 (asterisk), 0.4

(cross), 0.6 (square), 0.8 (diamond), and 1 (circle).

Ds/(Lad + Lev) which is held fixed in our numerics.
A few more comments on Fig. 5 are in order. An inspection

of the plots based on Eq. (12) indicates that larger values
of Lev/R

0 cause slightly less growth, as expected intuitively.
Overall, the comparison of asymptotic and boundary integral
equation predictions is surprisingly favorable even for values
of Lev/R

0 close to unity, as we discuss below. We should
point out that the underlying error is expected to increase
significantly for large enough values of Lev/R

0. Presumably,
our leading-order asymptotic formula for the step velocity
breaks down if Lev/R

0 becomes sufficiently large.
We now briefly describe the error from the use of asymp-

totic formula (19b) with Levκ set to zero, for distinct values
of Lev/R

0. For this purpose, we numerically compute the
maximum relative error in r(ϑ) versus scaled time t/t0, by
comparison to the corresponding result of the boundary in-
tegral formalism according to Eq. (12) via quadrature. This
relative error is shown in Fig. 6, for several values of Lev/R

0.
Our results confirm that the relative error increases with
Lev/R

0. A surprising aspect of this comparison is that even
for Lev/R

0 = 1 the error does not exceed about 5%. For our
chosen parameter values and geometry, the step growth is
relatively rapid which in turn favors small relative error. On
the other hand, a choice of parameters that causes relatively
slow growth would result in larger relative error.

The plot in Fig. 6 also indicates that the maximum relative
error reaches a minimum at t/t0 ' 0.05. We have not been
able to provide a quantitative explanation for this lack of
monotonicity of the relative error with time. The minimum
appears to be a small effect overall, but tends to be a little
more pronounced for larger values of Lev/R

0. We stress that
if Lev/R

0 is small, approximately equal to 0.2 or smaller, the
computed maximum relative error is negligible, and its non-
monotonicity with time is barely evident in our numerics.
This is the asymptotic regime that allows for the emergence
of geometric motion laws.

B. Prediction: Effective kinetic lengths

In this subsection, we review some of our results and dis-
cuss their possible implications. We place emphasis on the
emergence of kinetic lengths in the simplified velocity law of
a single isolated step under strong desorption.

In the absence of step permeability, consider Eq. (19b) for
a single, isolated step. Now set the kinetic contribution Levκ
equal to zero. The step velocity has the form

v⊥ ' −ADsL
−1
eff C

eq , (25a)

where Leff is an effective kinetic length defined as

Leff =

(
1

L+
ad + Lev

+
1

L−ad + Lev

)−1

. (25b)

In the above, the lengths L±ad = Ds/k
± express the step

edge barrier asymmetry (for k+ 6= k−). Notice that Leff is
a harmonic-type mean of the diffusion lengths L±ad + Lev.
Each of these two lengths is the average distance that an
adatom has to travel via hopping on the respective terrace
adjacent to the step edge. We stress that Eq. (25) reduces
to the classic result of BCF for a circular step [15] without
an Ehrlich-Schwoebel barrier and if Ceq becomes a linear
function of the local step curvature, κ (see Sec. III A).

Notably, our analysis provides an extension of Eq. (25)
to the setting with step permeability; cf. Eq. (22). The
idea suggested by this extension is that the step velocity
remains of the same form, Eq. (25a), yet with an effective
length Leff that introduces a ‘renormalization’ of the step
edge asymmetry lengths, L±ad. Our results show the following
related substitutions:

L±ad −→ (1− α±)L±ad + α±L∓ad , (26)

where the constants α± are defined in Eq. (22c). Recall that
a key assumption in our analysis, which allows for this cor-
respondence, is that kinetic interactions between steps are
negligible because of the effect of strong desorption across
wide enough terraces. As a result, the intrinsically nonlocal
effect of step transparency becomes effectively local. Recall
Fig. 4, in which the settings with permeable and imperme-
able steps are compared via the scaled normal flux δJ .

C. Limitations

Next, we outline limitations of our approach. In particu-
lar, we discuss the assumption that the step curve is fixed
and smooth. We also remark on the character of the cor-
rection terms, which would result in modifications of our
leading-order asymptotic formula for the step velocity. Fur-
thermore, we provide the example of an additional kinetic
effect, namely, surface electromigration, which would modify
a part of the integral equation formalism.

1. Smoothness of step curve

A major limitation of our formalism is the underlying as-
sumption about the geometry: the step is supposed to be
represented by a (given) smooth curve [58]. In fact, to be
more precise, each step curve must be twice continuously
differentiable with respect to the arclength on the crystal
reference plane. This hypothesis is questionable in many
situations. For instance, on a crystal surface with strongly
anisotropic step line tension, the step geometry can become
singular, e.g., have facets (straight lines).
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We expect that our formalism can still be applied along
such facets on steps with the appropriate modification of
the local curvature [43]; but would presumably break down
near corners between facets. This pathology is partly caused
by the poor resolution of the distance between two points on
the opposite sides of the corner, since this distance is not dif-
ferentiable with respect to the step arclength at the corner.
Consequently, the approximation |yj(ς)−yj(ς0)| ' |ς−ς0|Lev

invoked in Sec. IV B 3, where now the value ς = ς0 cor-
responds to the corner position, becomes inaccurate when
|ς − ς0| is of the order of unity or smaller. Furthermore, if
the step line tension γ has an explicit dependence on the
step orientation then Ceq can be discontinuous at the corner
between two facets. Thus, the replacement of Ceq by a con-
stant, which we applied in our leading-order approximation
scheme (Sec. IV B), is expected to fail near the corner.

A plausible remedy would be to split the integration for the
relevant single- and double-layer potentials at the position
of the corner. We also need to adopt a more sophisticated
approximation for Ceq along the step. The simplest possible
scenario would be to replace Ceq by a different constant on
each side of the corner. This problem is not studied here.

If the step line tension γ(ϑ), as a function of the orien-
tation angle ϑ, has corner singularities at each of its local
minima and the step edge is initially faceted at the corre-
sponding orientations, the above approximation about Ceq

being piecewise constant becomes an exact property. This
situation is encountered in [43] where the authors invoke the
notion of the weighted mean curvature. Their computation
relies on the properties that the facet is perfectly flat and
admissible perturbations of the step shape preserve the char-
acter of this facet. Our analysis cannot address this setting.

2. Correction terms

Our analysis so far mostly concerns the derivation of
leading-order formulas for step velocities. We have also indi-
cated the kinetic effect of curvature through the term Levκ
as well as the kinetic interactions of a step with its nearest
neighbors via effective terrace widths; see Secs. IV C and V.
This treatment points to at least two questions. One ques-
tion is: How can one derive higher-order terms of the asymp-
totic expansion for the step velocity, with given smooth step
shape? Another, more challenging question is: Can such
higher-order terms be used reliably to describe the step mor-
phological evolution? We briefly discuss these issues.

Regarding the first issue, for a smooth step shape, one can
in principle derive correction terms to arbitrary order in the
length Lev via a suitable change of variable in the integrals
for the requisite potentials. We outline the procedure here
for the interested reader. The core idea relies on a standard
but elaborate procedure of classical asymptotics [63]. To
convey this idea, let us restrict attention to the single-layer

potential term Ŝi[f ](x) when the point x lies in step Γ(i); f is
the normal flux. Suppose that the step curve is parametrized
by the scaled (signed) arclength ς. For sufficiently small Lev,
we need to expand part of the integrand around some value
ς = ς0, e.g., ς0 = 0. For the derivation of higher-order terms,
the approximation |yi(ς)−yi(0)| ' |ς|Lev, which we applied
previously for the argument of the kernel (Sec. IV B 3), is
no longer adequate. Instead, we can handle this case by

changing the integration variable from ς to R according to
R(ς) = |yi(ς)−yi(0)|/Lev. This choice requires splitting the
starting integral in way that renders the distance function
R(ς) one-to-one in each domain of the R-integration.

Subsequently, each integral can produce an expansion in
powers of Lev as follows. We can write the part of each
integrand other than the kernel as a polynomial in R, and
then integrate term by term. This task is carried out via the
approximation of the function f(ς) as a polynomial in ς via
a Taylor expansion. By inversion of R(ς), we can determine
the respective polynomial in R for f [63]. This procedure
suggests that, in the case of a single step, our analysis is
reasonable provided that the flux normal to the step does
not vary appreciably over arclengths of the order of Lev. The
details of this procedure are omitted here.

Despite the systematic derivation of higher-order terms in
Lev for the step velocity, as indicated above, their role in the
step morphological evolution is not addressed. For instance,
consider Eq. (19b) by regarding the kinetic contribution Levκ
as the first correction. A natural question is whether the
motion law for the step in the presence of this correction is
well posed or not. This aspect of our asymptotic results,
namely, the implications of the asymptotic expansion in Lev

for the actual step dynamics, where the geometry evolves
with time and thus forms part of the overall solution, is left
unresolved.

3. Another kinetic effect: Surface electromigration

Next, we discuss the kinetic effect of surface electromi-
gration which requires a modification of our formalism. In
the presence of an external electric field E, the positively
charged adatoms are forced to move in its direction. This
motion causes a drift velocity vE which is given by [67–69]

vE =
Ds(Z

∗e)E

T
.

Here, the constant Z∗e is the effective adatom charge; |Z∗|
is greater than unity for metals but can be quite small for
semiconductors [68]. For simplicity, let us assume that E is
constant; thus, vE is constant. The electric field produces
a convective term in the diffusion equation for adatoms via
the drift velocity. Hence, the shifted adatom concentration
C on terraces satisfies the equation

∆C = L−2
ev C +D−1

s vE · ∇C .

In addition, we impose Robin-type boundary conditions (2a)
for attachment and detachment of atoms at the step edges.

If we invoke the Green function G(x,y) (Sec. IV A), the
standard procedure of the integral equation formalism yields

−C(x) =
vE
Ds
·
∫

Ω(i)

G(x,y)∇yC(y) dy

+ Ŝi+1

[(
∂C

∂ν

)−]
(x)− Ŝi

[(
∂C

∂ν

)+]
(x)

−
{
D̂i+1[C−](x)− D̂i[C+](x)

}
, x in Ω(i) ; (27)

cf. Eq. (9) in which we omit the ± superscripts. We can now
apply integration by parts to remove the gradient operator
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∇y from C in the integral of the first line in Eq. (27). Note
that the singularity of the ensuing term ∇yG(x,y), when
x = y, does not manifest since x is not let to coincide with
y as yet. We can then pull the gradient operator out of the
respective integral according to

−
∫

Ω(i)

∇yG(x,y)C(y) dy = ∇x

[∫
Ω(i)

G(x,y)C(y)dy

]
.

This equation may not be further simplified to yield bound-
ary integrals along steps. Hence, the use of the same Green
function G via Eq. (27) requires computing the shifted con-
centration field C on the whole terrace, in contrast to the
spirit of boundary integral equations in this paper.

Nonetheless, a boundary integral formalism can be derived
for this case by use of a different Green’s function Ǧ(x,y),
which accounts for the drift velocity vE . This Ǧ should
obey the equation

{
∇x ·

(
ϕ(x)∇x

)
− L−2

ev

}
Ǧ(x,y) = δ(x −

y), where ϕ(x) = exp(−D−1
s vE · x) is an integrating factor

implied by the diffusion equation with a drift for density C.
This definition leads to a boundary integral formalism under
electromigration analogous to that of Sec. IV A. The analysis
of this problem will be the subject of future work.

VII. CONCLUSION

In this paper, we derived simplified formulas for the ve-
locities of line defects (steps) with fixed shapes on a crystal
surface under growth conditions below the roughening tran-
sition. The starting point is the BCF model in the quasi-
steady regime, enriched with kinetic conditions for atom at-
tachment and detachment at steps as well as step perme-
ability and diffusion along steps. Our main assumptions are
that the diffusion length Lev due to evaporation on terraces
is small compared to the step linear size and radius of cur-
vature, and each step curve is smooth. We recognize that
a narrow boundary layer of adatom diffusion develops near
the step edges. Hence, the intrinsically nonlocal mechanism
of adatom diffusion tends to become local. The velocity of
an isolated step can then acquire a universal form which de-
pends on the local geometry, particularly the step curvature.

To describe this situation for a step train, we applied
asymptotics on a boundary integral formalism for the adatom
fluxes. A highlight of our results is the emergence of the free
boundary velocity as a linear superposition of equilibrium
adatom densities in the same as well as adjacent steps. The
contribution from the same step depends on the local cur-
vature both kinetically, through the leading-order behavior
of a double-layer potential, and thermodynamically via the
step chemical potential. The kinetic interactions with neigh-
boring steps, on the other hand, are expressed by decaying
exponentials of effective terrace widths. In the language of
boundary layer theory [52], these terms signify effects of the
inner and outer regions associated with the step boundaries.

Our analysis explicitly yields effective kinetic lengths that
enter the step velocity law. In particular, step permeability
causes the appearance of length scales that involve Lev and
two convex-type combinations of lengths associated with the
step edge barrier asymmetry.

Our results motivate further studies of crystal growth in
the step flow regime. For example, one can numerically com-
pare the local geometric laws of our asymptotics to the mor-

phological evolution of multiple, kinetically interacting steps
in specific crystalline materials. Aspects of the 2D step mor-
phological evolution under strong anisotropy in vacuum are
left unresolved. For some anisotropic step free energies, the
formation of geometric singularities, e.g, micro-facets and
corners, on steps poses a challenge. Another direction of an-
alytical interest concerns the effect of solvents on the step
velocity, when the crystal surface is immersed in a liquid.
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Appendix A: On the case of concentric circular steps

In this appendix, we provide details for the radial case that
were omitted in Sec. III A. We also outline how the approx-
imation scheme of our integral formalism for non-circular
steps (Sec. IV B 1) can properly reduce to the equations of
motion for concentric circular steps when rotational sym-
metry holds (Sec. III A). In particular, we show that in the
radial geometry the single- and double-layer potential terms
are evaluated by use of modified Bessel functions.

First, let us revisit the radial setting of Sec. III A. We will
express the total adatom flux at a point of a circular step in
a form that will later enable us to make direct comparisons
to the boundary integral formalism. Consider the shifted
adatom concentration on the ith terrace Ω(i), viz.,

Ci(r) = aiI0(R) + biK0(R) , R = r/Lev , ri < r < ri+1 .

The values of the normal derivative of C = Ci at the bound-
ing steps, Γ(i) and Γ(i+1), are written in the matrix form[ (

∂C
∂ν

)+
i(

∂C
∂ν

)−
i+1

]
= L−1

ev

[
I1(Ri) −K1(Ri)
I1(Ri+1) −K1(Ri+1)

] [
ai
bi

]
, Ri =

ri
Lev

,

where (∂C/∂ν)±j = ∂C/∂r at r = rj with j = i (+ sign)

or j = i + 1 (− sign). On the other hand, the Robin-type
conditions (2a) for the radial adatom flux yield the system

Ai

[
ai
bi

]
=

[
Ceq
i

Ceq
i+1

]
,

where the matrices Ai are defined by

Ai =

[
I0(Ri)−

L+
ad

Lev
I1(Ri) K0(Ri) +

L+
ad

Lev
K1(Ri)

I0(Ri+1) +
L−

ad

Lev
I1(Ri+1) K0(Ri+1)− L−

ad

Lev
K1(Ri+1)

]
.

Evidently, det(Ai) = −L+
adL
−
adΛi; Λi is defined in Sec. III A.
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Thus, the total flux into step Γ(i) for i 6= 1, N is

J tot
i = J tot

i,⊥ = Ds

[(
∂Ci
∂ν

)+

i

−
(
∂Ci−1

∂ν

)−
i

]

=
Ds

Lev

[
I1(Ri)
−K1(Ri)

]T {
A−1
i

[
Ceq
i

Ceq
i+1

]
−A−1

i−1

[
Ceq
i−1

Ceq
i

]}
,

(A1)

where the superscript T here denotes the transpose. This re-
sult serves our purpose of connecting the explicit equations
of motion for the radial case to our boundary integral formal-
ism. In fact, we will show that Eq. (A1) exactly agrees with
the respective outcome of our boundary integral equations.

Next, we turn our attention to the formalism of Sec. IV,
which we will place in the radial setting. We begin by
substituting the Robin-type boundary conditions (4b) di-
rectly into Eq. (9). It is more algebraically convenient to

proceed this way, instead of invoking limy→x D̂i[f ](y) =

∓f(x)/2 + /̂Di[f ](x), because in this setting D̂i[1](y) has a
simple expression, as we will see below.

The result of the above substitution for the terrace Ω(i)

(with Ci = C) reads

(
Ŝi+1 + L−adD̂i+1

)[(∂C
∂ν

)−]
(x)

+
(
−Ŝi + L+

adD̂i
)[(∂C

∂ν

)+
]

(x)

= D̂i+1[Ceq
i+1](x)− D̂i[Ceq

i ](x)− C(x) , (A2)

where x lies in Ω(i). This formalism can be extended to the
extremal terraces, where i = 0 or i = N , by the introduction
of zero terms pertaining to the (nonexistent) steps Γ(0) and
Γ(N+1). Accordingly, we can obtain a system of integral
equations on curves Γ(i) and Γ(i+1), which bound terrace
Ω(i), by allowing x to approach each of these steps from
inside Ω(i).

Now let us focus on simplifications due to the radial geom-
etry. We notice that the (assumed isotropic) step free energy,

the fluxes, the layer potentials Ŝj [1](x) and D̂j [1](x), and the
shifted density Ceq

j are all constant along the respective side
of a given step edge. Consequently, we can now use the same
replacement that was previously employed for the derivation
of Eq. (13), bearing in mind that in the present setting this
equation is exact. The result is the system

(
Ŝi+1[1](x) + L−adD̂i+1[1](x)

)(∂C
∂ν

)−
(x)

+

{
−Ŝi[1](x) + lim

y→x

(
L+

adD̂i[1](y)
)}(∂C

∂ν

)+

(x)

= D̂i+1[1](x)Ceq
i+1(x)− lim

y→x

(
D̂i[1](y)

)
Ceq
i (x)

− Ceq
i (x)− L+

ad

(
∂C

∂ν

)+

(x) , x in Γ(i) ; (A3a)

and (
Ŝi+1[1](x) + lim

y→x

[
L−adD̂i+1[1](y)

])(∂C
∂ν

)−
(x)

+

(
−Ŝi[1](x) + L+

adD̂i[1](x)

(
∂C

∂ν

)+
]

(x)

= lim
y→x

[
D̂i+1[1](y)

]
Ceq
i+1(x)− D̂i[1](x)Ceq

i (x)

− Ceq
i+1(x) + L−ad

(
∂C

∂ν

)−
(x) , x in Γ(i+1) . (A3b)

It remains for us to evaluate the requisite layer potentials
when the steps Γ(i) are concentric circles with radii ri. First,
consider the single-layer potential terms. By using polar co-
ordinates, for x in Γ(j) we have

Ŝk[1](x) = −Lev

2π

∫ π

−π
K0

(√
R2
j +R2

k − 2RjRk cos θ
)
Rk dθ .

Consider Graf’s addition formula [57], viz.,

K0

(√
Z2 + Ξ2 − 2ZΞ cos θ

)
=

∞∑
n=−∞

Kn(Z)In(Ξ) einθ ,

where Z > 0, Ξ ≥ 0 and Z ≥ Ξ (for real Z and Ξ). By using
this formula, and interchanging the order of integration and

summation for Ŝk[1](x), we find (for x in Γ(j))

Ŝk[1](x) = − rk
2π

×
∞∑

n=−∞

∫ π

−π
Kn(max{Rj , Rk})In(min{Rj , Rk})einθ dθ

= −LevRkK0(max{Rj , Rk})I0(min{Rj , Rk}) . (A4)

Subsequently, we proceed to evaluate the double-layer po-
tential terms. We distinguish the following cases. We start

with the term D̂i+1[1](x), where the evaluation point x lies
in terrace Ω(i). In this case, we need the normal derivative

∂

∂ν(y)
G(x− y) = − 1

2π

∂

∂rk

∞∑
n=−∞

Kn(Rk)In

(
|x|
Lev

)
einθ

=
1

4πLev

∞∑
n=−∞

{Kn+1(Rk) +Kn−1(Rk)} In

(
|x|
Lev

)
einθ ,

where |y| = rk > |x|. Note that the derivative is taken with
respect to the larger radius. For k = i+ 1, we obtain

D̂i+1[1](x) = Ri+1K1(Ri+1) I0

(
|x|
Lev

)
, x in Ω(i) .

The next calculation concerns the double-layer potential

term D̂i[1](x), where x lies in Ω(i). The requisite normal
derivative involves changing the smaller radius. We compute

∂

∂ν(y)
[G(x− y)] = − 1

4πLev

×
∞∑

n=−∞
{In+1(Rk) + In−1(Rk)}Kn

(
|x|
Lev

)
einθ ,
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for |y| = RkLev < |x|. Upon integration with k = i, we have

D̂i[1](x) = −RiI1(Ri)K0

(
|x|
Lev

)
, x in Ω(i) .

At this stage, we comment on the relation between D̂i(y)

and D̂i(z) when y lies in Ω(i) and z lies in Ω(i−1), and both
points approach point x in step Γ(i). We explicitly compute

lim
y→x
D̂i[1](y)− lim

z→x
D̂i[1](z)

= Ri{K1(Ri)I0(Ri) +K0(Ri)I1(Ri)} = 1 (A5)

where Ri = |x|/Lev. The above formula is a special case

of the limit limy→x D̂i[f ](y) = ∓f(x)/2 + /̂Di[f ](x), used in
Sec. IV. Equation (A5) comes from a Wronskian [57] and is
useful throughout our algebraic manipulations.

With the expressions for the layer potentials at hand, we
can rewrite integral equation system (A3). Thus, we obtain

Ri+1

{
−LevK0(Ri+1)I0(Ri) + L−adK1(Ri+1)I0(Ri)

}(∂C
∂ν

)−
+Ri

{
LevK0(Ri)I0(Ri)− L+

adI1(Ri)K0(Ri)
}(∂C

∂ν

)+

= Ri+1K1(Ri+1)I0(Ri)C
eq
i+1 +RiK1(Ri)I0(Ri)C

eq
i

− Ceq
i − L

+
ad

(
∂C

∂ν

)+

, (A6a)

Ri+1

{
−LevK0(Ri+1)I0(Ri+1) + L−adK1(Ri+1)I0(Ri+1)

}(∂C
∂ν

)−
+Ri

{
LevK0(Ri+1)I0(Ri)− L+

adI1(Ri)K0(Ri+1)
}(∂C

∂ν

)+

= Ri+1K1(Ri+1)I0(Ri+1)Ceq
i+1 +RiK1(Ri+1)I0(Ri)C

eq
i

− Ceq
i+1 + L−ad

(
∂C

∂ν

)−
. (A6b)

Here, C = Ci and (∂C/∂ν)± denotes the normal derivative
of C evaluated at point x of step Γ(i) (+ sign) or point y of
step Γ(i+1) (− sign). By solving system (A6), we realize that
the total flux into step Γ(i) takes the form

J tot
i = Ds

{[
1
0

]T
B−1
i Di

[
Ceq
i

Ceq
i+1

]
−
[
0
1

]T
B−1
i−1Di−1

[
Ceq
i−1

Ceq
i

]}
.

(A7)

The matrices Bi and Di are defined by

Bi =

[
Ri{L+

adI0(Ri)K1(Ri) + LevK0(Ri)I0(Ri)} Ri+1{L−adK1(Ri+1)I0(Ri)− LevK0(Ri+1)I0(Ri)}
Ri{−L+

adI1(Ri)K0(Ri+1) + LevK0(Ri+1)I0(Ri)} −Ri+1{L−adK0(Ri+1)I1(Ri+1) + LevK0(Ri+1)I0(Ri+1)}

]
,

Di =

[
−RiI0(Ri)K1(Ri) Ri+1K1(Ri+1)I0(Ri)
RiI1(Ri)K0(Ri+1) −Ri+1K0(Ri+1)I1(Ri+1)

]
.

Let us summarize the results of this appendix so far. On
the one hand, the formalism of Sec. III A yields Eq. (A1) for
J tot
i in terms of Ceq

j (j = i, i±1), by use of matrices Ai. On

the other hand, the boundary integral equation formalism of
Sec. IV, with the evaluation of the layer potentials via Graf’s
addition formula, furnishes Eq. (A7). It remains to compare
Eqs. (A1) and (A7). To this end, we carry out some algebra
in which we apply Eq. (A5). We omit further details here.
The explicit calculation of J tot

i by each formula, Eq. (A1)
and Eq. (A7), yields the same expression, viz.,

J tot
i =Ds

{
−

([
L+

adK1(Ri−1) + LevK0(Ri−1)
]
I1(Ri)−

[
L+

adI1(Ri−1)− LevI0(Ri−1)
]
K1(Ri)

Λ̃i−1

+

[
L−adI1(Ri+1) + LevI0(Ri+1)

]
K1(Ri)−

[
L−adK1(Ri+1)− LevK0(Ri+1)

]
I1(Ri)

Λ̃i

)
Ceq
i

+
Lev

Ri

(
Ceq
i+1

Λ̃i
+
Ceq
i−1

Λ̃i−1

)}
(i 6= 1, N) ; Λ̃i = −L2

ev det(Ai) . (A8)

Recall that Λ̃i is related to the Λi introduced in Sec. III A by Λ̃i = L2
evL

+
adL
−
adΛi.
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