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Abstract. We examine the dynamics of superconducting vortices with two-
fold anisotropic interaction potentials driven over random pinning and compare
the behavior under drives applied parallel and perpendicular to the anisotropy
direction. The number of topological defects reaches a maximum near depinning
and then drops with increasing driving force as the vortices form one-dimensional
chains. This coincides with a transition from a pinned nematic to a moving
smectic aligned with the soft direction of the anisotropy. The system is generally
more ordered when the drive is applied along the soft direction of the anisotropy,
while for driving along the hard direction, there is a critical value of the anisotropy
above which the system remains aligned with the soft direction. We also observe
hysteresis in the dynamics, with one-dimensional aligned chains persisting during
a decreasing drive sweep to drives below the threshold for chain formation during
the increasing drive sweep. More anisotropic systems have a greater amount of
structural disorder in the moving state. For lower anisotropy, the system forms
a moving smectic-A state, while at higher anisotropy, a moving nematic state
appears instead.
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1. Introduction

A wide range of systems can be described effectively as an assembly of particles
interacting with each other and with quenched disorder, leading to the appearance
of depinning and multiple sliding phases [1, 2]. Such systems include vortices in type-
II superconductors [3, 2], colloidal particles [4, 5, 6], active matter [7, 8], magnetic
skyrmions [9, 10], pattern forming systems [11, 12], and sliding Wigner crystals [13, 14].
In each case there is a threshold for motion or a depinning transition above which
the particles can depin into a disordered or fluctuating state containing numerous
topological defects [15, 2]. One of the most studied systems of this type is vortices in
type-II superconductors, which can exhibit dynamical transitions into more ordered
moving phases such as a moving crystal [16], anisotropic crystal [17], or moving smectic
[18, 19, 20, 21]. These transitions are associated with changes in the structure factor
[17, 18, 19, 20, 21], the number and orientation of topological defects [18, 20, 21], and
the noise characteristics [22, 21, 23, 24, 25]. In a two-dimensional (2D) system driven
over random disorder, the fluctuations experienced by the particle due to its motion
over the quenched disorder are anisotropic, leading to the formation of a moving
smectic state [19]. Beyond superconducting vortices, moving smectics have also been
studied in other 2D systems driven over quenched disorder including Wigner crystals
[14] and frictional systems [26].

In most of these systems, the particle-particle interactions are isotropic, so in the
absence of quenched disorder an isotropic crystal appears. For example, in the case of
type-II superconductors with isotropic repulsion, the vortices form a triangular lattice
[3]. There are, however, many examples of particle-like systems that have two-fold
anisotropic interactions, including colloidal particles in tilted magnetic fields [27, 28],
dusty plasmas [29], electron liquid crystal states [30, 31, 32], skyrmions [33, 34, 35],
and superconducting vortices [36, 37, 38, 39, 40, 41, 42, 43]. Anisotropic vortex-
vortex interactions can arise from anisotropy in the material or nematicity in the
substrate, or it can be induced by a tilted field. Theoretical work on vortex liquid
crystal systems with two-fold anisotropy showed that these systems can form smectic-A
states and exhibit two step melting transitions [39, 41]. Magnetic skyrmions have many
similarities to superconducting vortices and typically form a triangular lattice under
isotropic conditions [44, 45]. Two-dimensional anisotropic skyrmions can produce
what are called skyrmion liquid crystals with smectic [35] or more specifically smectic-
A ordering [46]. Far less is known about the behavior of driven states of anisotropic
crystals in quenched disorder, such as what dynamical ordering transitions appear
and what differences arise when the driving is applied parallel or perpendicular to
the anisotropy direction. In this work we study the dynamics of superconducting
vortices with a twofold anisotropy potential that are driven over quenched disorder
both parallel and perpendicular to the anisotropy for varied values of the anisotropy
and the quenched disorder strength. In addition to superconducting vortices, our
results should also be relevant to the wider class of assemblies of particles with twofold
anisotropic interactions moving over quenched disorder.

2. Methods

In previous computational modeling of vortices as point particles interacting with
pinning the vortices had a pairwise isotropic repulsive potential that is proportional
to the zeroth order Bessel function, U(r) = K0(r) [47], causing the vortices to form
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Figure 1. Equipotential lines for the vortex-vortex interaction in Eq. (1)
for increasing anisotropy parameter K2 = 0.0 (a), 0.5 (b), 1.0 (c), and 1.5 (d).
The deep pinch points along the y-axis cause chain states to form that affect the
dynamics of the system.

a triangular ground state in the absence of quenched disorder. Point particle models
of vortices with two-fold, four-fold, and six-fold anisotropic interactions have also
been considered [48, 49] in the context of triangular to square and other rotational
transitions. In anisotropic systems with a total of na anisotropy axes, the vortex-
vortex interaction potential has the form

U(r, θ) = AvK0(r)

[
1 +Ka cos2

(
na(θ − φa)

2

)]
(1)

where r = |ri − rj | is the distance between two vortices at positions ri and rj and
the angle between the vortices with respect to the x-axis is θ = tan−1(ry/rx) with
r = ri − rj , rx = r · x̂ and ry = r · ŷ. Here Av is an isotropic vortex interaction
strength that we use as a normalization parameter. The magnitude of the anisotropic
contribution to the vortex interaction is given by Ka. In this work we consider two-
fold anisotropy (na = 2) or K2. Specifically, we examine the dynamics of systems with
different anisotropy strengths driven over quenched disorder.

In Fig. 1 we illustrate the equipotential lines for the two-fold anisotropic vortex
potential with Ka = 0.0, 0.5, 1.0, and 1.5. For K2 = 0.0 in Fig. 1(a), the interaction
is isotropic and the vortices form a triangular lattice. As the anisotropy increases, the
potentials become more elongated, implying that the vortex-vortex interaction forces
are strongest along the x-direction and weaker along the y-direction. In previous
work, anisotropy was introduced by multiplying the force components of an isotropic
interaction potential by different factors in the x- and y-directions [41]. Although this
approach produced anisotropic diffusion, smectic ordering appeared only for very large
differences in the multiplication prefactors, making this an unrealistic representation
of anisotropic systems. A much better realization is the 2D anisotropic potential of
the type shown in Fig. 1, which produces a much more complicated force configuration
than a simple multiplication factor would.

We consider a two-dimensional system of size L×L with L = 72λ, where λ is the
London penetration depth. The dynamics of vortex i are governed by the following
overdamped equation of motion:

η
dri
dt

= Fvvi + FTi + Fpi . (2)

Here η is the damping constant, which is set to unity. The vortex-vortex interaction
force is Fvv = −∇(U) = (−∂U/∂x,−∂U/∂y). With a twofold anisotropy and φa = 0,
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the force is

Fx = Av

[
cos(θ)K1(r)

(
1 +K2 cos2(θ)

)
− K2

r
K0(r) sin(θ) sin(2θ)

]
(3)

Fy = Av

[
sin(θ)K1(r)

(
1 +K2 cos2(θ)

)
+
K2

r
K0(r) cos(θ) sin(2θ)

]
(4)

There are a total of Nv vortices in the sample. Each vortex also experiences forces
Fpi from the substrate, which is modeled as Np parabolic pinning traps placed in
random but non-overlapping positions. Each pinning site is of radius rp and can exert
a maximum force of Fp. The vortex-pin interaction is directed toward the center of

the pinning site and is given by Fpi = Fp
∑Np

j (rpj − ri) Θ(rp − |ri − rpj |)r̂
(p)
ij . For the

parameters we consider, an individual pinning site can capture at most one vortex. In
this work we fix rp = 0.5λ and Fp = 0.5.

The initial vortex positions are obtained using simulated annealing. Starting from
a high temperature where the vortices are in a liquid state, we lower the temperature
to zero in a series of steps. Thermal forces arise from Langevin kicks FTi with
the properties 〈FT 〉 = 0.0 and 〈FTi (t)FTj (t′)〉 = 2ηkBTδij δ(t − t′) where kB is the

Boltzmann constant. We begin the annealing process at FT = 4.0 where the vortices
are rapidly diffusing, and gradually cool the system to FT = 0.0. The temperature is
reduced by ∆FT = −0.05 every 104 simulation time steps.

After annealing we apply a driving force in either the x- or y-direction. Here x is
the hard direction of the anisotropy along which the vortices are more repulsive, and
y is the soft direction. We start at FD = 0.0 and increase the force in increments of
∆FD = 0.05 every 104 simulation time steps up to a maximum drive of Fmax = 1.5.
We then decrease the drive by ∆FD every 104 time steps until FD = 0.0 again. We
use a pinning density ρp = Np/L

2 ranging from ρ = 0 to ρ = 0.48225 and fix the
vortex density ρv = Nv/L

2 to ρv = 0.44. For all results discussed here, values are
obtained by averaging the results of 10 simulations for each set of parameters.

Increasing or decreasing the value of K2 changes the magnitude of the energy
potential experienced by each vortex, which is equivalent to a change in the effective
vortex density. To eliminate effects arising from a density difference, we define an
effective magnetic field that is proportional to the two-dimensional integral of the
interaction potential:

Beff ∝
∫ ∞

0

r dr

∫ 2π

0

dθ U(r, θ) ∝ Av (2 +K2) . (5)

Using K2 = 0 and Av = 2.0 as a reference, we set Av = 4/(2 +K2) for each individual
molecular dynamics simulation, such that all simulations have the same value of Beff .
The vortex lattice configurations are analyzed after annealing and during the drive
sweep processes by calculating the structure factor, S(k), and by using a Voronoi
polygon construction. This yields the local coordination number zi of each vortex,
which is used to compute the fractions Pn = 1

Nv

∑Nv

i=1 δ(zi − n) for n = 5, 6, and 7.
The most useful parameter is the fraction of defects Pd = 1 − P6, which provides a
measure of the disorder of the system.

3. Results

In Fig. 2 we plot the fraction of topological defects Pd versus driving force FD for a
system with K2 = 0.55 and ρp = 0.48225 under driving in the x- and y-directions.
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Figure 2. The fraction of topological defects Pd versus the driving force FD

in a system with K2 = 0.55 and ρp = 0.48225 for x-direction driving (blue) and
y-direction driving (red).

The system is in a disordered configuration after the annealing process with a large
fraction, Pd = 0.43, of vortices that are not sixfold coordinated. As FD increases, a
depinning transition occurs near FD = 0.2 that coincides with a maximum in Pd of
Pd = 0.45 for y-direction driving and Pd = 0.47 for x-direction driving. The depinning
threshold is slightly higher for driving in the x-direction. Above depinning, Pd rapidly
drops with increasing FD and approaches Pd = 0.05 for FD > 1.0. The minimum value
of Pd is similar for driving in either direction at this value of K2. For driving in the
y-direction, the decrease in Pd as FD increases is correlated with dynamical ordering
into a moving smectic phase containing a small number of dislocations that are aligned
in the driving direction, as observed previously [18, 20, 21]. One distinction we find
in the anisotropic system is that the smectic state for driving in the x-direction is not
aligned with the driving direction but is instead aligned with the soft anisotropy or
y-direction.

In Fig. 3(a) we show a Voronoi construction of a portion of the system from Fig. 2
with K2 = 0.55 and ρp = 0.48225 at FD = 0.0, where one-dimensional (1D) chains
of vortices appear that are aligned in the y-direction. The corresponding structure
factor S(k) in Fig 3(d) contains a set of diffusive peaks aligned in the ky direction along
kx = 0, indicative of nematic ordering. Here the vortices are spaced more closely in the
y-direction than in the x-direction due to the anisotropy of the repulsive vortex-vortex
force, which is smaller along the y direction, permitting the vortices to approach each
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Figure 3. (a,b,c) Voronoi construction of a portion of the sample showing
sixfold (white), fivefold (red), and sevenfold (blue) coordinated vortices for the
system in Fig. 2 with ρp = 0.48225 and K2 = 0.55. (d,e,f) The corresponding
structure factor S(k). (a,d) A pinned nematic phase at FD = 0.0. (b,e) A
smectic structure forms under driving in the x-direction at FD = 1.5. (c,f) A
similar smectic structure appears for driving in the y-direction at FD = 1.5.

other more closely from this direction. In Fig. 3(c,f) when a drive of FD = 1.5 is applied
along the y-direction, there are only a small number of dislocations present that are
all aligned in the y-direction. The corresponding structure factor is still anisotropic
but has sharp peaks in the y-direction indicative of a smectic phase. Figure 3(b,e)
shows the same system with a drive of FD = 1.5 applied along the x-direction. A
similar moving smectic appears that is perpendicular to the drive direction.

In Fig. 4 we plot Pd versus FD for driving in the x− and y-directions for a sample
with ρp = 0.48225 at a larger anisotropy of K2 = 1.45. There is a clear difference in
the defect density, with y-direction driving producing much lower values of Pd than
x-direction driving over the range of drives we consider, indicating that the system
is better ordered when the drive is aligned with the soft anisotropy direction or the
natural smectic orientation of the system. For driving in the x-direction, Pd reaches a
minimum value of Pd = 0.24, while we find a lower minimum of Pd = 0.14 for driving
in the y-direction. As the drive is decreased from its maximum value of FD = 1.5, the
system starts to disorder again for driving in both directions, reaching nearly identical
values of Pd ≈ 0.32 at the pinning transition.

In Fig. 5(a,d) we show a Voronoi construction and structure factor for the system
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Figure 4. Pd versus FD in a system with K2 = 1.45 and ρp = 0.48225 for x-
direction driving (blue) and y-direction driving (red). The system is more ordered
for driving in the y-direction.

in Fig. 4 with K2 = 1.45 at FD = 0, where a pinned nematic phase appears.
Figure 5(b,e) shows the same system for driving in the y-direction with FD = 0.75.
The vortices are more ordered, as indicated by the sharper peaks in S(k), and the
system has formed a moving nematic. In Fig. 5(c,f), for driving in the y-direction at
FD = 1.5, the number of defects has diminished and the peaks in S(k) are sharper.
The vortices exhibit smectic ordering and form a series of non-overlapping 1D chains.

In Fig. 6(a) we show a smaller region of the Voronoi construction from Fig. 5(a)
at FD = 0.0 indicating that the vortices form chains that can break or intertwine.
Figure 6(b) shows a schematic of the vortices with the anisotropic potentials forming
a nematic structure. Here the system forms chains that can end or begin inside the
sample. In Fig. 6(c) we show a small region of the Voronoi construction from Fig. 5(e)
for y-direction driving with FD = 1.5 where the system forms a smectic state and the
1D chains do not overlap. Figure 6(d) shows a schematic of the vortex structure in this
state, which is known as smectic-A in liquid crystal systems [46]. This is similar to the
phase proposed for vortex liquid crystals with anisotropic potentials [39]. Here there
are no breaks in the 1D chains. Individual chains can contain different numbers of
vortices, producing dislocations that are aligned in the y-direction. In the K2 = 1.45
system, driving in the x-direction produces a set of phases very similar to those found
for driving in the y-direction, but the nematic phase persists up to higher drives.

We can also characterize the system by measuring the maximum and minimum
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Figure 5. (a,b,c) Voronoi construction of a portion of the sample showing
sixfold (white), fivefold (red), and sevenfold (blue) coordinated vortices for the
system in Fig. 4 with ρp = 0.48225 and K2 = 1.45. (d,e,f) The corresponding
structure factor S(k). (a,d) Nematic ordering at FD = 0. (b,e) Driving in the
y-direction at FD = 0.75. (c,f) A smectic state forms for driving in the y-direction
at FD = 1.5.

number of defects generated during the drive cycle FD = 0 → 1.5 → 0 for varied
K2. The maximum number of defects appear at the depinning threshold, while the
minimum number are present at the highest drive of FD = 1.5. In Fig. 7(a) we plot
the minimum and maximum values of Pd versus K2 for driving in the y-direction in
samples with ρp = 0.48225. For low K2 < 0.8, at depinning there is a nematic state
with Pd ≈ 0.45. The vortices order into a moving smectic phase at higher drives with
the defect density reaching minimum values of Pd = 0.03 to Pd = 0.07. For K2 > 0.9,
the system is less defected at the depinning transition but contains more defects in
the driven reordered states. As the anisotropy increases, it becomes more difficult
to destroy the chains of vortices at depinning, giving a lower density of defects at
the depinning transition; however, it becomes easier for the chains to slide past one
another at higher drives, creating a larger number of more persistent dislocations in
the driven phase. In Fig. 7(b) we show the minimum and maximum values of Pd versus
K2 for the same system under driving in the x-direction. Near K2 = 0.2 there is a peak
in the minimum number of defects corresponding to the critical anisotropy at which
the smectic undergoes a transition from alignment in the x-direction to alignment
in the y-direction. For K2 > 0.2 the system forms a moving smectic aligned in the
y-direction, while when K2 > 0.9, a moving nematic appears at higher drives.

In Fig. 8 we show the Voronoi construction and structure factor for the system in
Fig. 7(b) with K2 = 0.2 for driving in the x-direction at FD = 1.5. Here, the system
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(b)

(d)

Figure 6. (a) Exploded view of the Voronoi construction from Fig. 5(a) for
the sample with ρp = 0.48225 and K2 = 1.45 at FD = 0 showing the 1D chains
of vortices that can break or merge. (b) A schematic of the vortex locations
showing a nematic arrangement. (c) Image of the vortex positions for the system
in Fig. 5(c,f) under y-direction driving with FD = 1.5, where the system forms
1D chains that do not cross. (d) A schematic of the vortex locations showing a
smectic-A arrangement.

Figure 7. The minimum (red) and maximum (blue) values of Pd versus K2

in samples with ρp = 0.48225. (a) Driving in the y-direction, and (b) in the
x-direction.

does not form a nematic or smectic aligned in the y-direction, but instead adopts a
polycrystalline ordering with a partial alignment in the x-direction. The ordering is
more clearly visible in the structure factor, where two prominent peaks are aligned
with kx. For even smaller values of K2, the system exhibits a strong smectic alignment
along the x-direction for driving in the x-direction.

We can also characterize the system by measuring the total hysteresis in the form
of the sum of the absolute differences in Pd for a given drive FD, where we compare the
value P+

d for increasing current with P−d for decreasing current. The total hysteresis
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Figure 8. (a) Voronoi construction of a portion of the sample showing sixfold
(white), fivefold (red), and sevenfold (blue) coordinated vortices for the system
in Fig. 7(b) with ρp = 0.48225 and K2 = 0.2 under driving in the x-direction at
FD = 1.5. (b) The corresponding S(k) shows a partial smectic alignment in the
x-direction.

Figure 9. An example of the curves used to construct the total hysteresis
measure H defined in the text. Pd versus FD is shown both for increasing current
(P+

d , blue) and decreasing current (P−
d , orange) in a system with K2 = 0.1,

ρp = 0.48225, and x-direction driving.

Figure 10. (a) The hysteresis H versus K2 in a system with ρp = 0.48225. The
blue curve is for driving in the x-direction and the red curve is for driving in the
y-direction. (b) The same for a system with ρp = 0.09645.
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Figure 11. Heat map of the minimum number of topological defects Pd at
Fd = 1.5 as a function of K2 and ρp. (a) Driving in the x-direction. The light
blue line in the lower region of the plot indicates the transition from a smectic or
nematic state aligned in the x-direction to a smectic or nematic state aligned in
the y-direction. (b) Driving in the y-direction.

is obtained by numerically integrating the absolute difference between the two curves,

H =
∫ 1.5

FD=0
|P+
d (FD) − P−d (FD)|, as indicated by the shaded area in Fig. 9. We find

that H is largest at lower values of the anisotropy, since in these systems the number
of defects varies over a greater range and a nearly perfect lattice appears at high
driving that remains more robust against pinning forces as the current is decreased.
In Fig. 10(a) we plot the total hysteresis H versus K2 for a system with ρp = 0.48225
under driving in the x- and y-directions. For driving in the x-direction, there is a peak
in H near K2 = 0.2 corresponding to the smectic x-direction to y-direction realignment
transition. When K2 < 1.0, the hysteresis is largest for driving in the x-direction, but
for larger K2, we find the largest hysteresis for driving in the y-direction. We observe
similar behavior as we vary the pinning site density ρp, with the overall magnitude of
H gradually decreasing with decreasing ρp. This is seen in Fig. 10(b), which shows
H versus K2 at a lower pinning density of ρp = 0.09645, where the total hysteresis is
lower but the same trends appear.

We have also considered the effect of changing the pinning density over the range
ρp = 0 to ρp = 0.48225. In Fig. 11(a) we plot a heat map of the minimum value of Pd
(i.e., for FD = 1.5) as a function of K2 versus ρp for driving in the x-direction. The
light blue line at K2 ≈ 0.2 indicates the switching of the smectic from the x-direction
to the y-direction alignment. As ρp increases, the critical value of K2 at which this
transition occurs increases. For K2 > 1.0 and ρp > 0.1, the amount of disorder in
the system increases dramatically and a nematic structure is present, while in other
regions of the parameter space, we find a smectic state aligned in either the x- or y-
directions. Figure 11(b) shows the heat map of the minimum value of Pd for driving in
the y-direction. In this case, the smectic structures formed by the vortices are always
aligned in the y-direction. For K2 > 1.0 and ρp > 0.19, there is an increasing number
of defects in the moving phase, but generally the system is in a smectic state.

4. Summary

We have examined the driven dynamics of vortices with two-fold anisotropic
interaction potentials driven over quenched disorder. In general, the pinned states
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have nematic ordering and the driven states form moving smectic A phases. A more
ordered smectic state containing fewer dislocations appears for driving along the soft
anisotropy direction compared with driving along the hard anisotropy direction. When
we cycle the drive, we observe hysteresis in the dynamics. Specifically, once the smectic
state has formed, it can persist down to lower drives than those at which it appeared
on the initial application. We also find that as the anisotropy increases, the system is
generally less ordered in the high drive states since dislocations have a lower formation
energy. We map out the dynamic phase diagram for this system as a function of varied
anisotropy and disorder strength using as our characterization tools the orientation
of dislocations and the features in the structure factor. Our results should be general
to the broader class of driven systems with two-fold anisotropy driven over random
disorder, which includes electronic liquid crystals, colloidal particles, and magnetic
skyrmions.
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