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In materials with strong electron-phonon (e-ph) interactions, charge carriers can distort the sur-
rounding lattice and become trapped, forming self-localized (small) polarons. We recently developed
an ab initio approach based on canonical transformations to efficiently compute the formation and
energetics of small polarons [1]. A different approach based on a Landau-Pekar energy functional has
been proposed in the recent literature [2, 3]. In this work, we analyze and compare these two meth-
ods in detail. We show that the small polaron energy is identical in the two formalisms when using
the same polaron wave function. We also show that our canonical transformation formalism can
predict polaron band structures and can properly treat zero- and finite-temperature lattice vibration
effects, although at present using a fixed polaron wave function. Conversely, the energy functional
approach can compute the polaron wave function, but as we show here it neglects lattice vibrations
and cannot address polaron self-localization and thermal band narrowing. Taken together, this work
relates two different methods developed recently to study polarons from first-principles, highlighting

their merits and shortcomings and discussing them both in a unified formalism.

I. INTRODUCTION

Self-localized (small) polarons are charge carriers that
interact strongly with the lattice vibrations, becoming
trapped as a result of their local lattice distortion [4].
Small polarons are key to understanding the physical
properties of materials with strong or localized electron-
phonon (e-ph) interactions, including alkali halides, or-
ganic molecular crystals, transition metal oxides, and
some glasses [4]. Small polarons can be studied experi-
mentally using spectroscopy, diffraction, and microscopy
techniques sensitive to the local lattice distortion [5-7].
Their signatures are also found in transport properties:
as small polarons move only in response to certain vi-
brations of the surrounding atoms, they are associated
with a low charge carrier mobility (< 1 em?/Vs), which
typically increases with temperature due to thermally ac-
tivated small-polaron hopping [8, 9]. As a result, small
polarons are detrimental in many technological applica-
tions where electrical transport limits device efficiency.

Theoretical treatments of small polarons span a wide
range of analytic and numerical techniques [10, 11]. Fo-
cusing on first-principles approaches based on density
functional theory (DFT), a key goal has been the devel-
opment of parameter-free, quantitative predictions of the
energetics and dynamics of small polarons. The conven-
tional approach employs DFT calculations on supercells
with excess charge or defects added explicitly [12-15].
Yet, recent work has developed a different family of first-
principles methods aimed at computing polarons using
only a unit cell of the material with ab initio e-ph cal-
culations [1-3]. The goal of these approaches is two-fold:
reducing computational cost by avoiding calculations on
large supercells with many atoms, and formulating rigor-
ous polaron calculations by combining many-body tech-
niques with first-principles theories.

Within this recent body of work, we formulated an effi-
cient approach based on the canonical transformation for-
malism [1]; this method can compute the small-polaron
formation energy in a localized Wannier basis starting
from a trial polaron wave function. Its computational
cost is a minimal overhead to a DFT calculation on a unit
cell, enabling investigations of small polarons in a wide
range of materials with minimal computational effort [1].
A different approach, proposed by Sio et al. [2, 3], uses a
Landau-Pekar-type energy functional to obtain coupled
equations for the polaron wave function and its associ-
ated atomic displacements. Solving these equations on a
fine reciprocal-space grid can provide the polaron forma-
tion energy and wave function.

Here we compare in detail these two methods, and
explain how they address various aspects of polaron
physics. We first discuss the canonical transformation
approach, showing example calculations of the polaron
energy and band structure in an ionic insulator (NaCl)
and an organic semiconductor (naphthalene). We show
that for small polarons the canonical transformation and
energy functional formalisms give the same polaron en-
ergy when using the same polaron wave function. We also
present a generalization of the canonical transformation
formalism that can compute the polaron wave function
and treat both small and delocalized polarons. This for-
mulation allows us to relate the canonical transformation
and energy functional approaches, and discuss differences
in how they treat the polaron wave function, thermal ef-
fects, band narrowing and polaron self-localization. Of
the two approaches, we show that only the canonical
transformation framework can guarantee polaron self-
localization (due to vanishing hopping) and correctly
treat lattice vibrations and thermal effects. Taken to-
gether, our work advances the formulation of rigorous
methods to study polarons with first-principles calcula-
tions on a unit cell of the material.



II. CANONICAL TRANSFORMATION

Inspired by analytic treatments of small po-
larons [16, 17], we derive an effective polaron Hamiltonian
by transforming the coordinates to the distorted lattice
configuration induced by the localized charge carrier.
This technique was introduced by Lee, Low, and Pines
to study the large polaron problem [18], and it can be
traced back to a method used by Tomonaga [19] to
solve a meson problem. The transformation is closely
related to the one that diagonalizes the charged har-
monic oscillator (CHO) in an external electric field [17].
Therefore, we first briefly review the CHO treatment
to set the stage for the polaron canonical transformation.

A. Analogy with the charged harmonic oscillator

The Hamiltonian of a one-dimensional CHO is

H(CHO) — ip2 + 1mo.)2x2 +eFx,
2m 2
where x is the position and p the momentum of a particle
with mass m and charge e. The oscillator frequency is
w, and E is the external electric field that couples to
the system (here and below, we set i = 1). The CHO
Hamiltonian can be solved by completing the square and
shifting to a new coordinate system:

¥ =z — x, (1)
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The particle then oscillates around the new equilibrium
point, z9 = —eE/mw?, with the same frequency w as in
the absence of the external field.

We study this transformation by introducing creation
and annihilation operators for the harmonic oscillator,

1
b+ b
2m( )

p:i\/?(bT —b).

The CHO Hamiltonian becomes

Tr =

S

1
HCHO) — (bt + §)+wg(b+bT), (3)

with the coupling constant ¢ = eFE/v2mw3. As implied
by Eq. (2), this Hamiltonian can be solved exactly by a
translation to the new equilibrium position xq, as can be
achieved with the canonical transformation of operators
O — O = e°0e ", with the translation generated by

$(CHO) — ipry = g(bT —b). (4)

Using the Baker-Campbell-Hausdorff (BCH) formula
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we obtain the transformed annihilation operator and
Hamiltonian (denoted by the tilde symbol):

b=b-g, (6)
HCHO) — (bt + %) —wg?. (7)

The second term in H(CHO) ig the decrease in potential
energy associated with stretching the oscillator spring:
2 L 5 o
—wg© = gmwrTy + eExy. (8)
The meaning of the operators b and b after the transfor-

mation can be understood by analyzing the transformed
position operator

T=x+[SCHO o] =2+ (9)

where the x coordinate on the right-hand side now mea-
sures the position relative to xg; this way, the coordinates
x and T in Eq. (9) correspond to z’ and z in Eq. (1),
respectively. Expressed in terms of creation and annihi-
lation operators, this transformed coordinate becomes

Fe (b +7) =

(b" +b) + . (10)
2mw 2mw

Therefore, by comparison it is clear that b in H(CHO)

creates oscillation quanta relative to the new equilibrium
point xg, as illustrated in Fig. 1(a)-(b).

The ground state wave function of the CHO, denoted
here as |0), is centered at zg, and is annihilated by the
operator b, so that b[0) = 0. Denote as |0) the original
ground state (before applying the electric field) which is
annihilated by b. Then, since

b[0) = (b + 9)[0) = g[0)

we can see that |6> is a coherent state of b with eigenvalue
g, and therefore we have

[0) = exp [g(6" — )] [0) = exp [SCHO] Jo). (1)

The exponential factor connecting |0) and |0) is the trans-
lation operator in Eq. (4). This result shows that the
ground states before and after applying the electric field
are related via a translation by zq [17].



B. Derivation of the polaron Hamiltonian

We now carry out a transformation analogous to the
CHO case to obtain an effective polaron Hamiltonian.
The starting point is the e-ph Hamiltonian in the elec-
tronic Wannier and phonon momentum basis [20],

1
H= E Emnainan + E wqQ (bng + 2) (12)
mn Q
1
T 1
+ — wQqQyg mn(b +b_ )aman,

where n = j,R,, is a collective index labelling the j,-
th Wannier function (WF) in the unit cell with origin
at the Bravais lattice vector R,, and a,, = a;, r,, is the
corresponding electron annihilation operator; bg is the
phonon annihilation operator, where Q is a collective la-
bel for the phonon mode v and momentum q. The hop-
ping strength and phonon energy are denoted as €,,,, and
wq, respectively, and Nq is the number of unit cells in
the crystal.

The e-ph coupling matrix elements in the Wannier ba-
sis, denoted as gqQmn, are unitless and do not include
the phonon frequency factor, different from the stan-
dard convention [20]. They are obtained by transform-
ing unitless e-ph matrix element in momentum space,
Gijv(k,d) = gijv(k,q)/(Aw,g), to the electron Wannier
basis, where g;;,, (k, q) are defined in Eq. (24) of Ref. [20],
and ¢ and j are band indices. Using the notation in
Ref. [20], the explicit definition is gQmn = Gmnv (Re, d) =
N Sy € UL (k)i (k, @)Uy (k). where U are
unitary Wannier matrices [20]. Also recall that the e-ph
coupling needs to satisfy the relation gg,,,,, = 9-Qnm for
the Hamiltonian to be Hermitian.

The e-ph interaction term in Eq. (12) has the same
form as in H(CHO) in Eq. (3), but now the external field
coupling to the “spring” of each phonon mode is con-
trolled by the electronic configuration through the factor
al a,. In analogy with Eq. (4), we stretch the spring of
each phonon mode to a new equilibrium position using
the canonical transformation @ — O = e°0Oe~, with
the generator defined as

S = Z Crnal an, (13)
1
Crnn = N > Bamn(bh, —b-q)- (14)
Q

Above, we introduced the undetermined distortion
coefficients Bqm» which, analogous to the coupling g
in the CHO example, quantify the stretching of the
spring associated with each phonon mode, as we show
below. To make the transformation unitary, we impose
the conjugate relation Bg,,,, = B-qnm, so that the
operator S is anti-Hermitian.
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FIG. 1. Schematic of the charged harmonic oscillator, (a)
without and (b) with the electric field applied. By analogy,
panel (c) shows the unperturbed crystal lattice, and panel (d)
the distorted lattice in the presence of the excess charge car-
rier. In panel (b), the spring is stretched by an amount of zo;
analogously, in panel (d) the static lattice distortion is defined
as u®. The coordinates of the oscillation quanta relative to
the new (distorted) equilibrium positions are denoted as z or

u, in (b) and (d) respectively.

To obtain the transformed electron and phonon oper-
ators, we compute their commutators with S:

[S7 am] = — Z Cmnana

1
VoY Z Banainan.

[Sv bQ] ==

Then using the BCH formula in Eq. (5), we have

Zim = Ze;zgana (15)

~ 1
b = b I —————— B mnajnanv (]‘6)
Q Q VNa %;l Q
where e is a shorthand notation for the phonon oper-
ator
1
-C _ O ...

The physical intuition is that the distortion coefficients

Bqmn quantify how the transformation stretches each
phonon spring, as is seen by comparing Eq. (16) with
the CHO case in Eq. (6).



It is instructive to examine the lattice displacements
in real space [21]. Denoting as u.s, the displacement of
the atom s in unit cell ¢ along the Cartesian coordinate
«, the atomic positions in the transformed basis become:

e5% iq-R

acso¢ = Uesa T Ugsa &
Z \/2M WQNQ Q
2

bh+ba) - ——
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in full analogy with Eq. (10) for the CHO (above, M is
the mass of atom s and eg' is the phonon eigenvector).
From Eq. (18), we see that the lattice distortion induced
by the localized polaron gives new equilibrium atomic
positions,

°X

ZB_anainan . (18)

1 2 sa 1q-
oo = S G ™ S B
Q Q mn
(19)

The lattice distortion depends on the polaron electronic
state, as is clear from the factors af,a,. In addition,
the distortion coefficients Bq,, can now be identified
as generalized Fourier transforms of the lattice distor-
tion. Figure 1(c)-(d) illustrate the lattice distortion to
new equilibrium positions, displaced by ul, relative to
the pristine lattice, together with the vibrational coordi-
nates u., relative to the distorted lattice.

After the transformation, the operators af and bl cre-
ate polarons and phonons in the distorted lattice, respec-
tively, analogous to the CHO. The factor e;.& in Eq. (15)
is analogous to the translation operator exp[—S(CHO)],
and thus it relaxes the distortion and sends each phonon
to their corresponding vibrational mode of the undis-
torted lattice. Loosely speaking, Eq. (15) implies that
annihilating a polaron from a given site amounts to first
annihilating the electronic state from the distorted lat-
tice and then removing the lattice distortion.

The transformed Hamiltonian is derived by replacing
the electron and phonon operators with their transformed
counterparts. We obtain:

_ N 1
H = Zamnajnan + ZUJQ(qubQ =+ 5)
mn Q

1 ~
+ \/Tig Z wQ(ngn - Ban)(bIQ + b_Q)a;rnan

mnQ

1 -
+ N. E wQB-qij(Bamn — 2ngn)ajajaInan,
Q .
mnijQ

where the transformed hopping and e-ph coupling ma-

trices €mpn and gQmn, denoted collectively as My, are
defined as

Zemz ij€ Jn : (20)

These transformed matrices encode the effect of a polaron
dragging the lattice distortion. For example, the hopping
term in the transformed Hamiltonian, )"« al Emnan =

> iy al, (S ,ci; an) ap, shows that if a polaron hops
to a nearby site, the lattlce distortion is first removed
at the original site by em , then the electron hops with
amplitude €;;, and then the distortion is created at the
new site by <,

Note that the transformed matrices M in Eq. (20) still
contain phonon operators bq in the e*C terms. Follow-
ing Holstein [16], we take the thermal average of the
phonon operators, obtaining averaged transformed ma-
trices (M), as explained below. After collecting terms,
and using the identity

[P

_ 1 . ToT o
a;a;a, an = a;andm; — a;a),a;an,,

we obtain our effective polaron Hamiltonian:

1
H= ZEmnaman +ZwQ (b Qba + ) (21)
+ — Z OJQGan(bIQ + b,Q)a:[nan

NQ mnQ
t
NQ Z VQ”mnaZaIna]an,
ijmnQ

where the polaron hopping strength FE,,,, the residual
polaron-phonon (pl-ph) coupling constant GQmn, and
the effective polaron-polaron (pl-pl) interaction VqQ;jmn
are defined respectively as

Epn = (Ehmn + 7 ZWQB Qmi (Bqin = 2(9Q)in) ,
iQ
Gan = <§Q>mn - BQWWM (22)
VQijmn = wQB-qij (Bomn — 2(9Q)mn) -

Due to the thermal averaging process, all these quan-
tities are now c-numbers rather than phonon operators.
Therefore the Hamiltonian in Eq. (21) reduces to an
effective tight-binding model, which can be studied with
standard approaches. In this work, we assume that the
carrier concentration is low enough to neglect the pl-pl
interaction Vqijmn.-

C. Thermal average

_The thermal average of the transformed matrices,
(M), appears above in the polaron Hamiltonian and
needs to be evaluated. This thermal average admits
an exact expression only in the Holstein model [17], in
which all e-ph coupling constants gqmn» are zero unless



m=n. Howexgr, in the general case, a closed-form ex-
pression for (M), cannot be derived without assuming
that the distortion coefficients commute with each other:
[Bq, Bq'|mn = 0 for all pairs of Q and Q' [22]. There are
two main approaches to calculate the thermal average in
the general case, the first uses the Feynman disentangling
of operators [23] and the second the BCH formula [22].
Here we follow the latter strategy and derive the expres-
sion for the thermally-averaged transformed matrices.

First, using the BCH formula in Eq. (5), we have

N Cr,—C 1
(M)mn = (e Me™" )mn = (M + 5[0, [C, M]] + - )mn,
where the angle brackets (- - - ) indicate a thermal average
over phonon states. In this expression, terms with an odd
number of C),,, operators vanish because the thermal av-
erage of an odd number of bg or bg is zero. Substituting
the definition of C,,,, we get

~ 1

<M>mn :<Z W[Cv [ o [07 [C’ M]] o '])mn

:ZM[ZBQ“[M[ZBQWM]-“]]X

Ql in
(b, —b-q,) (b, —b-q,))mn,

where the phonon operator part can be factored out in
the last equality because all permutations of (bTQ —-b_q)
give the same thermal average. Next, we apply the
Wick theorem and use the well-known thermal averages
(boba) = Nq and (bqbl) = Nq + 1, where Nq is the
phonon thermal occupation, obtaining

(M) =>_ (55'1])\[9 QZ (2Nq, +1) -+ (2Ng, +1)x

i

Z [BQN[B_QN[[BQN[B_QNM]]]]]mn

all pairings

Assuming all the distortion coefficients Bq commute
with each other, the commutator factors are identical for
every possible pairing. Under this assumption, each of
the (24)!/2%! possible pairings gives the same contribu-
tion, and thus

—~ —1)

1 1
> (Ng, +3)(Ng, +5)x
Qle

[BQ17 [qul’ [. t [BQ17 [B7QL7MH e ]]]mn‘
Defining the linear operator A on M as
1 1
;Amn,avMaw =N %:(NQ + 5) [Bq. [B-q.M]],.,.

(23)

%

we derive the final expression for the thermal averages

<M>mn = Ze;ni\t,a’yMa’Y' (24>
oy

In the special case where all the nonlocal distortion
coefficients vanish, i.e. if By, is nonzero only if m = n,
the expressions in Eqgs. (23) and (24) are exact [17, 22,
24]. In this case, using Bqmn = BQmmOmn in Eq. (23),
we obtain:

Amn,ory = Am,n(smoz 577.')/7

1 1

Q
(25)

With this definition, the thermal average of the trans-
formed matrix becomes

<M>mn = €exp (7)\mn) Moy, (26)

Under these assumptions, the explicit expressions
for the transformed polaron hopping and e-ph cou-
pling are (€)mn = exp(—Amn)Emn and (GQ)mn =
exp (—Amn) gQmn, respectively.

These expressions greatly simplify the evaluation of
(€)mn and (gQ)mn, which now involve only the exponen-
tial of a specific matrix element, rather than an exponen-
tial of an entire matrix as in Eq. (24). Below, we refer to
e~ *mn as the band narrowing factor because the polaron
hopping amplitude (£),,, is suppressed by e~*m=.

D. Small polaron self-localization

Given a specific set of lattice distortion coefficients
Bqmn, the effective polaron Hamiltonian can be obtained
from Eq. (21) using the thermally averaged polaron hop-
ping and pl-ph coupling in Eq. (22). We restrict the
distortion coeflicients to be local, and set them to

Using this ansatz, the thermal average of the transformed
matrix can be written as in Eq. (26), with the exponent
Amn(T) given in Eq. (25), which depends on temperature
T via the thermal phonon occupations Ng(T') and on the
difference between the local e-ph coupling at the m and
n WF sites:

1 1 2
)\mn(T) = N79 %: (NQ(T) + 2) |9Qmm - ann| .
(28)

The diagonal part of \,,, vanishes, and thus
exp(—Amm ) =1 for all sites m. In ionic materials, usually
the off-diagonal part of exp(—A\,»,) is orders of magnitude
smaller than unity (typically of order 1072 to 10719 at
300 K), as we verify explicitly with numerical calcula-
tions here and in Ref. [1]. In this case, polaron hopping
is negligible, and we have

exp(—Amn) & Omn- (29)



Substituting Egs. (26), (27) and (29) into Eq. (22), we
obtain the key result for materials with negligible polaron
hopping:

1
Emn = (Smm — Nig §WQ|ngm’2)§mna (30)

Gan = anzn5mn - Ban =0. (31)

The first equation gives the on-site polaron energy E,,,,
as the sum of the electronic energy &,,,, of the WF de-
scribing the polaron wave function and the potential en-
ergy decrease due to the lattice distortion, analogous to
the CHO case [compare the second terms in Egs. (7) and
(30)]. This equation further implies that the operator
al in the polaron Hamiltonian in Eq. (21) creates a self-
localized polaron, as hopping to nearby sites is negligible
due to the vanishing off-diagonal FE,,, hopping ampli-
tudes. The second equation implies that this small po-
laron is decoupled from all phonon modes as Gqmn =0.
Our previous work employed Eq. (30) to compute the
polaron energy in various families of ionic materials. In
these systems, the band narrowing factor can be approx-
imated as e~*mn & §,,,,, which implies a polaron with a
very large effective mass and an ideally flat polaron band.

In more weakly polar materials where polaron hopping
is non-negligible, the canonical-transformation formalism
is still valid, and as we show here it enables calculations of
the polaron band structure. In this more general case, the
off-diagonal elements of e~*m» cannot be neglected, and
the polaron Hamiltonian matrix FE,,, can be obtained
from Eq. (22), using the ansatz in Eq. (27) and the ther-
mal averages in Eq. (26). We obtain:

2 _
Epn = | €mn — NiQ %:ng—Qmmngn € Amrn

1
+ ‘N ZWQ|ngm|25mn 5
Q
Q
(32)

where the on-site polaron energies F,,,, are the same as
in Eq. (30), but now we also compute the off-diagonal
elements, namely the inter-site hopping amplitudes
E,., (with m # n). Setting up a tight-binding model
based on this polaron Hamiltonian matrix allows us to
calculate the full polaron band structure.

E. Small polaron formation

The formation of a self-localized charge carrier in a
crystal depends on two competing energies: the kinetic
energy increase resulting from localizing the electronic
wave function, and the energy decrease from the lattice
relaxation around the charge carrier. In our formalism,
this competition is clearly seen in the polaron energy in
Eq. (30), where &,,,, is the electronic contribution to the

polaron energy and the negative term proportional to
Y awalgqmnl® is the energy decrease from the lattice
relaxation.

Computing the on-site polaron energy FE,,,, allows us
to predict whether a self-localized polaron will form in a
material: if F,,,, is lower than the conduction band min-
imum (CBM) for an electron carrier, or higher than the
valence band maximum (VBM) for a hole carrier, then
the self-localized polaron is energetically more favorable
than a delocalized Bloch state. In this scenario, the elec-
tron or hole carrier forms a small polaron and becomes
self-trapped by the lattice distortion. The polaron for-
mation energy is computed as the difference between the
polaron energy E,,,, and the respective band edge; thus
the formation energy for an electron polaron is

AEJ‘ = Emm — ECBM; (33)
and for a hole polaron
AE¢ =evem — Emm, (34)

where in both cases AE; < 0 means that polaron forma-
tion is energetically favorable.

III. NUMERICAL CALCULATIONS

A. Workflow

In the canonical transformation formalism, calcula-
tions of small-polaron energies and wave functions are
straightforward. In the first step, we generate maximally-
localized WFs from the electronic band structure [25],
and then calculate the e-ph matrix elements in the Wan-
nier basis using the standard workflow [20]. The next
step consists in verifying numerically the approximation
of negligible hopping E,.,, & Emdmn (or equivalently
e~Amn 2 §,), which typically works well for strongly
polar materials with self-localized polarons. When this
approximation holds, we evaluate the on-site polaron en-
ergies Ep,m, using Eq. (30), and then obtain the polaron
formation energy using Egs. (33)-(34). Note that com-
puting E,,,, with Eq. (30) is a simple post-processing of
the e-ph calculations; it can be carried out with minimal
computational cost (tens of CPU core-hours) using the
PERTURBO code [20].

In materials where the off-diagonal elements of E,,,
and e~ are non-negligible, we evaluate the full ef-
fective polaron Hamiltonian matrix F,,, using Eq. (32),
still with minimal computational cost. Starting from
the Hamiltonian matrix F,,,, we calculate the polaron
band structure using a standard tight-binding approach.
Due to its simple workflow, the canonical-transformation
method enables rapid calculations of small-polaron ener-
gies in a wide range of materials [1], and is particularly
promising for high-throughput and data-driven studies of
small polarons.
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FIG. 2. (a) Computed polaron hopping amplitudes E.,, for hole carriers in NaCl, shown as a function of distance R, between
the m and n WF sites at T = 0 K. (b)-(c) Calculated polaron energy for holes in NaCl, obtained by wannierizing (b) three
bands and (c) one band. Blue lines are polaron on-site energies E,,,» and dashed black lines are electronic WF energies €mm
[see Eq. (30)]. The solid black curves are the DFT band structure and the red curves the Wannier-interpolated bands, equal in
number to the WF's used in the polaron calculation. The energy zero is set to the VBM.

B. Computational details

We carry out numerical calculations on two paradig-
matic systems with polarons, a simple ionic material
(NaCl) and an organic crystal (naphthalene). For these
case studies, we show calculations of polaron hopping
amplitudes and polaron band structures, and discuss the
choice of WFs to compute the polaron energy.

We carry out plane-wave DFT calculations on NaCl
using the QuANTUM ESPRESSO code [26] with norm-
conserving pseudopotentials [27, 28] and the Perdew-
Burke-Ernzerhof generalized gradient approximation
[29]. We use a kinetic energy cutoff of 100 Ry, an 8 x8x 8
k-point grid and relaxed lattice parameters in all DF'T
calculations. Density functional perturbation theory [30]
is employed to compute phonon frequencies and eigen-
vectors on a coarse 8 X 8 X 8 g-point grid. The e-ph
coupling matrix elements are first computed in the Bloch
basis and then transformed to their Wannier basis coun-
terparts, gqmn defined above, using the PERTURBO code
[20] with WF's generated from WANNIERIO [25]. The cal-
culations on napthalene follow the same workflow, using
settings and numerical details provided in Ref. [31].

IV. RESULTS

A. Polaron hopping amplitude

The polaron energy in the canonical transformation
method can be easily computed using Eq. (30). Yet, to
use that formula one first needs to verify that the inter-
site polaron hopping amplitude in Eq. (32) is negligible,
so that Epm = EpmOmn, as a result of a diagonal band-
narrowing factor in Eq. (32), e *»» =§,,,. To that end,
we compute A\, (T) by carrying out the numerical inte-
gration in Eq. (28), and then obtain E,,, using Eq. (32).
Recall that for the diagonal entries with m = n we have
e *mm = 1 by definition. Therefore the key questions

are how F,,, decays with inter-site distance and whether
its off-diagonal entries are small enough to approximate
Ervn = EmOmn as in our recent work [1].

Figure 2(a) shows the computed polaron hopping am-
plitudes E,,, for hole carriers in NaCl as a function of
distance between the m and n WF sites. The results
are given at T = 0 K; as the hopping amplitudes de-
crease monotonically with temperature, these results are
an upper bound to the finite temperature hopping values.
We find that even at zero temperature the off-diagonal
matrix elements of E,,, are smaller than 107% eV, and
they further decrease with inter-site distance and tem-
perature. Therefore our approach predicts that in NaCl
the hole polaron is self-localized and associated with a
flat polaron band.

B. Choice of Wannier functions

Due to the small value of the off-diagonal hopping en-
ergies F,,, for holes in NaCl, we can compute the hole
polaron energy using Eq. (30). The first step in this cal-
culation is the generation of WFs that accurately inter-
polate the band structure. However, the choice of WFs is
not unique and is a subtle point in our canonical transfor-
mation approach. As the goal is to find the lowest-energy
polaron state, one could test various choices of WFs, both
by changing the WF' generation parameters and by wan-
nierizing a different number of bands [25]. Different WFs
will lead to relatively small changes of polaron energy,
within ~1 eV based on our tests. Therefore, if one finds
an electron polaron with energy lower than the CBM (or
a hole polaron with energy higher than the VBM), then
our method guarantees the existence of a self-localized
polaron. Conversely, if a stable self-localized polaron is
not found, but the polaron energy is within ~1 eV of
the band edge, it’s still possible that a different choice of
WF's will lead to a self-localized polaron.



We illustrate the role of different trial wave functions
using NaCl as an example. We compare two calculations
of the hole polaron energy in NaCl by generating WF's
for three bands [Fig. 2(b)] or only one band [Fig. 2(c)],
respectively. The calculation using three bands gives po-
laron energies above the VBM and thus correctly predicts
that holes in NaCl form a self-localized small polaron, in
agreement with experiments [32]. In the calculation us-
ing only one band, the polaron energy is just below the
valence band edge, so a polaron is not predicted to form.
However, the polaron energy is only 100 meV below the
band edge, thus signaling the possible presence of a lower-
energy polaron state, as confirmed in Fig. 2(b).

The choice of WFs influences both the on-site elec-
tronic energy €,,,, and the e-ph coupling gqmm as both
contribute to the polaron energy E,,, in Eq. (30). In
the NaCl example, the three WFs used in Fig. 2(b) re-
semble the p orbitals of Cl and are more spatially local-
ized than the WF used in Fig. 2(c). As a result, they
possess a greater on-site hole energy |e,nm| (i-e., a lower
electronic energy &, in Fig. 2(b)) and a greater over-
lap with the phonon perturbation, resulting in a stronger
on-site coupling and larger potential energy decrease in
the second term of Eq. (30), which leads to a more stable
polaron state in Fig. 2(b). Note that the energy scale of
these differences is only 0.5—1 eV. Therefore, whenever
a self-localized polaron state is clearly unstable (say, by
> 1 eV), as we found in Ref. [1] for SrTiOg3, the result
can be trusted without comparing different WFs. Al-
though one can generate and test many WF's, at present
the use of a trial polaron wave function equal to a non-
uniquely defined WF is a limitation of our method. It
can be overcome by formulating a generalized canonical-
transformation approach, as we show below in Sec. V C.

C. Polaron band structure

We carry out a polaron band structure calculation
on naphthalene, an organic semiconductor with non-
negligible polaron hopping. Electron carriers in naphtha-
lene possess a narrow band width of ~200 meV, leading
to pronounced polaron effects [31]. We wannierize the
two lowest conduction bands, and calculate the polaron
band structure using tight-binding with the energies E,,,,
in Eq. (32). In these calculations, we exclude phonons
with energy lower than a cutoff w. when computing A,
in Eq. (28) and E,,,. Excluding phonons with up to sev-
eral times the electronic hopping energy [¢| is physically
justified in the canonical transformation when hopping is
present [33]. As the charge carrier hops and the lattice
rearranges, only phonons with frequency greater than the
hopping energy can follow the charge carrier and make
up its phonon cloud. Lower energy phonons contribute
to the residual pl-ph interaction and can be treated as
dynamical disorder [33]. Here, from WF analysis we ob-
tain a maximum electron hopping energy [t| ~ 40 meV.
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FIG. 3. (a) Band structure of naphthalene computed with
the GW method (see Ref. [31]), shown together with the com-
puted polaron band structure at 0 K for two different phonon
cutoff energies, w. = 80 meV and 180 meV. (b) Polaron band
structure from the canonical transformation (with w. = 180
meV) compared with polaron calculations using the cumulant
method (Ref. [31]). The energy zero is the CBM.

Figure 3(a) shows the polaron band structure at 0 K for
two different cutoffs, w. = 80 and 180 meV; the first cut-
off is twice the hopping energy and the second is as high
as possible but below a strongly coupled optical phonon.
For both cutoffs, the minima of the polaron bands are
below the conduction band, signaling the presence of a
stable polaron. Even at 0 K, the polaron bands are nar-
rower than the electronic GW bands due to the zero-point
term in A,,,. The band narrowing decreases for greater
cutoff values, leaving an adjustable parameter in the the-
ory. Guided by Holstein’s work [16], we argue that the
optimal cutoff is the highest phonon energy that per-
mits the inclusion of strongly coupled optical phonons
(here this value is 180 meV). In Fig. 3(b) we compare
the low-energy polaron dispersion in the canonical trans-
formation with w. = 180 meV to our recent cumulant
calculation in naphthalene [31]. For this optimal cutoff,
the two methods give polaron band structures in quanti-
tative agreement — both methods predict a polaron with
dispersive bands and modest mass renormalization.



V. METHOD COMPARISON

A. Energy functional method

We briefly summarize the formalism of Sio et al. [2, 3]
for first-principles polaron calculations. Their approach
models the polaron as a single excess charge carrier, and
calculates its electronic wave function ¢ and associated
lattice distortion u® by minimizing the polaron energy
functional {see Eq. (23) in Ref. [3]}:

1
Ey [, )] = 5 ) ewudul (35)
/d["gﬁ (HKS + Z 8VKS 0) I'),

where & is a composite index for atoms and Cartesian co-
ordinates (similar to Eq. (18), k=csa), and ®, are in-
teratomic force constants; Hks and Vg are, respectively,
the Kohn-Sham (KS) Hamiltonian and KS potential at
equilibrium without the excess charge carrier.

In Refs. [2, 3], the wave function v of the excess elec-
tron is written as a superposition of Bloch states (with
band index ¢ and crystal momentum k) or WFs (with
composite index m = j,,R,,, as above):

ZAlszk = Apwn(r),  (36)

m
where A; and A,,, are expansion coefficients for the wave
function in the Bloch and Wannier basis, respectively.
The lattice distortion u? due to the excess charge carrier
is expanded in the basis of phonon eigenvectors as

_ B* sa zq R 37
Ucga Z Q S5 \/m ( )
where Bq are scalar lattice-distortion coefficients that
are independent of electronic band or WF site. Minimiz-
ing the polaron energy functional with respect to ¥* and

u? gives a set of coupled polaron equations for the coef-
ficients A;x and Bq {see Egs. (37)-(38) in Ref. [3]} [34]:

ZWQBQ 9iriv (K, Q) Airierq = (e —€) A (38)
iQ
1 *
Bq =+~ D Ay q giiv(k, ) Ane (39)
i1k

which are solved self-consistently by first assuming a set
of coefficients Bg and then solving for A;x in the first
equation. The process is then repeated until convergence.
The resulting polaron formation energy is [3]

1
AEf =€ —ECBM T B Z @m/ugug/

KK’

== Z | Ai|* (e — cBMm)

E:WQIBQ\2

(40)

B. Comparison I: Polaron energy

We now prove the equivalence of the small-polaron en-
ergy in the canonical transformation and energy func-
tional methods: for a given small polaron wave function,
the on-site polaron energy computed using Eq. (30) in our
method is identical to the polaron energy in Refs. [2, 3].

In our canonical transformation formalism [1], we use a
single WF as the trial small-polaron wave function. Sup-
pose this WF is centered at site 0, then the polaron wave
function is

jwo) = aj [0). (41)

This wave function is defined in the canonical trans-
formed Hamiltonian. For this state, we can set all
the distortion coefficients to zero except Bgqoo, as
can be seen from the expectation value of Eq. (16):
(0lao > ,0n BanaInanaMO) = Bqoo. From Egs. (27) and
(30), the on-site energy of this polaron state is

Eoo = €00 —

1 2
— E w , 42

where e is the WF energy and gqoo the e-ph matrix el-
ement in Wannier basis at the polaron site. Both of these
quantities depend on the WF choice, as discussed above.
Without loss of generality, we assume that the WF with
lowest on-site polaron energy FEyy can be expanded in
Bloch basis as

|wo) = Z A [ine) - (43)

Using the transformation between Wannier and Bloch
basis [see Eq. (A3) in Appendix A], the polaron formation
energy AEy = Ey — ecm is

1 1
AE; = N Z |Aik|2(€ik — ecBM) — No ZWQ|QQOO|2>
" ik Q
(44)

where

9Qoo = Nik Z Abktqiriv(k, ) Aik. (45)
i1k

This polaron formation energy AFEy and on-site e-
ph coupling gqoo are exactly the same as, respectively,
the formation energy and distortion coefficient Bq in
Refs. [2, 3]. More precisely, the polaron energy Egq is
identical to the eigenvalue ¢ of Eq. (38), the first polaron
equation in Sio et al. [3], provided that we add to their
eigenvalue the elastic energy associated with the polaron
lattice distortion, > g wqlBql* = 1/2 3,/ ®uwupuy,
(see Appendix A). This constant term is included in the
canonical transformation polaron energy Eyg, whereas in
the energy functional method of Ref. [3] it is added to
the eigenvalue after the calculation [see Eq. (40)].



Available numerical results confirm this equivalence
for cases where the polaron is self-localized and well
described by a single WF. For example, we recently
computed the polaron formation energy for electrons in
LizO4, and obtained a value of -4.905 eV [1] that is nearly
identical to the -4.87 eV value found in Ref. [3]. Note that
in our canonical transformation method the polaron en-
ergy is computed straightforwardly using Eq. (30), with
negligible computational cost even for large systems. By
contrast, the energy functional method in Refs. [2, 3] re-
quires solving an eigenvalue problem self-consistently and
extrapolating the result to an infinite k-point grid size,
with significant computational cost. The key advantage
of our approach is the use of WFs as a more natural,
localized basis set to describe small polarons, which en-
ables bypassing costly calculations in momentum space.

Comparing the two methods for a more delocalized po-
laron wave function is more challenging. On one hand,
our approach can be generalized to take into account an
arbitrary polaron wave function, giving a general canon-
ical transformation formalism that can treat both small
and large polarons (see below). On the other hand, the
method of Refs. [2, 3] can already describe an arbitrary
polaron wave function (as a superposition of WFs at mul-
tiple sites), but as we show below it has important limita-
tions for addressing key polaron physics such as thermal
effects and polaron localization.

C. Comparison II: Polaron wave function

Canonical transformation method. In the canonical
transformation formalism, it is not obvious how to de-
termine the polaron wave function [1]. While Eq. (30)
gives the polaron energy for a WF localized at site m,
the choice of this WF is not unique. Different WFs may
lead to different electronic energies &€,,,,, and e-ph inter-
actions gqmm, and thus different polaron energies E,,,.
The most stable polaron state corresponds to the wave
function minimizing the polaron energy, but that wave
function may be a nontrivial combination of WFs.

We present an extension to our canonical transforma-
tion formalism using a general polaron wave function
written as a superposition of WF's,

) = Apmal, 10) = > A [wm) (46)

with normalization Y, |A,|?> = 1.  The energy
of this polaron state in this generalized canonical-
transformation formalism is

E[A, B] = (y|H[p) = Y Ay, An (Olal, Ha,|0)

1
= N792|Am‘2ZWQ‘BQmM‘2 (47)
m Q

. _ 2
+ Z Al Ane Amn e — No Z wqB-qmm gqmn
Q

mn
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where we ignored the off-diagonal matrix elements of
Bqmn- This energy functional depends on the Wannier-
basis coefficients A,, of the electronic wave function and
on the lattice distortion coeflicients Bqmm describing
how the lattice responds to the charge carrier.

The resulting full wave function |®) of the combined
electron-plus-phonon system has a general form with
entangled electrons and phonons. In the canonical trans-
formation framework, the full wave function in the orig-
inal Hamiltonian is

@) = % |¢) (48)
1 T
S 4, evia e Pannlat-al i g,

m

where S is defined in Eq. (13) and we neglected the off-
diagonal matrix elements of Bqmn,.

Full minimization of the energy functional in Eq. (47)
with respect to A, and Bqmm is challenging and will be
pursued in future work. For materials with strong e-ph
interactions leading to self-localized small polarons, the
ansatz introduced above of a polaron localized at a sin-
gle site that is free of hopping (obtained respectively by
setting A,, = dp0 and BQmn = 9QmmOmn) is a good ap-
proximation to the stationary solution of the generalized
canonical-transformation functional in Eq. (47). In that
approximation, the polaron wave function reduces to the
tensor product state

A bl —b_
@) = cvim Zasamtatt g ()

defined uniquely by one distortion coefficient for each
phonon mode, Bq = gqoo- For a more general polaron
state, if one uses site-dependent distortion coefficients
Bqmm together with an electronic wave function with
amplitude at multiple sites, then the full wave function
|®) entangles the electrons and phonons, and includes
both the solution in Eq. (49) and the approach by Sio et
al. [3] as subcases, as we show below.

Energy functional method. In the formalism of Refs. [2,
3], the full wave function is effectively a tensor product
of the electron and phonon wave functions:

@) = (Z Andl, |o>e> o (o7 Batath e )
: (50)
|O> )

= 3" AV e taltaTal
m

where |0), and |0),, are the electron and phonon vacuums,

respectively, and |0)=|0) |0)_ the combined vacuum.
We briefly outline the derivation of this result. The

phonon state in Ref. [2, 3] is characterized only by the

classical displacements u?. As discussed at the end of in

Sec. IT A, the ground state of a shifted harmonic oscillator

centered at u® = \/% can be described by the coherent

state [35]

%) = e 20D o) . (51)



We can extend this state to describe the entire distorted
lattice, with the position of each atom # displaced by u?
as in Eq. (37):

1 i
{ud}) = evia e PatllaT gy (s
from which one obtains the full wave function in Eq. (50)
for the approach in Refs. [2, 3]. Here, we noted explicitly
that the distortion coefficients Bg[A] are functionals of
the wave function coefficients A,, via the second polaron
equation in Wannier form [see Eq. (A2)].

Therefore, while the electrons and phonons are disen-
tangled as a tensor-product state in the energy-functional
method, they are still coupled in a mean-field sense via
the distortion coeflicients Bq[A] from the second polaron
equation, which describes the mean-field effect of the
electrons and e-ph coupling on the lattice. Starting from
our wave function in Eq. (48), if we make the canonical-
transformation distortion coefficients Bq» independent
of site and electron orbital index m, Bqmm — Bq, we
obtain the variational ansatz in Eq. (50) as a special case
of the canonical transformation formalism. Similarly, the
polaron energy functional in Refs. [2, 3] can be viewed a
special case of the generalized canonical transformation
approach given in Eq. (47).

D. Comparison III: Temperature dependence

Thermal effects are essential in polaron physics. For
small-polarons, the polaron bands become progressively
flatter as the temperature increases, until the charge car-
rier ultimately self-localizes. In the canonical transforma-
tion formalism, these effects are encoded in the temper-
ature dependent band-narrowing factor, exp[—Am,(T)].
Analysis of the exponent A\, (T') in Eq. (25) shows that
the band-narrowing factor decreases with temperature
due to an increase in the phonon occupations Nq, leading
to a progressive flattening of the polaron bands, consis-
tent with the picture discussed above. Even at T=0 K,
where the phonon occupations Nq vanish, the exponent
Amn(T) can still be relatively large due to the zero-point
motion of the lattice, resulting in a significant zero tem-
perature band-narrowing factor:

e_/\7nn (T — 0) — e_ﬁ ZQ'BQWL"I_Banlz. (53)

This result shows that there is a finite zero-point polaron
band renormalization due to the site and WF dependence
of the distortion coefficients.

In the energy functional approach of Refs. [2, 3], these
thermal and zero-point effects are missing entirely, an
important limitation for a polaron theory. This point is
clearly seen in their energy functional in Eq. (35), which
includes only the static lattice distortion u% but no terms
associated with lattice vibrations. It can be better un-
derstood by comparing their first polaron equation in
Wannier form, Eq. (A1), with the corresponding term in
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the generalized canonical-transformation functional, the
third line in Eq. (47). This comparison shows that the
approach by Sio et al. [2, 3] is equivalent to assuming
edmn = 1, or equivalently A, = 0, which neglects both
the zero- and finite-temperature polaron band narrow-
ing. Their lack of band narrowing and temperature de-
pendence is a consequence of not including the lattice
vibrations, which is equivalent to setting Nq +1/2 =10
in Eq. (28) for the canonical transformation formalism.
Note also that the energy functional method in Refs. [2, 3]
describes the polaron as an isolated system (essentially,
a localized defect), and thus a polaron band structure is
missing altogether. This is why that method cannot be
extended straightforwardly to include thermal effects on
the polaron band structure and effective mass.

The effect of temperature is also critical for polaron
dynamics. A polaron can hop from between different
sites assisted by the thermal lattice vibrations, and the
distortion gets transferred to the new site [4]. In many
materials with polaron effects, as temperature increases
charge transport transitions from a band-like mechanism
to thermally-activated charge hopping. Due to its ther-
mally activated nature, describing charge hopping re-
quires distortion coefficients that depend on site and elec-
tronic state. In the canonical transformation formalism,
the distortion coefficients Bqy are associated with elec-
tronic hopping amplitudes between WF sites m and n,
via terms proportional to BanaInan that couple explic-
itly the electron and lattice dynamics. By contrast, the
energy functional formalism, using site- and electronic
state-independent distortion coefficients Bq [2, 3], cou-
ples the electron and lattice dynamics in a mean field
way, as seen in the second polaron equation in Wannier
basis, Eq. (A2).

E. Comparison I'V: Polaron localization

In the canonical transformation method, polaron self-
localization is easy to verify starting from the effective
Hamiltonian. When the condition e *m(T) ~ §,.,
is satisfied, the Hamiltonian reduces to the diagonal
matrix E,,, in Eq. (30), and thus the polaron is localized
at a single site with a vanishing hopping amplitude.
In this scenario, when the canonical transformation
method predicts a polaron on-site energy lower than
the band edge, we conclude that the formation of a
self-localized polaron with a nearly flat polaron band is
energetically favorable. In materials with non-negligible
polaron hopping, one can use Eq. (32) in the canonical
transformation approach to compute the temperature
dependent polaron band structure.

To guarantee that these polaron band structure
calculations are physically meaningful, the polaron
Hamiltonian matrix E,,, in Eq. (32) needs to have the
same translation symmetry as the lattice. This trans-
lational invariance is simple to show in our canonical
transformation formalism. Recall that the WF index



n is a composite index labeling both the site and WF,
n = joR,. We translate the m and n WFs by a lattice
vector R, shifting them to new sites m’ = j,,R.,, + R
and n' = j,R,, + R. Using Eq. (A3), the translated e-ph
coupling matrix elements become gqm'n’ = gQmn R
and using this relation to evaluate the translated
Hamiltonian matrix E,,,,/ in Eq. (32), one obtains the
translational invariance condition E,,/,,y = Emn-

The situation is different in the energy functional
method [2, 3], where the polaron is described as an
isolated system consisting of a single charge carrier plus
a lattice distortion around it. The distorted lattice
induces a local potential which explicitly breaks the
translational symmetry. As a result, a polaron band
structure cannot be defined at any temperature, and
polaron self-localization is not deduced from a vanishing
polaron hopping or bandwidth. Rather, in the energy
functional method, polaron self-localization is inferred
from the presence of a bound state in a static potential
generated by the distorted lattice [2, 3]. This approach
hides the complex physics of the polaron problem, with
key temperature dependent inter-site hopping, and
treats it as a simple quantum mechanical problem of
a particle in a localized potential. Yet, in reality the
attractive potential felt by the excess electron is neither
static nor temperature independent, as it is determined
by the zero-point and thermal motion of the lattice.

For small polarons, self-localization cannot be guaran-
teed by the presence of a bound state in the method of
Refs. [2, 3], unless one can prove a negligible inter-site
hopping and extend the method to finite temperatures.
For materials with non-negligible polaron hopping,
or where polaron localization varies significantly with
temperature, the lack of translation symmetry, hopping
amplitude, and thermal effects in the energy functional
method of Refs. [2, 3] currently prevents quantitative
comparisons with our canonical transformation ap-
proach.

VI. CONCLUSION

This work analyzes and compares two methods that
advance first-principles studies of polarons. Both meth-
ods can compute the polaron energy and lattice distor-
tion with calculations that use only a unit cell of the
material. These approaches leverage ab initio e-ph cal-
culations and related software packages to carry them
out efficiently on modern computer architectures. We
have highlighted the proper treatment of thermal effects,
translational invariance, and polaron self-localization in
the canonical transformation framework.

We believe that more work is needed to bring our
canonical transformation method to full fruition. We
have shown that it can be extended to explicitly com-
pute the polaron wave function and treat both small and
more delocalized polarons. As it includes an explicit cou-
pling of charge hopping and lattice distortion, the canon-
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ical transformation method can also be extended, using
linear-response theory, to study charge transport in the
polaron hopping regime. Our analysis highlighted a com-
mon root for the canonical transformation and energy
functional methods, suggesting that proper extensions of
both approaches will enable exciting future developments
in polaron physics.
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Appendix A

To compare the polaron energy in the canonical trans-
formation and energy functional methods, we use the
identity [25]

§ —ik'R k
Aik = e’ m Z/{”m Aijm
JmBRm

to replace A;x in Eqs. (38) and (39), where U is the
unitary matrix from the WF generation process [725]. The
two polaron equations of Ref. [3], rewritten in the Wan-
nier basis, become

Z A;An |:€mn — Nig Z wQ B—Q ngn:| =&, (Al)
mn Q

BQ = Z A:;LngnAna (A2)

mn

where we have used the following definitions for the real-
space electron hopping amplitude and e-ph coupling con-
stants:

1 k(R —
Con = g D¢ TRy el L (A3)
® ik
1 . . e
9Qmn = Ni Z ez(k-i—q) Rmu;l;;:qgi/w(k, q)ui1§7le ik-R, .
& ik
The equality used above for the elastic energy,
1 0,0 1 2
5 > Opuud, = o > walBqgl*, (A4)
KK/ Q



can be derived by substituting in the left-hand side the
expression for u? in Eq. (37) and using the identities:

\ MSMS/ —iq- (R —Re)
(bmi’ - TQ Z (& ¢ ’ Dsa,s’a’(q)a

q
Z Dsa,s'a’ (q)esQa
s'a’

Ze*sa S

where Do s70(q) is the dynamical matrix.

A subtle question is why the polaron energy includes
this elastic energy term in the canonical transformation
but not in the the energy functional approach, where it
needs to be added to the eigenvalue of the first polaron
equation [see Eq. (40)]. A correction to the energy func-
tional in Refs. [2, 3] allows us to properly include the
elastic energy in the polaron equation eigenvalue. The
functional in Eq. (35) suffers from an inaccuracy: when
the excess charge vanishes, as can be obtained by setting
the polaron wave function ¢ = 0, the polaron energy
does not vanish: incorrectly, it equals the elastic energy
induced by the polaron. This unphysical behavior can be
addressed by properly coupling the elastic energy with
its source, the charge distribution [¢(r)|?, in the energy
functional, changing the first term in Eq. (35) as

%ZCDKK/U K o ZCD ,tg’u u ,/dr|7j} 2' A5

KK’

_ ., .2 s«
—OJQ@Q,

This way, ¢ = 0 gives a polaron energy I, =0, and the
revised energy functional becomes:

E, [¢,ul] = /dw*(r)x
( ZCI)M/U ul, + Z aVKS ud + HKS) P(r).

Varying with respect to the polaron wave function, un-
der the constraint of its normalization, gives a revised
first polaron equation that properly includes the elastic
energy in the eigenvalue:

% {Eps (/dr|z/)(r)|2 1>} =0 —

< Z <I>,mru u,{, + Z aVKS ug + HKS> Y(r) =e(r).
KK (A7>

(A6)

The solution of this equation is identical to its version
without the elastic energy term proposed in Ref. [3].
However, now the polaron eigenvalue € can be directly
interpreted as the polaron energy since from Egs. (A6)
and (A7) one obtains E, [w,ug} = ¢. Therefore, the po-
laron formation energy is now given by

AEf = & — ECBM; (A8)
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consistent with Eq. (33) in the canonical transformation
formalism, because the elastic energy has now been
absorbed in the polaron eigenvalue €.
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