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THE SET OF TRACE IDEALS OF CURVE SINGULARITIES
TOSHINORI KOBAYASHI AND SHINYA KUMASHIRO

ABSTRACT. This paper mainly focuses on commutative local domains of dimension one.
We then obtain a criterion for a ring to have a finite number of trace ideals in terms
of integrally closed ideals. We also explore properties of such rings related to birational
extensions, reflexive ideals, and reflexive Ulrich modules. Special attention is given in
the case of numerical semigroup rings of non-gap four. We then obtain a criterion for a
ring to have a finite number of reflexive ideals up to isomorphism. Non-domains arising
from fiber products are also explored.

1. INTRODUCTION

Classification of ideals is one of the most classical problems in commutative ring theory.
It has been studied at least since the works of Dedekind on rings of algebraic numbers. If
we consider a Dedekind domain, its ideal class group classifies the isomorphism classes of
ideals. If the considered ring is not integrally closed, the situation becomes more compli-
cate. For a one-dimensional local ring, classification of ideals relates to representations of
the ring. Actually, the result by Greuel and Knérrer [I0] shows that a one-dimensional
Cohen—-Macaulay local ring satisfying some mild assumptions has a finite number of iso-
morphism classes of ideals exactly when it is of finite representation type (see also [20,
Theorem 4.13]). Here we say that a one-dimensional local ring is of finite representation
type if it has only finitely many torsion—free modules up to isomorphism (this definition
is not the usual one, but equivalent to it under our assumption; see [20] for details).

In this paper, we study isomorphism classes of ideals in rings which are not necessary of
finite representation type. We then focus on a special class of ideals, namely, trace ideals.
Let us recall the definition of them. Let R be a commutative Noetherian local ring. The
trace ideal of an R-module M is defined to be the ideal

trp(M)= Y Imf.
feHomp(M,R)

Then an ideal I in R is called a trace ideal if I = trg(M) for some R-module M. While
the notion of trace ideals has long been used as a technical tool in commutative algebra,
it itself has gained new attention in recent years [5] [7, [15], I8, 21]. We should also mention
recent use of trace ideals to develop theory of rings which are close to Gorenstein [4], 111 [13].

One of the advantages to study trace ideals can be explained by a simple fact: if I and
J are distinct trace ideals of a ring R, then they are non-isomorphic (see [15, Corollary
1.2(a)] for example). By this fact, to see how many non-isomorphic trace ideals there are,
we only need to know what is the set of trace ideals. We should mention a previous study
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[8] on the set of trace ideals. As a particular question, the following is raised naturally
and explored in several papers:

Question 1.1. ([7, Question 3.7], [6l Question 7.16(1)],[15, [19]) When does a Noetherian
local ring have a finite number of trace ideals?

In [19], the second author proved that if a local domain R has a finite number of trace
ideals, then dim R < 1 and R is analytically unramified ([19, Lemma 2.4 and Theorem
2.6]). In the case of dimension one, it is also proven that analytically irreducible Arf local
domains have a finite number of trace ideals ([19, Corollary 5.5]). Here we refer to the
paragraph before Corollary [3.10] for the definition of Arf rings. Note that the notion of Arf
rings originates from a classification of certain singular points of plane curves ([22]). We
also remark that, under some suitable assumptions, a Gorenstein local ring of dimension
one has a finite number of trace ideals if and only if it is a ring of finite representation
type [0, I5]. However, other than Arf rings and rings of finite representation type, only
few examples of rings having a finite number of trace ideals are known.

Due to the previous results, we mainly deal with analytically irreducible local domains
of dimension one. Then our first aim is to give a complete answer to Question [I.I] by
assuming some mild conditions. Let (R, m, k) be analytically irreducible local domains of
dimension one. Then the integral closure R of R in the total ring of fraction Q(R) of R
is finitely generated as an R-module and a local ring. Suppose that the canonical map
k — R/n, where n is the maximal ideal of R, is an isomorphism (for instance, this fulfills
if k is algebraically closed). Let ¢ = R : R denote the conductor of R, where the colon is
considered in Q(R). Set n = {r(R/(R : R)), where () denotes the length. Let v(z)
denote the value of z € Q(R). For 0 < i < n, there exists a unique integrally closed ideal
I; such that (gr(R/I;) = i. Let

T(R) = {nonzero trace ideals of a domain R}.

With these notations and assumptions, we obtain a criterion for a ring to have finite
number of trace ideals.

Theorem 1.2. (Theorems B.8 and [4.1l) Let n = (r(R/c) > 3. If k is infinite, then the

following conditions are equivalent.

(1) T(R) is a finite set.

(2) All nonzero trace ideals are integrally closed ideals and contain the conductor ¢, that
is, T(R) = {I, | 0 < i < n}.

(3) For each 1 <1i <mn —2, there ezists ¢; € R such that v(¢;) = min{v(z) | z € I;} and
il = qiliva.

If R is a numerical semigroup ring k[[H]| of a numerical semigroup

H={a=0<a<ay<: - <a,<ap1 <apo<---}CN,
then the following is also equivalent to the above conditions.
(4) aj + a1 —a; € H foralli e {1,....,n—2} and j € {i+2,...,n}.

As applications, we observe that there are abundant examples of rings having a finite
number of trace ideals other than Arf rings (Examples and [£4)). It is also observed
that the finiteness of T(R) is inherited by that of T(/; : I;). This can be regarded as an
analogue of a characterization of Arf rings by Lipman ([22] Theorem 2.2]).
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By using Theorem [[.2] we also try to understand the set Ref(R) of isomorphism classes
of reflexive modules over a ring R. Here, an R-module M is called reflexive if the canon-
ical homomorphism M — Hompg(Hompg(M, R), R) is an isomorphism. We remark that
reflexive modules play an important role in representation theory of Cohen—Macaulay
rings. We refer to [6] for brief history of the study of reflexive modules. In this context,
it is natural to ask when Ref(R) is a finite set. In this paper, we mainly restrict our
attention to reflexive modules of rank one, that is, reflexive ideals. Such a restriction is
inspired by the following theorem given by Dao, Maitra, and Sridhar.

Theorem 1.3. ([6l Propositions 7.3 and 7.9]) Let (R,m, k) be a Cohen—Macaulay local
ring of dimension one. Assume R is almost Gorenstein, contains Q, and k is algebraically
closed. Then the following conditions are equivalent.

(1) Ref(R) is a finite set.

(2) R has a finite number of reflexive ideals up to isomorphism.

(3) T(R) is a finite set.

We also note that if R is Arf, then Ref(R) is a finite set ([16, Theorem 3.5] and [3]
Corollary 3.5]).

As a consequence of Theorem [[.2] we deduce that under the same assumption as in
Theorem [[L2] R has only finitely many reflexive ideals up to isomorphism (Theorem [6.2))
provided that T(R) is a finite set. In particular, we verify the implication (3)=(2) of
Theorem by assuming that R is a domain instead of that R is almost Gorenstein.

Special attention is given in the case of n = 4. By observing Theorem [[.2] we see that
all rings R have a finite number of trace ideals if n < 3. On the other hand, it is also
known that all rings R have a finite number of reflexive ideals if n < 3 ([6l, Theorem 6.8]).
Hence, the case of n = 4 is the next step to study the relation between trace ideals and
reflexive ideals. In conclusion, we determine conditions under which numerical semigroup
ring has finite reflexive ideals for n = 4 as follows.

Theorem 1.4. (Theorem [T1)) Let R = k[[H]] be a numerical semigroup ring of a numer-
ical semigroup

H={apy=0<a1<ay < <y <A1 < apyo <---}CN,

where k is a field. Suppose that n =4 and k is infinite. Then the following conditions are
equivalent.

(1) R has a finite number of reflexive ideals up to isomorphism.
(2) R has a finite number of reflexive trace ideals.
(3) All reflexive ideals are isomorphic to some monomial ideal containing the conductor
c.
(4) Either one of the following holds true:
(1) as — ay + asz > aq, that is, T(R) is finite.
(11) 2&3 —a1 < ay.

As a corollary, we obtain examples of a ring which has infinitely many trace ideals, but
has a finite number of reflexive ideals (Example [[.6]). Note that such examples do not
exist when the rings are assumed to be Arf or almost Gorenstein.

Let us explain how we organize this paper. In Section 2] we note several lemmas, which
we use throughout this paper. In particular, we study an equality IJ = ¢J for ideals I,
J and ¢ € I. Recall that this equality is used to characterize the finiteness of trace ideals
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in Theorem [.2(3). In Section [3, we prove Theorem In Section [, we apply Theorem
to numerical semigroup rings, and give examples.

The subject of Section[Hlis a little different from that of other sections. According to our
results, the case of analytically irreducible domains is well-explored. However, the case of
non-domains is left open. Thus, in Section [Bl we examine the set of trace ideals of fiber
products as a trial run. We describe the set of trace ideals containing a non-zerodivisor
of fiber product R; X Ry by those of Ry and Ry (Theorem [B.II). Section [l comes back
to the main focus of this paper. We prove that for each ring R having finite trace ideals,
R has a finite number of reflexive ideals up to isomorphism. We also investigate reflexive
Ulrich modules under similar assumptions. In Section [1 we prove Theorem [L.4

Convention 1.5. In the rest of this paper, all rings are commutative Noetherian rings
with identity. Let R be a ring. Then, Q(R) and R denote the total ring of fraction of R
and the integral closure of R, respectively. We denote by R* the set of units of R.

We say that [ is a fractional ideal if I is a finitely generated R-submodule of Q(R)
containing a non-zerodivisor of R. For fractional ideals I and J, we denote by I : J
the fractional ideal {x € Q(R) | J C I}. It is known that an isomorphism [ : J =
Hompg(J, I) is given by the correspondence z +— &, where & denotes the multiplication
map of x € I : J (see [14, Lemma 2.1]). We say that an ideal I is regular if I contains a
non-zerodivisor of R. For a finitely generated R-module M, {gx(M) (resp. ur(M), e(M))
denotes the length of M (resp. the number of minimal generators of M, the multiplicity
of M). Set

T(R) = {regular trace ideals of R}.

Note that T(R) is precisely the set of nonzero trace ideals if R is a domain. In addition,
if R is finitely generated as an R-module, then ¢ = R : R denotes the conductor of R.

2. PRELIMINARIES

Let (R, m) be a Cohen-Macaulay local ring of dimension one. The aim of this section
is to prepare several lemmas, which are used from the next section onward.

Lemma 2.1. ([8, Corollary 2.2]) Let I be a regular ideal of R. The following are equiva-
lent.

(1) I is a trace ideal.
(2) (R:1)I =1.
B)R:I=1:1.

Lemma 2.2. Let I and J be reqular trace ideals of R such thatI C J. Then, J: J C 1 :1.
In particular, (J : J)I = 1.

Proof. Since I C J, we have J: J=R:JC R:1=1:1by Lemmal[ZIl By noting that
RCJ:J, wehave IC (J:)IC(I:)=1. n

Next we consider an equality I.J = ¢J, where I and J are regular ideals of R and ¢ € I.
Such an equality plays a key role in our characterization of the finiteness of the set of
regular trace ideals given in the next section (see Theorem [B.§)).

Lemma 2.3. Let I and J be regular ideals of R and q € I is a non-zerodivisor of R.
Then J : I C q~'J. Furthermore, J : I = q~'J if and only if IJ = qJ. In particular,
I:1Cq'I, andI:1I=q ‘I if and only if I* = qI.
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Proof. Let x € J : I. Then qx € Iz C J. It follows that x € ¢~'J. Furthermore,
¢l U=J:1 < ¢'JCJ: ] < ¢'1JCI] < [JCql — 1J=ql.
[

Lemma 2.4. Let I and J be regular ideals of R. Suppose that there exists an element
q € I of R such that IJ = qJ. Then for each reqular trace ideal L with L C trg(J), an
equality I'L = qL holds.

Proof. Note that ¢ is a non-zerodivisor of R since I.J is a regular ideal and IJ = ¢J C (q).
Consider the evaluation map ev: (R : J) ®g J — trg(J); * @ y — xy, where x € R : J
and y € J. It induces a surjection J®" — trg(J) for some n. Tensoring R/(q), we have a
surjection (J/qJ)®" — trg(J)/qtrr(J). Since IJ = ¢qJ, J/qJ is annihilated by I. Hence,
I'trr(J)/qtrr(J) =0, that is, I trg(J) = qtrgr(J).

Let L be a regular trace ideal L with L C trr(.J). Note that I trg(.J) = qtrg(J) implies
q I Ctrg(J) : trg(J). Then, we obtain that ¢='I C trg(J) : trg(J) C L : L by Lemma
2.2 It follows that ¢ *IL C L; hence, IL = ¢L. [ |

Next we give a correspondence between certain subsets of T(R) and T({ : I) for a pair
of ideals I and J with IJ = ¢J.

Proposition 2.5. Let I be a regular trace ideal of R, and let J be a reqular ideal of R
with J C I. Suppose that there exists an element q € I such that [J = qJ. Then

{(XeT(I:1)|XCJ: I} ={¢ 'Y |Y €T(R) such that Y C J}.

Proof. Set S :=1:1. Note that ¢-'J =J :1 C S by Lemma 2.3

(2): Let Y € T(R) such that Y C J. Then ¢7'Y C ¢~'J C S. On the other hand,
since Y C I, ¢'YS = ¢~ 'Y by Lemma Hence, ¢7'Y is an ideal of S. Check the
equalities

(S:q¢ Y)Y =[R:1):¢Y|¢gY=(R:¢'IY)¢g'Y =(R:Y)g'Y =¢'Y,

where the third equality follows from IY = Y by Lemma 24l It follows that ¢~'Y €
T(S). By Lemma 2.4 again, I(¢7'Y) =Y C J. Thus, ¢7'Y C J: I.
(©): Let X € T(S) such that X C J: I. Then

IX=1(S: X)X =I[(R:1): X]X = (R: IX)IX.

This means that IX € T(R). Since X C J: I, ¢ 'IX Cq'JC S. Hence, ¢'1 C S :
X = X : X. It follows that ¢ '/X C X. Therefore, we obtain that X = ¢ '/.X. [ |

We have some applications of Proposition 25 First we deal with the case of I = J.
Then we obtain the following description of T(I : I).

Corollary 2.6. Let I be a reqular trace ideal of R. Assume that there exists an element
q € I such that I? = qI. Then

T(I:1)={q¢ 'Y |Y € T(R) such thatY C I}.
Proof. We may apply Proposition by letting J = I. [

Next we consider the case of (g(I/J) = 2. If I : I is local, then we get a description of
T(1 : I) similar to Corollary Before stating it, we prepare a lemma.



6 TOSHINORI KOBAYASHI AND SHINYA KUMASHIRO

Lemma 2.7. Let I,J be regular trace ideals of R such that J C I and (g(I/J) = 2.
Assume that I : I is a local ring, and there exists an element q € I\ J such that I1J = qJ
and I? # qI. Then the maximal ideal of I : I is q=1.J.

Proof. Set S := 1 : 1. By our assumption, we have ¢'I.J = J C I. It follows by Lemma
2.3 that

¢'JCSCql'l
Here the first inequality follows by observing 1 € S \ ¢7'J. By noting that
(r(q~*T/q7'J) = (r(I/J) = 2, we obtain that ¢g(S/q~'J) = 1. On the other hand,
¢ 'J is an ideal of S by Lemma 22l Hence, 0 < (gs(S/q~'J) < ¢g(S/q~'J) = 1. This
shows that ¢~1'J is the maximal ideal of S. ]

Corollary 2.8. Let I,J be nonzero trace ideals of R such that J C I and (g(I/J) = 2.
Assume that I : I is a local ring, and there exists an element q € I\ J such that I.J = qJ
and I? # qI. Then

T(I:1)={¢ 'Y |Y € T(R) such that Y C J}U{I:I}.

Proof. Since I : I is a local ring with the maximal ideal ¢=1J, it follows that T([ :
N={XeTU:1I)| X Cqg'Jyu{l: I} Notethat ¢o'J C J:I1C1I:1. So,
applying Proposition 2.5 we see the equality {X e T(/: I) | X C ¢ 'J} ={¢'YV |Y €
T(R) such that Y C J}. [

3. TRACE IDEALS OF CURVE SINGULARITIES

In this section, let (R, m, k) be an analytically irreducible local domain of dimension
one, that is, R is finitely generated as an R-module and R is a local ring (hence, R is
a discrete valuation ring). We assume that the canonical map k — R/n, where n is the
maximal ideal of R, is an isomorphism (e.g. k is an algebraically closed field or R is a
numerical semigroup ring). With this assumption, we investigate the structure of T(R).
We use the following notations:

Setup 3.1. (1) v: Q(R) — Z U {oo} denotes the normalized valuation associated to
R.
(2) v(R) = {v(r) | 0 # r € R} denotes the value semigroup of R. Set H = v(R).
(3) We write H ={ap=0<a; <as < - < a, < @ps1 < Apa2 < ---}. Note that
there exists an integer n such that a,.; = a, + ¢ for all ¢ > 0. We choose such n
as small as possible.

In addition, let
T(R) = {regular trace ideals of R} as previous section, and
I(R) = {integrally closed ideals of R containing c}.
By letting I, ;== {r € R | v(r) > a;} for all i € {0,1,...,n}, we obtain that
I(R)={l;|i=0,...,n}.
Note that Iy = R, I; =m, and [,, = c.

Remark 3.2. (1) Let » € R be an element such that v(r) = a;, where 0 < i < n. Then
the equality I; = (r) + I;41 holds. In particular, (g([;/1;+1) = 1.
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(2) The integer n appearing in Setup[3.1](3) is equal to £g(R/¢). Indeed, we have equalities
n = ER(R/Il) + gR([l/[Q) + -+ ER(In—l/[n) = ER(R/C)

Fact 3.3. (1) ([I5, Proposition 2.2]): Let I be a regular trace ideal of R. Then, I contains
c.

(2) ([2 Theorem 1]): I(R) is a subset of T(R).

(3) ([6, Theorem 6.8]): If n =2, then T(R) = {R,m, ¢} = I(R).

On the basis of the above facts, we aim to explore the finiteness of T(R). Let us start
the following technical proposition.

Proposition 3.4. Let 1 <i <n — 2. The following conditions are equivalent.
(1) For any element r € R with v(r) = a;, the equality I;1;15 = r1; 5 holds.
(2) There exists an element ¢ € R such that v(q) = a; and the equality I;1;1o = ql;ii2
holds.
Assume i < n —3 and s € R is an element such that v(s) = a;11 and I 113 = sliys.
Then the following is also equivalent to both of the above conditions.
(3) There ezists an element ¢ € R such that v(q) = a; and the inclusion sl 5 C (q) holds.
Proof. (1)=(2): This is obvious.
(2)=(1): Let r € R with v(r) = a;. We first prove the following claim.

Claim 1. [; 1 [; C (r) foralli+2 < j <n.

Proof of Claim[1. We prove Claim 1 by descending induction on j. If 7 = n, then
r LI, € {r € QR) | v(z) > a,} = ¢; hence, I;;1I, C rc C (r). Suppose that
j <mnand I;;1I;41 C (r). By noting that ¢ '[;;1I; C ¢ '[;[;1o = I;y» C R, where the
equality follows from the assumption (2), we obtain that

¢ inl; S RN {z € Q(R) | v(x) > a; + (a1 — ai)} € I
This means I;41/; € gl;y1. Choose a unit u € R* such that ¢ — ur € I,;;. Then

Iival; € qliyy € urljyy + Lix11;41. By the induction hypothesis, I;11/;41 € (r). Hence
we get I;111; C (r). Thus we may proceed the induction. [

By Claim [Il we obtain that /;111;1o C (r). Remembering that I; = (r)+ I; 4, it follows
that T_llili+2 Q RN {LU S Q(R) | ’U(SL’) Z ai+2} = ljt2, that iS, Ii[i_l,_g = 7”[2'4_2.

Now assume ¢ < n — 3 and s € R is an element such that v(s) = a;41 and I; 411,43 =
sl;y3. The implication (2)=-(3) is clear. We consider the converse direction (3)=-(2). Our
assumption (3) says ¢ 'sl;,o C RN{x € Q(R) | v(z) > a1 3} = I;13. On the other hand,
we see inclusions ¢ 'L ol 0 = s (g sliye) C s 0l 3 C I;y3. Here the last
inclusion follows by the assumption on s. Hence, we have inclusions I; o1, 19, sl; 1o C ql;. 3.
Remembering I; = (q) + (s) + Liy2, we get Lil;10 = qlivo + slizo + Liyoliyo = qlizn. M

Lemma 3.5. When i =n — 1 ori=n, the equality I? = ¢;I; holds.

Proof. This is clear if i = n. Assume that ¢ = n — 1. Since I,,_1 = (¢,—1) + I,,, we only
need to check 12 C ¢, 1I,_1. Since ¢,*,I?> C {z € Q(R) | v(x) > 2a, — an_1(> a,)} C
I, C I, 1, we see the inclusion I? C g, 11,_1. [ |

Let n > 4, and fix an integer ¢ such that 1 < ¢ < n — 3. Take elements ¢, ¢ € R such
that v(q) = a; and v(¢’) = a;41. For each o € R, we set

I = (g + aq) + Lisa.
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Although the ideal above depends on the choice of ¢ and ¢’ (not only on i and «), we use

this notation to avoid complications. The following proposition shows that J& are trace
ideals.

Proposition 3.6. Assume that I;1; 9 # ql; o and I;;11;.3 = ¢'I;13. Then the following
hold true.

(1) For each o € R, J € T(R).
(2) Ifa — B & m, then J) 2 Jéz).
(3) If k is infinite, then T(R) is an infinite set.

Proof. Set f :=q+ aq'.

(1): Let g € R : J. Tt is enough to prove that g € J& : J& (see Lemma 27]). Since
c=1,C J&i), g € R:c¢= R. Hence, we can write g = u + h, where h € R with v(h) > 1
and either v = 0 or u € R*. Indeed, if v(g) > 0, then we can choose u as 0 and h as g.
If v(g) = 0, then there exists u € R with v(u) = 0 such that v(g — u) > 0. Thus, we can
define h as ¢ — u. By noting that w € R and g € R : Jc(f), we have h € R : J{. Moreover,
to show g € J JS), it is enough to check h € J T80 We may assume h # 0.

Observe that h € R : J C R : I, and so hljyo C (R : Iii9)liis = Ii1s. Since
v(h) > 1, we can obtain a more strict inclusion hl; o C I;13. As f € J we have hf € R.
Thus v(h) + a; = v(fh) € H. Since v(h) > 1, this implies that either v(h) + a; = a;11
or v(h) + a; > a;42. Suppose v(h) + a; = a;11. Then v(fh) = v(f) + v(h) = a;41; hence,
Iiy1liv3 = fhl 3 by Proposition B4l On the other hand, fhl; o = f(hli12) C fliis.
By Proposition B4 (3)=(1), we reach an equality I;I;;o = ql;12. This contradicts our
assumption. It follows that v(h) + a; > a;4o.

Hence, hf € RN {z € Q(R) | v(x) > asia} = Lis» C J&. By combining this inclusion
with the inclusion hl;, o C [;43 C Jc(f), we obtain the desired inclusion hJC(f) - Jc(f).
Therefore, we conclude that J is a trace ideal of R.

(2): Suppose that a— € m and J& o Jéi). Then (a—0)¢ = (¢+aq')—(¢+8¢) € I,
By noting that o — (3 is a unit of R, ¢’ € J. This means that there exists z € R and
y € Ij1o such that ¢ = xf + y (note that f = ¢ + aq’). Since v(¢’) = a;+1, we have
v(¢ —y) = a;11. Tt follows that I; 11113 = (¢ — y)li13 by Proposition B4l On the other
hand, since ¢ —y = = f, we can also observe that (¢ — y)l;12 = xfI;1o C (f). Thus, by
Proposition B4 (3)=(1), we get ;1,12 = ql;1o. This contradicts our assumption.

(3): By (1) and (2), any pair of nonzero distinct representatives o and /3 of the residue
field £ = R/m provides distinct trace ideals J,gf) and Jéi). Hence, there are trace ideals
more than the cardinality of k. [ |

Corollary 3.7. Let n > 4. Assume there exists 1 < i < n — 3 such that I;1; o # ql;;o
for some (any) q € R with v(q) = a;. Then the following hold true.

(1) I(R) € T(R).

(2) If k is infinite, then T(R) is an infinite set.

Proof. We first note that for any element p € I, o with v(q) = n — 2, the equality
I, oI, = ql, always holds. Thus we may pick ¢ as the biggest integer such that the
inequality I;1; 1o # ql;12 holds for any ¢ € R with v(q) = a;. In particular, for such i, we
have I;411; 3 = ¢'I; 43 for any ¢’ € R with v(¢') = a;41.
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(1): By Proposition B6(1), we have J\” = (¢4 ¢/) + Ii+» € T(R). On the other hand,
by Proposition B.0(2), Jl(i) cannot contain Jéi). In particular, Jl(l) # I, since Jéi) C .
This shows that Jl(l) ¢ I(R). Hence we obtain that I(R) # T(R). By recalling Fact 3.3
this proves I(R) € T(R).

(2): Now we assume £k is infinite. Then, by Proposition[3.6(3), T(R) contains an infinite

subset {J,gf) | a is a nonzero representative of k}. [

Here we achieve the main theorem of this section.

Theorem 3.8. Let n > 3. The following conditions are equivalent.

(1) T(R) =1(R).

(2) For each 1 < i < n — 2, there exists an element q; such that v(q;) = a; and I;1; o =
Qiliya.

(3) For each 1 < i < n — 2 and each element ¢; € R with v(q;) = a;, the equality
Iili o = qil;2 holds.

If the residue field k is infinite, then the following is also equivalent to the above conditions.

(4) T(R) is a finite set.

Proof. (1)=(4): This is trivial.

(4)=(2): Assume that k is infinite. If n = 3, then the condition (2) is automatically
satisfied by Lemma Hence, the assertion holds true. If n > 4, then the assertion
holds by Corollary .71

Hence, it is enough to prove that (1), (2), (3) are equivalent. (2
Proposition 3.4 Note that for the case of n = 3, the condition (
satisfied by Lemma 3.5 Hence, it is enough to prove the implications
and (3) = (1) for n > 3.

(1)=-(2): This implication follows from Corollary 3.7

(3)=(1): Let I € T(R). We aim to prove I € I(R). Let i be an integer such that
a; = min{v(z) | « € I}, and we choose ¢; € I such that v(¢;) = a;. Note that I contains
¢ by Fact B3(1). Hence, I =cifi=n. If i =n — 1, we obtain that ¢ C I C [,,_;. It
follows that I = I,,_;. Hence, we may assume that 1 < <n — 2.

Since [ contains ¢, we can write I = (g;, fa, ..., fi) + ¢ for some [ > 2, where fy,..., f; €

Iiyq.

)<= (3) follows from
2) is automatically
(1)=(2) forn >4

Claim 2. [ contains I; for each j € {i +2,...,n}.

Proof of Claim[3. We proceed by descending induction on j. The case of j = n is trivial.
Suppose that j <n and I D [;4;. Since 7 > i+2 and i+ 1 > ¢, we have I;111; C I;];45 =
qili+2. In other words, qi_llj],qu C I,15 C R. Hence, by noting that fo,..., f; € I;11, we
obtain that ¢; 'L;[(f2, ..., fi) +¢] C ¢, ' I;I;;1 C R. Tt follows that

'L =q ' L(g, foy - fi) +¢] C I+ ¢ ' [ 141 CR.

In other words, we have ¢; ' I ; € R:1=1":1I, where the last equality follows from Lemma
2.1 Therefore, we obtain that I; = ¢; '[;q; C ¢ 'I;1 C (I : I)I = 1. [ |

By Claim 2 we have I;;o € I C I;. By noting that ¢g(1;/I;12) = 2 (see Remark B.2])
and there is nothing to prove if I = I;, we may write I = (¢;) + I;12. Let ¢;11 € R such
that v(¢;41) = a;41. By noting that I;1;,5 = ¢;I;12, we obtain that
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(¢ 'Giea) Liva C (g7 ) LipaLivo = (¢ VMiliya = (¢, )gilisa = Liy2 © R and
(¢ " 4i+1)% = Giv1 € R.
From the above inclusions, we deduce ¢; '¢; 11 € R: I. Hence, ¢;y; € (R: I)I = I. Thus,
we conclude I = (¢;, qiv1) + Liyo = I;. [ |

Corollary 3.9. Let n < 3. Then the equality T(R) = I(R) holds. In particular, T(R) is
a finite set.

We aim to apply Theorem B8 to Arf rings. Here we say that a local ring (R, m) is Arf
if every regular integrally closed ideal I satisfies I? = zI for some x € I (cf. [22, Theorem
2.2]).

Corollary 3.10. ([I6, Proposition 3.1]) If R is an Arf ring, then T(R) = I(R).

Proof. Since R is an Arfring, I? = ¢;[; forall 1 <i < n—2. By LemmaZ4 I,I; 5 = ¢l 12
for all 1 <1i <n — 2. Hence, the assertion follows from Theorem 3.8 [ |

The following theorem shows that the finiteness of T(R) is inherited by that of T'(Z; : I;).

Theorem 3.11. Assume the equality I(R) = T(R) holds. Let 1 <i <n and q¢; € R be
an element such that v(q;) = a;. Then

{7 |i+2<j<n}yU{li: L} ifI?#ql.

In particular, T(I; : I;) is a finite set.

Proof. Note that all intermediate rings between R and R is a local ring because R is a
local ring and finitely generated as an R-module. In particular, I; : I; is a local ring for
all 1 <17 <n.
Suppose that either i = n or n — 1. Then, the equality I? = ¢;I; holds by Lemma 3.5
Thus, the assertion follows by Corollary Now let 1 < i <n — 2. By Theorem [3.8]
we have an equality ;1,10 = ¢;l;12. Note that ¢; € I; \ I;4o and ¢(I;/I;12) = 2. Therefore,
the assertion can be derived from Corollary |

Note that the converse of Theorem [B.11] does not hold in general:

Example 3.12. Let R = k[[t*,¢5,¢7]] be a numerical semigroup ring over an infinite field
k. Then T(R) is infinite (see Example [T.6]), but as m : m is equal to k[[t>, 5,17, %, ¢%]],
which is an Arf ring, we see that T(m : m) is finite.

4. TRACE IDEALS OF NUMERICAL SEMIGROUP RINGS
In this section we focus on numerical semigroup rings. Throughout this section, let
H C N be a numerical semigroup. Then, H defines a local k-subalgebra
R = k[[H]] = k[[t" | h € H]] C K[[t]],
where £[[t]] is the formal power series ring over a field k. Then R satisfies the assumption

written in the beginning of Section [3} hence, we reuse the notation of Setup B.Il Note
that H is equal to the value semigroup v(R) of R.

Theorem 4.1. Let n > 3. The following conditions are equivalent.
(1) T(R) =I(R).
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(2) Lilizo = (t%) ;1o for alli e {1,...,n—2}.

(3) aj+ a1 —a; € H foralli e {1,...,n—2} andj € {i+2,...,n}.

If the residue field k is infinite, then the following is also equivalent to the above conditions.
(4) T(R) is a finite set.

Proof. The equivalence of (1), (2), and (4) follows by Theorem 3.8

(2) = (3): Assume (2). This means that ¢t~%[;[;,5 = I;15 for each i = 1,...,n —
2. Then, the elements t*+' € I, and t% € I; 4o, where j € {i + 2,...,n}, satisfy
t7t% 1% € I; 19 C R. It shows that a; + a;41 —a; € H.

(3)=-(2): Note that the assumption (3) is equivalent to saying that t%+11; o C (%) for
alli € {1,...,n—2}. We then show that for each i € {1,...,n—2}, the equality I;[;,5 =
t%1;,5 holds by descending induction on i. We know that the equality I, oI, = t*21I,
always holds. Let ¢ < n — 2. By the induction hypothesis, we have I;11;13 = (t%+1) ;3.
Thanks to Proposition 3.4] (3)=-(1), we deduce the equality I;I; 1o = t*[; 5. [ |

We also note a characterization of numerical semigroups with T(R) = I(R) and n = 4
as a special case of Theorem 1l In Section [7, we consider such a situation again with
paying attention to reflexive ideals.

Corollary 4.2. Assume k is infinite and n = 4. Then the following conditions are
equivalent.

(1) T(R) s finite.

(2) T(R) = [(R).

(3) a9 — A1 Z aqs — as.

Proof. Since n = 4, the condition (3) of Theorem [ ]is stated as follows:
as + a2 — a1, Q4+ a2 —ay, Q4+ asz— as € H.

Since the last two of the above is larger than a4, a4 + as — a; and a4 + a3 — ap are
automatically in H. Furthermore, we have a3 < as + as — a;. Hence, a3+ as — a1 € H if
and only if a3 + as — a; > a4. Therefore, the assertion follows from Theorem .11 [ |

By using Theorem [4.1] and Corollary [£.2] we obtain infinitely many rings R satisfying
T(R) = I(R) other than Arf rings (see Corollary B.I0). Since Arf rings have minimal
multiplicity, we explored rings that are not of minimal multiplicity. Although, at least
our knowledge, we are not able to describe every numerical semigroups satisfying the
conditions above by giving their systems of minimal generators, we note some of them.

Example 4.3. The following numerical semigroup rings R satisfy T(R) = I(R) and n = 4,
but are not of minimal multiplicity. Let k be a field.

(1) R = K[!, £14, 418 420 421 423 424 426 427 430]),

(2) R = K[[t2,#12,£16 19 420 422 423 126)].

(3) R=K[[t>, ¢, ¢, ¢1]].

Example 4.4. Let n > 3 be an integer, and let
H={0lU{3n+3ieN|0<i<n—1,buti#2}U{jeN]|j>6n}

be a numerical semigroup. Set R = k[[H]]. Then T(R) = I(R) and (gr(R/(R : R)) = n.
Furthermore, R does not have minimal multiplicity. In particular, R is not an Arf ring.
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Proof. We have
a1 =3n,a3=3n+3,a3=3n+9,a,=3n+12,...,a,_1 =6n—3, and
Gpyr =6n+k forall k> 0.
Hence, /z(R/(R : R)) = n. By noting that a;;; —a; is either 3 or 6, wherei € {1,2,...,n—

3}, we obtain that for all j € {i+2,...,n—1}, a; + a;11 — a; is either a; +3 or a; +6. In
both cases, we have a; + a;11 — a; € H. It follows that H satisfies Theorem .11 (3), thus

T(R) = I(R).
Since a, 16 = 6n + 6 = 2(3n + 3) = 2ay, it is straightforward to check that R does not
have minimal multiplicity. ]

Let (R,m,k) be an analytically irreducible local domain of dimension one. In what
follows, we note the relation between the conditions T(R) = I(R) and T(k[[v(R)]]) =

I(k[[v(R)]]).
Remark 4.5. Let (R, m, k) be an analytically irreducible local domain of dimension one

as Section [3l We reuse the notation of Setup B.Il Suppose that T(R) = I(R). Then,
T(K[[H]]) = I(K[[H]])-

Proof. Since T(R) = I(R), we have I;I;;o = ql;4o for all ¢ € {1,...,n —2}. It follows
that for all j € {i+2,...,n},

Qi+19; € Lilivo = qilips C (g;).

Hence, ¢, lqi+1qj € R. Thus, —a; + a;41 +a; € H. This concludes the assertion by
Theorem (.11 [

On the other hand, the converse of the assertion in Remark .5 does not hold in general.

Example 4.6. Let R = FK[[t' + !¢ ¢ ¢*" " | n > 30]]. Then v(R) =
{0,15,18,24,27} U {n | n > 30}. Set H = v(R). Note that k[[H]] is the ring of Ex-
ample 4.4 where n = 5. Hence, T(k[[H]]) = I(k[[H]]). On the other hand, one can obtain
that T(R) 2 I(R).

Indeed, assume that T(R) = I(R). Then, we have I13 = (t'° + '6)I3 by Theorem
It follows that

2=t e 113 = (t° + ') C (PP + )L + YR = (£ + 0,2 + %) + " R.
Hence, we can write t42 = f(t3° + t10) + g(¢t*2 + t*3) + h, where f,g € R and h € t*R.

Write f = a + f; and g = b+ ¢y, where a,b € k and f1,g; € R with v(f1),v(g1) > 15.
Then

t2 —a(t® + 1) — b(t*? + ) = fL(tP + ) + (¢ +t*) + h € t*R.
This is impossible. Hence, I113 # (t'° + t'9)I3. Tt follows that T(R) 2 I(R).

5. TRACE IDEALS OVER FIBER PRODUCTS

In this section, we discuss trace ideals over fiber products of local rings as a trial for
the case of non-domains. Let
R = R1 Xk R2
be a fiber product of Noetherian local rings (Ry,ny, k) and (Ra,ng, k) over k, i.e. Ris a
subring {(s,t) € Ry X Ry | m1(s) = ma(t)} of a usual product Ry x Rs, where m: Ry — k
and my: Ry — k are canonical surjections. Let m denote the maximal ideal of R. The



SET OF TRACE IDEALS 13

canonical maps p;: R — R; and py: R — Ry are surjective homomorphisms of rings. In
addition, there are isomorphisms

i1:ny ZKerpy =n; x (0) and iy: ng & Kerp; = (0) X ny
as R-modules. And m has a decomposition m = Ker p, @ Ker p; as an R-module.

Theorem 5.1. Let (Ry,ny, k) and (R2, 02, k) be (not necessarily one—dimensional Cohen—
Macaulay) local rings with positive depth. Let R be a fiber product Ry Xy Ry of Ry and Ry
over k. Then

T(R)={u(l)®ix(J) [ € X1, J € Xo} U{R},
where X1 and Xs are defined as follows:

(1) If Ry (resp. Rs) is a discrete valuation ring, then X7 = {n} (resp. Xo = {ny}).
(2) If Ry (resp. Ry) is not a discrete valuation ring, then X, = T(Ry) \ {R1} (resp.
Xo = T(Rp) \ {R2})-

Proof. (C): Let L be an ideal in T(R) with I # R. Then one has an equality L = iops (L)@
i1p1(L). Indeed, the inclusion L C iopo(L) @ i1p1(L) is clear. Since there are surjections
’ilpll L — ilpl (L) and igpgl L — igpg(L), it y1€1dS that ZQPQ(L) D ilpl (L) - tI‘R(L) = L.
Thus we only need to know what p;(L) and po(L) are. Note that both p;(L) and py(L)
are nonzero. Indeed, if p;(L) = 0, then L = iyps(L) is annihilated by 41(n;). This means
that L is not a regular ideal of R.

(1): If Ry is a discrete valuation ring, then p;(L) is isomorphic to Ry = ny. Thus, we
have a surjection L — i1(ny)(C m). Therefore, i;(ny) is contained in trg(L) = L. In
particular, one obtains ny 2 pi(L) 2 p1(i1(ny)) = ny.

(2): Suppose that R; is not a discrete valuation ring. What we need to prove is
that pi(L) belongs to T(R;) \ {R1}. In order to show this, let f: p;(L) — R; be a
homomorphism of modules. Assume that Im f = R;. Then, since there exists a surjection
RP* — ny for some integer a > 0, we obtain the surjective homomorphism L%* —
RP* — ny. Thus, i1(ny) is contained in trgz(L)(= L), which yields that p;(L) = n,.
It follows that f induces a surjection n;y — Rj; hence, R; is a discrete valuation ring.
This contradicts our assumption. We now see that an inclusion Im f C n; holds for any
homomorphism f € Homg, (p1(L), Ry). Take the composition iy fp;: L — R. We have
Im(iy fp1) C trr(L) = L. Hence, we obtain that p; (L) 2 Im(pii1 fp1) = Im(pyiq f) = Im f.
This means that p;(L) is a trace ideal of R;.

(D): Let L =i1(I)®ia(J), where I € X and J € X,. Then, since ugr(L) = pg(ii(I))+
wr(i2(J)) > 1, L has no free summands. Hence,

HomR(L, R) = HomR(L,m) = HomR(zl(I) @D i2(J),i1(n1) D ig(ﬁg)).

Assume that f € Hompg(i1(1),i2(ny)). Then, since i1([) is annihilated by is(ng), Im f is
also annihilated by is(ny). By noting that depth Ry > 0, it follows that f = 0. By the
same argument, we have Hompg(i2(J),4;(ny)) = 0. Hence,

Hompg(L,m) = Hompg(i1(1), i1 (ny)) @ Hompg(iz2(J), i2(n2)).
Therefore, it is enough to prove that
Hompg(i1(1),41(n1)) = Hompg(i1(1),4:(I)) and
Hompg(ia(J), i2(n2)) = Hompg(iz(J), ia(J)).
Indeed, (5.I.1]) shows that Homg(L, m) = Hompg(L, L).

(5.1.1)
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If Ry (resp. Ry) is a discrete valuation ring, then I = ny (resp. J = ny). Hence, (B.1.1)
holds. If Ry (resp. Rs) is not a discrete valuation ring, then I € T(R;) \ {R1} (resp.
J € T(Ry) \ {R2}). In any case, (5.11]) holds. This completes the proof. [

Corollary 5.2. Let R be a fiber product Ry Xy, Ry of local rings (Ry,ny, k) and (Ra,ng, k)
with positive depth over k. Then T(R) is finite if and only if so are both T(Ry) and T(Ry).

Example 5.3. Let R be a fiber product

Then, it is clear that R is not a domain. On the other hand, since both T(k[[t°, 3, t'%, t11]])
and T(K[[t?, 2, #1619 ¢20 422 423 #26]]) are finite by Example 3] T(R) is also finite.

6. SOME SPECIAL REFLEXIVE MODULES

Throughout this section, we employ Setup Bl Denote by Ref;(R) the set of isomor-
phism classes of reflexive modules of rank one over R. We say a fractional ideal I is
reflexive if R : (R : 1) = I. Note that an ideal I is reflexive exactly when its isomorphism
class belongs to Ref;(R).

As a first part of this section, we prove that Ref;(R) is finite when the equality T(R) =
I(R) holds.

Lemma 6.1. Let M be a reflexive R-module of rank one. Then there exists a reflexive
tdeal I of R such that I is isomorphic to M and contains c.

Proof. First note that M is isomorphic to some nonzero ideal J of R. Set a; =
min{v(z) | x € J} and take an element ¢ € J such that v(q) = a;. Then both of
the integral closures of J and (q) are equal to I;. Hence (q) is a minimal reduction of J,
that is, J*! = ¢J* for some ¢ > 0. By [6, Theorem 3.5, J is isomorphic to an ideal I
containing ¢. As M = [ it is clear that [ is reflexive. |

Theorem 6.2. Assume T(R) = I(R). Then there is an inclusion map from Ref,(R) to

-----

Proof. Let I be a reflexive ideal of R containing ¢. Take an integer ¢+ and an element ¢ € 1
such that a; = v(¢) = min{v(f) | f € I}. The inequality i < n is obvious.

Claim 3. We have either one of the following:

(1) I = Iz or

(2)i <n—2and I = J for some o € R, where J& denotes the ideal defined after
Lemma [3.5]

Claim 4. If i <n—2and [ = I for some a € R, then [ is isomorphic to Jo(i).

Proof of Claim[3. The case where n — 2 < i < n is clear since I contains ¢. So we
may assume i < n — 3. Since I contains ¢, R : I C R : ¢ = R. Then observe that
qR: 1) CgqRNRC{x e R|v(x)>v(q)}=1I. Therefore = R: (R:I1)D R:q'I.
Using Theorem .1 and the assumption T(R) = I(R), we see that ¢ 'I;I;,» C I;;o C R.
It follows that R : ¢ 'I; D I;15. We then have an inclusion I O I, which yields that
either I = I, or J,gf) for some « € R. [ |
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Proof of Claim[}. We set x := 1+ aq~'q’, where ¢’ is an element taken as in the definition
of J&). Then gz = ¢+ aq¢’. In view of Theorem EI] the assumption T(R) = I(R)
implies 21,5 = I45. Indeed, 2l C I; o follows from xli o C I;yo + aq 'q¢'I;1o and
aqg ¢ Lo C aqg tLiI;1o C I4s. On the other hand, the inclusion zl; 1o O I follows
from the observation that xI; 5 contains ¢ and all elements of order a; for ¢« < j < n since
v(xz) =0.

Thus we get 2\ = (2q) + 2142 = (¢ + o) + Lz = J&. This means that J{" is
isomorphic to J(g) via the multiplication by . [

By Claims [3] and [4] reflexive ideals containing ¢ are only either I; for 0 < j <n or Jéi)
for 0 < i < n—2 up to isomorphism. By combining this result with Lemma [6.1], a system

of representatives of Ref;(R) is a subset of [(R) U {Jéi)}ie{l n—2}- [

.....

Next we explore reflexive Ulrich modules over rings R satisfying an equality m/l; = ql3
for some ¢ € m. Note that rings R satisfying T(R) = I(R) have the equality ml; = ¢l3
(Theorem [B.8)). Let us recall the notion of Ulrich modules.

Definition 6.3. ([9, Definition 3.1]) We say that a finitely generated R-module M is an
Ulrich module if M is maximal Cohen—Macaulay (equivalently, torsion—free since dim R =
depth R = 1), and e(M) = pugr(M), where e(M) denotes the multiplicity of M and pug(M)
denotes the number of minimal generators of M. It is known that M is Ulrich module if
and only if mM = ¢M, where (¢) is a minimal reduction of m (see [9]).

In what follows, throughout this section, let (¢) be a minimal reduction of m.

Lemma 6.4. ([I]) Let M be a finitely generated reflexive R-module such that M has no
free summands. Then, M can be regarded as an m : m-module. That is, by regarding M
as a submodule of Q(R) @p M =2 Q(R)™ r(M) "we have (m : m)M = M.

Lemma 6.5. Let M be an Ulrich R-module. Then Hompg(M, R) is a reflexive Ulrich
R-module.

Proof. By applying the R-dual to 0 — M % M — M/qM — 0, we obtain an exact
sequence

0 — Hompg(M, R) % Hompg(M, R) — ExtL(M/qM, R).

Note that Extp(M/qM, R) is a free R/m-module since mM = gM. Hence, the above
exact sequence proves that Homg(M, R)/q Hompg(M, R) is a free R/(q)-module. It follows
that m Hompg(M, R) C ¢ Hompg(M, R). Hence, Hompg(M, R) is a Ulrich R-module. The
reflexivity of Hompg(M, R) follows from a well-known fact, see [12], Lemma 4.1] for example.

|

Lemma 6.6. Set S =m :m. If M is a reflexive Ulrich R-module, then M is a reflexive
S-module.

Proof. By Lemma [6.4, M can be regarded as an S-module. Let X be the kernel of the
canonical surjective S-homomorphism m®g M — mM; a®x +— ax fora € mand z € M.
Note that X is of finite length as an R-module since there are equalities

rankp(X) = rankg(m ®¢ M) — rankg(mM) = 0.
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Hence, by applying the R-dual to 0 — X — m ®s M — mM — 0, we obtain an
isomorphism Hompg(M ®g m, R) = Hompg(mM, R). Therefore, we obtain that

Homg (M, S) =Homg(M, Homg(m, R)) =2 Homgz(M ®sm, R) =2 Homg(mM, R)
=Hompg(¢M, R) = Hompg(M, R).

By noting that Hompg (M, R) is again a reflexive Ulrich R-module by Lemmal6.5] we obtain
that

Homg(Homg(MM, S), S) = Homg(Hompg(M, R), S) = Homg(Hompg(M, R), R) = M.
Hence, M is reflexive as an S-module (|12, Lemma 4.1]). [

We now characterize reflexive Ulrich R-modules in terms of the endomorphism algebra
m: m of m.

Theorem 6.7. Suppose that an equality mIs = ql3 holds. Set S = m : m. Let M be
a finitely generated R-module such that R and S are not in the direct summand of M.
Then, the following are equivalent.

(1) M is a reflexive Ulrich R-module.
(2) M is a reflexive S-module.

Proof. (1) = (2): This follows by Lemma [6.6]

(2) = (1): Suppose that M is a reflexive S-module. Then M is reflexive as an R-module
by [17, Theorem 1.3(1)]. Thus, we have only to show that M is an Ulrich R-module.

Let n be the maximal ideal of S. Since S is not in the direct summand of M, M
can be regarded as an n : n-module by Lemma [64l Suppose that m? # gm. Then,
by Lemma 27 n : n = ¢ 'I3 : ¢'Is = I3 : Is. Hence, by Theorem E.I, we have
q *ILM C (I3 : I3)M = M. Hence, M is an Ulrich R-module.

Suppose that m? = gm. Then, by Lemma 23] ¢ 'm = S. Hence, ¢-'mM = SM = M,
that is, M is an Ulrich R-module. ]

As an application, we obtain the finiteness of reflexive Ulrich R-modules up to isomor-
phism when n is small. Before showing it, we put a lemma.

Lemma 6.8. Suppose that R is not a discrete valuation ring. Let S = m : m and c¢g denote
the conductor of S. Then, s(S/cs) < lr(R/c). Furthermore, {5(S/cg) = (r(R/c) — 1 if
and only if R has minimal multiplicity.

Proof. Note that ¢g = S : S = (R im) R = R : mR. Therefore, by noting that

mR = gR, we obtain that ¢c¢ = R : qR = ¢ 'c. Tt follows that £5(S/cg) = (r(S/cs) =

lr(qS/c) < lr(m/c) = lr(R/c) — 1, where the third inequality follows from ¢S C m.
The equality ¢g(S/cs) = (r(R/c) — 1 is equivalent to saying that ¢S = m. This is also

equivalent to saying that m? = gm by Lemma 2.3l [ |

Corollary 6.9. Assume that either of the following holds:

(1) n < 3.

(2) n =4, mI3 = ql3, and R is not of minimal multiplicity.

Then there exist only finitely many reflexive Ulrich R-modules up to isomorphism.

Proof. Set S = m : m. By Theorem [6.7], it is enough to show that there exist only finitely
many reflexive S-modules up to isomorphism.
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By Lemma [6.8, ¢5(S/cs) < 2, where ¢g is the conductor of S. Then, by Lemma
B.5 S has minimal multiplicity. Let n be the maximal ideal of S, and set S; = n : n.
Then, fg,(S1/cs,) < 1. It follows that S; again has minimal multiplicity by Lemma
B.5l Therefore, S; or the endomorphism algebra of the maximal ideal of S; is a discrete
valuation ring. In any case, we obtain that S is an Arf ring by [22].

In particular, there exist only finitely many reflexive S-modules up to isomorphism by
[16], Corollary 3.6]. |

7. REFLEXIVE IDEALS IN NUMERICAL SEMIGROUP RINGS WITH SMALL NON-GAPS

The purpose of this section is to explore the relation between the finiteness of T(R)
and that of Ref;(R). We maintain the notations of Section @l We already saw that both
T(R) and Ref;(R) are finite if n = ¢gr(R/c) < 3 (Corollary and [6, Theorem 6.8]).
Thus, we focus on the case of n = 4. The goal of this section is to prove Theorem [Tl
Let us prepare notations to describe Theorem [7.Il We say that an ideal I is monomial if
I is generated by monomial elements. Set

RT(R) = {I € T(R) | I is reflexive}.
Theorem 7.1. Suppose that n = 4 and k is infinite. Then the following conditions are
equivalent.
(1) For all I € Refi(R), I is isomorphic to some monomial ideal containing c.
(2) Refi(R) is finite.
(3) RT(R) is finite.
(4) Either one of the following holds true:
(1) as — ay + as > aq, that is, T(R) is finite.
(11) 2a3 —a1 < ay.
To prove Theorem [7.I], we note several lemmas.
Lemma 7.2. Let I be an ideal of R containing c. Then, R: 1 C R.
Proof. Since ¢ C I, we obtainthat R: I C R:¢c=R:t"R=t""(R: R) = R. [ ]
Lemma 7.3. Let I = (f) + ¢ be an ideal of R, where f € R. Then I = (') +c.
1

Proof. f can be written in the form t*¢) 4 *V)z where z € R with v(z) >
¢ = (14 x)cand

N+ e (1 +2) D)+ = () +Q+a)c=1

Lemma 7.4. Let I be an ideal of R. Let a; = min{v(f) € H | f € I}. Then
(1) R+t %RCR:1I.

(2) R:[R+t"*R|=1;. Hence,  CR:(R:1)CI,.

Proof. (1): R C R : I is trivial. Note that t*»~%] C t* R = ¢ since v(f) > a; for all
f e I. Hence, t* %R C R, that is, t* “R C R: I.
(2): Note that R : [R+t* %R] = (R: R)N (R : t* %R). On the other hand, we
obtain that
R:t" %R =1t%""(R:R)=t%“""t"R =t“R.
Hence, R : [R+t%~%R] = RNt%“R = I;. Therefore, by (1), we obtain that R: (R : I)

-
R:[R+t" %R = I, u



18 TOSHINORI KOBAYASHI AND SHINYA KUMASHIRO

Lemma 7.5. Assume that n =4 and ay — ay + a3 & H. Then the following hold true.
(1) For each o € R, J& = (t" + at®) + I3 € T(R).
(2) Let a, B € k. If a # B, then JO # J.

Proof. Since n = 4, the equality I,I, = t*2I4 holds. On the other hand, the inequality
L1113 # t™ I3 follows by the assumption as — a; + az € H. So we may apply Proposition
0.0l |

Now we prove Theorem [7.1]

Proof of Theorem[7.1. (1)=-(2): This is clear.

(2)=-(3): Recall that for I,J € T(R), [ = J if I = J; see [15 Corollary 1.2(a)] for
example. Hence, we can regard RT(R) as a subset of Ref;(R). Thus, (2)=-(3) holds.

(3)=-(4): Suppose that as — a; + a3 < a4 and 2a3 — a; > a4. It is enough to prove that
RT(R) is infinite. Let a € k and I = (" + at®,t%) 4 ¢. Then, it is enough to show that
I € Ref;(R). Indeed, by noting that az < as —ay + ag < a4 implies that a; —a; +a3 ¢ H,
we have I = J{ € T(R) by Lemma [T.5[(1). We further prove that [ = J is a reflexive
ideal for each o € k. Then, we complete the proof since RT(R) is infinite by Lemma
[75(2).

Set f =t +at® and z = —at® 4. Then f =t (1—x). Set g =t~ 4 (1+ax+- - -+2t),
where ¢ > a4. We obtain that

fg=1t"(1 -, tBg=1*""14+x+ -.-42%, and gcCec.

Since we assume that 2a3 — a; > ay, it follows that ¢ € R : I. By Lemma [T4(1),
R+t R+ (9) CR:I. Hence, R: (R:I)C R:[R+t""“R+(g9)]=LN(R:g)by
Lemma [7.4(2). Let h € I N (R : g). We can write h = dit* + dot® + d3t™ + - - -, where
d; € k. Then,

gh =137 (1 4+ 2+ -+ ) (dt™ + dot™ + d3t™) (' mod c)
= (1424 +2)(dit™ + dyt™>T7) ( mod ¢).

By noting that v(z) = ay — aq, the gh’s coefficient of degree ay + a3 — a1 is —ad; + ds.
On the other hand, we have gh € R and as — a; + a3 ¢ H. Hence, we obtain that
—ady + dy = 0. It follows that

h=d(t" 4+ at®®) + dst® +--- € (t" +at™, 1) +c= 1.

Hence, Iy N (R : g) C I. In conclusion, we obtain that I CR: (R: 1) C LN (R:g) C 1.
Hence I is a reflexive ideal.
(4)(1)=-(1): This follows from Theorem
4)(ii)=(1): Suppose that I is a reflexive ideal. By Lemma [6.1] we may assume that
. Then I forms one of the following. Let o, 8 € k.
- Io, ]1, ]2, ]3, ]4.
= (" + at®) +«.
= (t" 4+ at® + ft*) +c.
= (t" + at®,t") +c.

For the case (a), there is nothing to prove. By Lemma [[3] in the cases (b) and (c),
I is isomorphic to some monomial ideal containing ¢. Thus, it is enough to prove the
following claims:
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Claim 5. Suppose that 2a3 —a; < aq. Let [ = (t* +at®,t*)+¢. Then R: (R: 1) = 1.

Claim 6. Suppose that 2a3 — a; < aq. Let I = (1% + at®,t* + $t) 4+ ¢. Then the
following hold true.

(d-1) If a; + a3 # 2aq, then R: (R:I) = I,.
(d-2) If a; + a3 = 2a5 and o # — %, then R: (R: 1) = I,.
(d-3) If a; + a3 = 2ay and o = — %, then I = (¢™,%2) + c.

Proof of Claim[A. Tt is enough to prove that R : I C R + t“ “R. Indeed, if R : I C
R+1t“~“ R then we have R: [ = R+t%“"“ R by Lemma[Z4(1). Hence, R: (R: 1) =1,
by Lemma [7.4)(2).

Let ¢ € R : I. Then, by Lemma [[.2] we can write ¢ = ¢y + ¢', where ¢y € k and
g' € R: I such that v(g’) > 0. Then ¢'(t** + at®) € R and ¢'t*® € R since ¢’ C R. This
proves that

v(g)+ar € H and v(¢)+as € H.

Hence, we have v(g’)+a; = a; for some i > 2, and a; —a; +as € H. On the other hand, by
the assumption, we have ag < az+as—a; < 2az3—a; < aq. Thus, az+as—ay,2a3—a; € H.
This proves that i # 2, 3. Therefore, v(g') > a4 — ay, that is, ¢’ € %~ R. It follows that
g=co+g €E R+t R, [ |

Proof of Claim[@. (d-1): This proof proceeds in the same way as the proof of Claim
B As we explain in the beginning of the proof of Claim [ it is enough to prove that
R:ICR+t““R Let g€ R: I and write g = cg+ ¢/, where ¢ € kand ¢ € R: I
such that v(¢’) > 0. Then ¢'(t** + at™) € R and ¢'(t** + ft*) € R since ¢'I C R. This
proves that

v(g)+ar € H and v(g)+as € H.

Hence, we have v(¢’) + a1 = a; for some i > 2, and a; — a; + ay = a; for some j > 3.
We show that ¢ > 4. Assume that ¢ = 2. Then 2ay — a; = a; for some j > 3. By the
assumption of (d-1), we obtain that j # 3. But, because 2as — a1 < 2a3 — a1 < a4, j > 4
is also impossible. Thus, i # 2. Assume that ¢ = 3. Then a3 — a; + a2 = a; for some
j > 3. Since az < az — aj + ag, j # 3. It follows that az — a; + as > a4. This contradicts
for the assumption 2a3 — a; < ay. Therefore, i > 4. It follows that v(¢’) > a4 — aq, that
is, ¢’ € t“ R, Hence, g =cy+ ¢ € R+t “R.

(d-2): Set s = ay — a;. By the assumptions, a3 = 2as — a; = a; + 2s and a3 + 2s =
2a3 — a1 < ay4. Hence, we obtain that

(7.5.1) ay=a1+5S, a3=a+2s, and ay—asz>2s+1.

Set fi = t" + at®*2 and f, =t 4+ [t Then R: I = (R: fi)N(R: f) N R by
Lemma[Z2 Let g € R: I, and write g = ¢y + ¢t + cot? + - - -, where ¢; € k. Then, for all
T > a1 + 2s, we obtain that

(75.2) (the fig’s coefficient of degree ) = c;—q, + ACr—(a,425)
o (the fog’s coefficient of degree x) = ¢y (a,+5) + BCo—(ar+2s)-
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Here, suppose that z,x + s ¢ H. By (Z.5.2)), we obtain that

(7.5.3) Co—ay + QCp—(a,425) = 0

(7.5.4) Cots—ay T QCpts—(a;425) = 0

(7.5.5) Co—(ay+s) T BCa(ag+25) = 0

(7.5.6) Cots—(ar+s) T BCots—(ar+25) = 0.

By (C53), (7.5.49), and (.5.5]), we have

(7.5.7) —QCp gy 25 = Coay = —BCo-ar—s = B Coay 2

Therefore, since we assume that o # — (32, we obtain that ¢, 4, 25 = 0. It follows that
(758) Cr—a1+s = Cx—a; = Cx—a;—s — Cx—a1—2s — 0

by (L5.3)-(C5.6). That is, if z,2 + s € H, then we have (T.5.8]).
On the other hand, =,z + s ¢ H holds for all a3 +1 < x < a4y — s — 1. Note that the
number of (consecutive) integers between a3 +1 and ay —s —1lisay —s—1—az > s by

((C50). Therefore, the fact that (Z.5.8) holds for all z = a3+ 1,...,a4 — s — 1 turns out
that

Claz+1)—a1—2s — *** = Clag—s—1)—ai+s — 0.
By noting that (a3+1)—a; —2s=1and (agy—s—1)—a; +5 = ay —a; — 1 due to (T.5.1)),
we obtain that
9= 0o+ Cagat™ " + Caymqy 1t 4o € RHEUTUR,

Therefore, by combining this result with Lemma[Z3 R: (R: ) = R: (R+t“"“R) = I,.
(d-3): Suppose that a; + az = 2ay and o = —3%. Set s = ay — a;. Note that we have

(C5.T). Hence,

(1 1) +

(%) f o= (#% — BT 9T ¢
(14 Bt5)[(t™ — Btats m17F9) + ]

(t B2ta1+2s ta1+5 —|—ﬁta1+28) (1 +ﬁt8)c
(tal _'_ata1+2s ta1+s _'_ﬁta1+23) +c

=1.

I

By Claims [B] and [0, in the cases (d) and (e), a reflexive ideal I is isomorphic to some
monomial ideal containing ¢, respectively. Therefore, for each cases (a)-(e), I is isomorphic
to some monomial ideal containing c. |

Example 7.6. Let ¢ > 5 be an integer and set R = k[[t, 1T 172 ¢ | 2e+5 < i < 3e—1]],
a numerical semigroup ring over an infinite field k. Then T(R) is infinite, but Ref;(R) is
finite.

Proof. This is the case where n = 4, a; = e, a = e+ 1, a3 = e+ 2, and ag = 2e. It
follows that 2a3 —a; = e+ 4 < 2e = a4 and ay — a; + a3 = e + 3 < 2e = ay4. Hence, the
conclusion follows from Corollary .2 and Theorem [Tl [

We note one of the easiest examples arising from Example



SET OF TRACE IDEALS 21

Example 7.7. Let R = k[[t°, % ¢"]] be a numerical semigroup ring over an infinite field
k. Then T(R) is infinite, but Ref;(R) is finite.

Example 7.8. Let ¢ > 4 be an integer and set R = Ek[[t¢, tT1 1272 " | 2e + 3 < i <
3e — 3]], a numerical semigroup ring over an infinite field k. Then Ref;(R) (and hence
T(R)) is infinite.

Proof. This is the case where n = 4, a; = e, ap = e+1, ag = 2e—2, and a4 = 2e. It follows
that 2as3 —a; = 3e—4 > 2e = a4 since e > 4. We also have ay —a1+a3 = 2e—1 < 2e = a4.
Hence, the conclusion follows from Corollary 1.2 and Theorem [7.11 [
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