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It has long been known that weakly nonlinear field theories can have a late-time stationary state

that is not the thermal state, but a wave turbulent state with a far-from-equilibrium cascade

of energy. We go beyond the existence of the wave turbulent state, studying fluctuations about

the wave turbulent state. Specifically, we take a classical field theory with an arbitrary quartic

interaction and add dissipation and Gaussian-random forcing. Employing the path integral relation

between stochastic classical field theories and quantum field theories, we give a prescription, in

terms of Feynman diagrams, for computing correlation functions in this system. We explicitly

compute the two-point and four-point functions of the field to next-to-leading order in the coupling.

Through an appropriate choice of forcing and dissipation, these correspond to correlation functions

in the wave turbulent state. In particular, we derive the kinetic equation to next-to-leading order.
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1. Introduction

Statistical physics is built around the study of the thermal state. This is for good reason: at

late times, generic closed systems with generic initial conditions are, for most purposes, indistin-

guishable from the thermal state. Nevertheless, there is an increasingly large range of contexts

in which one needs to study far-from-equilibrium systems, ranging from the quark gluon plasma

produced heavy ion collisions [1] to quenches in cold atom experiments [2–4]. This is challenging:

the thermal state is now irrelevant, and there is no clear “universal” state to replace it; it appears

one must study every far-from-equilibrium initial condition on a case-by-case basis.
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The key is to look at a subsystem, consisting of a range of modes of the underlying field. A

nonlinear system couples modes of different wavenumber, and there will be a flux of modes passing

through the subsystem; the subsystem behaves like an open system. As an approximation, we can

replace our subsystem with a simple open system: one in which there is a perpetual flux passing

through, maintained by external forcing and dissipation acting on an otherwise closed system. 1

This is the system we will study.

Once a system is open, it is liberated from the requirement of late time thermalization, allowing

for rich late time behavior. Beyond the thermal state, the next simplest possible late time state

is a stationary, but non-equilibrium, state. We can control the state through the microscopic

parameters of the Hamiltonian – the dispersion relation and the nonlinear interaction – as well as

the external forcing and dissipation. Remarkably, even for a weakly interacting nonlinear system,

there are cases in which one can find a stationary, non-equilibrium state - the Kolmogorov-Zakharov

state [5]. This is wave turbulence, or weak turbulence [6, 7]. 2 It has been shown to occur in an

incredible range of contexts, from surface gravity waves to waves on vibrating elastic plates, to

waves in the quark-gluon plasma produced after a heavy ion collision.

Much of the work on wave turbulence has focused on establishing the existence and properties

of the turbulent state. A broader question is how to repeat everything we know in statistical

mechanics, but based on the wave turbulent state instead of the thermal state. Concretely, how

to characterize fluctuations about the turbulent state. This work is a step in that direction.

Specifically, we take a classical nonlinear field theory, with an arbitrary dispersion relation and

arbitrary quartic interaction. We add dissipation, as well as external forcing, where the forcing

function is drawn from a Gaussian distribution. We give a general prescription for computing

correlation functions of the field. The basic tool that we use is that a classical field theory with

stochastic forcing is a quantum field theory, which in turn can be solved perturbatively through

Feynman diagrams.

Wave turbulence is both an old topic [6] and one under active study [7]. Questions of current

interest include: new physical contexts exhibiting classical wave turbulence, 3 wave turbulence in

quantum mechanics and the nonlinear Schrödinger equation [37–44], wave turbulence in quantum

field theory and related concepts of prethermalization [45–56], mathematical properties of wave

turbulence [57–64] including properties of the kinetic equation [65–69] and models such as [70–73]

1This approximation is valid for certain far-from-equilibrium initial conditions and for momenta within some
range, and for intermediate times that are long after initial transients have decayed but well before equilibrium
has been reached. Of course, systems with forcing and dissipation are by themselves physically relevant, so the
motivation in terms of an intermediate stage in the thermalization process is not necessary.

2Wave turbulence is distinctly different from the more familiar hydrodynamics turbulence, see Appendix. A.
3This includes: elastic plate wave turbulence [8–14], turbulence in surface gravity waves [15–19], in gravitational

waves [20–23], acoustic turbulence [24], planetary Rossby waves [25], waves on bubbles [26], emergent hydrodynamics
[27], in a diatomic chain [28], in plasmas [29, 30], optical waves [31–33], and rotating waves [34, 35], and in FPUT
chains [36].
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and [74] .

Turning to work most relevant to this paper: the importance of quantities beyond the mode

occupation number was recently stressed in [75]. The question of higher order corrections (in the

nonlinear interaction) to the expectation value of the mode occupation number, was studied in [76],

though the expressions are unwieldy. Through ingenious, if slightly mysterious, use of conserva-

tion laws, [77–79] found the next-to-leading order correction to the kinetic equation governing the

mode occupation number. Our results will reproduce and generalize the results of [77–79], using

a method that is relatively mundane and straightforward. The connection we employ, between

stochastic classical field theories and quantum field theories, is well-known and such path integral

methods have appeared before in turbulence, e.g. [80–84]. However, as far we know, path integral

methods have not been applied to classical wave turbulence for the explicit purpose of systemat-

ically computing correlation functions perturbatively in the coupling. 4 We believe study along

these lines will give a rich set of applications.

Outline

In Sec. 2 we take a nonlinear wave equation with an added random forcing function. The

most direct way of computing correlation functions is to take a definite forcing function, solve the

equations of motion for the field in terms of the forcing function, and then compute correlation

function of the field in terms of correlation functions of the forcing function. In Sec. 2.1 we formalize

this procedure, which involves a path integral over the field and a delta functional enforcing the

equations of motion. The delta functional can itself be represented through a path integral over

an auxiliary field. After integrating out the forcing function and the auxiliary field, one is left

with simply a path integral for the field. This procedure shows that a classical field theory with

Gaussian random forcing is equivalent to a quantum field theory, with a Lagrangian that is the

square of the force-free equations of motion. The problem of computing correlation functions in

stochastic field theory has transformed into a standard problem of computing correlation functions

in a quantum field theory.

In Sec. 3 we use this quantum field theory as our starting point. In standard quantum field

theory, one computes vacuum correlation functions, where the vacuum is achieved by a small

amount of evolution in Euclidean time (the iϵ prescription). In our case, the correlation functions

will automatically be computed in the stationary state of our choosing, maintained through forcing

and dissipation. Indeed, the iϵ is naturally present from the dissipation, and it does not have to

be small. Due to dissipation, at late times the initial conditions become irrelevant and we gain

time translation invariance. It is therefore beneficial to work in frequency space. In Sec. 3.1 we

use the Lagrangian to work out the Feynman rules for the propagator and the quartic and sextic

4There has been recent work on multimode statistics in the context of the random phase approximation [57–60,
85–88].
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interaction terms. In Sec. 3.2 we compute the tree-level four-point function.

In Sec. 4 we compute one-loop diagrams. In Sec. 4.1 we compute the one-loop correction

to the propagator, showing that it corresponds to a frequency shift. In Sec. 4.2 we compute the

one-loop correction to the four-point function. In Sec. 4.3 we give an immediate application of

these results: the kinetic equation to next-to-leading order, which encodes the evolution of the

mode occupation number. The kinetic equation is the wave analog of the Boltzmann equation for

particles in statistical mechanics. Obtaining next-to-leading order corrections to the Boltzmann

equation is challenging, while here for the kinetic equation it is straightforward.

We conclude in Sec. 5 with a summary and ideas for future work.

In Appendix A we review wave turbulence, in particular the traditional derivation of the lead-

ing order kinetic equation, and the Kolmogorov-Zakharov turbulent cascade. The other appendices

contain technical results relevant to the main body: Appendix B derives several propagator identi-

ties, Appendix C derives the tree-level six-point function, Appendix D contains integrals used in the

computation of the one-loop four-point function, and Appendix E is relevant to the next-to-leading

order kinetic equation.

2. A nonlinear interacting field with random forcing

Our starting point is a nonlinear classical field theory with a quartic interaction. It is best to

work in Fourier space, with modes ϕk. It is common to do a canonical transformation, replacing

the real field and momentum variables, ϕk and πk, with the single complex variable ak, whose

complex conjugate we denote by a†k, ϕk = 1√
2ωk

(ak+a†k) and πk = i
√
ωk√
2
(a†k−ak). These variables

are reminiscent of creation and annihilation operators in quantum mechanics, but we are of course

just doing classical mechanics. The equations of motion are then first order,

ȧk + iωkak = −2i
∑

p2,p3,p4

λkp2p3p4
a†p2ap3ap4 . (2.1)

We may write the equations of motion in terms of a Hamiltonian, ȧk = −i ∂H
∂a

†
k

where,

H =
∑

p

ωpa
†
pap +

∑

p1,p2,p3,p4

λp1p2p3p4
a†p1a

†
p2
ap3ap4 . (2.2)

The symmetries of the coupling are λp1p2p3p4
= λp2p1p3p4

= λp1p2p4p3
= λ∗

p3p4p1p2
. Rather than

writing an explicit momentum conserving delta function, we will just keep in mind that λp1p2p3p4

is only nonzero if p1+p2 = p3+p4.

We want to add forcing fk(t) and dissipation γk for mode k. The equations of motion become

[89],

ȧk = −i
∂H

∂a†k
+ fk(t)− γkak . (2.3)
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At this stage the forcing term fk and the dissipation term γk are arbitrary. We will want to average

over the forcing. We take the forcing to be drawn from a Gaussian distribution,

P [f ] ∼ exp

(
−
∫

dt
∑

k

|fk(t)|2
Fk

)
, ⟨fk(t)f ∗

p (t
′)⟩ = Fkδ(k − p)δ(t− t′) . (2.4)

We will work with arbitrary Fk and γk, though in many contexts, one takes the forcing to be

nonvanishing only at low k and the dissipation nonvanishing at high k, so that the forcing and

dissipation don’t directly affect the equations of motion for the modes in the inertial region in

which there is a turbulent cascade. 5

Old-fashioned “Diagrammatic” method

The most straightforward way to solve the theory is through the so-called “diagrammatic”

approach [90]: one solves the equations of motion with some definite forcing, and then averages

over the forcing. While the path integral method we will adopt in the next section will be com-

putationally superior, this straightforward method is conceptually clearer and serves as a useful

check, so we briefly review it.

Free theory: Let us start with the free theory. The equations of motion (2.3) reduce to,

ȧk + (iωk + γk)ak − fk(t) = 0 , (2.5)

and have the solution,

ak(t) = e−(iωk+γk)t

(
ak(0) +

∫ t

0

dt1 fk(t1)e
(iωk+γk)t1

)
. (2.6)

We can use ak(t) with definite fk(t) to compute correlation functions of ak(t) in terms of correlation

functions of fk(t). For example, the two-point function is,

⟨a†k(t1)ak(t2)⟩ = eiωkt12−γk(t1+t2)

(
⟨a†k(0)ak(0)⟩+

∫ t1

0

dt′1

∫ t2

0

dt′2 ⟨f ∗
k (t

′
1)fk(t

′
2)⟩ e−iωkt

′
12+γk(t

′
1+t

′
2)

)
,

(2.7)

where we used that ⟨f⟩ = 0 and defined t12 ≡ t1−t2. The occupation number of mode k is denoted

by nk(t). Using ⟨fk(t1)f ∗
k (t2)⟩ = Fk δ(t1−t2) gives,

⟨a†k(t1)ak(t2)⟩ = eiωkt12−γk(t1+t2)

(
⟨a†k(0)ak(0)⟩+

Fk

2γk

(
θ(t12)e

2γkt2 + θ(t21)e
2γkt1 − 1

))
, (2.8)

5From the form of the probability distribution for fk, in order to turn off fk for some mode k, one should take
Fk → 0, in which case P [fk] → δ(fk).
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where θ(t) is one for t ≥ 0 and zero for t < 0. If we take the late time limit: large t1 and t2 with

finite t12, then the initial conditions nk(0) become irrelevant – as one expects should be the case

for a driven harmonic oscillator with damping – and we get,

⟨a†k(t1)ak(t2)⟩ →
Fk

2γk
eiωkt12

(
θ(t12)e

−γkt12 + θ(t21)e
γkt12

)
=

Fk

2γk
eiωkt12−γk|t12| as t → ∞ . (2.9)

Taking t2 = t1 in (2.8) we get that ⟨nk(t)⟩ is,

⟨nk(t)⟩ = ⟨a†k(0)ak(0)⟩e−2γkt +
Fk

2γk
(1− e−2γkt) → Fk

2γk
≡ nk as t → ∞ . (2.10)

In what follows we will use nk as a shorthand for Fk/2γk. By appropriately picking Fk and γk,

one can achieve any nk that one desires. Likewise, one can take both Fk and γk to zero, while

maintaining a finite ratio.

Interacting theory: If we restore interactions, we can solve the equations of motion perturbatively

in the strength of the coupling. It is best to work in frequency space, ak(t) =
∫

dω
2π
e−iωtak,ω and

fk(t) =
∫

dω
2π
e−iωtfk,ω. The equations of motion (2.3) become,

ak,ω+2iGk,ω

∑

pi,ωi

δω+ω1−ω2−ω3
λkp1p2p3

a†p1,ω1
ap2,ω2

ap3,ω3
= Gk,ωfk,ω , Gk,ω =

i

ω − ωk + iγk
. (2.11)

Expanding ak,ω perturbatively, ak,ω = a
(0)
k,ω + a

(1)
k,ω + . . . , the first two orders are given by,

a
(0)
k,ω = Gk,ωfk,ω

a
(1)
k,ω = −2iGk,ω

∑

p1,p2,p3

∑

ω1,ω2,ω3

δω+ω1−ω2−ω3
λkp1p2p3

a† (0)p1,ω1
a(0)p2,ω2

a(0)p3,ω3
. (2.12)

Now, using the correlation function for the forcing, ⟨fk,ω1
f ∗
p,ω2

⟩ = Fkδk−p2πδ(ω1−ω2), one may

perturbatively compute correlation functions of ak,ω.

This approach is straightforward, but tedious [76]. We would like to streamline the procedure,

by integrating out the forcing at the outset. This is what we do next.

2.1. Path integral

We are interested in computing correlation functions of products of various ak(t), such as e.g.

the expectation value of the number operator, or multiple ak(t) with different momenta k and

inserted at different times t. The expectation value of a general operator O(a) is found by solving

the equations of motion and computing O(a) for each value of fk, and then averaging over the fk

6



as prescribed by the probability distribution P [f ] (2.4),

⟨O(a)⟩ =
∫

DfDf ∗ P [f ]O(a) , (2.13)

where one has to keep in mind that the ak(t) need to satisfy the equations of motion with the

corresponding fk(t). Formally, in order to ensure that we are using ak(t) which satisfies the

equations of motion for the chosen fk, we introduce an integral over ak(t) and a delta function

which ensures that the equations of motion are satisfied, see e.g. [80] or [81–84],

⟨O(a)⟩ =

∫
DaDa†DfDf ∗ |J(a, a†)|P [f ]O(a) δ

(
Re(Ef )

)
δ
(
Im(Ef )

)
) , (2.14)

Ef = ȧk + i
δH

δa†k
− fk(t) + γkak ,

where we introduced two delta functionals because Ef is complex (Ef = 0 are the equations of

motion), and have let |J(a, a†)| denote the modulus of the determinant of the Jacobian,

J(a, a†) =
∂(Re(Ef ), Im(Ef ))

∂(a, a†)
. (2.15)

Let us simplify (2.14). We start by noting that the Jacobian is actually one, |J(a, a†)| = 1.

To see this, we discretize time, sending ak(t) → aik, and similarly for the other functions, such as

the equation of motion operator Ef (t),

Ei
f∆t = aik − ai−1

k +∆t

(
i
δH

δai−1
k

− f i−1
k + γi−1

k ai−1
k

)
. (2.16)

In this discretization, J(a, a†) is a triangular matrix with unit diagonal, so the functional determi-

nant equals unity, as claimed. Next we write the delta functionals in integral form as,

δ
(
Re(Ef )

)
δ
(
Im(Ef )

)
) =

∫
DηDη∗ ei

∫
dt

∑
k(ηkE

∗
f+η

∗
kEf) , (2.17)

so that ⟨O(a)⟩ becomes,

⟨O(a)⟩ =
∫

DaDa† DfDf ∗DηDη∗ P [f ]O(a) exp

(
i

∫
dt
∑

k

ηk(t)E
∗
f (t) + c. c.

)
. (2.18)

Performing the integral over f using P [f ] in (2.4) yields,

⟨O(a)⟩ =
∫

DηDη∗DaDa†O(a) e−
∫
dtL , L =

∑

k

ηk(t)Fkη
∗
k(t)−iηk(t)E

∗
f=0−iη∗k(t)Ef=0 , (2.19)

7



where Ef=0 is the equation of motion term in (2.14) without the forcing, Ef=0 = ȧk + i δH
δa

∗
k
+ γkak.

Finally, carrying out the Gaussian integral over ηk gives, 6

⟨O(a)⟩ =
∫

DaDa†O(a) e−
∫
dtL , L =

∑

k

|Ef=0|2
Fk

. (2.20)

The result is sensible: We started with equations of motion Ef=0, added a forcing term fk,

and then averaged over a Gaussian distribution for the fk. The result is an effective Lagrangian

which is proportional to the magnitude squared of Ef=0. Notice that initially the only averaging

was over the forcing term fk, with fk having a Gaussian probability distribution. The end result,

however, is the Lagrangian (2.20) in which there is no forcing term, but with ak as a fluctuating

variable; in other words, a quantum field theory.

The propagator

The Gaussian theory is the part of the Lagrangian without the interaction term,

Lfree =
∑

k

1

Fk

∣∣∣Dkak

∣∣∣
2

, Dkak ≡ ȧk + (iωk + γk)ak ,

Dkak ≡ D∗
kak = ȧk + (−iωk + γk)ak . (2.21)

The two-point function is given by the inverse of the quadratic term,

⟨a†k(t1)ap(t2)⟩ = δk,pFk

[(
− d

dt
+ (iωk + γk)

)(
d

dt
+ (−iωk + γk)

)]−1

, (2.22)

which, through a Fourier transform, gives,

⟨a†k(t1)ap(t2)⟩ = δk,pFk

∫
dω

2π

eiωt12(
− iω + (iωk + γk)

)(
iω + (−iωk + γk)

) (2.23)

=
δk,pFk

2γk

[
θ(t12)e

iω+t12 + θ(t21)e
iω−t12

]
, ω± = ωk ± iγk , t12 ≡ t1−t2 .

We may write this compactly as,

Dk(t12) ≡ ⟨a†k(t1)ak(t2)⟩ = nke
(iωk−γksgn(t12))t12 , (2.24)

where we used the definition (2.10) of nk. Later on it will be convenient to use the shorthand

ni ≡ npi
.

6The integral over time in (2.20) can be taken to extend to minus infinity in the past, but need only extend to
the time at which O(a) sits in the future: the integral arose from enforcing the equations of motion, however they
do not need to be enforced at times later than where the observable is.
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The answer matches the late time limit (2.9) of what we found (2.8) through direct solution of

the equations of motion. Had we wished, we could have precisely reproduced (2.8), by accounting

for initial conditions when inverting Dk in Lfree. The late time limit is important: it ensures that

the propagator (2.24) only depends on the difference in times, and that Wick’s theorem can be

applied for finding higher-point correlation functions in the limit of vanishing coupling.

Summary

We have a nonlinear system with equations of motion (2.1) for the field ak(t). We add a forcing

term to the equations of motion, and seek to average over the forcing drawn from a Gaussian-

random distribution. A straightforward way is to solve the equations of motion with fixed forcing,

and then average over the forcing. A formalization of this leads to a more efficient way, which we

discussed in Sec. 2.1. The end result is that this problem is equivalent to the problem without

forcing, where ak is a quantum field and the effective Lagrangian (2.20) is the square of the original

equations of motion without forcing. This is what we will work with in the next section.

3. Feynman rules and tree-level diagrams

In the previous section we found that the problem of a classical field theory with random

forcing is equivalent to a quantum field theory, with a Lagrangian (2.20). In this section we work

out the Feynman rules and tree-level correlation functions. The Lagrangian and the Feynman rules

are given in Sec. 3.1, and the tree-level four-point function is found in Sec. 3.2.

3.1. The Lagrangian

For the quartic theory with Hamiltonian (2.2) the equations of motion (2.3) are Ef=0 = 0

where,

Ef=0 = Dkak + 2i
∑

p2,p3,p4

λkp2p3p4
a†p2ap3ap4 , (3.1)

where we used the definition of Dkak given in (2.21). The Lagrangian (2.20) we will be working

with is therefore,

L =
∑

k

|Ef=0|2
Fk

=
∑

k

1

Fk

∣∣∣Dkak + 2i
∑

p2,p3,p4

λkp2p3p4
a†p2ap3ap4

∣∣∣
2

. (3.2)

Let us expand this out, grouping terms by their power of the coupling. We have,

L = Lfree + LO(λ) + LO(λ
2
)
. (3.3)
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Here Lfree was given in (2.21). The term of order λ is,

LO(λ) = 2i
∑

p1,...,p4

λp1...p4

Dp1

Fp1

a†p1a
†
p2
ap3ap4 + c.c. , (3.4)

which we may write as,

LO(λ) = 2i
∑

p1,...,p4

λp1...p4

Dp1

Fp1

a†p1a
†
p2
ap3ap4 − 2i

∑

p1,...,p4

λp1...p4

Dp3

Fp3

a†p1a
†
p2
ap3ap4 , (3.5)

where for the last term we changed variables p1 ↔ p3, p2 ↔ p4 and used λp1p2p3p4
= λ∗

p3p4p1p2
. We

may write this in a symmetric way,

LO(λ) = i
∑

p1,...,p4

λp1...p4

(
Dp1

Fp1

+
Dp2

Fp2

− Dp3

Fp3

− Dp4

Fp4

)
a†p1a

†
p2
ap3ap4 , (3.6)

where one should remember that each Dpi
only acts on the corresponding api . Finally, the LO(λ

2
)

term is,

LO(λ
2
)
= 4

∑

p1,...,p7

1

Fp7

λp1p2p3p7
λp7p4p5p6

a†p1a
†
p2
ap3a

†
p4
ap5ap6 . (3.7)

There isn’t really a sum over p7 here: recall that, in order to not write explicit momentum conserv-

ing delta functions, we have defined the couplings λp1p2p3p4
to be nonzero only when p1+p2 = p3+p4.

So in (3.7) p7 is fixed to be p7 = p1+p2−p3 = p5+p6−p4.

In total, the theory consists of a quadratic term (2.21), a quartic interaction (3.6), and a sextic

interaction (3.7).

This looks just like any other quantum field theory. One distinction is the dissipation, γk in

Dkak. In fact, this is similar to the iϵ in quantum field theory, see e.g. [91]: recall that in standard
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Let us work out the Feynman rules.

Feynman rules

The propagator Dk(t12) ≡ ⟨a†k(t1)ak(t2)⟩ was given earlier, in (2.24),

Dk(t12) = nke
iωkt12−γk|t12| . (3.8)
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Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives

G�1⇤
k (t1)

F (k)
Dk(t12) =
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nk

Dk(t12)✓(t21) . (4.12) {137}

Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G

�1⇤
k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)

Dk,! ⌘
Z

dtDk(t)e
�i!t = F (k)|Gk,!|2 , where Gk,! =

i

!�!k + i�k

. (4.14) {DG}

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??

4.2. Four-point function
{sec:42}

Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,
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n1n2n3n4 (4.16) {treeQ}

We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)

9

(a)

1 2

3 4

Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives

G�1⇤
k (t1)

F (k)
Dk(t12) =

1

nk

Dk(t12)✓(t21) . (4.12) {137}

Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G

�1⇤
k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}
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The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??
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We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Taking the complex conjugate and using D⇤
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Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G
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As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)
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Z
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The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??

4.2. Four-point function
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Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,
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We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives
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k (t1)

F (k)
Dk(t12) =

1
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Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G

�1⇤
k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)

Dk,! ⌘
Z

dtDk(t)e
�i!t = F (k)|Gk,!|2 , where Gk,! =
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The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??

4.2. Four-point function
{sec:42}

Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,
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We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G

�1⇤
k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)

Dk,! ⌘
Z

dtDk(t)e
�i!t = F (k)|Gk,!|2 , where Gk,! =

i

!�!k + i�k

. (4.14) {DG}

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??
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p3,!3
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F (p3)
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F (p4)
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4.2. Four-point function
{sec:42}

Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,

Z
dtaDp1

(t1a)Dp2
(t2a)Dp3

(ta3)Dp4
(ta4)

✓
✓(t1a)

n1

+
✓(t2a)
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� ✓(t3a)
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n4

◆
(4.16)

If all the times are equal t1 = . . . = t4 = t, then we have
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!1+!2�!3�!4
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n1

+
1

n2

� 1

n3

� 1

n4

◆
n1n2n3n4 (4.17) {treeQ}

We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives
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Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,
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k (t2)G
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k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)
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Z

dtDk(t)e
�i!t = F (k)|Gk,!|2 , where Gk,! =
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. (4.14) {DG}

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??
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Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in
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We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Finally, an identity that we will need is the action on the propagator of G�1⇤
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k (t2). This gives a delta function,

G�1
k (t2)G
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As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)
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Z
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The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??
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4.2. Four-point function
{sec:42}

Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,
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We are doing the integral by dropping the piece coming from the lower bounder of time for ta - the

initial time. We assume the initial time is in the far past and we either don’t care about anything

that depends on it, or we make the ! slightly imaginary so the contribution vanishes. This will

happen naturally because of the dissipation �, which we have currently set to zero. Doing this

carefully with finite � should justify this. The result (4.16) is the correct tree level answer (Eq.

2.2 of our Gurarie file)
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Figure 1

Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives
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Dk(t12) =

1
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Dk(t12)✓(t21) . (4.12) {137}

Finally, an identity that we will need is the action on the propagator of G�1⇤
k (t1) followed by

G�1
k (t2). This gives a delta function,

G�1
k (t2)G

�1⇤
k (t1)Dk(t12) = F (k)�(t21) . (4.13) {138}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)

Dk,! ⌘
Z

dtDk(t)e
�i!t = F (k)|Gk,!|2 , where Gk,! =

i

!�!k + i�k

. (4.14) {DG}

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. ??
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4
X
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�p7p4p5p6
(4.16)

4.2. Four-point function
{sec:42}

Need to add order one factors and details

We compute the four-point function, in the same way we did for the three-point function in

the ThreePoint file. For now we ignore all order-one factors. At tree level we have,
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(4.17)
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(c)

Figure 1: (a) The propagator (b) The quartic vertex, which comes with a energy conserving
delta function �(!1+!2�!3�!4) (c) The sextic vertex which comes with a energy conserving delta
function �(!1+!2+!4�!3�!5�!6) {FeyRules}

Taking the complex conjugate and using D⇤
k(t21) = Dk(t12), gives

Dk(t1)

Fk

Dk(t12) =
1

nk

Dk(t12)✓(t21) . (4.12) {412}

Finally, an identity that we will need is the action on the propagator of Dk(t1) followed by Dk(t2).

This gives a delta function,

Dk(t2)Dk(t1)Dk(t12) = Fk�(t21) . (4.13) {413}

As is usually the case when there is time translation invariance, it will be easier to work in

frequency space. The Fourier transform of the propagator (3.24)

Dk,! ⌘
Z

dtDk(t)e
�i!t = Fk|Gk,!|2 , where Gk,! =

i

!�!k + i�k

. (4.14) {DG}

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. 1.

4.2. Four-point function
{sec:42}

The tree-level four-point function follows immediately from application of the Feynman rules.

In frequency space it is given by, 1

hap1,!1
ap2,!2

a†
p3,!3

a†
p4,!4

i = �p1p2p3p4
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!
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�(!1+!2�!3�!4) (4.15) {4ptF}

1Need to add order-one factors. Need a minus sign
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(b)

1 2

3 6

4

5

(a) (b)

Figure 2: Tree level diagrams representing ha†
p1

a†
p2

a†
p3

ap4
ap5

ap6
i. {fig:6p}

(of course, we could close the contours in either half plane). We get,

n2n3n4

�i

!p1
+!p2

�!p3
�!p4

+ i�(�)
(4.22)

Repeating for the other three terms in parenthesis in (4.15), in total we end up with precisely

(4.18).

4.3. Six-point function
{sec:43}

We now calculate the tree-level six point function,

hap1,!1
ap2,!2

a†
p3,!3

ap4,!4
a†

p5,!5
a†

p6,!6
i (4.23)

There are two diagrams: one from the sextic vertex, and one from two quartic vertices, see Fig.2.

The diagram coming from the sextic vertex gives,
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The diagram coming from two quartic vertices gives,
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�p7p4p5p6

 
(G�1

p1,!1
)⇤

Fp1

+
(G�1

p2,!2
)⇤

Fp2

� (G�1
p3,!3

)

Fp3

� (G�1
p7,!7

)

Fp7

!

 
(G�1

p7,!7
)⇤

Fp7

+
(G�1

p4,!4
)⇤

Fp4

� (G�1
p5,!5

)

Fp5

� (G�1
p6,!6

)

Fp6

!
7Y

i=1

Dpi,!i

���
!7=!5+!6�!4

�(!1+!2+!4�!3�!5�!6)

(4.25) {425}
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Figure 1: Feynman rules corresponding to the Lagrangian (3.3). (a) The propagator (b) The
quartic vertex (c) The sextic vertex. {FeyRules}

the quartic vertex comes with a factor,

2⇡�(!1+!2�!3�!4)�p1p2p3p4

 
(G�1

p1,!1
)⇤

Fp1

+
(G�1

p2,!2
)⇤

Fp2

� (G�1
p3,!3

)

Fp3

� (G�1
p4,!4

)

Fp4

!

= 2⇡�(!1,2;3,4)�p1p2p3p4

4X

i=1

bGi , (3.10) {quarticV2}

where, to simplify the notation, we defined !i,j;k,l ⌘ !i+!j�!k�!l and,

bGi =
1

G⇤
pi,!i

Fpi

, i = 1, 2 , bGi =
�1

Gpi,!i
Fpi

, i = 3, 4 . (3.11) {Ghat}

The sextic vertex comes with a factor,

2⇡�(!1,2,4;3,5,6) 4
X

p7

1

Fp7

�p1p2p3p7
�p7p4p5p6

, (3.12)

where !i,j,k;l,m,n ⌘ !i+!j+!k�!l�!m�!n and, as we said earlier, the only term that contributes

to the sum over p7 is p7 = p1 + p2 � p3.

We now start applying the Feynman rules to compute correlation functions.

3.2. Four-point function
{sec:42}

The tree-level four-point function follows immediately from application of the Feynman rules.

In frequency space it is given by,

hap1,!1
ap2,!2

a†
p3,!3

a†
p4,!4

i = 4�p1p2p3p4

4X

i=1

bGi Dp1,!1
Dp2,!2

Dp3,!3
Dp4,!4

�(!1+!2�!3�!4) (3.13) {4ptF}
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5

(a) (b)

Figure 2: Tree level diagrams representing ha†
p1

a†
p2

a†
p3

ap4
ap5

ap6
i. {fig:6p}

(of course, we could close the contours in either half plane). We get,

n2n3n4

�i

!p1
+!p2

�!p3
�!p4

+ i�(�)
(4.22)

Repeating for the other three terms in parenthesis in (4.15), in total we end up with precisely

(4.18).

4.3. Six-point function
{sec:43}

We now calculate the tree-level six point function,

hap1,!1
ap2,!2

a†
p3,!3

ap4,!4
a†

p5,!5
a†

p6,!6
i (4.23)

There are two diagrams: one from the sextic vertex, and one from two quartic vertices, see Fig.2.

The diagram coming from the sextic vertex gives,

� 4
X

p7

1

Fp7

�p1p2p3p7
�p7p4p5p6

6Y

i=1

Dpi,!i
�(!1+!2+!4�!3�!5�!6) (4.24) {sexT}

The diagram coming from two quartic vertices gives,

� 4
X

p7

�p1p2p3p7
�p7p4p5p6

 
(G�1

p1,!1
)⇤

Fp1

+
(G�1

p2,!2
)⇤

Fp2

� (G�1
p3,!3

)

Fp3

� (G�1
p7,!7

)

Fp7

!

 
(G�1

p7,!7
)⇤

Fp7

+
(G�1

p4,!4
)⇤

Fp4

� (G�1
p5,!5

)

Fp5

� (G�1
p6,!6

)

Fp6

!
7Y

i=1

Dpi,!i

���
!7=!5+!6�!4

�(!1+!2+!4�!3�!5�!6)

(4.25) {425}
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Figure 1: Feynman rules corresponding to the Lagrangian (3.3). (a) The propagator. (b) The
quartic vertex. (c) The sextic vertex.

In frequency space, this corresponds to adding an i✏ to the propagator. In our case we can keep

the �k finite, or take it zero at the end, as is done with the i✏.

Let us work out the Feynman rules.

Feynman rules

The propagator Dk(t12) ⌘ ha†
k(t1)ak(t2)i was given earlier, in (2.25),

Dk(t12) = nke
i!kt12��k|t12| . (3.8)

As is usually the case when there is time translation invariance, it will be easier to work in frequency

space. The Fourier transform of the propagator is,

Dk,! ⌘
Z

dtDk(t)e
�i!t = Fk|Gk,!|2 , where Gk,! =

i

!�!k + i�k

. (3.9)

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. 1. In particular,

the quartic vertex comes with a factor,

� 2⇡�(!1+!2�!3�!4) i�p1p2p3p4

"
(G�1

p1,!1
)⇤

Fp1

+
(G�1

p2,!2
)⇤

Fp2

�(G�1
p3,!3

)

Fp3

�(G�1
p4,!4

)

Fp4

#

= �i�p1p2p3p4

4X

i=1

bGi 2⇡�(!1,2;3,4) , (3.10)

where, to simplify the notation, we defined !i,j;k,l ⌘ !i+!j�!k�!l and,

bGi =
1

G⇤
pi,!i

Fpi

, i = 1, 2 , bGi =
�1

Gpi,!i
Fpi

, i = 3, 4 . (3.11)
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The sextic vertex comes with a factor,

� 4
X

p7

1

Fp7

�p1p2p3p7
�p7p4p5p6

2⇡�(!1,2,4;3,5,6) , (3.12)

where !i,j,k;l,m,n ⌘ !i+!j+!k�!l�!m�!n and, as we said earlier, the only term that contributes

to the sum over p7 is p7 = p1 + p2 � p3.

We now start applying the Feynman rules to compute correlation functions.

3.2. Four-point function

The tree-level four-point function follows immediately from application of the Feynman rules.

In frequency space it is given by,

hap1,!1
ap2,!2

a†
p3,!3

a†
p4,!4

i = �4i�p1p2p3p4

4X

i=1

bGi Dp1,!1
Dp2,!2

Dp3,!3
Dp4,!4

2⇡�(!1+!2�!3�!4) (3.13)

where we simply attached external propagators Dpi,!i
to the vertex (3.10). To obtain the four-

point function in the time domain we can either take the Fourier transform, or compute it directly

using the time domain Feynman rules. We start with a direct computation. Using the quartic

interaction term (3.6) and the propagator identities (B.3) and (B.4) in Appendix B gives,

hap1
(t1)ap2

(t2)a
†
p3

(t3)a
†
p4

(t4)i

= �4i�p1p2p3p4

Z
dtaDp1

(ta1)Dp2
(ta2)Dp3

(t3a)Dp4
(t4a)

✓
✓(t1a)

n1

+
✓(t2a)

n2

�✓(t3a)

n3

�✓(t4a)

n4

◆
. (3.14)

A special case which will be of interest later on is when all four times are equal, t1 = . . . = t4 = t,

hap1
(t)ap2

(t)a†
p3

(t)a†
p4

(t)i = �4i�p1p2p3p4

✓
1

n1

+
1

n2

� 1

n3

� 1

n4

◆
n1n2n3n4

Z
dta✓(t � ta) exp

��
�i(!p1

+!p2
�!p3

�!p4
) � �1,2,3,4

�
(t � ta)

�
, (3.15)

where �i,j,k,l ⌘ �pi
+�pj

+�pk
+�pl

. The lower bound for the integration time is the initial time. As

discussed previously, we are computing correlation functions at late times. Due to the dissipation,

the contribution of the integral from the initial time is therefore irrelevant. Doing the integral we

get,

hap1
(t)ap2

(t)a†
p3

(t)a†
p4

(t)i = 4�p1p2p3p4

✓
1

n1

+
1

n2

� 1

n3

� 1

n4

◆
n1n2n3n4

1

!p3
+!p4

�!p1
�!p2

+i�1,2,3,4

.

(3.16)

As expected, for vanishing dissipation there is a resonance at !p1
+!p2

= !p3
+!p4

.
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Figure 1: Feynman rules corresponding to the Lagrangian (3.3). (a) The propagator (3.8). (b)
The quartic vertex (3.10). (c) The sextic vertex (3.12).

As is usually the case when there is time translation invariance, it will be easier to work in frequency

space. The Fourier transform of the propagator is,

Dk,ω ≡
∫

dtDk(t)e
−iωt = Fk|Gk,ω|2 , where Gk,ω =

i

ω−ωk + iγk
. (3.9)

The Feynman rules for the Lagrangian, in frequency space, are shown in Fig. 1. In particular,

the quartic vertex comes with a factor, 7

− iλp1p2p3p4

[
(G−1

p1,ω1
)∗

Fp1

+
(G−1

p2,ω2
)∗

Fp2

−(G−1
p3,ω3

)

Fp3

−(G−1
p4,ω4

)

Fp4

]
2πδ(ω1+ω2−ω3−ω4)

= −iλp1p2p3p4

4∑

i=1

Ĝi 2πδ(ω1,2;3,4) , (3.10)

where, to simplify the notation, we defined ωi,j;k,l ≡ ωi+ωj−ωk−ωl and,

Ĝi =
1

G∗
pi,ωi

Fpi

, i = 1, 2 , Ĝi =
−1

Gpi,ωi
Fpi

, i = 3, 4 . (3.11)

The sextic vertex comes with a factor,

−4
∑

p7

1

Fp7

λp1p2p3p7
λp7p4p5p6

2πδ(ω1,2,4;3,5,6) , (3.12)

where ωi,j,k;l,m,n ≡ ωi+ωj+ωk−ωl−ωm−ωn and, as we said earlier, the only term that contributes

to the sum over p7 is p7 = p1 + p2 − p3.

We now start applying the Feynman rules to compute correlation functions.

7Our Feynman rules are without the symmetrization factor. If one were to include the symmetrization factor in
the Feynman rules, this would give an extra factor of 4 in (3.10) and an extra factor of 36 in (3.12).
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3.2. Four-point function

The tree-level four-point function follows immediately from application of the Feynman rules.

In frequency space it is given by,

⟨ap1,ω1
ap2,ω2

a†p3,ω3
a†p4,ω4

⟩ = −4iλp1p2p3p4

4∑

i=1

Ĝi Dp1,ω1
Dp2,ω2

Dp3,ω3
Dp4,ω4

2πδ(ω12;34) , (3.13)

where we simply attached external propagators Dpi,ωi
to the vertex (3.10). To obtain the four-

point function in the time domain we can either take the Fourier transform, or compute it directly

using the time domain Feynman rules. We start with a direct computation. Using the quartic

interaction term (3.6) and the propagator identities (B.3) and (B.4) in Appendix B gives,

⟨ap1(t1)ap2(t2)a
†
p3
(t3)a

†
p4
(t4)⟩

= −4iλp1p2p3p4

∫
dta Dp1

(ta1)Dp2
(ta2)Dp3

(t3a)Dp4
(t4a)

(
θ(t1a)

n1

+
θ(t2a)

n2

−θ(t3a)

n3

−θ(t4a)

n4

)
. (3.14)

A special case which will be of interest later on is when all four times are equal, t1 = . . . = t4 = t,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩ = −4iλp1p2p3p4

(
1

n1

+
1

n2

− 1

n3

− 1

n4

)
n1n2n3n4

∫
dtaθ(t− ta) exp

((
−i(ωp1

+ωp2
−ωp3

−ωp4
)− γ1234

)
(t− ta)

)
, (3.15)

where γijkl ≡ γpi + γpj + γpk + γpl . The lower bound for the integration time is the initial time. As

discussed previously, we are computing correlation functions at late times. Due to the dissipation,

the contribution of the integral from the initial time is therefore irrelevant. Doing the integral we

get,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩ = 4λp1p2p3p4

(
1

n1

+
1

n2

− 1

n3

− 1

n4

)
n1n2n3n4

1

ωp3
+ωp4

−ωp1
−ωp2

+iγ1234
.

(3.16)

As expected, for vanishing dissipation there is a resonance at ωp1
+ωp2

= ωp3
+ωp4

.

It is instructive to recover this result from a Fourier transform of the frequency-space correlator

(3.13),

⟨ap1(t1)ap2(t2)a
†
p3
(t3)a

†
p4
(t4)⟩ =

∫
dω1

2π
· · · dω4

2π
e−i(ω1t1+ω2t2−ω3t3−ω4t4)⟨ap1,ω1

ap2,ω2
a†p3,ω3

a†p4,ω4
⟩ .
(3.17)

In particular, when all the times are equal, t1 = . . . = t4 = t, we have that the equal-time four-point
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function is,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩ =

∫
dω1

2π
· · · dω4

2π
e−i(ω1+ω2−ω3−ω4)t⟨ap1,ω1

ap2,ω2
a†p3,ω3

a†p4,ω4
⟩ . (3.18)

We now evaluate the four integrals in (3.18). First, it is clear that the answer will be time-

independent, because the energy conserving delta function in (3.13) cancels the exponent. Let us

look at the contribution of e.g. the Ĝ1 term in (3.13). The propagator factors for p1 reduce to,

(G−1
p1,ω1

)∗

Fp1

Dp1,ω1
= Gp1,ω1

(3.19)

where we used (3.9). We use the energy conserving delta function to perform the integral over ω1.

This leaves

−4iλp1p2p3p4

∫
dω2

2π

dω3

2π

dω4

2π
Gp1,ω3+ω4−ω2

Dp2,ω2
Dp3,ω3

Dp4,ω4
. (3.20)

We perform the ω2 integral, closing the contour in the lower half plane to pick up the pole at

ω2 = ωp2
− iγp2 , and then we do the ω3 and ω4 integrals, closing the contours in the upper half

plane (of course, we could close the contours in either half plane, but the choice we gave is the

simplest). We get,

4λp1p2p3p4
n2n3n4

1

ωp3
+ωp4

−ωp1
−ωp2

+iγ1234
. (3.21)

Repeating for the other three terms in parenthesis in (3.13), in total we end up with precisely

(3.16).

The computation of the tree-level six-point function is similar to that of the four-point function,

and is relegated to Appendix C.

4. One-loop diagrams

In Sec. 4.1 we compute the one-loop correction to the propagator, showing that it corresponds

to a frequency shift. In Sec. 4.2 we compute the one-loop correction to the four-point function.

4.1. Frequency renormalization

The one-loop correction to the propagator Dp1,ω1
is a simple tadpole diagram, see Fig. 2,

−4iD2
p1,ω1

∑

p2

∫
dω2

2π
λp1p2p2p1

Dp2,ω2

(
(G−1

p1,ω1
)∗ −G−1

p1,ω1

Fp1

+
(G−1

p2,ω2
)∗ −G−1

p2,ω2

Fp2

)
. (4.1)

This is a straightforward application of the Feynman rules in Fig. 1: there is a square of the

propagator (3.9) coming from the mode (p1, ω1) entering and leaving, and there is an interaction
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Figure 2: The one-loop correction to the propagator, (4.3), which corresponds to a frequency shift.

vertex (3.10), with momentum p2 running in the loop. We simplify the expression, noting that,

(G−1
pi,ωi

)∗ −G−1
pi,ωi

Fpi

=
2i(ωi − ωpi

)

Fpi

, (4.2)

which follows immediately from the definition of Gpi,ωi
in (3.9). Performing the integral over ω2 in

(4.1), we find that the first term in parenthesis gives n2 while the second vanishes by antisymmetry,

and we get that (4.1) is equal to,

2D2
p1,ω1

ω1 − ωp1

Fp1

δωp1
, δωp1

= 4
∑

p2

λp1p2p2p1
n2 . (4.3)

We have identified this as a frequency shift, since the functional form matches what one gets from

a frequency shift in the tree level propagator Dp1,ω1
. Namely, replacing ωp1

→ ωp1
+ δωp1

and

expanding Dp1,ω1
to leading order in δωp1

gives,

Dp1,ω1
→ Dp1,ω1

+ 2D2
p1,ω1

ω1 − ωp1

Fp1

δωp1
+ . . . , (4.4)

matching the form of (4.3).

4.2. One-loop four-point function

In this section we compute the one-loop four-point function.

There are three diagrams built from the quartic vertices and one diagram coming from the

sextic vertex, see Fig. 3. The tree-level diagram in the previous section consisted of modes p1 and

p2 scattering directly into modes p3 and p4. At one loop there are two additional modes, p5 and

p6, and modes p1 and p2 either scatter into these initially (Fig. 3(a)), or scatter off of (Fig. 3(b)

and (c)). We now evaluate each diagram in turn.
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1 2

3 4

56

(a)

3

1 2

4

5

6

(b)

1 2

3 4

5

6

(c)

1 2

3 4

(d)

Figure 3: Feynman diagrams for the four-point function at one loop. The diagrams (a), (b), and
(c) arise from the quartic interaction term. The diagram in (a) is given by (4.5). The diagram in
(b) is given by (4.8). The diagram in (c) is the same as diagram (b), but with 3 and 4 exchanged.
The diagram (d) results from the sextic interaction term and is given by (4.11).

Quartic diagrams

We start with Fig. 3(a). Applying the Feynman rules in Fig. 1, it is given by,

−2πδ(ω1,2;3,4)8
∑

p5,p6

λp1p2p5p6
λp5p6p3p4

∫
dω5

2π
(Ĝ3+Ĝ4+Ĝ5+Ĝ6)(Ĝ1+Ĝ2−Ĝ∗

5−Ĝ∗
6)

6∏

i=1

Dpi,ωi

∣∣∣
ω6=ω3+ω4−ω5

(4.5)

where we defined ωi,j;k,l ≡ ωi + ωj − ωk − ωl and introduced the shorthand

Ĝi =
1

G∗
pi,ωi

Fpi

, i = 1, 2, 5, 6 , Ĝi =
−1

Gpi,ωi
Fpi

, i = 3, 4 . (4.6)

Upon opening the parenthesis in (4.5), there are 16 terms. We perform the ω5 integral for each

of the terms. Each integral can be turned into a contour integral, which is evaluated by picking

up simple poles. The details are recorded in Appendix D. The result is,

−2πδ(ω1,2;3,4) 8
∑

p5,p6

λp1p2p5p6
λp5p6p3p4

4∏

i=1

Dpi,ωi

[
−
(

n6

Fp5

+
n5

Fp6

)

+
iω3,4;p5,p6

(n5+n6)
∑4

i=1 Ĝi + γ56

(
2(Ĝ1+Ĝ2)(Ĝ3+Ĝ4)n5n6 + (n5+n6)(Ĝ1+Ĝ2−Ĝ3−Ĝ4)

)

ω2
3,4;p5,p6

+ γ2
56

]
(4.7)

where γij ≡ γpi + γpj .

The diagram in Fig. 3(b) is given by,

−2πδ(ω1,2;3,4)16
∑

p5,p6

λp1p6p3p5
λp2p5p4p6

∫
dω5

2π

(
Ĝ1+Ĝ3−Ĝ∗

5+Ĝ6

)(
Ĝ2+Ĝ4+Ĝ5−Ĝ∗

6

) 6∏

i=1

Dpi,ωi

∣∣∣
ω6=ω3+ω5−ω1

(4.8)
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Evaluating the integral over ω5, using similar techniques to those we just used for Fig. 3(a), gives,

−2πδ(ω1,2;3,4) 16
∑

p5,p6

λp1p6p3p5
λp2p5p4p6

4∏

i=1

Dpi,ωi

[
−
(

n6

Fp5

+
n5

Fp6

)

+
iω1,p6;3,p5

(n6−n5)
∑4

i=1 Ĝi + γ56

(
2(Ĝ1+Ĝ3)(Ĝ2+Ĝ4)n5n6 + (n6−n5)(Ĝ1−Ĝ2+Ĝ3−Ĝ4)

)

ω2
1,p6;3,p5

+ γ2
56

]

(4.9)

The contribution of Fig. 3(c) is the same as (4.9), but with 3 ↔ 4.

Sextic diagram

Another contribution to the four-point function is from the tadpole diagram coming from the

sextic interaction, see Fig. 3(d). We will see that this diagram simply cancels off the part of the

contribution to the other three diagrams in Fig. 3 that is divergent in the limit that Fpi
goes to

zero; namely, the first line in (4.7) and the first line in (4.9).

To compute the diagram it is convenient to rewrite the sextic interaction (3.7) with 4 and 5

interchanged,

LO(λ
2
)
= 4

∑

p1,...,p7

1

Fp7

λp1p2p3p7
λp7p5p4p6

a†p1a
†
p2
ap3ap4a

†
p5
ap6 . (4.10)

For computing the diagram in Fig. 3(d), we Wick contract a†p5 with ap6 in LO(λ
2
)
(giving n5), and

contract the other api and a†pi with the corresponding external legs, giving Dpi,ωi
, 8

−2πδ(ω1,2;3,4) 4
4∏

i=1

Dpi,ωi

∑

p5,p7

n5

F7

(λ1237λ7545 + perm) , (4.11)

where we needed to also include all permutations of (1, 2, 5) and independently of (3, 4, 6); there are

a total of 3!× 3! = 36 such permutations. 9 We now use momentum conservation in the couplings

so the e.g. λ2557λ7143 is in fact λ2525λ2143 because p7 must be equal to p2 in order for λ2557 to be

nonzero. We also use the symmetries of the coupling λijkl = λjikl = λijlk, and change the dummy

8For the rest of this subsection, for notational simplicity, λijkl ≡ λpipjpkpl
and Fi ≡ Fpi

.
9Here we mean that one first includes all permutations of (1, 2, 5) and independently of (3, 4, 6) for λ1237λ7546,

and then sets 5 = 6. Also, because of the symmetric footing of 1 and 2, and separately of 4 and 6, in the Lagrangian
(4.10), it is most convenient to split the 36 permutations into 9 × 4 permutations, where the 4 are the identity,
(1 ↔ 2), (4 ↔ 6), (1 ↔ 2, 4 ↔ 6).
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variable from p7 to p6. We get

−2πδ(ω1,2;3,4) 4
4∏

i=1

Dpi,ωi

[∑

p5

n5λ1234

4∑

i=1

4λi55i

Fi

+
∑

p5,p6

4n5

F6

(λ1256λ5634 + λ5236λ6145 + λ5246λ6153 + λ5136λ6245 + λ5146λ6253)
]
. (4.12)

We can combine the terms in the second line so as to get,

−2πδ(ω1,2;3,4) 4
4∏

i=1

Dpi,ωi

[∑

p5

n5λ1234

4∑

i=1

4λi55i

Fi

+ 2
∑

p5,p6

(
n5

F6

+
n6

F5

)
(λ1256λ5634 + 2λ5236λ6145 + 2λ5246λ6153)

]
. (4.13)

Frequency space four-point function

The four-point function is a sum of the contributions we found above for the four diagrams in

Fig. 3.

We start by combing the contribution of the sextic diagram (4.13) with the divergent contri-

bution (in the limit of Fpi
→ 0) coming from the quartic diagrams, Fig. 3 (a-c). For the diagram

in Fig. 3(a) this is the first line of (4.7), for the diagram in Fig. 3(b) this is the first line of (4.9),

and for the diagram in Fig. 3(c) this is the first line of (4.9) with 3 ↔ 4. The sum of these three

terms is,

2πδ(ω1,2;3,4)
4∏

i=1

Dpi,ωi
8
∑

p5,p6

(
n5

F6

+
n6

F5

)
(λ1256λ5634 + 2λ1635λ2546 + 2λ1645λ2536) . (4.14)

The sum of (4.13) and (4.14) is,

−2πδ(ω1,2;3,4) 16
4∏

i=1

Dpi,ωi

∑

p5

n5λp1p2p3p4

4∑

i=1

λpip5p5pi

Fpi

= −2πδ(ω1,2;3,4) 4
4∏

i=1

Dpi,ωi
λp1p2p3p4

4∑

i=1

δωpi

Fpi

,

(4.15)

where we wrote this in terms of the frequency shift δωp in (4.3).

Eq. 4.15 has a simple interpretation. Recall that in Sec. 4.1 we computed the one loop

renormalization of the frequency. Under a renormalization of the frequency, the term in the

Lagrangian transforms as Dkak → Dkak + iδωkak. From the cross term in (3.2) we get the term,

L → L+
∑

p1,...,p4

4∑

i=1

δωpi

Fpi

λp1p2p3p4
a†p1a

†
p2
ap3ap4 . (4.16)
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This gives a contribution to the amplitude which precisely matches (4.15).

Thus, the one loop four-point function is the sum of the finite (in the limit of Fpi
→ 0) part

of Fig.3 (a-c). This consists of the second line of (4.7), the second line of (4.9), and the second

line of (4.9) with 3 ↔ 4. Combining this with the tree-level contribution found earlier in (3.13),

the four-point function up to order λ2 is,

⟨ap1,ω1
ap2,ω2

a†p3,ω3
a†p4,ω4

⟩ = −2πδ(ω1,2;3,4) 4iλp1p2p3p4

4∏

i=1

Dpi,ωi

4∑

i=1

Ĝi

−2πδ(ω1,2;3,4)
4∏

i=1

Dpi,ωi

∑

p5,p6

[
8λp1p2p5p6

λp5p6p3p4

iω3,4;p5,p6
(n5+n6)

∑4
i=1 Ĝi + γ56

(
2(Ĝ1+Ĝ2)(Ĝ3+Ĝ4)n5n6 + (n5+n6)(Ĝ1+Ĝ2−Ĝ3−Ĝ4)

)

ω2
3,4;p5,p6

+ γ2
56

+
(
16λp1p6p3p5

λp2p5p4p6

iω1,p6;3,p5
(n6−n5)

∑4
i=1Ĝi+γ56

(
2(Ĝ1+Ĝ3)(Ĝ2+Ĝ4)n5n6+(n6−n5)(Ĝ1−Ĝ2+Ĝ3−Ĝ4)

)

ω2
1,p6;3,p5

+ γ2
56

+ (3 ↔ 4)
)]

, (4.17)

where the first line is the tree-level contribution and the rest is the one-loop contribution. 10 If we

take the limit of γ, F → 0, then we can drop terms in the numerator that are proportional to γ.

We get the four-point function in the γ, F → 0 limit is,

⟨ap1,ω1
ap2,ω2

a†p3,ω3
a†p4,ω4

⟩ = −2πδ(ω1,2;3,4) 4iλp1p2p3p4

4∏

i=1

Dpi,ωi

4∑

i=1

Ĝi

−2πδ(ω1,2;3,4)
4∏

i=1

Dpi,ωi

( 4∑

i=1

Ĝi

)[∑

p5,p6

8λp1p2p5p6
λp5p6p3p4

iω3,4;p5,p6
(n6+n5)

ω2
3,4;p5,p6

+ γ2
56

+
(
16λp1p6p3p5

λp2p5p4p6

iω1,p6;3,p5
(n6−n5)

ω2
1,p6;3,p5

+ γ2
56

+ (3 ↔ 4)
) ]

, (4.18)

where the propagator Dpi,ωi
(3.9) in the γ, F → 0 limit is Dpi,ωi

→ npi
2πδ(ωi−ωpi

).

Equal time four-point function

The four-point function in time, ⟨ap1(t1)ap2(t2)a
†
p3
(t3)a

†
p4
(t4)⟩, is simply the Fourier transform

of the frequency-space four-point function found above, see (3.17). We are in particular interested

10The frequency space four-point function is a function of the four frequencies, ω1, . . . , ω4, whereas the ωpi
(and

in particular the ωp5
and ωp6

that appear here) are not independent variables and are just functions of pi.
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in the four-point function when all the times are equal, t1 = . . . = t4 = t.

To compute the four-point function in time, at equal times, we take the Fourier transform.

Taking the integral of (4.17) with respect to all ωi, i = 1, 2, 3, 4, as prescribed by the (3.18), we

get that the equal-time four-point function to order λ2 is,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩ = 4λp1p2p3p4

4∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

) 1

ωp3,p4;p1,p2
+iγ1234

−8
∑

p5,p6

6∏

i=1

ni

{
λp1p2p5p6

λp5p6p3p4

[( 1

n1

+
1

n2

)( 1

n3

+
1

n4

) −i

ωp3,p4;p5,p6
+iγ3456

i

ωp5,p6;p1,p2
+iγ1256

Γ

+
( 1

n5

+
1

n6

)(( 1

n1

+
1

n2

) i

ωp3,p4;p1,p2
+iγ1234

i

ωp3,p4;p5,p6
+iγ3456

+ (1, 2 ↔ 3, 4)∗
)]

+

(
2λp1p6p3p5

λp2p5p4p6

[( 1

n1

− 1

n3

)( 1

n2

− 1

n4

) i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p5;p1,p6
+iγ1356

Γ

+
( 1

n5

− 1

n6

)(( 1

n1

− 1

n3

) i

ωp3,p4;p1,p2
+iγ1234

i

ωp4,p6;p2,p5
+iγ2456

− (1 ↔ 2, 3 ↔ 4, 5 ↔ 6)

)]

+ (3 ↔ 4)

)}
, (4.19)

where

Γ = 1 +
2γ56i

ωp3,p4;p1,p2
+iγ1234

. (4.20)

where the first line is the tree-level contribution found earlier in (3.16).

Vanishing forcing and dissipation

Our result (4.19) is valid with finite forcing and finite dissipation. Let us look at it in the

limit in which both forcing and dissipation vanish (while maintaining a constant ratio; γk, Fk → 0,

nk ≡ Fk/(2γk) = const.).

We may drop factors of γ in the numerator in (4.19), which simply sets Γ = 1. 11 We write

the four-point function in a compact form which makes its symmetries manifest,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩ = ⟨ap1(t)ap2(t)a

†
p3
(t)a†p4(t)⟩tree + ⟨ap1(t)ap2(t)a

†
p3
(t)a†p4(t)⟩one-loop , (4.21)

where the tree-level contribution is,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩tree = 4λp1p2p3p4

4∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

) 1

ωp3,p4;p1,p2
+ iϵ

(4.22)

11This is not correct for ωp3,p4;p1,p2
= 0, however it is correct when viewed as a distribution, which is what is

relevant. We thank D. Schubring for discussions on this point.
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and the one-loop contribution is,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩one-loop = 8

∑

p5,p6

(
λp1p2p5p6

λp5p6p3p4
V (1, 2, 3, 4, 5, 6)

− 2λp1p6p3p5
λp2p5p4p6

V (1,−3,−2, 4, 5,−6)− 2λp1p6p4p5
λp2p5p3p6

V (1,−4,−2, 3, 5,−6)
)

(4.23)

where we defined,

V (1, 2, 3, 4, 5, 6) = −
6∏

i=1

ni

{( 1

n1

+
1

n2

)( 1

n3

+
1

n4

) 1

ωp3,p4;p5,p6
+iϵ

1

ωp5,p6;p1,p2
+iϵ

−
( 1

n5

+
1

n6

)( 1

n1

+
1

n2

) 1

ωp3,p4;p1,p2
+iϵ

1

ωp3,p4;p5,p6
+iϵ

−
( 1

n5

+
1

n6

)( 1

n3

+
1

n4

) 1

ωp3,p4;p1,p2
+iϵ

1

ωp5,p6;p1,p2
+iϵ

}

(4.24)

Note that in (4.23) when we write one of the numbers in V (...) to have a minus sign we mean that

both the corresponding ni and ωpi
come with a minus sign. If we wish, we may write (4.23) in a

more compact form,

⟨ap1(t)ap2(t)a
†
p3
(t)a†p4(t)⟩one-loop

= 8
∑

p5,p6

[
λp1p2p5p6

λp5p6p3p4
V (1, . . . , 6)− 2(2 ↔ −3, 6 → −6)− 2(2 ↔ −4, 6 → −6)

]
, (4.25)

where when applying the permutation on the couplings, such as (2 ↔ −3, 6 → −6), we have that

e.g.,

λp1p2p5p6
→ λp1−p3p5−p6

≡ λp1p6p5p3
, (4.26)

and recall that λp1p6p5p3
= λp1p6p3p5

. Now, we will use that

1

x+ iϵ
=

1

x
− iπδ(x) , (4.27)

where 1/x means the principal value of 1/x. This kind of splitting is useful, because 1/x is odd

under x → −x while δ(x) is even. We get that,

V (1, 2, 3, 4, 5, 6) = Vpp(1, 2, 3, 4, 5, 6) + iVpδ(1, 2, 3, 4, 5, 6) + Vδδ(1, 2, 3, 4, 5, 6) . (4.28)

where

Vpp(1, 2, 3, 4, 5, 6) = App(1, 2, 3, 4, 5, 6) + App(3, 4, 5, 6, 1, 2) + App(5, 6, 1, 2, 3, 4)

Vpδ(1, 2, 3, 4, 5, 6) = Apδ(1, 2, 3, 4, 5, 6)− Apδ(3, 4, 5, 6, 1, 2)− Apδ(5, 6, 1, 2, 3, 4)

Vδδ(1, 2, 3, 4, 5, 6) = Aδδ(1, 2, 3, 4, 5, 6)− Aδδ(3, 4, 5, 6, 1, 2)− Aδδ(5, 6, 1, 2, 3, 4) , (4.29)
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where

App(1, 2, 3, 4, 5, 6) = −
6∏

i=1

ni

( 1

n1

+
1

n2

)( 1

n3

+
1

n4

) 1

ωp3,p4;p5,p6

1

ωp5,p6;p1,p2

Aδδ(1, 2, 3, 4, 5, 6) = π2
6∏

i=1

ni

( 1

n1

+
1

n2

)( 1

n3

+
1

n4

)
δ(ωp3,p4;p5,p6

)δ(ωp5,p6;p1,p2
) (4.30)

Apδ(1, 2, 3, 4, 5, 6) = −π
6∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)( 1

n5

+
1

n6

) 1

ωp3,p4;p5,p6

δ(ωp1,p2;p3,p4
) .

Notice that App and Aδδ are even under interchange 1, 2 ↔ 3, 4, whereas Apδ is odd. Explicitly,

App(1, 2, 3, 4, 5, 6) = App(3, 4, 1, 2, 5, 6), while Apδ(1, 2, 3, 4, 5, 6) = −Apδ(3, 4, 1, 2, 5, 6).

4.3. Kinetic Equation

The kinetic equation governs the behavior of the expectation value of the mode number op-

erator at time t, nk(t) = ⟨a†k(t)ak(t)⟩. This is simply a two-point function, so we can compute

it using the same Feynman diagram methods as we used for the four-point function. To not do

any additional work, we note that, in the limit of vanishing viscosity, one can use the equations of

motion to express the expectation value of nk(t) in terms of the imaginary part of the four-point

function, see (A.2) in Appendix A,

∂nk(t)

∂t
= −4 Im

(∑

pi

δkp1λp3p4p1p2
⟨ap1(t)ap2(t)a

†
p3
(t)a†p4(t)⟩

)
, (4.31)

where we took the complex conjugate of (A.2), and recall that λ∗
p1p2p3p4

= λp3p4p1p2
. This equation

is useful because it gives us the two-loop occupation number from the one-loop four-point function,

and one-loop amplitudes are easier to compute. An alternative and equivalent form of (4.31) is,

∂nk(t)

∂t
= i
∑

pi

(δkp1+δkp2−δkp3−δkp4)λp3p4p1p2
⟨ak(t)ap2(t)a

†
p3
(t)a†p4(t)⟩ . (4.32)

We will stick with (4.31). All we need to do is insert the four-point function into this expression.

We will use the four-point function we computed in the previous section, (4.21) which is valid up

to order λ2. We get,

∂nk(t)

∂t
=

(
∂nk(t)

∂t

)

tree

+

(
∂nk(t)

∂t

)

one-loop

+ . . . . (4.33)

21



where

(
∂nk(t)

∂t

)

tree

= 16
∑

p1,...,p4

δk,p1|λp1p2p3p4
|2

4∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)
πδ(ωp1,p2;p3,p4

) (4.34)

is the standard and well-known result, and the first correction is,

(
∂nk(t)

∂t

)

one-loop

≡
(
∂nk(t)

∂t

)a

one-loop

+

(
∂nk(t)

∂t

)b

one-loop

, (4.35)

where

(
∂nk(t)

∂t

)a

one-loop

= −32
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p2p5p6
λp5p6p3p4

)Vpδ(1, 2, 3, 4, 5, 6)

+ Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)(Vδδ(1, 2, 3, 4, 5, 6) + Vpp(1, 2, 3, 4, 5, 6))

]
, (4.36)

where Vpp, Vpδ, and Vδδ where given earlier in (4.29), and

(
∂nk(t)

∂t

)b

one-loop

= 128
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p6p3p5
λp2p5p4p6

)Vpδ(1,−3,−2, 4, 5,−6)

+ Im(λp3p4p1p2
λp1p6p3p5

λp2p5p4p6
)(Vδδ(1,−3,−2, 4, 5,−6) + Vpp(1,−3,−2, 4, 5,−6))

]
, (4.37)

which is (4.36) with (2 ↔ −3, 6 → −6) times a combinatorial factor of 4. Note that the last two

of the three contributions in (4.23) give the same contribution to (4.37), because they are related

by an exchange 3 ↔ 4 of the dummy variables being summed over.

This form of the answer is satisfactory, but we can actually simplify further. This is done in

Appendix E and we find,

(
∂nk(t)

∂t

)a

one-loop

= −43
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p2p5p6
λp5p6p3p4

)Apδ(1, 2, 3, 4, 5, 6)

+ Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Aδδ(1, 2, 3, 4, 5, 6)

]
, (4.38)

as well as,

(
∂nk(t)

∂t

)b

one-loop

= 44
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p6p3p5
λp2p5p4p6

)Apδ(1,−3,−2, 4, 5,−6)

+ Im(λp3p4p1p2
λp1p6p3p5

λp2p5p4p6
)Aδδ(1,−3,−2, 4, 5,−6)

]
, (4.39)

where Apδ and Aδδ where given in (4.31).
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We note that the thermal solution, nk ∼ 1/ωk is manifestly a stationary solution of the

kinetic equation. For the tree-level term (4.34), one gets (ω1+ω2−ω3−ω4)δ(ω1+ω2−ω3−ω4), which

vanishes. For the same reason, the Apδ term in (4.38) also vanishes. The vanishing of the Aδδ term is

because Aδδ(1, 2, 3, 4, 5, 6) goes like (ωp1
+ωp2

)2δ(ωp3,p4;p5,p6
)δ(ωp5,p6;p1,p2

), which is symmetric under

interchange of (3, 4) ↔ (5, 6), whereas the imaginary part of the coupling is antisymmetric.

Writing everything together on one line we finally have,

∂nk(t)

∂t
= 16

∑

p1,...,p4

δk,p1πδ(ωp1,p2;p3,p4
)|λp1p2p3p4

|2
4∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)

+ 64
∑

p1,...,p6

δk,p1πδ(ωp1,p2;p3,p4
)

6∏

i=1

ni

{Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)

ωp3,p4;p5,p6

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)( 1

n5

+
1

n6

)

+ Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)πδ(ωp3,p4;p5,p6

)
( 1

n1

+
1

n2

)( 1

n3

+
1

n4

)

+ 4
[Re(λp3p4p1p2

λp1p6p3p5
λp2p5p4p6

)

ωp4,p6;p2,p5

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)( 1

n5

− 1

n6

)

+ Im(λp3p4p1p2
λp1p6p3p5

λp2p5p4p6
)πδ(ωp4,p6;p2,p5

)
( 1

n1

− 1

n3

)( 1

n2

− 1

n4

) ]}
. (4.40)

The coupling is in many cases real. If this is the case we can write the kinetic equation, up to

order λ3, as

∂nk(t)

∂t
= 16π

∑

p2,...,p4

δk,p1δ(ωp1,p2;p3p4
)λ2

p1p2p3p4

4∏

i=1

ni

( 1

n1

+
1

n2

− 1

n3

− 1

n4

)

[
1 + 4

∑

p5,p6

λp1p2p5p6
λp5p6p3p4

λp1p2p3p4

n5+n6

ωp1p2;p5p6

+ 16
∑

p5,p6

λp1p6p3p5
λp2p5p4p6

λp1p2p3p4

n6−n5

ωp4p6;p2p5

]
. (4.41)

This is the kinetic equation governing the mode occupation number nk(t) for mode k, in the

limit of vanishing forcing and vanishing dissipation. The order λ2 term (the first line, coming

from the tree-level four-point function) is the standard kinetic equation in wave turbulence, see

(A.10) in Appendix A. Note that, the ni ≡ nki
on the right-hand side was defined to be Fki

/2γki
(it results from its appearance in the propagator (2.24)). At leading order in the coupling (i.e.

for the free theory), ni corresponds to the mode occupation number, because the propagator

Dki
(0) ≡ ⟨a†ki(t)aki(t)⟩ = nki

, which explains our use of this notation. Also, recall that with our

notation we defined ωpi,pj ;pk,pl
≡ ωpi

+ωpj
−ωpk

−ωpl
.

The order λ2 term in the kinetic equation has the usual interpretation: there is some loss of

occupation number of mode k when mode k scatters off of mode p2 producing modes p3 and p4.

Conversely, the reverse process can happen, leading to production of mode k. These processes are

captured by the tree-level Feynman diagram Fig. 1 (b).
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The other terms in the kinetic equation, the order λ3 contribution (coming from the one-loop

four-point function) is the first correction, found earlier in [77–79] for the special case of real

couplings. The description of these processes are captured by the Feynman diagrams Fig. 3 (a-c),

and involve two additional intermediate modes k5 and k6 in the process.

5. Discussion

Let us summarize, first at a technical level: we have taken a classical field theory with an arbi-

trary, but small, quartic interaction (a collection of coupled harmonic oscillators) with dissipation

and Gaussian-random forcing (2.3, 2.4) and have given a prescription for computing correlation

functions, perturbatively in the coupling. We applied this to compute the two-point and four-point

correlation functions, to next-to-leading order in the coupling. In particular, the two-point func-

tion at leading order in the coupling was given in (3.8) and in (3.9), and at next-to-leading order

in (4.3). Taking the two times in the two-point function to be equal gives the expectation value

of the occupation number of mode k, which is the quantity most commonly studied (at leading

order in the coupling). The frequency-space four-point function up to next-to-leading order in the

coupling was given in (4.17). The Fourier transform of the frequency space correlation function

gives the correlation function with fields at different times. In the special case that all four times

are equal, the equal-time four-point function to next-to-leading order was given in (4.19).

In the limit of vanishing forcing and vanishing dissipation, one might have thought that the

properties of the system should be the same as those of a closed system, whose late time state is

the thermal state. This is not so. As reviewed in Appendix A, if the interactions and dispersion

relation take the form of homogeneous functions (in the mathematical sense), there is a choice of

nk ≡ Fk/2γk (kept finite in the limit of vanishing Fk, γk) which, at leading order, gives an alternate

stationary state – the Kolmogorov-Zakharov state (the turbulent state), which has a flux of energy

passing through. With this choice of nk, our equations for the correlation functions at next-to-

leading order characterize fluctuations about the Kolmogorov-Zakharov state. This includes the

next-to-leading order correction to the Kolmogorov-Zakharov state itself, as characterized by the

next-to-leading order kinetic equation (4.40).

There are two broad goals which motivate study of correlation functions in the turbulent state.

On the one hand, this is a stationary state which is not the thermal state (and is relevant even

in contexts of closed systems with far-from-equilibrium initial conditions) and one would like to

develop linear response theory for it. For instance, one would like to find the turbulent-state analog

of transport coefficients and the fluctuation-dissipation theorem, concepts familiar for the thermal

state. Independently, there has been enormous interest in recent years in the study of many-body

chaos. Viewing wave turbulence in light of these new developments may be productive.

It is straightforward to apply the same methods developed here to the computation of corre-

lation functions to higher order in the coupling, or to the computation of higher-point correlation

24



functions, or to the case of cubic interactions instead of quartic interactions. Likewise, one may

compute information-theoretic measures, such as e.g. entanglement entropy in mode space [75].

The statistics of the field ak is governed by some probability distribution. From the correlation

functions one can determine this distribution, perturbatively in the coupling. In fact, since we

have correlation functions with fields sitting at different times, we can say more than this, and

discuss the dynamical properties of the turbulent state.

The next-to-leading order corrections to the correlation functions that we computed should, in

principle, be measurable quantities. This may be a fruitful avenue to pursue, given the extensive

recent experimental work on wave turbulence [92,35,93,94] and prethermalization [54–56].

It will be useful to generalize the methods in this paper to wave turbulence in quantum field

theory. Wave turbulence in the quark-gluon plasma produced in heavy ion collisions [48,51,1] and

wave turbulence in reheating in the early universe [45, 95, 49] are two cases of clear experimental

relevance. More generally, while thermal field theory is by now a well-established part of quantum

field theory, far-from-equilibrium quantum field theory is one of the new frontiers. There has

been no clear unifying theoretical framework, and progress has been a patchwork of directions and

results (e.g quenches [96, 97]). We believe wave turbulence in quantum field theory will be one

such fruitful direction, and of relevance to practitioners of both high energy and condensed matter

physics.
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A. Wave turbulence

In this Appendix we briefly review some aspects of wave turbulence [89,6, 7].

Turbulence is a state of a nonlinear system in which energy is distributed over many degrees

of freedom, in a fashion which strongly deviates from equilibrium, exhibiting chaos in both space

and time [89]. The simplest and most tractable context in which to study turbulence is for weakly

interacting waves. This is referred to as wave turbulence (or weak turbulence). 12

12Turbulence was originally, and is more commonly, discussed in the context of hydrodynamics – Navier-Stokes
equation. This is not wave turbulence – there is no weak coupling expansion, and the problem of understanding
hydrodynamic turbulence, and the associated range of nonperturbative phenomena, is difficult. The distribution of
energy per mode in the inertial regime was postulated by Kolmogorov assuming universality and scale invariance.
Deriving the Kolmogorov spectrum, as well as other correlation functions which are known to differ from Kolmogorov
scaling, is a long-standing problem. In contrast, in wave turbulence, weak coupling allowed Zakharov to easily find
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In fact, wave turbulence often refers to something more specific: since the interactions are

weak, one can explicitly find the kinetic equation describing the occupation numbers of each wave

mode. It was demonstrated by Zakharov [5] that for certain forms of the dispersion relation

and interaction, there is a stationary, far-from-equilibrium, solution of the kinetic equations – the

Kolmogorov-Zakharov (KZ) solution. Wave turbulence occurs in an incredible range of physical

contexts, such as: gravity and capillary surface waves, sound waves, Alfven waves, plasma waves,

internal waves, nonlinear optics, Bose-Einstein condensates, and gravitational waves.

Forced and freely decaying turbulence: There are two kinds of turbulent cascades which are

usually discussed: forced turbulence and freely decaying turbulence. 13 In forced turbulence the

system is driven at long wavelengths and, due to interactions, the energy cascades to short wave-

length modes. At sufficiently short wavelengths the energy is dissipated. The setup is such that

the system is stationary, while still being far from equilibrium. In the context of freely decaying

turbulence, one has a closed Hamiltonian system and starts with far-from-equilibrium initial condi-

tions in which, for instance, the energy is concentrated in long wavelength modes. As time evolves,

energy cascades to the shorter wavelength modes, with equilibrium reached at very late times. If

there is a separation of scales, then at intermediate times there will be a turbulent cascade, which

is approximately steady state and the same as the one found in forced turbulence.

Averaging: Turbulent cascades are present in interacting, chaotic, many-body systems; to

perform calculations, or measurements, some kind of averaging is necessary. Assuming statistical

spatial homogeneity, one can average over initial conditions, or alternatively one can perform a

time average. Alternatively, in the context of forced turbulence, one can average over the forcing

function. The expectation value ⟨· · ·⟩ will denote averaging over one of these quantities. For

deriving the leading order kinetic equation for weak turbulence, which kind of averaging is used

is largely irrelevant. At leading order one can simply assume higher-point correlation functions

factorize into two-point functions; this is referred to as the random phase approximation, and is

what we use in this appendix. The approach of introducing forcing is what is done in the main

body of the text; its advantage is that it gives a systematic way of going to higher order in the

coupling.

the distribution of energy per mode (the Kolmogorov-Zakharov) spectrum. And, as this paper emphasizes, finding
correlation functions more generally is straightforward.

13In the context of surface gravity waves, see [16] for a discussion of forced turbulence and [15] for a discussion
of freely decaying turbulence.
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A.1. The kinetic equation

The leading order kinetic equation

We give the standard derivation of the kinetic equation describing the occupation number of

mode k for a weakly nonlinear system with quartic interaction. For certain forms of the dispersion

relation and certain interactions, the kinetic equation has a stationary solution, which is known

as the Kolmogorov-Zakharov (KZ) solution. The kinetic equation governs the occupation number

nk(t) = ⟨a†k(t)ak(t)⟩ at late times. 14

The Hamiltonian in terms of complex amplitudes ak was given in (2.2) and the equations of

motion were given in (2.1),

i
∂ak
∂t

= ωkak + 2
∑

p2,p3,p4

λkp2p3p4
a†p2ap3ap4 . (A.1)

Multiplying (A.1) by a†k, taking the expectation value over the ensemble of initial conditions and

subtracting the complex conjugate of the same expression, yields the kinetic equation,

∂nk

∂t
= 4 Im

( ∑

p2,p3,p4

λkp2p3p4
⟨a†ka†p2ap3ap4⟩

)
, (A.2)

where ⟨a†ka†p2ap3ap4⟩ is really ⟨a†k(t)a†p2(t)ap3(t)ap4(t)⟩. To find the right-hand side we first compute
∂
∂t
⟨a†ka†p2ap3ap4⟩ by using the equations of motion (A.1). We get,

(
i
∂

∂t
+ (ωk+ωp2

−ωp3
−ωp4

)

)
⟨a†ka†p2ap3ap4⟩ = −2

∑

q2,q3,q4

λ∗
kq2q3q4

⟨aq2a
†
q3
a†q4a

†
p2
ap3ap4⟩+ (k ↔ p2)

+ 2
∑

q2,q3,q4

λp3q2q3q4
⟨a†q2aq3aq4a

†
ka

†
p2
ap4⟩+ (p3 ↔ p4) . (A.3)

To leading order, the state of the wave system is Gaussian and couples ak to a†k only. Hence, the

standard Wick contraction can be used to calculate the six point functions in the above expression,

e.g., all possible contractions of aq2 in the first correlator on the right hand side take the form,

⟨aq2a
†
q3
a†q4a

†
p2
ap3ap4⟩ = ⟨aq2a

†
q3
⟩⟨a†q4a

†
p2
ap3ap4⟩+ ⟨aq2a

†
q4
⟩⟨a†q3a

†
p2
ap3ap4⟩

+ ⟨aq2a
†
p2
⟩⟨a†q3a

†
q4
ap3ap4⟩+O(λ) . (A.4)

14In this appendix we define nk as the occupation number, nk(t) = ⟨a†k(t)ak(t)⟩, whereas previously in (2.10) we
defined it as nk = Fk/2γk; at leading order, they are the same.
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Substituting into (A.3) and using the symmetries of λkq2q3q4
yields,

(
i
∂

∂t
+ (ωk+ωp2

−ωp3
−ωp4

)

)
⟨a†ka†p2ap3ap4⟩ = (−δωk − δωp2

+ δωp3
+ δωp4

)⟨a†ka†p2ap3ap4⟩

− 2
∑

q2,q3,q4

λ∗
kq2q3q4

⟨aq2a
†
p2
⟩⟨a†q3a

†
q4
ap3ap4⟩+ (k ↔ p2)

+ 2
∑

q2,q3,q4

λp3q2q3q4
⟨a†q2ap4⟩⟨aq3aq4a

†
ka

†
p2
⟩+ (p3 ↔ p4) +O(λ2) , (A.5)

where the frequency shifts arise from self-contractions (we computed them in Sec. 4.2, see Eq. 4.3).

Redefining the frequencies to absorb the shift, ωk → ωk + δωk, and carrying out the Wick con-

tractions to calculate the four-point functions and using the definition of occupation numbers, we

obtain at leading order in λ,

(
i
∂

∂t
+ (ωk+ωp2

−ωp3
−ωp4

)

)
⟨a†ka†p2ap3ap4⟩

=
(
−4λ∗

kp2p3p4
np2

np3
np4

+ (k ↔ p2)
)
+
(
4λ∗

kp2p3p4
nknp2

np4
+ (p3 ↔ p4)

)

= −4λ∗
kp2p3p4

(
1

nk

+
1

np2

− 1

np3

− 1

np4

)
nknp2

np3
np4

. (A.6)

Solving the differential equation, using that the right-hand side is constant at late time, and

imposing that the four-point function is zero at t = 0, we get,

⟨a†ka†p2ap3ap4⟩(t) = 4
ei∆ωt − 1

∆ω
λ∗
kp2p3p4

(
1

nk

+
1

np2

− 1

np3

− 1

np4

)
nknp2

np3
np4

, ∆ω ≡ ωk+ωp2
−ωp3

−ωp4
.

(A.7)

Substituting (A.7) into (A.2) yields,

∂nk

∂t
= 16 Im

∑

p2,p3,p4

δ(k+p2−p3−p4)|λkp2p3p4
|2 e

i∆ωt − 1

∆ω

(
1

nk

+
1

np2

− 1

np3

− 1

np4

)
nknp2

np3
np4

. (A.8)

Next, we take the late time limit,

Im
ei∆ωt − 1

∆ω
=

sin∆ωt

∆ω
→ πδ(∆ω) as t → ∞ (A.9)

Thus, the equation takes the form,

∂nk

∂t
= 16π

∑

p2,p3,p4

δ(∆ω)δ(k+p2−p3−p4)|λkp2p3p4
|2
(

1

nk

+
1

np2

− 1

np3

− 1

np4

)
nknp2

np3
np4

. (A.10)

This is the wave kinetic equation [6].

The wave kinetic equation may look familiar; it is reminiscent of the Boltzmann equation. In
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fact, one can easily redo the above derivation for quantum mechanics, yielding a similar equation

but with some of the np replaced with Np + 1, where Np now denotes the occupation number,

∂Nk

∂t
= 16π

∑

p2,p3,p4

δ(∆ω)δ(k+p2−p3−p4)|λkp2p3p4
|2
(
Np3

Np4
(Nk+Np2

+1)−NkNp2
(Np3

+Np4
+1)

)
.

For large occupation number, Nk ≫ 1, the classical kinetic equation (A.10) is recovered, while

for small occupation numbers, Nk ≪ 1, waves behave like particles and one recovers the classical

Boltzmann equation.

Returning to the classical kinetic equation (A.10), there is an equilibrium solution,

nk =
T

ωk

. (A.11)

To see this, notice that with this nk the terms on the right hand side of (A.10) vanish because they

are proportional to δ(∆ω)∆ω = 0. The distribution (A.11) is the Rayleigh-Jeans distribution,

which is the low energy (high temperature; i.e. classical) limit of the Plank distribution (Bose-

Einstein).

Turbulent cascade

A crucial aspect of wave turbulence is that, in addition to the thermal solution (A.11), there

is another stationary solution to the kinetic equation (an nk for which dnk/dt = 0). This is

the Kolmogorov-Zakharov (KZ) solution. Since the kinetic equation (A.10) is only valid at weak

nonlinearity, these solutions are called weakly turbulent states [6]. The KZ solution deviates

strongly from equilibrium. Its form depends on the structure of the interaction term and the

dispersion relation. For instance, consider homogeneous functions of momenta,

ωp ∝ pα , λp1p2p3p4
= (p1p2p3p4)

β
4Uδp1,p2;p3,p4 , (A.12)

where U depends only on the ratio of the momenta and their mutual angles. One may check that

there is a stationary solution to the kinetic equation,

np ∝ p−γ , γ =
2

3
β + d− α

3
or γ =

2

3
β + d . (A.13)

The conventional way of checking this is through a change of variables, known as Zakharov’s

transformation [5, 6]. A faster method [77, 78] is the following: substitute the ansatz np ∝ p−γ

into the kinetic equation (A.10) and rescale the momenta |pi| = xi|k| for i = 2, 3, 4, where xi are

dimensionless parameters, to get,
∂nk

∂t
∝ k2d−α−3γ+2β . (A.14)
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The proportionality constant is independent of k and its orientation. Comparing with the rota-

tionally symmetric continuity equation in momentum space,15

0 =
∂nk

∂t
+ ∇⃗ · J⃗ =

∂nk

∂t
+

1

kd−1

∂

∂k

(
kd−1Jk

)
, (A.15)

yields

kd−1Jk ∝ k3d−α−3γ+2β . (A.16)

In particular, the occupation number nk (or energy spectrum ωknk) is time independent if kd−1Jk =

const (or kd−1ωkJk = const). This condition is equivalent to (A.13).

B. Propagator identities

In this appendix we collect a few useful propagator identities. The propagator, given in the

main body in (3.8), is Dk(t21) = nke
iωkt21−γk|t21|. Differentiating the propagator gives

d

dt1
Dk(t21) = Dk(t21)(−iωk − γksgn(t12)) , sgn(t12) = θ(t12)− θ(t21) , (B.1)

so that,

Dk(t1)Dk(t21) = Fke
−(iωk−γk)(t1−t2)θ(t21) = 2γkDk(t21)θ(t21) , (B.2)

where we added the time argument t1 to Dk to stress that the operator is applied at coordinate

t1. Dividing by Fk this is,
Dk(t1)

Fk

Dk(t21) =
1

nk

Dk(t21)θ(t21) , (B.3)

Taking the complex conjugate and using D∗
k(t21) = Dk(t12), gives

Dk(t1)

Fk

Dk(t12) =
1

nk

Dk(t12)θ(t21) . (B.4)

Finally, an identity that we will need is the action on the propagator of Dk(t1) followed by Dk(t2).

This gives a delta function,

Dk(t2)Dk(t1)Dk(t12) = Fkδ(t21) . (B.5)
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Figure 4: Tree level diagrams representing the six-point function (C.1).

C. Six-point function

In this appendix we give the tree-level six-point function,

⟨ap1,ω1
a†p2,ω2

ap3,ω3
a†p4,ω4

ap5,ω5
a†p6,ω6

⟩ . (C.1)

There are two diagrams: one from the sextic vertex, and one from two quartic vertices, see Fig.4.

Each term by itself is divergent in the limit of zero forcing and zero dissipation, but the sum is

finite. To simplify notation we define,

Ĝi =
1

G∗
pi,ωi

Fpi

, i = 1, 3, 5, 7 , Ĝi =
−1

Gpi,ωi
Fpi

, i = 2, 4, 6 . (C.2)

This is slightly different from the convention we used earlier in the one-loop four-point function

(4.6). The diagram coming from the sextic vertex gives,

−2πδ(ω1,3,5;2,4,6) 4
∑

p7

1

Fp7

λp1p3p2p7
λp7p5p4p6

6∏

i=1

Dpi,ωi
. (C.3)

The diagram coming from two quartic vertices gives,

−2πδ(ω1,3,5;2,4,6) 4
∑

p7

λp1p3p2p7
λp7p5p4p6

(
3∑

i=1

Ĝi − Ĝ∗
7

)(
6∑

j=4

Ĝj + Ĝ7

)
7∏

i=1

Dpi,ωi

∣∣∣
ω7=ω5+ω6−ω4

(C.4)

If we expand each of the two parenthesis, there are a total of 16 terms. The one that involves Ĝ7Ĝ
∗
7

is precisely the sextic diagram (C.3), with a relative minus sign. Upon adding the two diagrams,

15The continuity equation for the occupation number follows from the U(1) symmetry of the wave system (2.2),

ak → eiϕak , a†k → e−iϕa†k.
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(C.3) and (C.4), these two terms cancel. The sum is therefore,

−2πδ(ω1,3,5;2,4,6) 4
∑

p7

λp1p3p2p7
λp7p5p4p6

(
3∑

i=1

Ĝi

6∑

j=4

Ĝj − Ĝ∗
7

6∑

j=4

Ĝj + Ĝ7

3∑

i=1

Ĝi

)
6∏

i=1

Dpi,ωi
. (C.5)

The final result for the six-point function is thus (C.5), and permutations thereof: the 3! permu-

tations of (1, 3, 5) and, independently, the 3! permutations of (2, 4, 6).

D. Integrals for the one loop four-point function

In this appendix we provide some of the details of the computations of the integrals appearing

in the one-loop four point function in Sec. 4.2.

Frequency space four-point function

To evaluate (4.5) we open the parenthesis and consider each of the 16 terms. We need the

following integrals, which are fairly trivial contour integrals,

∫
dω5

2π
Dp5,ω5

Dp6,ω3+ω4−ω5
=

1

ω3,4;p5,p6
−iγ5+iγ6

(
F6n5

ω3,4;p5,p6
−iγ56

+
F5n6

ω3,4;p5,p6
+iγ56

)
=

2n5n6γ56

ω2
3,4;p5,p6

+γ2
56

∫
dω5

2π
Gp5,ω5

Dp6,ω3+ω4−ω5
=

i n6

ω3,4;p5,p6
+iγ56

,

∫
dω5

2π
Dp5,ω5

Gp6,ω3+ω4−ω5
=

i n5

ω3,4;p5,p6
+iγ56

∫
dω5

2π
Gp5,ω5

G∗
p6,ω3+ω4−ω5

= 0 ,

∫
dω5

2π
Dp5,ω5

= n5 , (D.1)

where Dpi,ωi
was given in (3.9) and recall that we defined γij ≡ γpi + γpj and γijkl ≡ γpi + γpj +

γpk + γpl . We now apply this to (4.5). Since Dpi,ωi
= Fpi

|Gpi,ωi
|2, we have e.g. Ĝ1Dp1,ω1

= Gp1,ω1
,

where Ĝi was given in (4.6). We find that (4.5) becomes,

− 2πδ(ω1,2;3,4) 8
∑

p5,p6

λp1p2p5p6
λp5p6p3p4

4∏

i=1

Dpi,ωi

[
−
(

n6

Fp5

+
n5

Fp6

)
+

i (Ĝ3+Ĝ4)(n5+n6)

ω3,4;p5,p6
−iγ56

+
i (Ĝ1+Ĝ2)(n5+n6)

ω3,4;p5,p6
+iγ56

+
2(Ĝ1+Ĝ2)(Ĝ3+Ĝ4)n5n6γ56

ω2
3,4;p5,p6

+γ2
56

]
. (D.2)

Forming a common denominator, the result (4.7) then follows.

For evaluating (4.8) we likewise need the following integrals,

∫
dω5

2π
Dp5,ω5

Dp6,ω3+ω5−ω1
=

1

ω3,p5;1,p6
+iγ5−iγ6

(
F6n5

ω3,p5;1,p6
+iγ56

+
F5n6

ω3,p5;1,p6
−iγ56

)
=

2n5n6γ56

ω2
3,p5;1,p6

+γ2
56
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∫
dω5

2π
Gp5,ω5

Dp6,ω3+ω5−ω1
=

i n6

ω1,p6;3,p5
+iγ56

,

∫
dω5

2π
Dp5,ω5

Gp6,ω3+ω5−ω1
=

−i n5

ω1,p6;3,p5
−iγ56

∫
dω5

2π
Gp5,ω5

Gp6,ω3+ω5−ω1
= 0 . (D.3)

Using this to evaluate the integral in (4.8) gives,

− 2πδ(ω1,2;3,4) 16
∑

p5,p6

λp1p6p3p5
λp2p5p4p6

4∏

i=1

Dpi,ωi

[
−
(

n6

Fp5

+
n5

Fp6

)
+

i (Ĝ1+Ĝ3)(n6−n5)

ω1,p6;3,p5
+iγ56

+
i (Ĝ2+Ĝ4)(n6−n5)

ω1,p6;3,p5
−iγ56

+
2(Ĝ1+Ĝ3)(Ĝ2+Ĝ4)n5n6γ56

ω2
1,p6;3,p5

+γ2
56

]
(D.4)

Forming a common denominator gives (4.9).

Equal time four-point function

In Sec. 4.2, after finding the frequency space one-loop four-point function, we found the equal-

time one-loop four-point function, see (4.19). Here we record some of the necessary contour

integrals to get this answer. The equal-time four-point function is found by Fourier transform of

the frequency space four-point function, see (3.18). We will be taking the Fourier transform, with

respect to ω1, ω2, ω3, ω4, of (D.2) and (D.4). Due to the energy conserving delta function in the

frequency-space, δ(ω1,2;3,4), the exponential in the Fourier transform drops out (i.e. the equal time

four-point function is independent of time) and we simply need to take the integral with respect

to ω1, ω2, ω3, ω4 of (D.2) and (D.4).

Starting with (D.2), we need integrals such as,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

i Ĝ1

ω3,4;p5,p6
+iγ56

= n2n3n4

i

ωp3,p4;p1,p2
+iγ1234

i

ωp3,p4;p5,p6
+iγ3456

(D.5)

To get this, we first did the ω1 integral by using the delta function. We then did the ω2 integral by

closing the contour in the lower half plane and picking up the pole at ω2 = ωp2
− iγp2 . Likewise,

we do the ω3 integral to pick up the pole at ω3 = ωp3
+ iγp3 , and the ω4 integral to pick up the

pole at ω4 = ωp4
+ iγp4 . One could have of course closed the contours in either the upper or lower

half plane; we simply described the easiest choice. By interchange of 1 ↔ 2, we therefore have,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

i (Ĝ1 + Ĝ2)

ω3,4;p5,p6
+iγ56

=
4∏

i=1

ni

(
1

n1

+
1

n2

)
i

ωp3,p4;p1,p2
+iγ1234

i

ωp3,p4;p5,p6
+iγ3456
(D.6)

Recall from the definition of Ĝi in (4.6) that Dp1,ω1
Ĝ1 = G1 and Dp2,ω2

Ĝ2 = G2, while Dp3,ω3
Ĝ3 =

−G∗
3 and Dp4,ω4

Ĝ4 = −G∗
4. Therefore, by taking (D.6) and exchanging 1, 2 ↔ 3, 4 and complex
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conjugating, we get,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

i (Ĝ3 + Ĝ4)

ω3,4;p5,p6
−iγ56

=
4∏

i=1

ni

(
1

n3

+
1

n4

)
i

ωp1,p2;p3,p4
−iγ1234

i

ωp1,p2;p5,p6
−iγ1256
(D.7)

These two integrals, (D.6) and (D.7), explain the second line of the four-point function answer

(4.19).

Another integral we need is,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

2Ĝ1Ĝ3γ56

ω2
3,4;p5,p6

+γ2
56

= −n2n4

i

ωp3,p4;p5,p6
+iγ3456

i

ωp5,p6;p1,p2
+iγ1256

(
1 +

2γ56i

ωp3,p4;p1,p2
+iγ1234

)
, (D.8)

from which, by symmetry, it follows that,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

2(Ĝ1+Ĝ2)(Ĝ3+Ĝ4)γ56

ω2
3,4;p5,p6

+γ2
56

=
4∏

i=1

ni

(
1

n1

+
1

n2

)(
1

n3

+
1

n4

) −i

ωp3,p4;p5,p6
+iγ3456

i

ωp5,p6;p1,p2
+iγ1256

(
1 +

2γ56i

ωp3,p4;p1,p2
+iγ1234

)

(D.9)

This explains the first line of the four-point function answer (4.19).

Now, turning to (D.4) we need a few integrals:

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

i Ĝ1

ω1,p6;3,p5
+iγ56

= n2n3n4

i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p4;p1,p2
+iγ1234

,

(D.10)

which simply follows by using the delta function to do the ω1 integral, and then closing the contours

for the ω2, ω3, ω4 integrals in such a way so as to only ever pick poles at ωi = ωpi
± iγi. Another

integral we need can be obtained from this one through interchange 1, 2, 5 ↔ 3, 4, 6 combined with

complex conjugation. 16

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

i (Ĝ1 + Ĝ3)

ω1,p6;3,p5
+iγ56

=
4∏

i=1

ni

(
1

n1

− 1

n3

)
i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p4;p1,p2
+iγ1234

16Since Dp1,ω1
Ĝ1 = G1 and Dp3,ω3

Ĝ3 = −G∗
3, when we exchange p1, ω1 with p3, ω3 and complex conjugate, we

shouldn’t forget about the minus sign.
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Exchanging 1, 3, 5 ↔ 2, 4, 6 gives,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

−i (Ĝ2 + Ĝ4)

ω1,p6;3,p5
−iγ56

=
4∏

i=1

ni

(
1

n2

− 1

n4

)
i

ωp3,p5;p1,p6
+iγ3516

i

ωp3,p4;p1,p2
+iγ1234

This explains the fourth line of (4.19). Finally we need,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

2Ĝ1Ĝ2γ56

ω2
1,p6;3,p5

+γ2
56

= n3n4

i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p5;p1,p6
+iγ1356

(
1 +

2γ56i

ωp3,p4;p1,p2
+iγ1234

)
, (D.11)

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

2Ĝ1Ĝ4γ56

ω2
1,p6;3,p5

+γ2
56

= −n2n3

i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p5;p1,p6
+iγ1356

(
1 +

2γ56i

ωp3,p4;p1,p2
+iγ1234

)
, (D.12)

which, by symmetry, gives us,

∫ 4∏

i=1

dωi

2π
2πδ(ω1,2;3,4)

4∏

i=1

Dpi,ωi

2(Ĝ1+Ĝ3)(Ĝ2+Ĝ4)γ56

ω2
1,p6;3,p5

+γ2
56

=
4∏

i=1

ni

(
1

n1

− 1

n3

)(
1

n2

− 1

n4

)
i

ωp4,p6;p2,p5
+iγ2456

i

ωp3,p5;p1,p6
+iγ1356

(
1 +

2γ56i

ωp3,p4;p1,p2
+iγ1234

)
.

This explains the third line of (4.19).

E. Higher order kinetic equation details

In this appendix we fill in some details relevant to simplifying the next-to-leading order kinetic

equation.

We start with (4.36), which we would like to simplify,

(
∂nk(t)

∂t

)a

one-loop

= −32
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p2p5p6
λp5p6p3p4

)Vpδ(1, 2, 3, 4, 5, 6)

+ Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)(Vδδ(1, 2, 3, 4, 5, 6) + Vpp(1, 2, 3, 4, 5, 6))

]
. (E.1)
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Let us start with the first term in (E.1). We write out Vpδ in terms of Apδ, as defined in (4.29),

∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Vpδ(1, 2, 3, 4, 5, 6)

=
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)
(
Apδ(1, 2, 3, 4, 5, 6)−Apδ(3, 4, 5, 6, 1, 2)−Apδ(5, 6, 1, 2, 3, 4)

)

=
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)2Apδ(1, 2, 3, 4, 5, 6) , (E.2)

where to get to the second line we used that

∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Apδ(3, 4, 5, 6, 1, 2)

=
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)(−Apδ(5, 6, 3, 4, 6, 1, 2))

= −
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Apδ(3, 4, 5, 6, 1, 2) = 0 , (E.3)

where to get the first equality we use that Apδ(3, 4, 5, 6, 1, 2) is antisymmetric under (3, 4) ↔ (5, 6),

and then to get the second we do a change of dummy variables (3, 4) ↔ (5, 6) and use that the

real part of the product of couplings is symmetric under this change. We also used that for the

last term on the second line of (E.2) we have,

∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)(−Apδ(5, 6, 1, 2, 3, 4))

=
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Apδ(1, 2, 5, 6, 3, 4)

=
∑

p1,...,p6

δk,p1Re(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Apδ(1, 2, 3, 4, 5, 6) , (E.4)

where to get the first equality we used the antisymmetry of Ap,δ, and to get the second we did a

change of dummy variables (3, 4) ↔ (5, 6). This now explains the result in (E.2).

Now we turn to the second term in (E.1). We have that,

∑

p1,...,p6

δk,p1Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Vδδ(1, 2, 3, 4, 5, 6)

=
∑

p1,...,p6

δk,p1Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
) (Aδδ(1, 2, 3, 4, 5, 6)−Aδδ(3, 4, 5, 6, 1, 2)−Aδδ(5, 6, 1, 2, 3, 4))

=
∑

p1,...,p6

δk,p1Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)2Aδδ(1, 2, 3, 4, 5, 6) , (E.5)

where the Aδδ(3, 4, 5, 6, 1, 2) contribution vanished because Aδδ(3, 4, 5, 6, 1, 2) is symmetric under
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(3, 4) ↔ (5, 6) whereas the imaginary part of the product of couplings is antisymmetric, and

the Aδδ(5, 6, 1, 2, 3, 4) terms is equal to the Aδδ(1, 2, 3, 4, 5, 6) term by writing Aδδ(5, 6, 1, 2, 3, 4) =

Aδδ(1, 2, 5, 6, 3, 4) and then doing a change of variables (3, 4) ↔ (5, 6).

Finally, for the third term in (E.1) we have that

∑

p1,...,p6

δk,p1Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Vpp(1, 2, 3, 4, 5, 6)

=
∑

p1,...,p6

δk,p1Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)
(
App(1, 2, 3, 4, 5, 6) + App(3, 4, 5, 6, 1, 2) + App(5, 6, 1, 2, 3, 4)

)

= 0 , (E.6)

because the App(3, 4, 5, 6, 1, 2) contribution vanishes since App(3, 4, 5, 6, 1, 2) is symmetric under

interchange (3, 4) ↔ (5, 6) whereas the imaginary part of the product of couplings is antisymmetric,

while for App(5, 6, 1, 2, 3, 4) term we use that App(5, 6, 1, 2, 3, 4) = App(1, 2, 5, 6, 3, 4) and then do

a change of variables (3, 4) ↔ (5, 6). As a result of antisymmetry of the imaginary part of the

product of couplings, this term the cancels the App(1, 2, 3, 4, 5, 6) term.

So, we finally have that (E.1) is

(
∂nk(t)

∂t

)a

one-loop

= −64
∑

p1,...,p6

δk,p1

[
Re(λp3p4p1p2

λp1p2p5p6
λp5p6p3p4

)Apδ(1, 2, 3, 4, 5, 6)

+ Im(λp3p4p1p2
λp1p2p5p6

λp5p6p3p4
)Aδδ(1, 2, 3, 4, 5, 6)

]
. (E.7)
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