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Abstract
Despite the tremendous advances in machine learning (ML), training with imbalanced data still poses challenges in many
real-world applications. Among a series of diverse techniques to solve this problem, sampling algorithms are regarded as
an efficient solution. However, the problem is more fundamental, with many works emphasizing the importance of instance
hardness. This issue refers to the significance of managing unsafe or potentially noisy instances that are more likely to be
misclassified and serve as the root cause of poor classification performance. This paper introduces HardVis, a visual analytics
system designed to handle instance hardness mainly in imbalanced classification scenarios. Our proposed system assists users
in visually comparing different distributions of data types, selecting types of instances based on local characteristics that
will later be affected by the active sampling method, and validating which suggestions from undersampling or oversampling
techniques are beneficial for the ML model. Additionally, rather than uniformly undersampling/oversampling a specific class,
we allow users to find and sample easy and difficult to classify training instances from all classes. Users can explore subsets
of data from different perspectives to decide all those parameters, while HardVis keeps track of their steps and evaluates the
model’s predictive performance in a test set separately. The end result is a well-balanced data set that boosts the predictive
power of the ML model. The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a
use case. Finally, we also look at how useful our system is based on feedback we received from ML experts.

CCS Concepts
• Human-centered computing → Visualization; Visual analytics; • Machine learning → Supervised learning;

1. Introduction

In machine learning (ML), easy to classify instances are those
for which ML models have a high probability of predicting the
correct class label, whereas the opposite is true for the diffi-
cult to classify instances [YLW∗21]. The assessment of instance
hardness can reveal useful information about the boundaries of
ML capabilities [PHOMU15]. Instance hardness is a common
problem that even inspired the creation of well-known boosting
algorithms [YLF∗21], such as AdaBoost [FSA99]. It can also
highlight when and where human intervention is required to re-
solve data-related issues. The ultimate goal of such a proce-
dure is to identify misclassified instances and interpret why this
has happened [CdMP14], as well as improve predictive perfor-
mance [SMGC14]. This scenario is where visual analytics (VA)
approaches are considered as a possible solid solution [WDC∗22]
with many recent works focusing on problematic subsets of data for
the interpretation and performance boost of ML models [CVW22,
ZOS∗22]. However, the classification problem becomes signifi-
cantly more complex when the data set contains both class overlap

and class imbalance. There are many problems [RKN06,WLC∗13,
HKB18, CCS06, KHM98] in which the minority class—composed
of mostly unsafe instances such as borderline examples, rare cases,
and outliers—is of great interest [NS16]. A medical diagnosis task
of detecting ill patients within a healthy majority is an example
that illustrates the great importance of imbalanced data problems.
Learning from such unbalanced data sets can be difficult because
most models will theoretically attain high accuracy by merely pre-
dicting the majority class [Ste16].

There are two fundamental methodologies to deal with these
kinds of imbalance problems: data-level and algorithm-level ap-
proaches [Kra16]. The first method utilizes preprocessing strate-
gies in order to balance the training set. The second method aims
at determining what causes a certain ML model to fail in imbal-
anced circumstances and addressing those flaws to create new ro-
bust ML models [CZV13, CT17]. Ensemble approaches have also
grown in popularity, as they allow for a fusion of model com-
binations and the usage of one of the methodologies discussed
above [KGW17, WGC14]. In this paper, we solely focus on the
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data-level approaches because they are not entangled to a specific
ML algorithm; and they remain as an underrepresented category
without the support of VA solutions [CMJK20,CMJ∗20,YCY∗21].
These approaches perform data sampling that refers to either
undersampling or oversampling techniques. The former removes
instances from the training set, while the latter generates syn-
thetic/artificial instances from the already existing data to balance
the class distribution.

With regard to undersampling, two advanced techniques for
concurrently eliminating and maintaining instances are: one-
sided selection (OSS) [KM97] and neighborhood cleaning rule
(NCR) [Lau01]. The goal here is to remove ambiguous points
on the class boundary and, at the same time, keep any nonredun-
dant examples far from the decision boundary. On the other hand,
a frequently used oversampling algorithm is the synthetic minor-
ity oversampling technique (SMOTE) [CBHK02] that comes with
several drawbacks. One of those is the uniform approach to over-
sampling which considers all minority instances equally important.
To deal with this flaw, adaptive synthetic (ADASYN) [HBGL08]
was invented that dynamically determines which cases may repre-
sent a greater challenge for an ML model, thus oversampling in-
stances around class borders. A non-trivial issue with these algo-
rithms is that they require the exploration of specific parameters
from the user side. The common ground in all these techniques is
the k-value that should be set for the k-nearest neighbors (KNN)
algorithm [Alt92, FH89]. Depending on this critical value, more
or fewer instances will be removed or used for artificial addition,
which might cause harm to the predictive performance of the ML
model under training. For example, in an imbalanced healthcare
data scenario, a data analyst who blindly trusts one of the previous
heuristic-based approaches for undersampling and chooses a high
k-value will eventually remove so many healthy patients (belong-
ing to the majority class), leading to a balanced training set but with
a significant loss of critical data for generalizing when the system
will be put into production. Tuning those parameters is not straight-
forward to be automated since there are multiple ways on how to
combine undersampling and oversampling; thus, making room for
human-centric solutions such as interactive visualizations that facil-
itate human exploration and domain knowledge injection into this
complex problem. Furthermore, the local characteristics of each in-
stance are at least equally important as the global extracted patterns,
which are usually investigated with automated methods [RVV∗15].
Consequently, a remaining open question is: (RQ1) for a given data
set, how can visualization assist users in deciding the optimal pa-
rameters for the undersampling and oversampling techniques?

Another challenge related to the previous one is to identify com-
mon local characteristics of the instances in order to classify them
into data types, as in the work of Napierala and Stefanowski [NS16]
that acknowledges four types of data: safe, borderline, rare, and
outliers (SBRO in short). As described before, depending on the
selected k-value, the distribution of instances in those types is sub-
ject to change [SK17]. Outliers can account for a sizable fraction of
a class, especially in minority groups; as a result, in some data sets,
they may even predominate [NS16]. It is dangerous to treat outliers
as noise and utilize noise-handling approaches such as relabeling
or eliminating them from the learning set without extensively ana-
lyzing them [XYX∗19,BNR20]. Separating noise from outliers is a

necessary but non-trivial task [SAPV16]. If we consider the previ-
ously established example, a data analyst will receive various distri-
butions of SBRO instances (i.e., separations of patients) depending
on the k-value selected for splitting the data with KNN into these
four data types, where some combinations will lead to more outliers
that could be potentially treated as noisy data compared to others.
Moreover, rare cases exist in several data sets [Rav11]. This indi-
cates that class difference is not the only source of difficulties when
dealing with unbalanced data, but local characteristics of each class
are also essential [NS16]. This problem is partially addressed with
upgraded versions of SMOTE and hybrid algorithms. For exam-
ple, Borderline-SMOTE [HWM05] focuses on oversampling cases
that are near to class boundaries. Safe-Level-SMOTE [BSL09] al-
locates weights to instances based on how “safe” they are from
the majority class influence, and it uses these weights to guide the
introduction of artificial examples. Additionally, selective prepro-
cessing of imbalanced data (SPIDER) [NSW10] focuses on high-
lighting problematic cases, particularly those that overlap with the
majority class. Nevertheless, it would be better to dynamically ad-
just this ratio based on the exploration of local data features and the
varying density of examples. In such dynamic approaches, evaluat-
ing several types of data could be useful [NS16]. Thus, a question
that arises is: (RQ2) which algorithmic suggestions should users
accept based on the visual analysis of particular SBRO areas or
even whole regions?

In this paper, we present a VA system, called HARDVIS, that
incorporates undersampling and oversampling techniques for the
management of both instance hardness and class imbalance inde-
pendent of the ML algorithm in use. It adopts validation metrics
suitable for imbalanced multi-class classification problems and in-
cludes several iterative phases that enable users to apply undersam-
pling and oversampling in various strategic schemes. Our contribu-
tions are summarized as follows:

• a coherent visual analytic workflow that takes into account in-
stance hardness, while leveraging undersampling and oversam-
pling techniques;

• a working prototype of the suggested workflow in the form of our
VA system, HARDVIS, which comprises a novel combination
of multiple coordinated views to support the entire process of
selectively undersampling and oversampling parts of the data set;

• a proof-of-concept showcasing the proposed system’s applicabil-
ity with a hypothetical usage scenario, and a use case that illus-
trates the utility of our decision to deploy sampling approaches
and involves humans in-between automated methods; and

• the discussion of the methodology and findings of interview ses-
sions with five ML experts, presenting positive results.

The remainder of this paper is organized as follows. In Section 2,
we review automated methods for the detection of different data
types, visually-assisted identification of outliers and rare examples,
and visualization approaches for data-centric ML error analysis.
Afterwards, in Section 3, we outline the analytical tasks and de-
sign goals for using VA to manage instance hardness in imbal-
anced data sets, and we emphasize the need for both automatic
approaches and human intuition. Section 4 presents the system’s
functionalities and simultaneously describes a first simple use case
with multiple cycles of undersampling and oversampling applied to
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specific instances in order to enhance predictive performance. Fol-
lowing that, in Section 5, we illustrate the applicability and utility
of HARDVIS with two real-world data sets concentrating on detect-
ing breast cancer and recognizing vehicles from their silhouettes.
Thereafter in Section 6, we examine the input received from the
expert interviews, including limitations identified by the experts.
Subsequently, in Section 7, we reflect further on the visual design
and the limitations of our work that lead to future plans for HARD-
VIS. Finally, Section 8 concludes our paper.

2. Related Work

This section summarizes previous research on automatic ap-
proaches for the identification of different types of instances, vi-
sualization methods for outlier/anomaly and rare category detec-
tion, and data-centric ML solutions from the visualization commu-
nity. To underscore the uniqueness of our approach, we explain the
difference between such solutions contrasted to HARDVIS. To the
best of our knowledge, there is no literature explaining the use of
VA for the complete undersampling and oversampling procedure,
along with the partial application in specific types based on the vi-
sual exploration of data and distributions.

2.1. Automatically Distinguishing Types of Instances

In the ML community, several methods for automatically cate-
gorizing data instances into different types exist, with a partic-
ular focus on the outlier/anomaly detection research in the past
decades [CBK09, HA04]. Nevertheless, most algorithms cannot
identify rare cases that are typically isolated groups, including a
set of comparable data examples that deviate from the majority—
rather than single isolated instances which are outliers. The ma-
jority of anomaly detection techniques can be divided into five
categories: (1) classification-based [HHWB02,WMCW03,MC03],
(2) density-based [BS03, BKNS00], (3) clustering-based [MLC07,
VW09, SPBW12], (4) statistical-based [YTWM04, KK17], and (5)
ensemble approaches [VK09, SLSH15, VC17, ZDH∗17]. The last
category is a hybrid one, which aims to combine the benefits of
the various techniques from the other categories. The problem with
all the approaches, except for the density-based approaches, is the
misalignment with sophisticated undersampling (e.g., NCR) and
oversampling algorithms (e.g., ADASYN) that are using KNN to
propose instances for removal or addition, respectively. Two em-
pirical studies [SK17, NS16] that were conducted with density-
based sampling algorithms deploy KNN to distinguish the type of
each instance along with multidimensional scaling (MDS) [Kru64],
which is a global linear dimensionality reduction algorithm. We
follow the same methodology to characterize instances based on
local characteristics, but HARDVIS uses an interactive UMAP
projection [MHM18] since it preserves mostly the local struc-
ture [EMK∗21]. Although those studies suggest that applying sam-
pling techniques in specific types of instances (e.g., by using only
outliers) can boost predictive performance, controlling which sub-
sets of particular instance types are considered when undersam-
pling and oversampling is an undiscovered step. This research op-
portunity inspired us to design HARDVIS.

Density-based algorithms [HHHM11, HLL08] also work well

with the detection of rare categories by discovering substan-
tial changes in data densities using a KNN search in the high-
dimensional space. But how to choose the best k-value for a given
data set? While it is possible to estimate the best k-value automat-
ically by using the local outlier factor [BKNS00], the balance of
the distribution of safe and unsafe instances could be off when fo-
cusing merely on rare cases and outliers. Huang et al. [HCG∗14]
proposed a method for automatically selecting k-values. However,
their algorithm starts with a seed depending on the target category,
which is often difficult to set. iFRED and vFRED [LCH∗14] are
two approaches for identifying rare categories based on wavelet
transformation without the necessity of any predefined seed. Never-
theless, these methods are robust in low-dimensional data only but
fail to discover the remaining types of data introduced in Section 1,
which are important for HARDVIS. Regarding decision boundaries
and borderline examples, Melnik [Mel02] analyzes their struc-
ture using connectivity graphs [MS94]. And finally, Ramamurthy
et al. [RVM19] utilize persistent homology inference to describe
the ambiguity (or even lack) of decision boundaries. All described
methods, while being valuable, do not focus on the problem of un-
dersampling or oversampling at all, as it happens with our system.

2.2. Visualization for Outlier and Rare Category Detection

Numerous VA approaches are combined with detection algorithms
as described in Section 2.1. Usually, they are designed for sup-
porting outlier and rare categories identification and classification,
which could be considered relevant to our work. Oui [ZCW∗19] is a
tool that assists users in comprehending, interpreting, and selecting
outliers identified by multiple algorithms. #FluxFlow [ZCW∗14]
is another VA system that utilizes complex analytical methods to
find, summarize, and understand aberrant information spreading
patterns. TargetVue [CSL∗16] detects users with abnormal behav-
iors using the local outlier factor and intuitive behavior glyph de-
signs. An extension of such glyphs, named as Z-Glyph [CLGD18],
was developed to aid human judgment in multivariate data outlier
analysis. RCLens [LGG∗18] is an active learning system that uses
visualization approaches to support the discovery of rare instances.
EnsembleLens [XXM∗19] is a hybrid visual system that utilizes
a modified Gaussian mixture model [AY19] to identify problem-
atic patterns in human behaviors. RISSAD [DB21] is an interactive
approach that not only assists users in detecting abnormalities but
also automatically defines them using descriptive rules. Even bor-
der detection has recently gotten some attention thanks to a VA
method [MM21] which uses the power of explainability from lin-
ear projections to help analysts study nonlinear separation struc-
tures. However, the final goal of HARDVIS differs since we try to
merge the gap between instance hardness and sampling techniques
for evaluating their suggestions. None of the above VA systems in-
corporate sampling mechanisms, as defined in Section 1.

VERONICA [RAS∗21] is a domain-specific VA system that uses
undersampling and SMOTE for specific classes of data and groups
of features. Nonetheless, HARDVIS is inherently designed to be
generalizable to any numerical data set stored in a tabular form. It
also accounts for instance hardness while enabling the microman-
agement of the sampling techniques. To improve the efficiency of
model construction, Li et al. [LFM∗18] presented a VA approach
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that allows infusing dynamic user feedback in various forms, with
interactive addition of new samples being one of them. Despite that,
the goal is very different from ours since the focus is on learn-
ing with a limited amount of data or incrementally learning as
in [PSPM15]. During the main use case of RuleMatrix [MQB19],
Ming et al. manually selected a problematic subset of instances and
applied oversampling, which resulted in improved model accuracy.
In contrast, HARDVIS enables knowledgeable users to systemati-
cally explore the distribution of data in different types and the sug-
gestions of the undersampling and oversampling to enhance pre-
dictive performance.

2.3. Data-centric Machine Learning

Most of the model-centric ML work so far has focused on how
model developers incrementally improve an existing or newly in-
vented ML algorithm’s predictive performance while making no
changes to the collected data [Ham22]. On the other hand, prac-
titioners of data-centric ML maintain the ML model stable while
iteratively upgrading the quality of the data at hand [Ham22]. Ad-
vocates for data-centric ML have recently increased in volume. A
few reasons for this shift are the benefits of involving domain ex-
perts in the data analysis process and the necessity for very config-
urable solutions that focus on subsets (or slices) of data [Ham22].
Closely related to this paradigm, ModelTracker [ACD∗15] and
Squares [RAL∗17] are two interactive visualization approaches
that improve a more standard confusion matrix to detect issues
with particular instances and enable users to tune the input by
monitoring the output of the model. The former proposes a visu-
alization that incorporates information from a variety of typical de-
scriptive statistics while providing instance-level performance and
allowing for direct error analysis and troubleshooting. The latter
computes performance measurements and assists users in concen-
trating their efforts on instance-level issues. Therefore, both works
follow the general framework of visual parameter space analysis
(vPSA) [SHB∗14]. Although HARDVIS is also an applied example
of the vPSA framework, it is explicitly designed for the first stages
of an ML model-building pipeline, addressing a clear need for ap-
plying sampling techniques in specific types of instances only.

Active learning is also part of data-centric ML solutions. It can
be defined as the active usage of a learning algorithm to iteratively
suggest to a user to classify unknown instances in order to increase
the ML model’s performance quickly [Set12]. In the visualization
community, many VA techniques have been developed explicitly
for active learning [BZL∗18, BHS∗21, BHZ∗18, GBSW21]. More
specifically, these works have focused on how VA can help users
during the labeling process for semi-supervised learning problems.
The challenges are somewhat similar to ours since understanding
how hard (or important) it is for an instance to be labeled before
the rest is a relatable problem. However, our end goal is to priori-
tize which instances should be undersampled and oversampled first
(and how exactly) in supervised learning classification problems
containing labels for all data instances.

3. Analytical Tasks and Design Goals

This section outlines the basic analytical tasks (T1–T5) that a user
should be able to complete when undersampling or oversampling

while using a VA system for support and direction. Following that,
we present the design goals (G1–G5) that guided the development
of HARDVIS.

3.1. Analytical Tasks for Undersampling and Oversampling

From the in-depth examination of the related work highlighted
in Section 2 and our own recent experiences implementing VA tools
for ML [CMK20, CMKK21a, CMKK21b, CMKK22, CMK22], we
came up with five analytical tasks.

T1: Identify the various types of instances. As the decrease
in predictive performance is connected to data distribution-related
factors, such as the presence of many rare subgroups obscuring the
classification [WH00, Jap01], the consequences from the overlap
between the classes [PBM04, GSM07], or the existence of several
misclassified examples [NSW10], a primary goal is to spot such
groups of points—as precisely as possible—with the use of VA sys-
tems.

T2: Support the exploration of undersampling vs. oversam-
pling alternatives applied globally and locally. When applying
such techniques, the data instances used as input for undersam-
pling and oversampling algorithms could differ depending on the
stable anchors a user sets. An example of a stable anchor is how
the partitioning of data into four types occurs, leading up to 16
different SBRO combinations used as input for the sampling algo-
rithms. Also, the distribution of SBRO (as defined in T1) is another
factor to be considered as a stable anchor under investigation. On
the one hand, global undersampling or oversampling will allow all
instances to be candidates for removal or under consideration when
creating synthetic data, respectively. On the other hand, locally ap-
plied algorithms will dynamically enable users to consider local
characteristics of data points and exclude a few suggestions from
the pool of recommendations. Modifying this ratio dynamically
could be beneficial for the ML model, thus the user’s interaction
guided by visual feedback is necessary.

T3: Explore automated methods’ suggestions. The identifica-
tion of conditions for the efficient use of a particular method is
an open research problem [NS16]. A user should be competent in
judging the influence of a suggestion on the whole data set. For ex-
ample, what if, by removing too many rare cases, the model overfits
the training data but generalizes poorly in a test set? A user should
be empowered by VA systems that facilitate exploratory analysis of
unsafe instances.

T4: Confirm suggestions by making justifiable decisions. A
user should have the ability to partially confirm the proposal of
the automated methods based on the analysis he/she has performed
earlier in the preceding task. How will the data distribution change
due to the acceptance of such a suggestion? VA systems should
envision these future steps and enhance users’ decision-making.

T5: Monitor and evaluate the results of the sampling pro-
cess. At any stage of the sampling process (T2–T4), a user should
be able to observe performance fluctuations with the use of appro-
priate validation metrics for imbalanced data sets (e.g., balanced
accuracy and f1-score). A user might also wish to look back at
the history of activities to see if any crucial actions corresponded
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(a)
(b)

(c)

(d) 

(e) 

(f) 

(g) (h) 

Figure 1: Undersampling and oversampling certain data types with HARDVIS: (a) the panel with many tunable parameters for UMAP,
undersampling, and oversampling; (b) box plots for comparing the values of all points against the algorithm’s suggestion in each feature;
(c) a stacked bar chart showing the base vs. the new distribution if the suggestion is approved; (d) a table heatmap view for comparing the
instances’ values across all features; (e) a UMAP projection emphasizing the additions/deletions of points, along with the data type for every
instance; (f) an inverse polar chart with chords that depicts the predicted probabilities, as well as the training confusion; (g) a Sankey diagram
for tracking any undersampling or oversampling confirmed actions; and (h) a visual embedding based on (e) to highlight the confusing test
instances, and a horizontal bar chart to illustrate the performance difference for each step.

to better results. Thus, VA systems must be capable of providing
ways to monitor performance.

3.2. Design Goals for HARDVIS

We identified five design goals for our system to meet in order to
fulfill the more general aforementioned analytical tasks for under-
sampling and oversampling. We implemented them in Section 4.

G1: Visual examination of several data types’ distributions
and projections to choose a generic ‘number of neighbors’ pa-
rameter. Our goal is to assist in the search for distinctive distri-
butions of data types that might consider different populations of
SBRO instances (T1). By systematically modifying the number of
neighbors parameter of UMAP, we aim to assure that users will
pick a better value based on the visual exploration of data types in
the generated projection. Furthermore, this value propagates in the
undersampling and oversampling techniques that require a k-value,
which works similarly to the above parameter.

G2: Application of undersampling and oversampling in spe-
cific data types only, with different parameter settings. There
are several different undersampling and oversampling techniques,

but they are usually only applied the entire training set (i.e., global
sampling). However, with our proposed system, we enable users
to choose a technique, tune the parameters depending on the vi-
sual exploration, and even deploy them in particular subsets of the
training data (i.e., local sampling as established in T2).

G3: Exploratory data analysis of unsafe suggestions. Next,
the system should provide sufficient visual guidance to users to
focus on the exploration of the values in each feature for unsafe
suggestions (T3). The analysis of borderline, rare, and outlier data
types should be feasible in a generic and detailed manner.

G4: Comparison of trade-offs while removing or adding
training instances throughout the decision-making process. Af-
ter the extraction of evidence as defined in G3, users should see
how the distribution of instances will change due to the undersam-
pling and/or oversampling phases. Next, the system should give a
prediction for a data point and juxtapose it to all other points. With
this, users should be able to estimate the impact of algorithmic rec-
ommendations during exclusion or inclusion of instances (T4).

G5: Keep track of critical steps and evaluate predictive per-
formance in general and for specific test instances. Users’ inter-
actions should be tracked in order to preserve a history of modifica-
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Safe
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AllNone
Some

Confirm

Tune

Sampling 
Execution Tracker

Figure 2: The HARDVIS workflow starts by classifying the training
data into four types according to the user’s visual inspection of 9
alternative projections. The data is sent for either undersampling
or oversampling, which can make suggestions continuously. The
user’s confirmation is requested after the exploratory data analysis
through the visualizations.

tions in the training set, and the performance should be monitored
with validation metrics (T5). Finally, using an unseen test set, the
system should continuously stress the difference in the model’s pre-
dictive performance.

4. HardVis: System Overview and First Application

Following the analytical tasks and the resulting design goals, we
have developed HARDVIS, an interactive web-based VA system
that allows users to identify areas where instance hardness occurs
and to micromanage sampling algorithms. Section 7.2 contains fur-
ther implementation details.

The system consists of 8 interactive visualization panels (Fig-
ure 1): (a) data types projections (→ G1) incl. data sets and sam-
pling techniques (→ G2), (b) data overview, (c) data types distri-
bution, (d) data details, (e) data space, (f) predicted probabilities
(→ G3 and G4), (g) sampling execution tracker, and (h) test set
confusion (→ G5). We propose the following workflow for the
integrated use of these panels (cf. Figure 2): (i) explore various
projections with alternative distributions of data types, leading to
the division of training data into SBRO (cf. Figure 3(b)); (ii) in the
undersampling or oversampling phase, tune the active algorithm’s
parameters to affect specific types of data (Figure 1(a)); (iii) dur-
ing the confirmation phase, identify which suggestions will impact
negatively or positively the predictive performance and approve
or reject any suggestion (cf. Figure 1(b)–(f)); and (iv) store every
manually-operated sampling execution, identify confused test in-
stances, and compare the predictive performance in each step of
the process according to two validation metrics designed explicitly
for imbalanced classification problems (Figure 1(g) and (h)). These
steps are iterative, and they might occur in any sequence. The cre-
ated knowledge obtained from the undersampled/oversampled data
set is the end result. This knowledge can be useful to users that
have to explain and are accountable for their actions, e.g., people
working in critical domains such as medicine.

HARDVIS employs a cutting-edge ensemble learning approach
named as XGBoost [CG16], and its workflow is model-agnostic.
To make our approach even more future-proof, we train this ML al-
gorithm with the Bayesian Optimization package [Nog14]. HARD-
VIS utilizes OSS, NCR, SMOTE, and ADASYN, which are state-
of-the-art sampling algorithms that are tweaked to receive specific
SBRO instances as an input. Despite that, these algorithms are eas-
ily replaceable. The reader is referred to [HG09,HM13] for a more
detailed analysis of different strategies that cope with class imbal-
ance. For this section and the use cases in Section 5, we split the
data sets into 75% training and 25% testing sets with the strati-
fied strategy (i.e., keeping the same balance in all classes for both
sets) and validate our results with 5-fold cross-validation. Also,
we scan the hyperparameter space for 25 iterations, choosing the
model with the best accuracy. The hyperparameters we used are
the same as in another VA system developed by us [CMKK22].

In the following subsections, we explain the system by using a
running example with the iris flower data set [FIS36] obtained from
the UCI ML repository [DG17a]. The data set represents a balanced
multi-class classification problem and consists of four numerical
features and 150 instances. The three classes are: setosa, versicolor,
and virginica.

4.1. Data Types

HARDVIS follows the Napierala and Stefanowski [NS16] method-
ology in order to label all training instances in one of the following
types: safe (S) examples, borderline (B) samples, rare (R) cases,
and outliers (O). To calculate the difference between instances in
the high-dimensional space, we use KNN [Alt92, FH89] with the
default value of k being 5 and the euclidean distance metric. For
determining the type of a sample with k = 5, we would have, e.g.,
5 or 4 nearest instances being from the same class, then the sam-
ple gets labeled as S; 3 or 2 instances from the same class, then it
belongs to B; only 1 instance from the same class, it is R; and 0
(i.e., the 5 nearest instances are from the other class), it becomes O.
However, the analogies will change with k > 5.

As shown in Figure 3(a), stacked bar chart, the distributions
of instances change accordingly as the number of neighbors in
the UMAP [MHM18] shifts since we utilize the same value for
the KNN algorithm. Thus, the goal of the two-dimensional pro-
jection is to reflect visually the same separation of training in-
stances into the SBRO types. The minimum distance is another pa-
rameter of UMAP that (in our case) is being automatically com-
puted from the maximum achievable Shepard diagram correlation
(SDC) [CMK20] score (see Figure 3(a), line chart). This metric
serves as a first indicator of optimal distance preservation between
the low- and the high-dimensional space. Nevertheless, it cannot
be trusted blindly, and human exploration is necessary to conclude
which parameters are optimal for the given data set.

The main challenge of KNN is the user-selected k-value, thus it
is a highly parametric-dependent approach. To resolve this prob-
lem, we enable the user to explore different data types’ projec-
tions generated by the systematic change of k-value from 5 to 13
(cf. Figure 3(b)). This range is chosen intentionally because, in
low k-values, a slight modification is more impactful to the projec-
tion [NS16]. However, these values are adjustable within the code.
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Figure 3: At first, a comparison of different data types projections and then two consecutive undersampling phases with the NCR algorithm
are shown in this arrangement of screenshots. The default value for the number of neighbors is 5 (see (a)), which is used as input for
computing the type of each instance with KNN. The projections are generated by systematically tweaking the above parameter, as illustrated
in (b); the best choice is theoretically the highest value for the Shepard diagram correlation (SDC) metric. In (c), we have activated the
algorithm, and we check the impact of this automated technique on the projection in (d). (e) presents the difference in distributions of all data
types per class label from when the algorithm was inactive as opposed to its activation. In (f), we explore a specific rare case under removal
consideration. This instance is contrasted against the remaining points of this same class (i.e., virginica in orange color); the selection was
made using a lasso interaction, as demonstrated in (d). While the values for all features are lower for this sample than the rest, sepal_l appears
the furthest away. Additional details can be found in (g) that highlights these differences in values of particular features and confirms our
findings from the data overview. Consequently, we choose to delete this instance because it might cause further confusion to the model, as
depicted in (d). The second time we deploy NCR (cf. (h)), two safe instances are in our focus since they are easily classified due to the high
predicted probability visible from the inverse polar chart in (i). Therefore, we decide to remove these two points.

4.2. Undersampling

Figure 3(c) presents the tab for Undersampling (US), which along
with the standard method’s parameters comprises a Types menu
with options to exclude any SBRO group. The k-value is auto-
matically tuned due to the selection of the number of neighbors
parameter, as explained in Section 4.1. OSS [KM97] uses Tomek
links [Tom76] which are ambiguous points on the class boundary
that are typically identified and removed. Moreover, it employs the
condensed nearest neighbor rule [Har68] to remove redundant ex-
amples far from the decision boundary. In contrast, NCR [Lau01]
is an undersampling technique that combines the condensed nearest
neighbor rule to exclude redundant examples and the edited near-
est neighbors rule [Wil72] to remove noisy or ambiguous points.
Its main difference from OSS is that fewer redundant examples are
deleted, and more attention is placed on “cleaning” those retained
instances. Each algorithm expects input for a unique parameter. In
particular, NCR has Threshold which is used for deciding whether
to consider a class or not during the cleaning after applying edited
nearest neighbors. Seeds is the number of samples to extract in or-
der to build a set S for OSS. All these techniques can be employed
in the Majority, ̸= Minority, ̸= Majority, or All classes according to
the user’s choice. In multi-class classification problems, the Major-
ity will be merely the class that contains the most instances, ̸= Mi-

nority will be all classes except the one with the least instances, and
so on. In balanced data sets, only the All option is relevant.

The UMAP projection in Figure 3(d) allows users to observe the
type of each instance concurrently and if it was suggested for re-
moval with an “×” symbol or addition with a “+” mark by the
active undersampling or oversampling algorithm, respectively. The
parameters for the UMAP are set as discussed in the preceding sub-
section. Hovering over a point will present details on demand such
as the ID of the point, the predicted probability, and the values for
each feature.

The distribution of data types is known due to a stacked and
grouped bar chart with the instances distributed in SBRO and per
class, simultaneously (cf. Figure 3(e)). The base distribution is also
comparable with the suggestion from the sampling algorithm that
will modify the initial distribution.

Figure 3(f) is a box plot that facilitates the comparison of all
points per feature versus the selected points via lasso functionality
in the projection. When a sampling algorithm is active, the same
group of instances with merely the sampling suggestions is also
visualized. In case of no selection, a simpler version of all points
against all points in either undersampling or oversampling sugges-
tion exists (see Figure 1(b)). Users’ actions determine the mode au-
tomatically. The features are sorted from left to right, from the least
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important to the most important at each execution step of under-
sampling/oversampling (due to XGBoost retraining process). The
proposals for removal are denoted in light red color, and light green
is used for the suggested additions.

The table heatmap view in Figure 3(g) is a more detailed view
of the aggregated results present in the box plots. It normalizes the
values from 0 to 1, evident in dark brown to dark teal colors, and it
shows for each feature the current value in each instance. The fea-
tures are sorted as in the box plots. Moreover, the # Type # is per-
ceivable through this visual representation, with outliers, then rare
cases, next borderline examples, and finally safe instances being at
the top of the list. The selection of a specific feature in this view
applies the diverging colormap to the projection for comparing all
instances for this particular feature (see Figure 6(d), Zoomed in
View). More detailed discussions on the visual design behind some
of the views can be found in Section 7.1.

The inverse polar chart in Figure 3(i), is deliberately designed
to provide more space to instances that are in the borders between
two classes or completely misclassified cases. The predicted prob-
ability with the ground truth class is used for the 100 to 0 axis,
and the angle/orientation is computed as the difference in predicted
probability of belonging to the remaining two classes. The greater
this difference is, the farther a point deviates from the center of its
circular segment corresponding to the correct class label. In our ex-
ample, the versicolor has a few instances mainly confused with the
virginica and vice versa. This is why all setosa instances are near
100% predicted probability in the purple circular segment. The size
of each piece is calculated from the number of training instances
that belong to a particular class, with extra space being provided
to larger classes (i.e., consisting of more points). The same sym-
bols as in the projection are also retained here. This approach can
easily work for two or three classes but becomes challenging to
interpret with more classes; such limitations are discussed in Sec-
tions 6 and 7.2. The centerpiece of this visualization is a chord di-
agram that summarizes the confusion matrix for the training data,
as in [AHH∗14]. Thus, in Figure 3(i), the confusion between ver-
sicolor and virginica is immediately distinguishable by the chords
linking the different circular segments. The number of confused in-
stances from one to the other classes is encoded as chord width.

4.3. Oversampling

Two mainstream oversampling techniques are implemented in
HARDVIS. SMOTE [CBHK02] finds the KNN in the minority
class for each of the samples in the class. Next, it draws a line
between the neighbors and generates random points on the lines.
ADASYN [HBGL08] is the same as SMOTE, just with a minor
improvement. After creating those samples, it adds a small random
deviation to the points, thus making it more realistic with the ad-
ditional variance. Similar to the undersampling techniques before,
SMOTE and ADASYN have all options except for the division of
types provided via a separate menu of our system. The All option
is equivalent to ̸= Majority, but we implemented them differently
when a type of instance is deactivated. The former considers re-
moving all points of the specific deactivated type/s irrelevant to the
class that will be oversampled, leading to more excluded points for
the active algorithm. The latter excludes from the pool of points

only those from the deactivated type/s but from the class that will
be oversampled. The Minority and ̸= Minority are implemented
based on the second schema described here. The same exploration
and analysis options mentioned in the previous subsection also ap-
ply for oversampling.

4.4. Sampling Execution Tracker and Test Set Confusion

Each manual undersampling or oversampling confirmation is reg-
istered in the Sankey diagram (see Figure 4(d)). The initial setting
is to record the distribution of all training data to the SBRO types.
Then, as an undersample or oversample execution takes place, the
instances move from their type to the US (in dark red) or OS (in
dark green) bin of the Sankey diagram.

The test set is also plotted using the visual embedding of training
data in each step (cf. Figure 4(e), left). All test instances are trans-
parent when predicted correctly by the ML model and opaque in
cases of confusion. For example, in Figure 4(e), left, the star with
blue color is from the versicolor class, but it was predicted as vir-
ginica due to the orange outline. Furthermore, the initial and current
balanced accuracy (bright turquoise) and f1-scores (deep magenta)
are visible in the text at each side of the heading of the Test Set Con-
fusion panel. The difference in performance based on those metrics
is tracked for every step of the process with a horizontal bar chart
(Figure 4(e), right).

4.5. First Application

In our first application, we observe that the maximum SDC value is
94.80% (high correlation, Figure 3(b)), resulting in a most probably
trustworthy projection. Another reassurance stems from the visual
inspection of points in the middle of two classes that appear clearly
confused, with most rare and borderline instances being located
there.

The undersampling phase is perhaps most crucial since remov-
ing unsafe instances without justifying one’s action could cause a
severe issue to the ML model. We choose to activate the de-facto
NCR algorithm without any tweaks to check the suggestions (Fig-
ure 3(c) and (d)). The distribution of instances changes according
to this global suggestion for removal of orange and blue points, as
seen in Figure 3(e). Despite that, we want to explore further a sug-
gestion for removal that is a distant point from the core virginica
cluster. We use the lasso to select those points and proceed with the
investigation. The box plot in Figure 3(f) enables us to conclude
that this is an extreme case relatively different from the remaining
selected points of its own class since the values for all features are
very low. The table heatmap view in Figure 3(g) reaffirms our hy-
pothesis, because the instance with ID 28 has the lowest sepal_l
value (< 0.1 due to dark brown color). We exclude this instance,
but we keep the rare cases around the borders of the two classes
that can easily flip class labels. Another phase of undersampling is
also capable with HARDVIS since the new data become the ground
zero for the next application of the automatic algorithm; NCR is
again our choice. This time, five instances are proposed for dele-
tion (cf. Figure 3(h)). However, by checking the inverse polar chart
in Figure 3(i), we see that two of them are easily predictable and
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Figure 4: An oversampling phase that aims to balance the data set again. According to (a), we use ADASYN for the minority class (versicolor
in blue) that contains fewer instances. Also, we exclude from the input of the algorithm two rare cases near the borders of two classes, as
illustrated in (b). The system proposes two artificially-created points for addition that we approve, see (c). The Sankey diagram in (d)
summarizes the core execution phases with undersampling and oversampling steps. Only one test instance is confused according to (e), while
the manual decisions (step 2, step 4, and step 7/8) improved the balanced accuracy and f1-score scores compared to the automated methods
(steps 1, 3, and 5).

potentially redundant for the ML model. Therefore, we decide to
exclude those two safe samples solely.

Using the Oversampling (OS) tab, we try to balance the classes
that contain fewer training samples. In Figure 4(a), we activate
ADASYN for the minority class, which requires two more exam-
ples to restore balance in the training set. This setting, in combina-
tion with the observation of two rare cases that are in the borders
of the versicolor class (Figure 4(b)), leads to the deselection of the
Rare type. Consequently, these two rare cases are excluded from
the pool of available for oversampling training instances. Without
the appropriate choice of k-value, resulting in an expressive and ef-
fective distribution of data types, it would have been challenging to
detect and handle such cases (especially if no class labels were pro-
vided). The oversampling generated two instances that we accept in
step 8, as depicted in Figure 4(c).

In Figure 4(d), the deletion of one rare instance during the first
NCR phase, the removal of two safe instances during the second
NCR phase, and the oversampling phase utilizing ADASYN for
generating a safe and a borderline instance is visible. Also, the con-
fusion of a test instance is highlighted in Figure 4(e) with the de-
cisions of the automatic algorithm hurting the performance and the
manual decisions in steps 2, 4, and 7/8 improving the predictive
power of the ML model.

5. Use Cases

In this section, we present a hypothetical usage scenario and a use
case about how HARDVIS can evaluate suggestions based on local
data characteristics to build trust in ML and to improve the balanced
accuracy and f1-score scores for both training and testing sets.

5.1. Usage Scenario: Local Assessment of Undersampling

Supposedly Zoe is a data analyst in a hospital, working primar-
ily with healthcare data. She receives a manually-labeled data set

with 9 features related to breast cancer [DG17b]. This data set
is rather imbalanced, with 458 benign and 241 malignant cases.
From her experience, she knows that instance hardness and class
imbalance can be troublesome for the ML model. Thus, she wants
to experiment with well-known algorithms for undersampling and
oversampling the data. However, especially with medical records,
the use of merely automated methods is questionable because they
cannot be trusted blindly. The doctors need explanations, and the
minority class in this binary classification problem is of more im-
portance than the majority consisting of healthy patients. In reality,
patients who are healthy but predicted as ill will undergo extensive
follow-up diagnostic tests before treatments such as surgery and
chemotherapy are advised; however, the opposite is not true. To
accomplish this main objective and to control the sampling tech-
niques, Zoe deploys HARDVIS.

Choosing an accurate projection. Zoe begins with the selec-
tion of a number of neighbors parameter by activating a window
containing data types projections (cf. Figure 5(a)). HARDVIS en-
ables her to compare a grid of diverse projections, as presented
in Figure 5(b). The one with the highest SDC score (i.e., 75.21%)
is a noteworthy candidate because the two classes are clearly sep-
arated. Rare cases and outliers are also easily visible, forming a
bridge between benign and malignant instances. She clicks on the
bar with the number 13 in Figure 5(a), and this projection becomes
the main for further exploration. At this initial phase, 6 benign test
instances were incorrectly classified, while the remaining 4 out of
the 10 misclassified patients were actually malignant cases.

Examining unsafe instances proposed for removal. After-
wards, she activates the NCR algorithm with the default settings
(k-value is synchronized to 13 due to the previously-selected pro-
jection) from the Undersampling (US) tab. Cluster 1 (C1) in Fig-
ure 5(c) is interesting because 7 benign cases (mostly marked as
outliers) are in between the malignant class. She chooses to com-
pare the selected points in C1 against these suggestions of under-
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Figure 5: The investigation of diverse structures of data types and alternative suggestions in an undersampling scenario. View (a) shows
the selection of the number of neighbors value of 13, which has 75.21% Shepard diagram correlation (SDC) score, as illustrated in (b). The
UMAP visible in (c) has one rare sample and 6 outliers belonging to the benign class that holds relatively normal values compared to the
malignant cluster (C), as shown in (d). Therefore the suggestions for removal in C1 are valid since even humans cannot understand why
these points are benign cases. On the other hand, C2 contains five rare examples and two outliers that serve as a bridge between the two
classes, cf. (c). Interestingly, the three most important features differentiate the right group of points (IDs: 64, 102, and 134) from the left,
i.e., size_un, shape_un, and bare_nuc in (e). This diversity is crucial when predicting difficult to classify instances, hence the analyst chooses
to keep this cluster despite the NCR algorithm’s suggestion for removal. C3 is the final selection, with most outliers being removed because
the model badly predicted them, as seen in (f). This leads to (g), which presents an improved performance with 6 confused test instances that
are cancer-free but predicted as the opposite. The malignant class is secure due to the rare cases being intact.

sampling, as depicted in the box plots (Figure 5(d)). In summary,
the values are lower for these points but still in between normal
margins. Therefore, it would have been almost impossible for the
doctors to conclude that these are healthy patients with benign can-
cer. A thorough check should be performed in these cases, e.g., to
determine if the labels are erroneous. She first notifies the data col-
lection team and doctors about this important finding and then re-
moves C1 suggestions. On the contrary, C2 includes five rare cases
and two outliers with size_un, shape_un, and bare_nuc features
separating the points closer to the benign class from the rest, as
illustrated in the table heatmap view (Figure 5(e)). The right group
of points has mostly lower values for the size_un and shape_un fea-
tures, while the bare_nuc is higher compared to the points on the
left. Zoe understands that such diversity is important when divid-
ing borderline patients located at the conjunction of the two huge
clusters. Therefore, she uses lasso selection to grab all points except
for C2, which will be her manual undersample strategy. The inverse
polar chart in Figure 5(f) highlights the training instances that will
be deleted, which are mostly completely misclassified instances or
safe examples. The samples between the two classes already ex-
plored remain intact, which is essential since they all belong to the

more important minority class. In Figure 5(g), Zoe observes that
only 6 test instances were incorrectly classified as having malignant
cancer while they were healthy. When inspecting the Balanced Ac-
curacy and F1-score scores, the overall predictive performance for
the test set seems slightly improved contrasted to the automatic al-
gorithm. Nevertheless, the major gain is that the doctors might trust
this modified data set more because the model correctly predicts all
patients with malignant cancer (since there is no highlighted yel-
low star for the test set in Figure 5(g), left). Based on prior find-
ings [NS16], Zoe stops her exploration at this phase because over-
sampling is ineffective for data sets with mostly safe instances.

5.2. Use Case: Explorative Sampling for Better Classification

This use case is about a multi-class classification problem. There
are 18 features collected for the vehicle silhouettes data set [Sie87].
With the main task of classifying 199 vans, 218 buses, and 429
cars, the class distribution is somewhat unbalanced.

Comparing projections and distributions of data types.
Similar to the procedure described in Section 4, we start by
exploring which projection represents the data types in the best
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Figure 6: The examination of diverse structures of data types and alternative suggestions while undersampling with OSS. View (a) shows the
selection of the number of neighbors value of 13, which is also used as input to KNN for sampling similarly in the high-dimensional space.
This decision was made after a careful review of the 9 projections in (b), leading to a distribution of mostly safe instances, then borderline
examples, next rare cases, and finally a few outliers. This is the second-best projection in terms of Shepard diagram correlation (SDC) score,
but it preserves exceptionally well the clusters of buses in purple vs. vans in orange color at the bottom-left region. In (c), we experiment
with the maximum seed value for the OSS algorithm, but it seems that several safe instances that could have been proposed for removal
are actually not. Thus, we reduce the seed value in half to check if the new suggestion fits our viewpoint, as depicted in (d). The goal we
set has been accomplished, however, a cluster of rare cases mixed in two classes is about to be deleted. In (e), we investigate further this
group of points at the bottom-left corner; these instances differ mainly because of either MaxLensAspRat or HollowsRat. Such rare cases are
critical information for the model to split these two classes; hence, we exclude the rare cases from the automatic algorithm, see (f). From the
remaining 260 under consideration instances, there are four outliers that caught our interest. Only 1 out of the 4 outliers appears problematic
based on (g). As a result, we exclude the outliers from the analysis and Execute Undersample to the remaining 256 points.

possible way. Three projections reaching high enough SDC
with minimum distance parameter equals to zero are extremely
condensed, making it hard to observe anything (see Figure 6(b)).
Among the remaining, two of them have SDC score of more
than 83%. Although they are two similar projections, the last
one clearly shows the difference between bus and van classes in
purple and orange, respectively (see the circled area at the bottom).
We choose to continue with this projection; thus, we go back to
Figure 6(a) and select a number of neighbors parameter equal
to 13. When we hover over the stacked bar chart in Figure 6(a),
we observe that safe and borderline cases account for 47.16%
and 34.54% of the training set, respectively. This is significantly
different in the distributions of data created with lower values
for the number of neighbors (e.g., 5). In summary, the visual
analysis guides us in picking all the aforementioned parameters.

Tuning the undersampling based on exploratory data analy-
sis. After selecting the projection (which results in a specific distri-

bution of data types), we decide to apply the OSS undersampling
algorithm. Nevertheless, the default settings cause the van class
to disappear completely, thus the predictive performance gets ex-
tremely penalized (see step 1 in Figure 1(h), right). We pick the
highest available seeds parameter to consider more points except
for the minority class. The algorithm suggests 196 instances to be
removed (step 2), as illustrated in Figure 6(c). It seems from the
projection that our previous setting does not capture several buses
while being safe to remove examples. Therefore, we decrease the
parameter to 125, half of the prior selection. The effect is that 329
are currently suggested for removal (step 3), as depicted in Fig-
ure 6(d). This action accomplishes our initial goal, but 7 regional
points are about to be undersampled. As we should be very careful
when deleting rare cases, we further explore this group of points
in the table heatmap view (Figure 6(e)). It is observable that the
instance with ID 486 is separated from the others mainly due to
the HollowsRat feature, while instance 631 is different because of
a low value in the MaxLensAspRat feature. We decide not to ex-
clude rare cases with such high variance because they may be part
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of our test set (step 4). The new suggestion after excluding the rare
points is visible in Figure 6(f). Another critical category of data
types is the outliers. From all outliers in the last projection, four
are proposed for deletion by the oversampling algorithm. Only 1
out of the 4 points appears marginally problematic with prominent
confusion between car and van classes, as depicted in the inverse
polar chart (see Figure 6(g)). Since the majority of points is safely
predicted correctly, we decide to keep the outliers in the training
set. After this step, 256 out of the 634 points are getting removed
(steps 5 and 6).

Deciding to oversample all types except outliers. To under-
stand if a new round of undersampling would be beneficial, we
activate the OSS algorithm again with the same settings (step 7).
However, the outcome is to decrease the relatively safe population
that much, so that the result is becoming worse. Therefore, we dis-
able the algorithm and stop the undersampling phase (step 8). Mov-
ing on to the oversampling phase, we aim at utilizing SMOTE to
generate artificial points for increasing the number of instances in
the underrepresented classes. The oversampling of all data types re-
duces both Balanced Accuracy and F1-score (step 9 in Figure 1(h)).
From Figure 6(f), we can understand that several problematic out-
liers are not considered for removal at all by the OSS algorithm
during the previous phase. In particular, four outliers are predicted
as vans while they belong to the car class according to the ground
truth, as shown in Figure 6(g), at the bottom-left region. The over-
sampling algorithm should not eternalize this confusion. Conse-
quently, we choose to exclude all 6 outliers from the pool of in-
stances in order to primarily generate safe and borderline instances
for the van and bus classes (cf. Figure 1(a)). The resulting distri-
bution of points achieves our goal (see Figure 1(c)) and leads to an
improvement in the overall predictive power (step 10).

Tracking the process and evaluating the results. To verify
our sampling execution actions, we continuously monitor the pro-
cess through the Sankey diagram, as shown in Figure 1(g). From
this representation, we acknowledge that the population of safe
instances decreased drastically when the undersampling was exe-
cuted. The manual undersampling and oversampling processes (de-
scribed previously) led to the best predictive result we managed to
accomplish, with 9 confused test instances (7 of them belonging to
the car class, as presented in Figure 1(h), left). From the horizontal
bar chart in Figure 1(h), right, the performance difference in each
step suggests that using directly the automated sampling algorithms
led to worse results (cf. steps 1 and 9). With the help of HARD-
VIS, we managed to improve, even more, both Balanced Accuracy
and F1-score by approximately +2%. To sum up, our VA system
guided us in systematically setting the parameters of the sampling
algorithms and applying them in subsets of the data throughout the
various rounds of undersampling and oversampling. As pointed out
by the experts in Section 6, this would have been (almost) impossi-
ble without direct human intervention.

6. Evaluation

We performed online, semi-structured interviews with five inde-
pendent experts to gain qualitative feedback on our system’s use-
fulness, using the procedure described in prior works [MXLM20,
XXM∗19]. The first ML expert (E1) is a full professor with a PhD

in computer science. He has 15 years of experience with ML, and
he is head of the natural language processing (NLP) group at his
university. The second ML expert (E2) is a full professor in ML
and data science addressing mainly challenges in humanities. He
has worked with ML for the past 30 years, and he holds a PhD
in applied mathematics. The third ML expert (E3) is an assistant
professor working with ML and deep learning, with 7 years of ex-
perience in ML. His PhD is in media technology. The fourth ML
expert (E4) is a postdoc also focusing on ML and deep learning,
and she has 8 years of experience in ML. Finally, the fifth ML
expert (E5) is a postdoc with 20 years of experience in ML. The
latter two experts have PhDs in computer science. E1 was the only
one who reported a colorblindness issue (deuteranomaly), but he
affirmed having no problem perceiving correctly the specific color
combinations we used in HARDVIS. Each interview lasted about 1
hour and 15 minutes, and the interviews were structured as follows:
(1) introduction of the primary objectives of HARDVIS, including
the analytical tasks and design goals of Section 3; (2) presentation
of the functionality of every visualization and interaction with the
system using the iris flower data set (as in Section 4); and (3) ex-
planation of the steps taken to arrive at the results in Section 5.
We asked the participants to freely comment on anything. Their
responses are summarized below.

Workflow. All experts agreed that HARDVIS’ workflow is well
designed and reasonable from their perspective. They characterized
the workflow as straightforward and aligned with respective fully-
automated sampling processes. E1 and E2 repeatedly commented
positively upon our systematic and fine-grained approach that they
have never seen before in all those years of developing new and
deploying already existent ML models. “The offered granularity of
undersampling and oversampling is exceptional, i.e., the fact that
several phases can be applied in a row and for different subsets of
the data space is something that I believe is almost impossible to
accomplish without such a tool”, said E1. E2 underlined the clear
benefit of controlling the automatic algorithms’ suggestions since
blindly following them could overfit the training set (and hurt gen-
eralization). He then stated that letting users be completely free
to remove or generate artificial instances manually could probably
harm the predictive performance similarly. Thus, E2 found that our
tool combines the best of both worlds.

Visualization and interaction. The promising findings we were
able to obtain with the help of our VA system in the usage scenario
of Section 5 amazed E3 and E4. While using the same value for
the number of neighbors parameter and the k-value for the distri-
bution of data types, E3 appreciated that the k-value could still be
adapted freely, as illustrated in Figure 3(c). The most intuitive vi-
sualization according to E2, E4, and E5 was the box plots view
(Figure 3(f)) which was found exceptionally well-linked with the
UMAP projection (Figure 3(d)). Especially with this view, these
experts were able to understand the decisions we made in Sec-
tion 4 and Section 5. The inverse polar chart (cf. Figure 3(i)) was
the most confusing view at first. However, after a careful explana-
tion from our side, all experts understood its meaning and claimed
this visualization was the most novel visual representation of our
tool. Since the same encoding as with the UMAP projection makes
this view intuitive, they were able to inspect the instances immedi-
ately with low predicted probability (and with which specific class)
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from the eyes of the model. An interesting suggestion by E2 was
to visualize the KNN-graph for a particular instance when users
hover over a specific point/instance. Although HARDVIS already
enables users to make justifiable actions by exploring all training
instances from both global and local perspectives, this recommen-
dation could be seen as an extra validation step for the projection.
He also mentioned that for a more unsupervised-focused approach,
the main color of the projected points could show the data types,
and the outline of points could be used for the ground truth labels
(if there are any). Despite that, E3 and E4 thought that with the
current color scale, the focus is on unsafe cases, which could de-
crease the model’s accuracy if they are removed before or without
reasoning about them at all.

Limitations identified by the experts. E1 and E2 were con-
cerned about the scalability of the system. The former concentrated
on the problem of visualizing hundreds of features, while the lat-
ter on the exploration of more than three classes. E1 acknowledged
that the box plots and the table heatmap view are interactive with
zooming and panning functionalities, which could partially address
this issue. Also, the feature importance could be useful for decid-
ing which features are not informative for a provided data set to
exclude them beforehand. Regarding the second issue, the main
bottlenecks are the inverse polar chart and the extensive use of
colors. The proposed visualization could be further improved to
scale with more than three classes by using advanced RadViz-based
approaches [POSC∗15, TBVLH∗14]. Furthermore, E2 noted that
multi-class classification problems could be resolved as being bi-
nary due to the one-vs-rest strategy. E5 proposed to deploy HARD-
VIS in a cloud server supporting parallel processing to improve fur-
ther the efficiency of the system. E1 and E3 mentioned that heavily
modifying our VA system is inevitable in case we would like to
extend it to other types of data, e.g., image or NLP data sets that
consist of non-interpretable features such as pixels and word vec-
tors. However, they completely agreed that this was not our original
intention. E1 stated that non-expert users or even domain experts
could find it difficult to operate HARDVIS and be advised by all
visualizations concurrently, despite the views being logically posi-
tioned in a single window. Therefore, as an improvement of gener-
alizability to other target groups, he proposed to separate the views
in different tabs depending on the certain domain problem at hand
and the users’ prior experience to reduce the cognitive load. How-
ever, for ML experts, this deep level of granularity and the guidance
received from the tool are necessary for making decisions. Finally,
E3 described that as with any other VA tool and ML model in gen-
eral, the quality of the data set would probably affect negatively
the capability of the tool to explore a complex and low-quality data
set to the point that it could be challenging to improve the pre-
dictive performance. A preprocessing phase that handles missing
values and wrangles the data could alleviate this problem. We plan
to work on methods to surpass such limitations.

Overall assessment. The provided feedback was encouraging
and in favor of HARDVIS compared to employing automatic ap-
proaches. All experts were confident about the benefits of using
our VA system.

7. Discussion

In this section, we discuss the visual design and overall limitations
of our approach as well as the current implementation.

7.1. Visual Design

Here, we elaborate further on the key design concepts of our VA
system that were presented in Section 4.

Familiarity with the prevalent types of data visualization.
The visual representations used are intentionally simple but form
a powerful system when combined. Specifically, the benefits orig-
inate from the identification of areas where sampling strategies
should be applied with guidance across the entire process. Simi-
lar to the user profile selected for the ML experts that participated
in our interview sessions, we deem that the users of our tool would
have worked with box plots, bar charts, tabular representations, and
visual embeddings in the past. Therefore, there may be a gradual
learning curve relevant to the familiarity with the visualizations.
Two exceptions could be the Sankey diagram and the inverse po-
lar chart. The former is for keeping track of their actions (usually
studied under the term provenance in visualization [XOW∗20]). A
simpler alternative we considered is a log list of user’s actions being
registered in each step, as well as empowerements of this represen-
tation with highlighted text. However, it would capture too much
space for a view that can be deemed as optional, especially since
the Sankey diagram is not crucial during the exploration and anal-
ysis phases (i.e., before either undersampling or oversampling take
place). The latter representation needs to be learned but can be a
game-changer for finding instances of confusion with a particular
class and observing the distribution of SBRO types from the per-
spective of the ML model, as already mentioned in Section 6. As
a straightforward alternative, we tried out a multi-class confusion
matrix. However, it only provides aggregated information and fails
to use the same visual encodings as the main view (see below).

Commonality in the visual encoding and color scales.
Throughout the whole HARDVIS system, the visual encodings
propagate from one view to the others. For example, the com-
mon grayscale denotes the four distinct types of instances in all
views. Tightly connected views—such as the UMAP projection and
the inverse polar chart—share identical encodings, i.e., label class
mapped to filled-in color, data type as outline color, and US/OS rep-
resented with symbols. The inverse polar chart is compact and uses
the available space effectively due to its inherent design; it spares
more area for the misclassified instances. For the table heatmap
view, the diverging color scale emphasizes the extreme values and
allows users to notice more differences on the left- and right-hand
sides of the middle point, with five colors having the same ori-
gin. For example, this middle point is crucial for the breast can-
cer data set, because instances with values closer to 1 for all fea-
tures should be classified as malignant, while samples with values
around 0 should be benign cancer. Finally in this view, hovering
over a specific cell interaction partly resolves the ambiguity prob-
lem introduced due to distributing the normalized values into 10
distinct bins.
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Table 1: Time taken to complete each activity of the sampling
process for all use cases. The completion time is expressed in
minute:second format. Please note that for the iris flower data set,
the undersampling time refers to two consecutive rounds.

Data set Sampling process

Data types Undersampling Oversampling

Iris flower 0:45 2:57 1:06
Breast cancer 1:53 6:52 -
Vehicle silhouettes 3:29 8:58 5:12

7.2. Limitations

In the following, we acknowledge limitations we have discovered
for our system (beyond those mentioned in Section 6), which imply
prospective future developments.

Scalability for a large number of instances and features. In
general, the number of instances and features that can be visually
expressed with our approach has no intrinsic limit. Collaris and van
Wijk [CVW22] found that usually the top 10–20 features were im-
pactful for the tabular data sets they experimented with. For hun-
dreds of features, it would be cognitively demanding for a human
to analyze the influence of all these features at different levels of
granularity. The methodology that might be used is first to limit the
space under inspection using an additional preprocessing phase in
the pipeline before employing HARDVIS for a deep analysis of fea-
tures, as already stated by an ML expert in Section 6. Collaris and
van Wijk [CVW22] also limited the number of instances to 5,000 in
order to prevent overplotting issues in their projection-based view.
Arguably, similar constraints should apply to our tool, especially
for the UMAP projection and the inverse polar chart view. How-
ever in our case, zooming and panning functionalities implemented
for both views can partly solve this problem along with overlap
removal strategies that could be helpful [HMJE∗19,YXX∗21]. Re-
garding the table heatmap view, it is mostly useful for comparing a
group of instances after a lasso selection has been performed. Ad-
ditionally, we have the box plots that offer an overview first and
scale better to many more instances.

Other kinds of data sets. Despite the vast range of application
domains covered with all our use cases, HARDVIS has merely been
evaluated with structured tabular data consisting of numerical val-
ues [SZA22]. We want to enable other data types in the future. Nev-
ertheless, the features of each data set under investigation should be
meaningful, because we focus on human expertise and knowledge
to resolve problematic situations where essential instances for the
generalizability of unseen data are being considered for deletion
and to avoid the generation of artificial samples that negatively im-
pact the predictive performance of the model. Overall, since our
prototype tool is a proof-of-concept, the system’s workflow and
theoretical contributions are generalizable in this respect.

Target group. The primarily targeted users that would gain the
most from adopting our approach are ML experts. We suppose that
they understand the fundamentals of their data sets and know how
to interpret common visual representations, but they require addi-
tional assistance with the sampling procedure. As evident from Sec-

tion 6, the five ML experts who participated in our 1-hour and 15-
minute interview sessions were able to grasp the main concepts and
operate HARDVIS. Another potential here is to create a more basic
version of our tool, geared explicitly for ML developers and even
inexperienced ML users with a low level of visualization literacy.

Completion time for each activity. The frontend of HARD-
VIS has been developed in JavaScript and uses Vue.js [vue14],
D3.js [D311], and Plotly.js [plo10], while the backend has
been written in Python and uses Flask [Fla10] and Scikit-
learn [PVG∗11]. More technical details are made available on
GitHub [Har22]. All experiments were performed on a MacBook
Pro 2019 with a 2.6 GHz (6-Core) Intel Core i7 CPU, an AMD
Radeon Pro 5300M 4 GB GPU, 16 GB of DDR4 RAM at 2667
Mhz, and running macOS Monterey. By taking into account the
specifications of the computer, we recorded the total wall-clock
time dedicated to completing the sampling process for each data
set (see Table 1, rows). For the time reported, we aggregate both
the computational analysis and the execution of the user’s actions,
as described in Sections 4.5 and 5. Table 1 columns map the time
for each activity of the sampling process (i.e., distribution of data
types, undersampling phase, and oversampling phase). In particu-
lar, as the number of instances and features to be examined grows,
so does the time necessary to compare alternative options and fi-
nalize the user-defined actions. Unsurprisingly, the undersampling
phase took the longest in all situations, followed by the oversam-
pling phase, and lastly the distribution of data types. Depending on
the quantity and importance of the extracted patterns, these values
might become rather different. In general, the rendering time after
a major user’s action is restricted to a couple of seconds for all the
data sets we tried. To sum up, the efficiency of HARDVIS could be
increased in various ways, as explained before.

8. Conclusion

In this paper, we developed HARDVIS, a VA system that uses
hardly-configurable undersampling and oversampling techniques
to handle instance hardness. As part of an intensively iterative pro-
cess, multiple coordinated views assist users in defining an ideal
distribution of data types, undersampling particular safe for re-
moval samples, and oversampling others. Additionally, it facili-
tates the exploration of algorithmic suggestions using a variety of
visual clues to confirm non-harmful removal or addition propos-
als. Finally, our VA approach is ideal for dealing with the instance
hardness and class imbalance challenges because it makes the en-
tire process adjustable and more transparent. The effectiveness of
HARDVIS was investigated using real-world data sets, which re-
vealed an increase of trustworthiness and in performance due to
removed and synthetically-generated instances. The workflow and
visualizations of our system received positive feedback from ex-
perts suggesting that such in-depth sampling would be impossible
without our tool. They also assisted us in identifying the existing
limitations of HARDVIS, which we are considering as future re-
search directions.
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