
1

FIRST: FrontrunnIng Resistant Smart ConTracts
Emrah Sariboz, Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra

Abstract

Owing to the increasing acceptance of cryptocurrencies, there has been widespread adaptation of traditional financial applica-
tions such as lending, borrowing, margin trading, and more, into the cryptocurrency realm. In some cases, the inherently transparent
and unregulated nature of cryptocurrencies opens users of these applications to attacks. One such attack is frontrunning, where a
malicious entity leverages the knowledge of currently unprocessed financial transactions and attempts to get its own transaction(s)
executed ahead of the unprocessed ones. The consequences of this can be financial loss, inaccurate transactions, and even exposure
to more attacks. We propose FIRST, a framework that prevents frontrunning, and as a secondary effect, also backrunning and
sandwich attacks. FIRST is built using cryptographic protocols including verifiable delay functions and aggregate signatures. We
formally prove the security of FIRST using the universal composability framework, and experimentally demonstrate its effectiveness
using Ethereum and Binance Smart Chain blockchain data. We show that with FIRST the probability of frontrunning in both
chains is near zero.

Index Terms

Ethereum frontrunning, EVM smart contract security, Verifiable Delay Function

I. INTRODUCTION AND RELATED WORK

THe decentralized, trustless, and censor-resistant nature of Ethereum, along with its support for smart contracts, has enabled
a wide range of financial applications and has created the Decentralized Finance (DeFi) ecosystem, which is worth more

than 28 Billion USD as of October 2022 [3]. With the recent developments, many real-world financial products such as money
lending/borrowing, margin-trading, exchange platforms, derivatives and more, are being made available to the blockchain users
via smart contracts [14], [4], [2], [15], [48]. Unfortunately, the absence of regulations allows malicious actors to adopt and
employ dubious practices from traditional finance within the cryptocurrency ecosystem. In finance, frontrunning is an act of
purchasing stock or other securities right before a large (whale) transaction owing to access to non-public information. By
doing so, one can take advantage of the outcomes of large unprocessed transactions to be executed after a later time than one’s
own. Frontrunning has been classified as illegal by monitoring entities, such as the U.S. Securities and Exchange Commission
(SEC) and principally prevented by extensive regulations [37].

In permissionless chains such as Ethereum, transactions that do not use private relayers such as Flashbots [1] and Edennet-
work [9] or engage with validators1 directly to conceal the details are publicly visible in the pending pool (or mempool) before
they are processed. Consequently, anyone watching the pending pool can identify a user transaction, txA, and try to frontrun
it by submitting another transaction with more gas price than txA. We pictorially depict a frontrunning attack in Figure 1.
The adversary, Mallory, watches the peer-to-peer (P2P) network for potential victim transactions. Once an honest user, Alice,
submits a transaction txA with gas price of GA, Mallory creates a transaction txM with gas price GM , where GM > GA to
be included in the upcoming block.

Examples of frontrunning attacks can be seen on various decentralized applications (dApps). The first and most prominent
attack vector is on decentralized exchanges (DEX). DEX is an exchange platform built on smart contracts and enables users
to exchange assets without the need for an intermediary [42]. Unlike centralized exchanges where users wait for their sell/buy
orders to be complete, most DEX’s, e.g., Sushiswap and Uniswap [45], [48], use an automatic pricing mechanism known as
Automated Market Maker (AMM) to perform instant trades.

A frontrunner can perform attacks with highly predictable results due to deterministic pricing mechanism as well as the
transparency of liquidity amounts of decentralized exchanges. In this context, Qin et al. estimated a profit of 1.51 Million
USD made by frontrunners [42]. Other domains that are affected by frontrunning attacks include (but are not limited to)
gambling [28], bug bounty programs [20], smart contracts exploits [47], and clogging [42], which emphasizes the threat and
the need for mitigation. In this work, we aim to mitigate frontrunning attacks on blockchains that support smart contracts such
as Ethereum, but without modifying the blockchain’s underlying infrastructure. Our framework also prevents backrunning and
sandwich attacks [55].

Related Work and Motivation: Although DeFi research has gained great attention in the past few years, the existing
research on frontrunning prevention is limited. Current literature focuses on classification of frontrunning attacks, studying
profitability of frontrunning, and some mitigation strategies. We discuss work in these three categories below.

Surveys of frontrunning and related mechanisms: Eskandari et al. presented a taxonomy of frontrunning attacks and
analyzed the attack surface of top dApps [28]. Qin et al. [42] extended the taxonomy of [28] and quantified the profit made
by blockchain extractable value [42]. There have also been studies of DeFi primitives and their economic aspects by Werner et

1With block 15,537,393, Ethereum has completed the transition to proof-of-stake.

ar
X

iv
:2

20
4.

00
95

5v
3

 [
cs

.C
R

]
 2

4
A

pr
 2

02
4

Alice MemPool Mallory Block 𝐸
𝑥
𝑒𝑐𝑢

𝑡𝑖𝑜
𝑛
𝑂
𝑟𝑑
𝑒𝑟

2. Detects 𝑡𝑥𝐴

3. Creates 𝑡𝑥𝑀

1. Submits 𝑡𝑥𝐴

𝑡𝑥𝐴

𝑡𝑥𝑀

Fig. 1: Steps involved in a frontrunning attack.

al. [52]. Daian et al. [24] demonstrated the existence of bots that frontrun victim transactions and competitively participate in
priority gas auctions and coined the term miner extractable value to show how miners reorder transactions to maximize their
profit. Baum et al. [16] presented the state-of-the-art in frontrunning and categorized mitigation mechanisms.

Profitability analysis: The profits made by frontrunners have been quantified by Torres et al. [47] and Qin et al. [42];
the latter also brought to attention the presence of private transactions submitted to miners. Zhou et al. [55] formalized and
quantified the profit made by sandwich attacks enabled by frontrunning on decentralized exchanges. Qin et al. [43] analytically
evaluated Ethereum transactions’ atomicity, analyzed two flash loan-based attacks, and demonstrated how attackers could have
maximized their profit. Wang et al. [51] proposed a framework that analyzes the profitability conditions on cyclic arbitrage in
DEX’s.

Frontrunning prevention strategies: Research in frontrunning prevention falls into three broad categories: (a) solutions that
require direct interaction with miners to include the transaction txA in the upcoming block (private relayer solutions) [39], [1],
[10]; (b) solutions that are designed for DEX’s (protocol incentive design solutions) [55], [54]; and (c) solutions that prevent
arbitrary re-ordering of transactions (order fairness solutions) [32], [33], [25], [35].

In the first category, Alice sends txA directly to miners via hidden endpoints (a private transaction) to prevent adversaries
from identifying her transaction in the pending pool. Flashbots [1] is one example, where entities called relayers bundle and
forward transactions to miners through private channels. However, relayers themselves could perform frontrunning attacks as
they have access to the complete transaction details.

The second category of solutions is built for AMM-based DEX’s; it reduces the risks of frontrunning by computing the optimal
threshold for the frontrunner’s transactions and routes the victim’s transaction (swap requests) to limit their profit. However,
these solutions are relevant only for DEX’s and cannot be utilized by other dApps, such as auctions, naming services, and
games [28], [54], [34].

The third category of solutions is built upon the order-fairness property, which ensures that the order of the transactions in
the finalized block is preserved in the same order as the users submitted [33], [35], [32]. However, these solutions cannot be
adopted directly and requires drastic changes to the consensus layer, which is non-trivial, whereas our solution is compatible
with state-of-the-art Ethereum Virtual Machine (EVM)-based blockchains, with no consensus layer modifications.

There are a couple of prior works [20], [49] that do not fall into any of the aforementioned three categories. LibSubmarine
uses a commit-and-reveal scheme to prevent frontrunning [20], where the committer must create a new smart contract for
every transaction they submit to a dApp, which is inefficient. In a recent work, Varun et al. [49] proposed a machine learning
approach to detect frontrunned transactions in real-time. This approach requires the machine learning model to learn regularly.
Further, the approach does not take into account priority fee, hence could fail to identify high priority fee based frontrunning
transactions.

We propose a general-purpose solution to the frontrunning problem using cryptographic protocols such as verifiable delay
functions (VDFs) and aggregate signatures [17], [19] whose outputs are publicly verifiable. Slowswap [11] utilizes VDFs to
introduce delays for transactions related to AMMs only. However, the current implementation employs a uniform VDF delay
for all transactions, which is not ideal given the dynamic nature of Ethereum. In contrast, FIRST conducts statistical analysis
and assigns VDF delay based on the network usage. Another solution in the Miner Extractable Value (MEV) mitigation space
is Radius [12], which also aims to prevent frontrunning and sandwich attacks by implementing encrypted mempools. However,
the Radius solution necessitates a redesign of the mempool, making its direct applicability limited. In contrast, FIRST offers
seamless integration to any EVM-based blockchains.

Our novel contributions are as follows:
a) We propose FrontrunnIng Resistant Smart ConTracts (FIRST), a framework that significantly curtails frontrunning attacks

in EVM-based blockchains without requiring any changes in the underlying blockchain infrastructure. Our framework is not
application-specific, and hence can be easily adopted by any dApps. b) We discuss the effectiveness of our approach and
experimentally evaluate it using real-world Ethereum and Binance Smart Chain transaction data. c) We present a rigorous
formal security analysis of FIRST using the Universal Composability (UC) framework.
Paper Organization: In Section II, we give a concise explanation of preliminary concepts relevant to the problem. In Section III,
we present the system model and threat model. In Section IV, we describe FIRST’s construction and constituent protocols, and
discuss our design choices. In Section V, we give the security analysis of FIRST. In Section VI, we detail the implementation
and evaluation. The design choices and limitations of FIRST are discussed in Section VII. Section VIII concludes the paper.

2

II. PRELIMINARIES

A. Ethereum and DeFi

The Bitcoin cryptocurrency has demonstrated the potential behind blockchain technology by enabling mutually untrusting
parties to transact directly while eliminating the need for a central authority. Ethereum extended this idea by allowing parties
to execute software programs called smart contracts. A smart contract is a program that resides on the Ethereum blockchain
and gets executed automatically when some predetermined conditions are met. On Ethereum, smart contracts can be developed
using programming languages, such as Solidity or Vyper. Their immutable and transparent nature created a new class of
decentralized applications, called dApps.

The finance-related dApps have enabled what is known as decentralized finance or DeFi. DeFi is an umbrella term that
includes various financial products (such as flash loans, asset management services, decentralized derivatives, and insurance
services) available to any user with an internet connection in a decentralized manner [4], [13]. It allows users to utilize financial
products at any time while keeping their identities private. In addition, DeFi products enable end-users to employ them in a
non-custodial fashion, giving users complete control over their money, as opposed to traditional financial services based on a
custodial model.

B. Cryptographic Preliminaries

Verifiable Delay Function: A VDF is a deterministic function f : X → Y that takes in a prescribed number of sequential
steps, T , to compute, allowing its correctness to be verified publicly and efficiently [17]. The idea of slowing down function
computation is indeed not new: Rivest et al. proposed time-lock puzzles [44], [27], whose application was to encrypt a message
to the future. The only way to retrieve the message was to perform T sequential steps, which cannot be made faster even using
parallel processors. Unfortunately, time-lock puzzles were not publicly verifiable, thus limiting their applicability. Although
some time lock puzzles offer public verifiability [30], their primary purpose diverges from that of VDFs, focusing on data
obfuscation rather than proving elapsed time. This makes them less suited for applications like FIRST, where the objective is
to demonstrably ensure each entity undergoes a specific waiting period before entry into the pending pool. Following [17], two
novel VDF constructions were proposed independently by Pietrzak and Wesolowski [41], [53]. Although both VDF schemes
could be utilized in our framework, we prefer the VDF construction by Wesolowski [53] due to its shorter proof size and faster
proof verification compared to [41]. We refer the reader to [18] for detailed comparisons of both VDF schemes, and give the
formal definition of a VDF in Appendix A.

Our VDF construction assumes that a potential adversary has a capable device, which is why all transactions are delayed by
the calculated duration to significantly reduce frontrunning chances. With less capable user devices this delay would increase,
but not significantly so. Hence, a less capable device (e.g., mobile device) can utilize FIRST.
Aggregate Signatures: An aggregate signature scheme allows the aggregation of n distinct signatures from n users, each on a
distinct message of their choice, into a single signature [19]. Moreover, it allows the aggregation to be done by any party among
the n users, including a potentially malicious party. By verifying the aggregate signature, one can be convinced that n distinct
users have signed n distinct messages, which have been collected into a single signature. FIRST utilizes this cryptographic
primitive to aggregate the verification results of a VDF proof. Please refer to Appendix A for the formal definition.

III. SYSTEM AND THREAT MODEL

A. System Model

Parties: In our system, there exist four main entities as depicted in Figure 2. 1) A smart contract SC, that is residing on the
Ethereum Blockchain. 2) Alice, who is a legitimate user interacting with SC by creating a transaction txA that is potentially
vulnerable to frontrunning attacks. Alice is equipped with a verification/signing keypair (pkA, skA). She evaluates a VDF
instance, V given to her by a set of verifiers. 3) A set of verifiers V who generate and send the public parameters of the
VDF, V , to Alice and verify the evaluated V and its proof of correctness that Alice submits to them. A coordinator C, is an
entity picked from the members of V by Alice to help aggregate their signatures into a single signature. 4) Validators, whose
goal is to construct blocks and propose them to the network, validate potential blocks received from other nodes, and process
transactions. Finally, dApp creator (dAC), who implements applications such as auctions, exchanges, bug bounty programs,
and Initial Coin Offerings (ICOs) which are known to be targeted by frontrunning attacks.

B. Threat Model and Assumptions

Mallory: We assume Mallory is an adversary who is computationally bounded and economically rational. Mallory is
observing the pending transaction pool for Alice’s transaction, txA on the Ethereum network. Mallory will attempt a frontrunning
attack as soon as she observes txA on the pending pool by paying a higher priority fee. We also take into account the case
where more than one adversary attempts to frontrun txA. For ease of exposition, we use Mallory to represent a group of
adversaries.
Verifiers: Verifiers V are a set of entities not controlled nor owned by the dAC. The only assumption we have on V is an honest

3

Alice Verifiers Smart Contract Validator

BC.write()

VDF Validate

Fig. 2: FIRST system model.

majority. The trust assumption in the verifiers ensures that transactions are not unjustly censored or subjected to unnecessary
delays from the malicious verifiers, thereby maintaining the liveliness property. In FIRST, verifiers do not have access to client
details during V verification, effectively precluding transaction censorship. Nonetheless, the introduction of a reputation system
could further reduce the risk of verifiers censoring user transactions.

FIRST’s intuitive plug-and-play framework seamlessly integrates projects like Eigenlayer, aiming to minimize trust depen-
dencies and match Ethereum’s renowned fault tolerance [46]. Eigenlayer offers Ethereum validators the opportunity to restake
their ETH, thereby channeling Ethereum’s security prowess to additional protocols. Just as with Ethereum’s PoS system, any
lapse in ensuring protocol security results in a corresponding slash of their stakes. Furthermore, we take into account the case
where a subset of malicious verifiers attempt to leak the transaction details to Mallory, and show how FIRST prevents it in
Section V.
Validators: We assume that the validators are greedy—they sort transactions in descending order of priority fee and pick them
in an order that maximizes their profit. They can also re-order transactions to increase their profit and attempt to frontrun
victim transactions.
Coordinator: The coordinator is randomly chosen by Alice from a set of verifiers V. It’s important to emphasize that while this
entity doesn’t need to be trusted for security purposes, it is essential for ensuring liveness. We assume Alice actively monitors
the transaction process. If any intentional delays are detected, Alice will re-elect a coordinator and continue her interactions
with the new entity.
dApp Creator: We assume dAC will deploy SC and implement it correctly. We also assume that dAC does not collude with
any other participant or with validators as it is in their best interest to protect their dApp for business reasons. Furthermore,
the inherent transparency of smart contract code, which is accessible to the public, acts as a safeguard against malicious intent.
Moreover, we assume that dAC has both completed the Know-Your-Customer (KYC) process and undergone an audit for the
protocol, providing an added layer of deterrence against malicious attempts. While KYC verification is predominantly utilized
in centralized services, there are companies like CertiK [22] that offer this service for dApps. KYC verification ensures that
in the event of any malicious actions by dAC, the real-world entity behind it can be easily identified, thereby enhancing the
deterrent effect against potential malicious activities.

We do not discuss networking-related attacks as they are out of the scope of this work; we refer the reader to relevant
research [38].

We give our table of notations in Table I.

IV. THE FIRST FRAMEWORK

A. Overview of FIRST

The conceptual idea behind FIRST is that Alice’s transaction cannot be frontrun by an attacker Mallory with her attack
transaction if the system does not allow Mallory’s transaction to hit the mempool until Alice’s has been posted. We can achieve
this by making Mallory’s transaction wait until Alice’s transaction has been posted. Hence, our FIRST framework requires each
user to wait for a predetermined time before entering the mempool (t1). The goal is to choose t1 for a given time period/epoch,
s.t. t1 >> t2, where t2 is the expected wait time of the transaction of any Alice in the mempool before getting posted on the

TABLE I: Notations

Variable Definition
BC Blockchain
λ Security parameter
V Set of verifiers
C Coordinator
V VDF instance

blockcurr Block height
(π, y) VDF proof and output, respectively

SC Smart contract
dAC dApp creator
txA Transaction of entity x
T Number of sequential steps in V

4

Blockchain. This ensures that, with high probability, Mallory cannot frontrun Alice’s transaction that she sees in the mempool.
The time t2 depends on several dynamic factors, namely transaction gas price, priority fee, miner extractable value (MEV),
and network congestion at the time of submission, which makes an exact assessment of t2 difficult. Since the expected value
of t2 is the best can be done, there is a chance of t1 being less than the actual waiting time for Alice’s transactions.

Given that t2 is difficult to predict, and a high t1 is detrimental to transaction throughput due to latency, what we do is
empirically arrive at a “reasonable” value for t1. FIRST continuously monitors the blockchain data to identify the minimum
priority fee value that would result in a high likelihood of all FIRST transactions waiting approximately t2 time in the
mempool. The t1 wait time is then fixed for a given epoch (higher than t2), ensuring that a potential attack transaction has
very low probability to frontrun valid FIRST transactions. For our application of FIRST in Ethereum, we set this epoch to be
the same as the default Ethereum epoch of 32 blocks. The dAC obtains the value of t1 via statistical analysis of the relation
between the priority fee of the transaction and transaction confirmation time by monitoring the Ethereum network continuously.
Consequently, FIRST recommends an optimal priority fee that significantly decreases the likelihood of transactions getting
frontrun. We detail how we perform such a statistical analysis in Section VI.

B. Construction of FIRST

In this section, we describe in detail the seven protocols that constitute FIRST. We start by giving a preamble of each
protocol. The initial protocol consists of deploying a smart contract, SC, and generating key pairs for all members of V
(Protocol 1). The second protocol is the generation of system parameters used in FIRST (Protocol 2). The third protocol is
the computation of FIRST recommended fee (FIRST FEE) (Protocol 3). The fourth protocol consists of a user creating a
transaction to be posted to the blockchain, BC , signing it, and submitting it to the set of verifiers, V (Protocol 4). The fifth part
is members of V processing the transaction, generating a delay time for the user, and user evaluating a VDF, V (Protocol 5).
The sixth part is the verification of V and the user’s transaction being submitted to the BC (Protocol 6). Finally, the verification
of signatures on V’s evaluation and contract execution is shown in (Protocol 7).

We use Sign and Verify with no pre-pended string to denote regular digital signature functions, whereas Agg.function()
denotes functions specific to the aggregate signature scheme. We use Verify for both, signature and VDF verification, which
will be clear from context. Below we discuss each protocol.
Protocol 1: This is the bootstrap protocol of FIRST, and is executed only once. It takes a security parameter as input and
outputs the smart contract SC and verification/signing keypairs for each member of V. First, the dAC implements and deploys
the dApp on Ethereum. Entities sign up with the dAC to become verifiers. Following deployment, each member of V generates
their key pairs.
Protocol 2: The protocol is used to generate the system parameters of FIRST. It takes in a security parameter and outputs
the public parameters (pp) of VDF V . In Line 1, each Vi ∈ V initializes its list Di and Ui, used to keep track of values used
in the VDF V’s evaluation and verification, respectively. In Line 2, the dApp creator dAC initializes the number of steps T
that will be used in the evaluation of V . T is the number of steps required to evaluate the VDF instance which results in a
corresponding delay of t1 units of time. Next, dAC samples a negative prime integer d, which satisfies d ≡ 1 (mod 4). These
requirements ensure that when generating the class group (Cl) from d in Line 4, the resulting class group order cannot be
efficiently computed by any known algorithm [53], [23].

Currently, two approaches are known for setting up V: using an RSA group of unknown order and using class groups of
imaginary quadratic fields [53] whose order is hard to determine. The RSA group approach requires a trusted setup when
generating N such that N = p.q where p and q are primes; in particular, p and q need to be kept secret. On the other hand, a
class group of imaginary quadratic fields does not require a trusted setup and is used by blockchains such as the Chia network
in production [23]. We use such groups to eliminate the trusted setup requirement in our construction.

Protocol 3: The goal of FIRST is to provide users with frontrunning resistant transactions. To this end, we demonstrate how
to compute a custom recommended fee — FIRST FEE — a novel concept used to achieve this goal. Without FIRST FEE ,
users would need to rely on third-party services, such as Etherscan, to set the transaction fees. This protocol continuously
monitors blockchain transactions to analyze transaction wait times and the associated priority fees paid, in order to calculate
the FIRST FEE . The α value passed as input to the protocol corresponds to the weight of simple Exponentially Weighted
Moving Average (EWMA) calculation for FIRST FEE inside the CalcFIRSTFee function.

Protocol 1: System setup.
Inputs : Security parameter λ.
Output: SC, (pk, sk) keypair for each member of V.
Parties : dApp owner (dAC), set of verifiers (V).

1 dApp creator dAC implements the smart contract SC and deploys it on Ethereum.
2 Each Vi; i ∈ [1 . . . n] generates (pki, ski)← Agg.KeyGen(1λ).

5

Protocol 2: Parameter generation.
Inputs : Security parameter λ.
Output: pp.
Parties : dApp owner (dAC), set of verifiers (V).

1 Each Vi ∈ V, initializes lists Di, Ui = [].
2 dAC picks T ∈ Z+.
3 dAC←$ d, s.t., d is negative prime and d ≡ 1 (mod 4).
4 dAC computes G← Cl(d) and output pp = (G, T)

Protocol 3: FIRST recommended priority fee calculation.
Inputs : Initial t2 wait time, α, and k (multiplication factor for t1).
Output: Recommended priority fee
Parties : dApp owner (dAC).
function CalcFIRSTFee(FIRST FEE ,txlist):

templist = [].
for tx in txlist do

if txwait time < t2 then
templist.append(txpriority fee).

end
end
if templist == ∅ then

/* re-calibrate t2 & t1. */
Initiate epoch change.
return

end
favg = average(templist).
if FIRST FEE == 0 then

FIRST FEE = favg .
end
else

FIRST FEE = α× favg + (1− α)× FIRST FEE .
end

function main():
1 FIRST FEE = 0.
2 t1 = k × t2.
3 while True do
4 if New block with txlist transactions is posted on the blockchain then
5 CalcFIRSTFee(FIRST FEE , txlist).
6 if Current epoch ended then
7 Update t2 if needed, set t1 = k × t2 and update T to correspond t1.

end
end

end

The value of t1 in Protocol 3 corresponds to the T value set in Line 2 of Protocol 2. T is the estimated number of steps
required by a powerful machine (e.g. one with a modern desktop CPU) to compute a VDF proof with t1 delay. Most other
less capable machines will take longer than t1 to compute the VDF. For each new block posted on the blockchain, Protocol 3
calculates the average fee (favg) paid by transactions which waited less than t2 time in the mempool before being posted in the
blockchain. The average value calculated in the previous step is then incorporated into the FIRST FEE value using EWMA.
The FIRST protocol enables the forceful change of an epoch if the t2 value needs to be updated before the current epoch
ends. For instance, when the number of transactions in the current block waiting less than t2 time are statistically insignificant
or cross a predefined system threshold (in Protocol 3, templist == ∅) we initiate epoch change, and update the t2 and t1
values based on the average waiting time across a set number of recent past blocks, which can be a system parameter (10
blocks in our experiments). We note that during the shift from a longer to a shorter delay period (t1), FIRST momentarily
halts transaction submissions. This precaution maintains fairness between transactions with varying VDF delays throughout
the transition (oldt1 to newt1), safeguarding transactions with extended VDF delays from being outpaced by those with shorter

6

ones.
Protocol 4: This protocol is used to generate transaction details of FIRST’s users. It takes as input Alice’s transaction details
and outputs a message, its digest and a signature over the digest; the latter two are meant to be given to V. In Line 1, user
Alice constructs a tuple, MA, with the transaction details, including her Ethereum address addrA, the dApp smart contract
address that she intends to submit a transaction to, addrSC (that dAC created), and the name of the function that she intends
to invoke to trigger the smart contract SC, fname. We assume she has a verification/signing keypair (pkA, skA), using which,
in Line 2, she creates and signs a digest of MA. Using the cryptographic hash of the transaction details prevents the leakage
of any detail that may help a potential frontrunner. Alice sends the digest of MA (h) and her signature over it (σA) to each
Vi; i ∈ [1 . . . n]. Alice chooses coordinator (C) from V to help with signature aggregation in Protocols 5 and 6.
Protocol 5: This protocol must be executed between Alice and members of V. It takes as input the output of Protocol 4, i.e.,
the digest/signature over Alice’s message. It outputs the evaluation of the VDF instance, V , and its corresponding proof. In
Line 1, the coordinator C samples a unique (per user) prime l from a set of primes P that contains the first 22λ primes. We
require each Vi to independently check l and verify that it was not generated before (Lines 2, 3).

Upon checking the validity of l and Alice’s signature, each Vi creates a message Mi by concatenating l, blockcurr, and h
from Protocol 4 to its id and signs Mi (Lines 5, 6). V’s freshness blockcurr, which represents the block height at the time of
request is included in Mi to prevent off-line attacks on V . For an off-line attack, Mallory requests l and pre-evaluates the V to
submit the frontrunning transaction when the victim transaction is seen on the network. However, the smart contract eliminates
this attack by verifying the freshness of V . In Line 7 and 8, each Vi ∈ V updates their Di to keep track of used l values and
sends their σi to C. The list Di is used to ensure that no user in the system has been given the current l for V computation,
else colluding users can reuse proofs. The list Ui is used to ensure that users in the system can only use a given l once,
hence thwarting any replay attacks. In Lines 18 and 19, C verifies the signatures of verifiers, aggregates them, and sends the
aggregate signature to Alice for verification. We note that both D and U are public lists.

The goal of the aggregate signature scheme in FIRST is to cut down the cost of verifying each Vi’s signature individually.
Moreover, we can obtain aggregate signatures from all members of V without requiring any trust assumption on them. We
refer interested readers to [19] for further details on the aggregate signature scheme. Alice checks the validity of σagg and the
number of received messages j, where j > |V|/2. If both return true, Alice retrieves and verifies the public parameters of V ,
pp, and starts the evaluation of V (we recollect that per our system model, Alice evaluates V). During the evaluation, Alice
generates output and proof of correctness π, which is sent to all members of V (Lines 20, 21).
Protocol 6: Protocol 6 is required to be executed between Alice and V. It takes as input the VDF evaluation result and its
proof (given as output by Protocol 5), the pp of V and outputs Alice’s transaction txA to be submitted to SC. In Line 2,
every Vi ∈ V first checks if l /∈ Ui. This check ensures that Mallory is not reusing the l to evaluate V . Each Vi also checks if
l ∈ Di, to check if l has indeed been assigned to a user. If the check returns true, every Vi ∈ V adds l to Ui. In Line 4, every
Vi ∈ V verifies the VDF proof π sent by Alice. Depending on the outcome of the verification, each Vi creates M ′

i and signs it
(Lines 5, 6). Upon completion of the verification phase, in Line 17, C first verifies each σ′

i and aggregates the signatures into a
unique signature σ′

agg. In Line 18, C creates a tuple M ′
agg, containing the σ′

agg, distinct messages of members of V, their public
keys, and sends it to Alice. Alice checks the validity of σ′

agg and the number of received messages j, where j > |V|/2, for a
majority of verifiers from V. 2 If both return true, Alice creates M ′ consisting of her message, MA from Protocol 4, Magg from
Protocol 5, and M ′

agg from Protocol 6. Alice signs it before creating transaction txA, sets the transaction fees (FIRST FEE
from Protocol 3 and current Ethereum base fee), and submits the transaction (Lines 19, 20, 21).
Protocol 7:This protocol is used to validate the transaction txA, V’s verification details, and the signature aggregation. Alice
creates and submits txA with recommended fee. SC parses txA to access necessary fields. SC verifies transaction details
committed to in Protocol 4, verifies the messages of verifiers and checks if the number of participants in the verification phase
is more than |V|/2. Finally, SC will check the given V’s freshness by checking if the difference between the block height at
the time of request and the current lies within a pre-defined system threshold that should be adjusted by dAC. We note that

2The number of messages received by Alice in Protocol 5 and Protocol 6 are both denoted by j, but we note that the value of j in both protocols need not
be exactly the same, as long as it satisfies the property j > |V|/2.

Protocol 4: Transaction detail generation.
Inputs : addrA, fname, addrSC .
Output: Secret message MA, h, Signature σA.
Parties : set of verifiers (V), user in system (Alice).

1 Alice generates message MA = (addrA, fname, addrSC , inputSC).
2 Alice generates hash of MA, h = H(MA), and signs it: σA ← Sign(skA, h).
3 Alice sends (h, σA) to each Vi; i ∈ [1 . . . n], n = |V|, including the Vi she picks as the coordinator C for signature

aggregation.

7

Protocol 5: VDF verification and transaction submission.
Inputs : π, y.
Output: Aggregate signature σ′

agg, transaction txA.
Parties : user in system (Alice), set of verifiers (V).
/* Proof verification run independently by each verifier */

1 for each Vi ∈ V do
2 if l /∈ Ui and l ∈ Di then
3 Add l to Ui.
4 if “accept” ← V.Verify(pp, l, y, π) then
5 M ′

i = (“accept”, Vi, l).
6 σ′

Vi
← Agg.Sign(skVi

,M ′
i).

7 Send (M ′
i , σ

′
Vi
) to C.

8 end
9 else

10 return ⊥
11 end
12 end
13 else
14 return ⊥
15 end
16 end
/* Signature aggregation and transaction submission */

17 C checks if each Agg.Verify(pki,M
′
i , σ

′
Vi
)

?
= true. If majority of members of V return ⊥, C returns ⊥ to Alice. Else C

does σ′
agg ← Agg.Aggregate(M ′

1, . . . ,M
′
j , σ

′
V1
, . . . , σ′

Vj
), where j > |V|/2.

18 C creates M ′
agg = (σ′

agg,M
′
1, . . . ,M

′
j , pk1, . . . , pkj) and sends to Alice.

19 Alice checks if Agg.AggregateVerification(σ′
agg, M ′

1, . . . ,M
′
j , pk1, . . . , pkj)

?
= true and j > |V|/2, if yes, Alice

creates M ′ = (MA,Magg,M
′
agg) and signs it, σ′

A ← Sign(skA,M
′). Else returns ⊥ and retry.

20 Alice retrieves the current recommended priority fee (FIRST FEE) from Protocol 3.
21 Alice creates and submits transaction txA = (σ′

A,M
′, pkA,FIRST FEE).

SC examines all messages and employs the blockcurr value endorsed by the majority to validate the freshness of VDF, rather
than relying on single blockcurr. The SC will abort the function execution if any check fails.

V. SECURITY ANALYSIS OF FIRST

A. Informal Security Analysis

In this section, we analyze the security of FIRST informally by considering potential attack scenarios and describe how
FIRST eliminates them. Malicious Verifier: In this attack, an adversary might try to corrupt some members of V, and try
to glean information about Alice’s transaction txA while she computes the VDF. FIRST accounts for this by having Alice
conceal all transaction details by hashing them and sharing only the digest with the verifiers (Protocol 4, Steps 2-3), thus
preventing any possibility for leakage of sensitive information. The general security guarantees apply for the case where a
malicious verifier attempts to frontrun Alice.
Proactive Attacker: Consider a scenario where Mallory or a bot she created are monitoring the pending transaction pool to
identify a transaction txA submitted by a user Alice. Let tM represent the time Mallory first sees txA, with a gas price GA,
on the pending pool. Mallory creates a transaction txM with gas price GM where GM > GA. We note that, in order for this
attack to succeed, txM is required to be included in the previous or in the same block but before txA. To address this, FIRST
assigns V related parameters and updates them regularly using the empirical analysis we describe in Section VI. Since all valid
transactions need to wait for FIRST stipulated time delay (V delay), txM will need to wait to generate valid V proof. If Alice
paid the FIRST recommended priority fee, txA will wait for at most t2 time in the pending pool, and since t2 is less than the
V delay set by FIRST (t1), Alice’s transaction will not get frontrun by Mallory with high probability.
Backrunning and Sandwich attack: Backrunning is another attack strategy where Mallory creates a transaction txM with a
gas price of GM where GM < GA to take advantage of the outcome of Alice’s transaction [42]. Given the enforced V delay,
the malicious transaction attempting to backrun the victim transaction has to wait before entering the mempool, which prevents
backrunning. FIRST makes it impossible for the attacker’s transaction to be scheduled in the same block thus preventing
frontrunning. Given both frontrunning and backrunning are prevented, sandwich attack is also prevented [55].

8

Protocol 6: User-Verifiers interaction.
Inputs : σA, h, pp.
Output: VDF output y, VDF proof π.
Parties : user in system (Alice), set of verifiers (V) including coordinator C.

1 On receiving (σA, h) from Alice, C ∈ V picks prime l←$ P and sends (h, l) to V \ C.
/* On receiving (h, l), every Vi ∈ V does the following */

2 for each Vi ∈ V do
3 if l /∈ Di and l /∈ Ui then
4 if true ← Verify(pkA, h, σA) then
5 Mi = (l, h, Vi, blockcurr).
6 σVi

← Agg.Sign(skVi
,Mi).

7 Add (l) to Di.
8 Send (Mi, σVi) to C.
9 end

10 else
11 return ⊥
12 end
13 end
14 else
15 return ⊥
16 end
17 end
/* Sig. aggregation and V evaluation */

18 C checks if each Agg.Verify(pki,Mi, σVi)
?
= true. If majority of members of V return ⊥, C returns ⊥ to Alice. Else C

does σagg ← Agg.Aggregate(M1, . . . ,Mj , σV1
, . . . , σVj

), where j > |V|/2.
19 C creates Magg = (σagg,M1, . . . ,Mj , pk1 . . . pkj) and sends Magg to Alice.

20 Alice checks if Agg.AggregateVerification(σagg,M1, . . . ,Mj , pk1, . . . , pkj)
?
= true, and if Verify(pki, pp, σppi)

?
= true

where i ∈ {1 . . . j}, and j > |V|/2. If both return yes, Alice computes (π, y)← V.Eval(pp, l). Else returns ⊥ and
retry.

21 Alice sends (π, y) to all members of V.

Protocol 7: Signature validation and SC execution.
Inputs : txA, blocknow and threshold.
Output: Smart Contract Functionality.
Parties : user in system (Alice), Smart Contract (SC).

1 Parse txA = (σ′
A,M

′, pkA,FIRST FEE), M ′ = (MA,Magg,M
′
agg), Magg = (σagg,M1, . . . ,Mj , pk1, . . . , pkj), and

M ′
agg = (σ′

agg,M
′
1, . . . ,M

′
j , pk1, . . . , pkj), where j > |V|/2.

2 if (H(addrA, fname, addrSC , inputSC)
?
= h) and ((l, h, ·, blockcurr) ∈ [M1, . . . ,Mj]) and

((“accept”, ·, l) ∈ [M ′
1, . . . ,M

′
j]) and (|M1, . . . ,Mj | > |V|/2) and (|M ′

1, . . . ,M
′
j | > |V|/2) then

3 if Agg.AggregateVerification(σ′
agg, M ′

1, . . . ,M
′
j , pk1, . . . , pkj)

?
= true then

4 if blocknow − blockcurr < threshold then
5 SC executes the intended functionality.
6 end
7 end
8 end

Malicious Block Proposer: In Ethereum 2.0, the block proposers are randomly chosen from active validators whose aim is
to propose a potential block for the slot they are assigned. As a result, they have full control over inserting, excluding, and
re-ordering transactions akin to miners in the PoW version of Ethereum. A potential attack can be frontrunning transaction
inserted into the block by the malicious block proposer. However, FIRST already handles this case: if any transaction does
not contain the aggregated signature of V on the verification of V proof, the smart contract will reject the transaction.
Pre-computed VDF attack: Attackers may attempt to create frontrunning transactions in advance and broadcast them when
they see the victim transaction in the pending pool. We eliminate this pre-computation attack vector by checking the freshness
of the VDF during smart contract execution (Line 4, Protocol 7). Specifically, suppose the difference between the current block

9

(where the transaction is slated for execution) and the block height at the time of the transaction request is greater than a
pre-defined system threshold, the transaction will be reverted.

B. Formal Security Analysis

We analyze the security of FIRST in the Universal Composability (UC) framework [21]. We define an ideal functionality,
FFIRST, consisting of three functionalities, Fsetup, Fbc, and Fconstruct along with two helper functionalities Fsig [21] and Fvdf [36].
Detailed definitions of these functionalities can be found in Appendix A.

We now prove the following theorem.
Theorem 5.1: Let FFIRST be an ideal functionality for FIRST. Let A be a probabilistic polynomial-time (PPT) adversary

for FIRST, and let S be an ideal-world PPT simulator for FFIRST. FIRST UC-realizes FFIRST for any PPT distinguishing
environment Z .

To this end, we need to prove that no balanced PPT environment Z (Z can be malicious and models anything external
to the protocol execution) can distinguish between the execution of the real-world protocols in FIRST, and the execution of
the ideal-world protocols in FFIRST. Let us assume the real-world adversary is denoted by A, and the ideal-world adversary
is denoted by S. We need to show that S, by interacting with FFIRST can simulate the actions of the real-world protocol, in
sequence, including being able to produce the exact same outputs and same messages being posted on the blockchain. Let us
assume that all communication between all parties takes place via secure and authenticated channels (see [26] for a formal
description of such channels).

We first note that if a party is corrupted, it comes under the control of Z and need not be simulated. Hence, S only needs to
accurately simulate the actions of honest parties in the ideal world. For a complete run of the protocol, we analyze the various
corruption cases, and discuss how S can simulate the actions of the honest parties. A can corrupt any user at any point in
time by sending a message “corrupt” to them. Once an entity is corrupted, all their information is sent to A and all further
communication to and from the corrupted party is routed through A.

Functionality Fsetup
Setup: On receiving tuple (setup, t1, t2, d, k, λ, α, sid) from dApp creator dAC, Fsetup verifies that t1 > t2, if not return
⊥. Fsetup sets value of VDF delay to t1 (s in Fγ

vdf), locally stores variables d, k, λ, α and initializes FIRST recommended
fee FIRST FEE = 0.
KeyGen: Upon receiving a request (KeyGen, uid, sid) from user u, Fsetup calls Fsig with (KeyGen, uid). When Fsig
returns (VerificationKey, uid, pku), Fsetup records the pair (u, pku) in idTable and returns (VerificationKey, uid, pku) to
the user and S.
Sign: When Fsetup receives a request (Sign, uid,m, sid) from user u, it forwards the request to Fsig, who returns
{(Signature, uid,m, σ),⊥}. If return value is not ⊥, Fsetup stores (m,σ, pku, 1) in aTable, where pku is u’s verification
key created and stored during key generation. Fsetup forwards (Signature, uid,m, σ) to u and S, else returns ⊥ to both.
Verify: When Fsetup receives (Verify, uid,m, σ, pk′, sid) from user u, it forwards the request to Fsig, who returns
(Verified, uid,m, f), f ∈ {0, 1, ϕ}. Fsetup records (m,σ, pk′, f) in aTable and returns (Verified, uid,m, f) to the user
and S.
Aggregate Signature: Upon receiving (Aggregate,M1, . . .Mn, pk1, . . . , pkn, σV1

. . . σVn
, sid) from C, Fsetup checks if a

tuple (σagg,M1 . . .Mn, pk1, . . . , pkn) already exists in sTable, if so, it forwards (Aggregated, σagg) to C and S. Else, it
checks if n > |V|/2, if not then ⊥ is returned to C and S . If previous check passed, Fsetup generates a string σagg ←$ {0, 1}λ,
adds (σagg,M1, . . .Mn, pk1, . . . , pkn) to table sTable, and forwards (Aggregated, σagg) to C and S.
Aggregate Verify: Upon receiving (aggVer, σagg, M1, . . .Mn, pk1, . . . , pkn, sid) from an entity, Fsetup checks if tuple
(σagg,M1, . . .Mn, pk1, . . . , pkn) exists in sTable. If yes, it forwards “accept”, else forward “reject” to the calling entity
and S.
Hash Interface: On receiving a message (hash,m, sid) from a user u, Fsetup checks if some tuple (m,h) exists in
hashTable. If so, it returns h and exits. If not then Fsetup creates h ←$ {0, 1}λ, adds (m,h) to hashTable, and returns
h to u.
Calculate FIRST Fee: For every new block mined, Fsetup sends getData() request to Fbc. Fsetup then checks priority fee
(fi where i ∈ [1 . . . n]) paid by tx1 . . . txn transactions in the latest block that waited less than t2 time, and calculates
the value of favg = 1/n×

∑
fi. FIRST FEE = α× favg + (1− α)× FIRST FEE .

Return FIRST fee: On receiving request (returnFee, sid) from user, Fsetup returns current value of FIRST FEE .

Fig. 3: Ideal functionality for system setup and signatures.

10

Functionality Fconstruct
User request: Upon receipt of tuple (sid, req, h, σu) from a user u with identifier uid, Fconstruct adds (uid, h, σu) to
uTable, and returns “success” to u, and forwards (sid, req, uid, h, σu) to V and S.
User response: Upon receiving (sid, aggregated, σagg, uid) from C, Fconstruct looks for a tuple (σagg, ·, ·) in sTable; if
such a tuple exists Fconstruct retrieves tuple (l, uid, ·) from cTable, constructs and returns tuple (sid, l, σagg, ·, ·) to uid
and to S, else returns ⊥ to both.
User verification: Upon receiving (sid, verify, l, p, s) from uid, Fverify checks if (l, uid, “not-used”) exists in cTable; if
yes, updates tuple in cTable to (l, uid, “used”) and forwards (sid, l, p, s) to each Vi ∈ V and S, else Fverify returns ⊥ to
Alice and S.
Coordinator request: Upon receipt of a message (sid, l, uid) from C, Fconstruct checks if there exists a tuple (uid, h, σu)
in uTable. If not, return ⊥ to C and S. If (l, ·, ·) exists in cTable, return (sid, fail, l) to C and S, if (l, ·, “used”) already
exists in cTable, return (sid, used, l) to C and S. Else, Fconstruct adds (l, uid, “not-used”) to cTable, Fconstruct retrieves
(u, pku) from idTable, constructs tuple (sid, valid, l, h, σu, pku) and forwards to all Vi ∈ V and S.
Coordinator response: Upon receiving (sid, Vi,mi, σVi

) from members of V, Fconstruct forwards (sid, Vi,mi, σVi
) to C

and S.

Fig. 4: Ideal functionality for transaction processing and VDF construction.

VI. EXPERIMENTAL RESULTS AND ANALYSES

We evaluate the performance of FIRST on real Ethereum traces over a month long period of observation. We analyze
FIRST’s suggested FIRST FEE during our experiment and show the effectiveness of FIRST in terms of the percentage
of frontrunnable transactions in a given time period. A low percentage implies that transactions submitted during the said
time period with FIRST FEE are seldom frontrunned. The success of FIRST is not only dependent on the FIRST system
parameters, namely k, alpha, and t2, but also on the system specific network dynamics. We replicate our analysis of FIRST
over a non-EIP-1559 chain, Binance Smart Chain (BSC). In what follows, we discuss details of our experimental setup, data
gathering, and experimental results.

A. Data Gathering

In order to get the most accurate waiting times of transactions in the pending pool, we deployed a Geth3 full node (v.1.11.0)
running on an Amazon AWS Virtual Machine located in North Virginia. The AWS node had an AMD EPYC 7R32 CPU
clocked at 3.30 GHz with 8 dedicated cores, 32 GB of RAM, 1.3 TB solid-state drive, running Ubuntu (v.20.4). We also
ran a beacon node using Prysm4 (v.3.1.2) software which is required to coordinate the Ethereum proof-of-stake consensus
layer operations. Once the deployed node synced, we collected the data in the Geth node’s pending pool. The data collected
included transaction arrival times and the transactions’ corresponding unique transaction hashes from block number 15665200
(3rd of October, 2022) to block number 15886660 (3rd of November, 2022)5. For each collected transaction from the confirmed
blocks on the blockchain, we gathered additional details such as block base fee, paid max priority fee, gas price, and block
confirmation time. The data referenced above can be accessed on our GitHub repository 6.

We used a machine with Apple M1 Max chip, 32 GB RAM, 1 TB HDD, running macOS Monterey (v.12.6) to perform
experiments on the collected data. There were a total of 30.6M transactions for the given block range (15665200–15886660),
out of which, 24.34M were Type-2 (EIP-1559) transactions and 6.26M were Type-1 (legacy, non-EIP-1559) transactions. We
analyzed the more common Type-2 transactions, FIRST can also be used for Type-1 transactions.

Out of the total 30.6M transactions our node was able to detect the wait time for 29.65M transactions. Since our node did
not receive a total of 944807 transactions (roughly 3.08%), we conclude that these transactions were either never sent to the
P2P layer because of the use of relayers (e.g., Flashbots) or our node did not receive them before their confirmation on the
blocks due to network latency. In practice, the dApp owner would deploy multiple full nodes to collect the pending pool data,
hence minimizing the chance of missing transactions due to network latency. We deployed another full Geth node in AWS
in Singapore with the same software and hardware specifications as the one in North Virginia. The intent was to perform a
comparative sanity-check on the transactions copies recorded at two geographically diverse locations.

We computed the waiting times of transactions received by our node by subtracting the transaction’s block confirmation
time from the recorded time when the transaction was first seen in our node’s pending pool. The difference in waiting times of
transactions in the US and Singapore was very small. Across all the transactions that we captured, the difference between the
receipt times in the US and Singapore was no more than 2 ns for any transactions. Interestingly, our Singapore node also never

3https://github.com/ethereum/go-ethereum
4https://github.com/prysmaticlabs/prysm
5subscribe function of web3js: https://web3js.readthedocs.io/en/v1.2.11/web3-eth-subscribe.html
6https://anonymous.4open.science/r/FIRST CCS23/

11

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-subscribe.html
https://anonymous.4open.science/r/FIRST_CCS23/

TABLE II: GAS CONSUMPTION FOR AGGREGATE SIGNATURE VERIFICATION ON SMART CONTRACT.
Number of Verifiers Total Gas Consumption (gas units)

5 374423
7 474327

10 621180
15 871987
20 1122943

received any of the 944807 transactions that were not seen by our US node, leading us to conclude that those transactions
were privately relayed.

B. Extension to non-EIP-1559 chain

Many Ethereum Virtual Machine (EVM) based blockchains, such as Polygon and Fantom, have implemented the EIP-1559
patch. Despite the overall trend of EVM-based blockchains adopting EIP-1559, for completeness we also studied a non-EIP-
1559 chain protocol. We replicated our analysis on the Binance Smart Chain (BSC) which is currently a non-EIP-1559 chain. We
deployed a Geth node (v.1.1.17) on AWS Singapore and recorded transaction wait times for 45K blocks (23285229–23288229),
totaling 5.29M transactions (statistically significant). Out of the 5.29M transactions, our node did not receive 141157 (2.66%).
In non-EIP-1559 chains, the gas price is used to incentivize the validator to pick up a transaction. Hence, FIRST uses gas
price to calculate the FIRST FEE in Protocol 3.

C. Aggregate Signature Implementation

To evaluate the cost of FIRST transaction verifications by the smart contract (Protocol 7) we deployed the aggregated
signature [19] verification function on a smart contract using the Solidity programming language. We used elliptic curve
pairing operations, such as addition, multiplication, and pairing checks introduced by Ethereum in the form of precompiled
contracts with EIP-197 7. In Ethereum, precompiled contracts enable the deployment of computationally-intensive operations
at a lower cost compared to the users implementing them on their smart contracts. Our implementation uses the alt_bn128
curve–the only elliptic curve supported by Ethereum as of November 2022. We used the bn2568 library (v.0) and the Go
programming language (v.1.17.5) to implement the aggregate signature generation and verification schemes. Table II shows
our results for the verification of the aggregated signatures by the smart contract with different number of verifiers. For
example, it costs 621180 units of gas for ten verifiers to verify the aggregated signature. Using the median gas cost of 18
GWei (representative of Sep.-Oct. 2023, when our experiments were conducted) and the average rate of $1600 per Ether, it
cost ≈$18 to verify the aggregated signature of 10 verifiers. Our code, written in Solidity, is just a proof-of-concept and we
have not spent time optimizing it–we expect this cost to be lower. The cost is largely due to the pairing operations in the
verification function. This is inefficiency is being addressed by the Ethereum community as per EIPs 1979, 110810. These
proposed improvements aim to reduce the pairing operations’ gas cost.

D. Scalability of VDF

We assess the practicality of VDF evaluation on devices with varying computational capabilities and compare the resulting
computation times among these devices. The VDF [53] used in FIRST has a complexity of O(T) for VDF proof generation
and O(log T) for verification, where T is the number of steps required for proof generation. For client-side costs experiments,
we use a rack server, specifically the PowerEdge R650 Intel Xeon Gold6354 with 18 cores and 36 threads per core, equipped
with 256 GB RDIMM and NVIDIA Ampere A2. Additionally, we evaluated the performance on an iPhone 12 with an A14
Bionic 6-core CPU, 64GB storage, and 4GB RAM, as well as the MacBook Pro. Detailed specifications for the MacBook Pro
used in our evaluation can be found in Section VI-A. For this experiment, we choose the sequential steps amount (T) to be 1
million whereas the bit length of security parameters to be 2048 bits. We give our results in Figure 6. As the figure illustrates,
the VDF evaluation time on a smartphone is longer compared to that on a laptop or a rack server. However, even if the waiting
time is longer on a smartphone, it only means that the user transaction has to wait longer (evaluate VDF) before entering the
mempool; it is still not susceptible to frontrunning.

E. Analyses and Discussion

We plot Figure 5a and Figure 5b to demonstrate how FIRST recommended fee changed over our observation period in
Ethereum and BSC blockchains, respectively. The figures show the recommended fee (FIRST FEE) on the Y-axes for the

7https://eips.ethereum.org/EIPS/eip-197
8https://pkg.go.dev/github.com/cloudflare/bn256
9https://eips.ethereum.org/EIPS/eip-197
10https://eips.ethereum.org/EIPS/eip-1108

12

(a) Recommended FIRST Fee for Ethereum. (b) Recommended FIRST Fee for BSC.
Fig. 5: Recommended FIRST fee for Ethereum and BSC blockchains per block.

corresponding block number on the X-axes, computed using Protocol 3. In both experiments, k = 3 and α = 0.6. For Ethereum
t2 was 30s and for BSC it was 5s. The FIRST FEE calculated on Ethereum refers to the recommended priority fee, while
on BSC, it refers to the recommended gas price.

In Figure 5a, the X-axis represents the 198K blocks on the Ethereum blockchain. As seen from the graph, the highest
spike in our recommended fee is around block number 15697567. Some blocks have an associated spike in the recommended
transaction FIRST FEE due to the surge in the priority fees paid by transactions in the prior blocks. For example, the sale of
tokens for the popular NFT project Art Blocks was confirmed in block number 15697567. Out of the 446 transactions in this
block, 405 purchased tokens using the Art Blocks contract and paid much higher priority fee than other network transactions.
This affected the FIRST FEE for 15697568. Similarly, the second-highest spike around block number 15741444 was caused
because of the NFT project “BeVEE - Summer Collection” sales.

The X-axis in Figure 5b represents the 41K blocks on the BSC blockchain. We see a spike in the FIRST fee for block
23298282 because four transactions indexed in the first four spots of the block 23298281 paid an average of 858.34 GWei
in gas fee—escalating the recommended FIRST fee. On analyzing the block, we believe that the transactions paid high fee
to profit from arbitrage opportunity. Despite the unpredictable events in the Blockchain, Figures 5a and 5b show that the
computed FIRST FEE adjusts to network activities.

In general, we noticed significantly less number of spikes in BSC, compared to Ethereum. This is due to the fast confirmation
of transactions in BSC–more discussion at the end of this section.

To initiate our experiments, we obtained the 50th percentile of the maximum wait time for the first 100 blocks and to
better handle system dynamism, set t2 to twice the value, t2 = 30secs. We also analyzed the Ethereum data for α =
{0.1, 0.2, 0.4, 0.6, 0.8} and found that the α = 0.6 gives us better success rate than other values. Note that despite the
occasional spikes most transactions pay a low priority fee, hence the value of α has limited impact.

For our analysis, we set k = 3, resulting in the VDF delay t1 = 90secs. To reiterate our use cases discussion (Section VII),
the VDF delay value is a function of the application and its risk appetite and can be tuned in FIRST. Even with t1 = 30secs,
only 0.004% of transactions were susceptible to frontrunning! We discuss this below.

Let txi represent the ith transaction in a block (b), where txi.fee and txi.ctime are the transaction fee and the duration txi

waited on the mempool respectively, and Tb represents the number of transactions in block b. Then, the fraction of potentially
frontrunnable transactions in b is given by,

fr =

∑Tb

i=0Jtxi.fee ≥ FIRST FEEKJtxi.ctime ≥ t1K
Tb

,

where J.K indicates Iverson brackets such that Jifee ≥ tipeK is true (1) if ifee ≥ tipe, is false (0), otherwise.
We analyzed the Ethereum and BSC data for different values of k. Figure 7 shows the percentage (fr×100) of transactions

that are frontrunnable out of the total transactions (24.34M in Ethereum and 5.14M in BSC) for different values of k. With
the VDF delay of 90s (k = 3) and the FIRST recommended fee, on the Ethereum blockchain, 196319 out of 198235 blocks
(> 99%) had no frontrunnable transactions! With t1 = 15secs (k = 3) and the FIRST recommended fee per BSC block, in
BSC none of the transactions were frontrunnable. In fact, the percentage of frontrunnable transactions goes to zero for k ≥ 2.
Our choice of k = 3 for the data is a good balance between the success rate and the imposed transactions delay.

As we discussed before, on Ethereum, the chance of transactions being frontrun is a bit higher on account of higher volatility
(we theorize, due to NFT transactions and slower block confirmation time) compared to BSC, which is more stable on account

13

of the faster settling of transactions. For example, from our data, in the time it takes Ethereum to confirm one block, BSC
confirms on an average 4.4 blocks. Each Ethereum block in our dataset has on an average 151 transactions, whereas it is 120
transactions in each BSC block. Thus, 666 BSC transactions are confirmed in the same time as 151 Ethereum transactions.

VII. DESIGN CHOICES, LIMITATIONS, COMPATIBILITY, AND USE CASES

In this section, we discuss potential alternative solutions, their disadvantages, compatibility of FIRST with other protocols,
and limitations of our work.
Intel SGX: Intel’s Software Guard Extensions (SGX) is a feature of Intel architecture that aims to protect the integrity
and confidentiality of a program and its code through Trusted Execution Environment (TEE) technology. Our initial design
anticipated adopting Intel SGX to protect the confidentiality of the transaction details from other entities and implement the
delay within enclaves. However, its black-box nature and the recent attacks [31], [40] undermines its choice.
Transaction ordering: An alternative solution to prevent frontrunning could be enforcing an ordering on transactions using
timestamps. However, challenges, such as synchronization, delay on the peer network, resilience challenge of a centralized
timestamp server, or dependence on off-chain services for timestamps make these solutions impractical [29].
Verifiers: One might question the need for VDF in the presence of an honest-majority committee which can be used to verify
delay. However, a solution using verifiers and not VDF mandates verifiers to keep a timer per request to track waiting time,
and apart from being unscalable is also not independently verifiable. On the other hand, VDF provides easy verification and
is publicly available.
Compatibility with private transaction: The FIRST framework is designed to protect the transaction from getting frontrun.
Since it does not change transaction structure, it is compatible with private relayers, such as Flashbots [1]. The only requirement
for a transaction before its submission to the relayers is to include the aggregated signature of V on the verification of V proof
(Protocol 6, Line 20). The SC will assert if the transaction includes the aggregated signature and rejects it if not present. FIRST
independently prevents frontrunning attacks on EVM-based blockchains without needing extra protocols. While compatible
with Flashbots, combining them is redundant and could compromise security through relayer delays.
Potential use cases: Ethereum Name Service (ENS) [5] and unstoppable domains [6] aim to map long and hard-to-memorize
Ethereum addresses to human-readable identifiers. Recent sale trends and exorbitant offers, such as amazon.eth, which received
a million-dollar offer [7], indicate the importance of frontrunning prevention solutions. FIRST can be used during the sale
of these domain names to prevent frontrunning. Non-fungible tokens (NFTs) are unique cryptographic tokens that live on
blockchains and are not possible to forge. One of the largest NFT marketplace Opensea exceeded 10 billion dollars in NFT
sales in the third quarter of 2021 [8]. Not surprisingly, frontrunning bots are watching the mempool for NFT sales to create a
counter transaction to frontrun. One can employ FIRST to prevent such attacks on the marketplaces.
Compatibility with Automated Market Makers: In addition to the previously identified applications, FIRST can also be
effectively integrated with AMMs. When an AMM adopts FIRST to prevent frontrunning on a certain pool, all transactions
that interact with the pool will experience a uniform VDF delay, which will ensure all transactions get shifted in time. The
delay can be set to a value that ensures all transactions get properly ordered without causing an unacceptable delay for users.
This results in proper ordering, preventing transaction failure. In the event of price discrepancy between the FIRST protected
AMM and other AMMs, arbitrageurs will naturally intervene. They will act to minimize the price gap between the exchanges,
thus bringing prices in line across all platforms. A rational AMM would prefer every transaction on their exchange to utilize
FIRST, significantly minimizing the likelihood of sandwich, frontrunning, or backrunning attacks.
Limitations: Adjusting the real-world delay time with the given VDF delay parameter for every user’s computational capabilities
is a challenging and, an open-research problem [16]. While it is an orthogonal task to ours, FIRST mitigates the problem by

Rack Server MacBook Pro iPhone 120

20

40

60

80

100

120

140

160

VD
F

Ev
al

ua
tio

n
Ti

m
e

(S
ec

on
ds

)

Fig. 6: Comparison of VDF computation times across multiple devices.

14

picking the t1 >> t2 — this ensures that a more-capable Mallory cannot frontrun a less-capable Alice. Another limitation
arises when an entity tries to re-submit a pending transaction created to interact with the FIRST protected protocol, perhaps
with a higher gas fee. Since the transaction is seen on the pending pool by all the entities, it increases the chances of getting
frontrun. Lastly, our framework does not support the interaction of two FIRST protected contracts, which we aim to address
in future work. We note that FIRST is a probabilistic solution as it recommends a fee to be paid by the users in the system to
avoid getting frontrunned with a high probability. However, as specified by the advantage statement in our theoretical analysis,
there is a chance that a sufficiently funded and powerful adversary can outpace and frontrun honest users.

To successfully frontrun a target user in the system, an adversary not only needs commensurately larger computational
resources than the norm to compute the VDF proof faster, but the adversary also needs to delay the target user’s transaction in
the mempool for the duration of time it takes to compute a valid VDF proof by inserting other transactions with higher fees
than the target. This is a high barrier to scale for even a well-funded and resourceful adversary. Having said this, the probability
of frontrunning, no matter how miniscule, still exists. This is the price we pay for having an autonomous distributed system
with no central control. For zero frontrunning probability, all transactions have to be serialized, only possible centrally, which
immediately undermines the distributed nature of blockchains and system scalability.

VIII. CONCLUSION

In this paper, we proposed a decentralized framework, FIRST for mitigating frontrunning attacks on EVM-based smart
contracts without modifying the consensus layer of blockchain. FIRST is not an application-specific solution and hence is
more accessible for implementation in various dApps. We experimentally show that with FIRST the probability of preventing
frontrunning attacks is very high in two major blockchains. We also proved FIRST’s security using the UC framework.

REFERENCES

[1] Flashbots: Frontrunning the MEV Crisis, 2022-9-25. https://www.coindesk.com/sparkpool-taichi-mining-network-front-running-defi/.
[2] dYdX, 2022-12-1. https://dydx.exchange/.
[3] DeFi Pulse, 2022-10-08. https://defipulse.com/.
[4] AAVE, Accessed:2022-9-25. https://aave.com/.
[5] Ethereum Name Service, 2022-9-25. https://ens.domains/.
[6] Unstoppable Domains, 2022-9-25. https://docs.unstoppabledomains.com/.
[7] Amazon.eth ENS domain owner disregards 1M USDC buyout offer on OpenSea, 2022-9-25. https://cointelegraph.com/.
[8] More than $10bn in volume has now been traded on OpenSea in 2021, 2022-9-25. https://yahoo.com.
[9] Eden Network, 2022-9-25.

[10] Ethermine, 2022-9-25. https://ethermine.org/api/pool.
[11] slowswap, 2023-8-12.
[12] theradius, 2023-8-12.
[13] yearn.finance, 2022-9-25. https://yearn.finance/.
[14] Compound Finance, 2022-9-25. https://compound.finance/.
[15] makerDAO, 2022-9-25. https://makerdao.com/en/.
[16] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo Gentile. SoK: Mitigation of Front-running in Decentralized

Finance. Cryptology ePrint Archive, 2021.
[17] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Annual International Cryptology Conference. Springer, 2018.
[18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions. IACR Cryptol. ePrint Arch., 2018.
[19] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In International conference

on the theory and applications of cryptographic techniques. Springer, 2003.
[20] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts.

In 27th USENIX Security Symposium, 2018.
[21] Ran Canetti. Universally composable signature, certification, and authentication. In Proceedings. 17th IEEE Computer Security Foundations Workshop,

2004., 2004.
[22] CertiK. Certik, 2023-12-5. https://www.certik.com/resources/blog/introducing-kyc-by-certik/.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Values of k (t1 = k x t2)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pe
rc

en
ta

ge
 o

f f
ro

nt
ru

nn
ab

le
 tr

an
sa

ct
io

ns

Ethereum
BSC

Fig. 7: Percentage of frontrunnable transactions (Y-axis) for different values of FIRST parameter k (t1 = k × t2).

15

https://www.coindesk.com/sparkpool-taichi-mining-network-front-running-defi/
https://dydx.exchange/
https://defipulse.com/
https://aave.com/
https://ens.domains/
https://docs.unstoppabledomains.com/
https://cointelegraph.com/
https://yahoo.com
https://ethermine.org/api/pool
https://yearn.finance/
https://compound.finance/
https://makerdao.com/en/
https://www.certik.com/resources/blog/introducing-kyc-by-certik/

[23] Bram Cohen and Krzysztof Pietrzak. The chia network blockchain, 2019.
[24] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0: Frontrunning in

Decentralized Exchanges, Miner Extractable Value, and Consensus Instability. In IEEE Symposium on Security and Privacy (SP), 2020.
[25] Yael Doweck and Ittay Eyal. Multi-party timed commitments. arXiv preprint arXiv:2005.04883, 2020.
[26] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina Hostáková. Multi-party Virtual State Channels. Advances in Cryptology -

EUROCRYPT, 2019.
[27] Karim Eldefrawy, Sashidhar Jakkamsetti, Ben Terner, and Moti Yung. Standard model time-lock puzzles: Defining security and constructing via

composition. Cryptology ePrint Archive, Paper 2023/439, 2023. https://eprint.iacr.org/2023/439.
[28] Shayan Eskandari, Mahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty: front-running attacks on blockchain. Financial Cryptography, 2019.
[29] Gabriel Estevam, Lucas M Palma, Luan R Silva, Jean E Martina, and Martı́n Vigil. Accurate and decentralized timestamping using smart contracts on

the Ethereum blockchain. Information Processing & Management, 2021.
[30] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable time-lock puzzles and applications. Cryptology ePrint Archive, Paper

2020/779, 2020. https://eprint.iacr.org/2020/779.
[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop

on Systems Security, 2017.
[32] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permissionless setting. In Proceedings of the 9th ACM on ASIA

Public-Key Cryptography Workshop, 2022.
[33] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryptology

ePrint Archive, 2021.
[34] Rami Khalil, Arthur Gervais, and Guillaume Felley. TEX-A Securely Scalable Trustless Exchange. IACR Cryptol. ePrint Arch., 2019.
[35] Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains. In Proceedings of the 2nd ACM Conference on

Advances in Financial Technologies, 2020.
[36] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryptographic timestamping based on verifiable delay functions. In

International Conference on Financial Cryptography and Data Security. Springer, 2020.
[37] Craig McCann. Detecting Personal Trading Abuses, 2000. https://www.sec.gov/rules/other/f4-433/mccann1.htm.
[38] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari Juels. BDoS: Blockchain Denial-of-Service. In Jay Ligatti, Xinming

Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM SIGSAC Conference on Computer and Communications Security, 2020.
[39] Alex Obadia. DeFi Has a Front-Running Problem. Sparkpool’s Potential Fix Is Launching This Month, 2022-9-25. https://medium.com/flashbots/front

running-the-mev-crisis-40629a613752/.
[40] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer. Varys: Protecting SGX enclaves from practical side-channel

attacks. In 2018 Usenix Annual Technical Conference, 2018.
[41] Krzysztof Pietrzak. Simple verifiable delay functions. In Innovations in theoretical computer science conference (ITCS). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2018.
[42] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How dark is the forest? In 2022 IEEE Symposium on Security

and Privacy (SP). IEEE, 2022.
[43] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the defi ecosystem with flash loans for fun and profit. In International

Conference on Financial Cryptography and Data Security. Springer, 2021.
[44] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto. Massachusetts Institute of Technology. Laboratory for

Computer Science, 1996.
[45] Sushiswap. Sushiswap, 2022-9-25. https://sushi.com/.
[46] EigenLayer Team. Eigenlayer: The restaking collective, 2022-9-25. https://docs.eigenlayer.xyz/whitepaper.pdf.
[47] Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones and the raiders of the dark forest: An empirical study of frontrunning on the Ethereum

blockchain. In 30th USENIX Security Symposium, 2021.
[48] Uniswap. Uniswap, 2022-9-25. https://uniswap.org/.
[49] Maddipati Varun, Balaji Palanisamy, and Shamik Sural. Mitigating Frontrunning Attacks in Ethereum. In Proceedings of the Fourth ACM International

Symposium on Blockchain and Secure Critical Infrastructure, 2022.
[50] vbuterin. EIP 1559 FAQ, 2022-9-25. https://years.ethereum.org/@vbuterin/eip-1559-faq/.
[51] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Wattenhofer. Cyclic Arbitrage in Decentralized Exchanges. Available at

SSRN 3834535, 2022.
[52] Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William J Knottenbelt. Sok: Decentralized finance (defi). arXiv

preprint arXiv:2101.08778, 2021.
[53] Benjamin Wesolowski. Efficient verifiable delay functions. In Annual International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 2019.
[54] Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2MM: Mitigating Frontrunning, Transaction Reordering and Consensus Instability in Decentralized

Exchanges. arXiv preprint arXiv:2106.07371, 2021.
[55] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. High-frequency trading on decentralized on-chain exchanges. In 2021

IEEE Symposium on Security and Privacy (SP), 2021.

APPENDIX

The recent London hard fork to Ethereum proposed novel transaction pricing mechanisms to improve the predictability of
gas prices even during dynamic periods [50]. Users are now required to pay a base fee, which is a fee computed according to
a formula that may increase or decrease per block depending on network utilization. Besides a base fee, a user is encouraged
to pay a priority fee to incentivize the validators to prioritize the user’s transactions. The transactions that follow EIP-1559 are
termed Type-2 transactions. While Ethereum has adopted EIP-1559, it’s worth noting that other prominent blockchain networks,
like Binance Smart Chain, have not yet implemented this standard. Despite the differing approaches, Ethereum and Binance
Smart Chain remain two of the most widely used blockchain platforms. In our evaluation, we leverage these platforms as
references to evaluate the proposed framework and demonstrate its applicability.

Definition A.1 (Verifiable Delay Function [17]): A verifiable delay function, V is defined over three polynomial time
algorithms.

1) Setup(λ, T) → pp = (ek, vk): This is a randomized algorithm that takes a security parameter λ and a desired puzzle
difficulty T and produces public parameters pp that consists of an evaluation key ek and a verification key vk. We require

16

https://eprint.iacr.org/2023/439
https://eprint.iacr.org/2020/779
https://www.sec.gov/rules/other/f4-433/mccann1.htm
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752/
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752/
https://sushi.com/
https://docs.eigenlayer.xyz/whitepaper.pdf
https://uniswap.org/
https://years.ethereum.org/@vbuterin/eip-1559-faq/

Setup to be polynomial-time in λ. By convention, the public parameters specify an input space X and an output space
Y . We assume that X is efficiently sampleable. Setup might need secret randomness, leading to a scheme requiring a
trusted setup. For meaningful security, the puzzle difficulty T is restricted to be sub-exponentially sized in λ.

2) Eval(ek, x)→ (y, π): This algorithm takes an input x ∈ X and produces an output y ∈ Y and a (possibly empty) proof
π. Eval may use random bits to generate the proof π but not to compute y. For all pp generated by Setup(λ, T) and all
x ∈ X , algorithm Eval(ek, x) must run in parallel time T with poly(log(T), λ) processors.

3) Verify(vk, x, y, π) → {“accept”, “reject”}: This is a deterministic algorithm that takes an input, output and proof and
outputs accept or reject. The algorithm must run in total time polynomial in log T and λ. Notice that Verify is much faster
than Eval.

Definition A.2 (Aggregate signature [19]): An aggregate signature scheme is defined over five polynomial time algorithms:
(KeyGen, Sign, Verify, Aggregate, AggregateVerification). Let G1 and G2 be two multiplicative cyclic groups of prime order
p generated by g1 and g2, respectively. Let U be the universe of users.
KeyGen(1λ) → (xi, vi): Each user picks random xi ← Zp and does vi ← gxi

2 . The user’s public key is vi ∈ G2 and secret
key is xi ∈ Zp.
Sign(xi,Mi)→ σi: Each user i ∈ U, given their secret key xi and message of their choice Mi computes hash hi ← H(Mi)
and signs σi ← hxi

i where σi ∈ G1 and H : {0, 1}∗ → G1.
Verify(vi,Mi, σi) → {true, false}: Given public key vi of user i, a message Mi and σi, compute hi ← H(Mi) and return
true if e(σi, g2) = e(hi, vi).
Aggregate(M1, . . . ,Mn, σ1, . . . , σn) → σagg: Given each user i’s signature σi on a message of their choice Mi, compute
σagg ←

∏n
i=1 σi where n = |U |.

AggregateVerification(σagg,M1, . . . ,Mn, pk1, . . . , pkn) → {true, false}: To verify aggregated signature σagg , given original
messages Mi along with the respective signing users’ public keys vi, check if:

1) All messages Mi are distinct, and;
2) For each user i ∈ U , e(σi, g2) =

∏n
i=1 e(hi, vi) holds true where hi ← H(Mi).

The notion of UC security and indistinguishability is captured by the following two theorems.
Definition A.3: (UC-emulation [21]) Let π and ϕ be probabilistic polynomial-time (PPT) protocols. We say that π UC-

emulates ϕ if for any PPT adversary A there exists a PPT adversary S such that for any balanced PPT environment Z we
have EXECϕ,S,Z ≈ EXECπ,A,Z .

Definition A.4: (UC-realization [21]) Let F be an ideal functionality and let π be a protocol. We say that π UC-realizes F
if π UC-emulates the ideal protocol for F .

We assume the existence of eight tables: uTable, aTable, cTable, sTable, idTable, scTable, bcTable and txpoolTable that
store the internal state of FFIRST and are accessible at any time by Fsetup (Figure 3), Fbc (Figure 9), and Fconstruct (Figure 4),
which are time-synchronized functionalities. The uTable is used to store user transaction specific information, aTable is used
to store the signatures of verifiers and users, cTable keeps track of VDF-specific challenges issued to users, sTable stores the
aggregated signatures of verifiers, and idTable stores the identifiers and keys of users. The scTable stores the deployed smart
contract address and code, bcTable stores the generated transactions, and txpoolTable stores the current transaction pool. We
assume that Fsetup’s t1 and t2 time period verification implicitly checks that t1 and t2 are in the same unit of time (i.e., both
are in seconds, minutes, etc.).

We note that Fbc does not completely follow EIP-1559 because Ethereum, like other real-world protocols and systems, is
constantly evolving, and as these systems change the ideal world would need to be constantly updated to model the real world
accurately. Fbc incorporates block size based on maximum fees per block and the block hash rate, and is still general enough
to model even non-EIP-1559 blockchains similar to the real world FIRST protocol which is applicable to multiple blockchain
types.

A. Proof of Theorem 5.1

To make the presentation clear, for each corruption case, through a complete run of the protocol, we discuss the two worlds
separately, and show that Z’s view will be the same.
Part 1: Let us first consider the system and parameter setup described in Protocols 1, 2, and 3 . Z initializes Fbc with
(init, sid,P,H).
1) Case 0: All verifiers are honest

a) Real-world: In the real-world (Protocols 1, 2, 3), the dAC generates a smart contract, deploys it on the BC, and
initializes FIRST FEE calculation. The n verifiers will generate their keypairs, (pki, ski), i ∈ [1..n]. Z sees the SC
and each verifier’s pk. dAC will pick a T , and initialize the V class group with a negative prime d. Note that since all
verifiers are honest, Z does not get to see their internal state, and secret keys. The view of Z will be (SC, pp = (G, T, d),
pk1, . . . , pkn, λ, k, t1, t2, α,FIRST FEE), where λ is the security parameter, and k is the multiplying factor for t2.

17

Functionality Fbc
Miner pi requesting current di: Upon receiving (RequestRound, sid) from pi, send di to pi.
Adversary corrupting Miner pi: Upon receiving (corrupt, pi, sid) from A, if | H\{pi} | > P/2 then set H := H\{pi},
else return ⊥.
Block hashing: When ctrTime == bcHashTime, Fbc takes a set of tuples TXB such that TXB ⊆ TXP where TXP

represents the set of transactions in txpoolTable, and |TXB | = l. TXB is picked such that l = min(|X|,∀X ∈ P(TXP))
and

∑l
i=1 txi.txfee ⪅ blockMaxFee where P represents a power set function. Fbc then adds blockNum to each tuple

(e.g. tuple (tx,blockNum) ∀ tx ∈ TXB) and moves them to bcTable and sends to S and A. Fbc sets ctrTime = 0 and
blockNum = blockNum+ 1.
BC data request handling: Fbc on receiving request (getData, sid) from user u, retrieves all data tuples from bcTable,
txpoolTable, and scTable, and sends to u, S.
BC block num request handling: Fbc on receiving request (getBlockNum, sid) from a user return blockNum.

Fig. 8: Ideal functionality for blockchain.

Functionality Fbc(continued)
Initialization of BC : On receiving (init, sid,P,H,blockMaxFee,bcHashTime) from Z , initialize for each BC
miner/validator pi ∈ P a bit di := 0, sets blockMaxFee as the max fee limit for each block, sets current block hashing
interval time as bcHashTime, sets ctrTime = 0, and set blockNum = 0. Set H ⊂ P to be set of honest validators.
Smart contract deployment: Fbc on receiving (sid, deploy, SC.id, code) from any node stores the tuple (SC.id, code)
in an scTable for later retrieval and execution. The code of SC.id will eventually call Fsetup to verify the hash of Mu in
hashTable and the aggregate signature in sTable of some submitted transaction tx = (Mu, σu, SC.id, (σagg, M1, . . .Mn,
pk1, . . . , pkn), txfee) and check that majority of M1, . . . ,Mn contain an (“accept”, ·, ·). If verification fails, then SC
outputs a failure tx′, else it continues execution of the SC.id code which will include verifying hash h of the submitted
transaction Mu, and finally outputs a successful tx′.
Transaction request handling: Fbc on receiving (sid, invoke, tx) stores the tx tuple in txpoolTable. If the tx is invoking
a smart contract SC.id, then Fbc retrieves the tuple (SC.id, code) from scTable. Fbc executes code with the given tx
and the output transaction tx′ is generated. Both transactions are added to txpoolTable and also sent back to user u and
S. All rows in txpoolTable are arranged in descending order of txfee at all times.
Miners stepping the time counter forward: Upon receiving message (RoundOK, sid) from party pi set di := 1. If for
all pj ∈ H : dj = 1, then reset dj := 0 for all pj ∈ P and set ctrTime = ctrTime + 1. In any case, send (switch, pi) to
A. The adversary is notified in each such call to allow attacks at any point in time.

Fig. 9: Ideal functionality for blockchain.

b) Ideal-world: S picks a security parameter λ, (T, k) ←$ Z+, negative prime d, vdf delay t1, target mempool wait time
t2, and EWMA parameter value α, and sends (setup, t1, t2, d, k, α) to Fsetup to start the FIRST FEE calculation. S calls
Fbc with (sid, deploy, SC.id, code) (this step is implicit in all the following game hybrids). A sends getData() to Fbc to get
a copy of SC (also including all contents of the blockchain). S makes n calls to Fsetup, (KeyGen, vidi), i ∈ [1..n]. Fsetup
returns (VerificationKey, vidi, pki) to S. S generates a random G such that G = Cl(d), and sets pp = (G, T, d). S call Return
FIRST fee to get computed value of FIRST FEE . Thus the view of Z is the same as the real-world. The view of Z will
be (SC, pp = (G, T, d), pk1, . . . , pkn, λ, k, t1, t2, α,FIRST FEE).
2) Case 1: Some verifiers are corrupted

a) Real-world: Per our adversary model, less than half of the verifiers can be corrupted. dAC deploys the SC on the
blockchain, initializes FIRST FEE calculation, and all verifiers will generate their keypairs. In this case, Z will have access
to both pk and sk of a corrupted verifier. Z will also have access to the corrupted verifiers’ Di = Ui = ∅. Verifiers, corrupt
or otherwise, have no role to play in Protocol 3. dAC will deploy the SC on the blockchain as before, and will generate
G = Cl(d), T . Let the set of corrupted verifiers be V′, such that V′ ⊂ V, and |V′| < |V|/2. The view of Z will be (SC, pp
= (G, T, d), {pki, ski, Di, Ui}i∈V′ , {pkj}j∈(V),λ, k, t1, t2, α,FIRST FEE).

b) Ideal-world: As in Case 0, S simulates dAC’s role and receives from Fsetup (Init, T, d,FIRST FEE). S calls Fbc with
(deploy, SC.id, code). Z sends getData() to Fbc to get a copy of SC (also including all contents of the blockchain). For the
honest verifiers, V−V′, S creates pk ←$ {0, 1}λ. Corrupt verifiers in V′ ⊂ V are handled by Z . Following the same procedure
as in Case 0’s ideal world, S generates a random G s.t., G = Cl(d) and outputs (SC, pp = (G, T, d), pk1, . . . , pkn, k).
The view of Z , taking into account the additional information Z has from corrupted verifiers will be (SC, pp = (G, T, d),
{pki, ski, Di, Ui}i∈V′ , {pkj}j∈V, λ, k, t1, t2, α,FIRST FEE), which is the same as the real-world.

18

Part 2: Now, let us consider Alice’s setup as given in Protocol 4.
1) Case 0: Alice and all verifiers are both honest

a) Real world: Alice generates MA, hashes it, signs the digest, h: σA ← Sign(h, skA), and sends (h, σA) to all members
of V. Z’s view will be ∅ (since all verifiers are honest, it does not have access to their inputs).

b) Ideal world: S simulates Alice and will receive (req, aliceID, h, σA) from Fconstruct. S does not take any further actions.
2) Case 1: Alice is honest, some verifiers are corrupt

a) Real world: Alice generates the (MA, h, σA) as in Case 0, and sends (h, σA) to V. If V′ is the set of corrupted verifiers,
Z’s view will consist of V′’s inputs, i.e., ({ski}i∈V′ , h, σA).

b) Ideal world: S generates an h ←$ {0, 1}k (note that verifiers do not know the preimage). S then calls Fsetup with
(Sign, aid, h), where aid is chosen at random. Fsetup returns (Signature, aid, h, σaid). S outputs (h, σaid).
3) Case 2: Alice is corrupt and all verifiers are honest

a) Real world: Alice generates MA and σA over MA’s digest. If the signature does not verify, verifiers will eventually return
⊥. If Alice does not send anything, verifiers will do nothing. In any case, Z’s view will be (MA = (addrA, fname, addrSC), h, σA).

b) Ideal world: S gets (h, σA) from Z . S does not take any further actions. Z’s view will be (MA = (addrA, fname, addrSC), h, σA).
4) Case 3: Both, Alice and some verifiers are corrupt Note that this cannot be locally handled by Z , as one might expect,
since some verifiers are still honest.

a) Real world: Alice’s actions will be the same as in Case 2’s real world. Z’s view will be (MA, h, σA, {ski}i∈V′), where
V′ is the set of corrupted verifiers.

b) Ideal world: S gets (h, σA) from Z . S does not take any further actions. Z’s view is same as real world.
Part 3: Now let us consider Alice, C, and verifiers’ interaction as given in Protocol 5, 6, and 7. In the following cases,
whenever some verifiers (V′) are corrupt, |V′| < |V|/2, hence, a majority of verifiers are still honest.
1) Case 0: Alice, C and all verifiers are honest

a) Real-world: On receiving a new VDF request from Alice, C picks an l ←$ P, all verifiers send (Mi, σVi
) to C. C will

verify the signatures, and will return the aggregate signature σagg to Alice, who will then compute the VDF proof, (π, y).
This proof is sent to the V who will verify it before submitting their signatures to the C for aggregation. The aggregated
signature is sent to Alice by the C who verifies it, and eventually submits txA with the current FIRST FEE to the SC using
(sid, invoke, txA). Z’s view will only be {pki}i∈V initially, and it will see txA only when it hits the transaction pool.

b) Ideal-world: S creates MA, creates hash hA = H(MA) and calls Fsetup and gets σA. It then forwards (req, hA, σA)
to Fconstruct’s User request function and receives “success” and (req, aliceID, hA, σA). S generates l on behalf of the C and
sends (l, aliceID) to Fconstruct using Coordinator request function and it receives (valid, l, hA, σA, pkA). For each Vi, S signs
the Mi = (l, hA,Vi, blockcurr) using Fsetup and blockcurr is retrieved by calling Fbc, i.e., using getBlockNum() and being
returned blockcurr ← ⌈numtx/blockqty⌉. S sends (Vi,Mi, σMi

) to Fconstruct using Coordinator response function call. S
then simulates the aggregation step of C by calling Fsetup and receives σagg. S calls Fconstruct User response to send σagg

to Alice. S calls Fvdf (start, l) function to start V delay. After V delay time, S calls (output, l) function in Fvdf to generate
the V proof which returns (s, p). S then verifies the proof calling (verify, l, p, s) on behalf of each Vi and generates M ′

i and
σ′
Vi

in a straightforward way. S aggregates all the signatures from V using Fsetup and generates σ′
agg and forwarded to Alice

using Fconstruct’s User response function. S creates txA = (σ′
A,M

′, pkA,FIRST FEE), where M ′ = (MA,Magg,M
′
agg),

M ′
agg = (σ′

agg,M
′
1, . . . ,M

′
n, pkV1

, . . . , pkVn
), Magg = (σagg, M1, . . . ,Mn, pkV1

. . . pkVn
), and FIRST FEE is retrieved by

sending (returnFee) request to Fsetup. S sends (sid, invoke, txA) to Fbc calling smart contract with SC.id. txA will get added
to the txpoolTable. While the txA is in the pending pool, the adversary can try to delay txA from being mined by submitting
transactions with higher fees than txA, while the adversary generates a valid V proof. We point out that the adversary will
need to submit enough transactions with higher fees so that txA does not appear in any of the blocks before adversary has a
valid V proof, which would require an exorbitant amount of fees just like in the real world. When txA eventually gets mined
and added to a block, it will appear in bcTable with the corresponding blockNum and if an adversary’s valid transaction did
not get mined before Alice’s then Alice did not get frontrunned (this step is implicit in all the following game hybrids). The
code associated with SC.id checks that the σagg and σ′

agg are signed by majority V, blockcurr signed in σagg is valid, and that

the hA
?
= H(MA). If any of the checks fail, the smart contract returns ⊥, else outputs a valid transaction tx′.

2) Case 1: Alice, C are honest, some verifiers are corrupt
a) Real-world: Honest C generates l ←$ P. Corrupted verifiers can either: 1) deliberately fail Alice’s signature verification

(Step 4 of Protocol 5), or 2) create a bogus signature over a possibly incorrect message (Steps 5, 6 of Protocol 5). In both
cases, the corrupt verifiers in V′ will not contribute towards σagg, since the C needs a majority to abort the process and return
⊥ (Step 18 of Protocol 5). As long as we have a honest majority in V, honest C will create and return σagg to Alice, who
will then evaluate the VDF and generate (π, y), and send (π, y) to all members of V. Similarly, during the generation of σ′

agg,
C can ignore the inputs from V′. C sends (Magg, blockcurr) to Alice. Honest Alice eventually outputs txA. Z’s view will be
(l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α). 11

11We note that Z always has access to all the BC data: In the real world Z can query a full node, run a light node, etc. In the ideal world, Z can send a
getData() request to Fbc. Without loss of generality, we say the Z’s view includes blockcurr because a given blockcurr is only tied to the current request
and signifies the current block number on the BC when the VDF request was received by the verifiers.

19

b) Ideal-world: S needs to simulate the actions of C and Alice to Z . S creates MA, creates hash hA = H(MA) and calls
Fsetup and gets σA. It then forwards (req, hA, σA) to Fconstruct and receives “success” and (req, aliceID, hA, σA). S picks an
l ←$ P, calls Coordinator request function in Fconstruct, and sends l to Z . If members of V′ return ⊥ for Alice’s signature
verification or return bogus signatures from V′ (S can check these using Verify function call in Fsetup), S ignores them, since
|V′| < |V|/2. S then calls Fsetup’s Aggregate Signature function with (Aggregate, M1, . . . ,Mn, pk1, . . . , pkn, σV1

, . . . , σVn
)

to aggregate all honest majority V’s signatures. Fsetup returns σagg to S. S then calls Fvdf to generate V proof (s, p). S sends
(l, p, s) to Z . Members of V′ will send {σ′

i}i∈V′ to S. S will simulate signatures for members of (V−V′) in a straightforward
way and calls Fbc’s getBlockNum() function to get the blockcurr ← ⌈numtx/blockqty⌉ value. S generates the σ′

agg similar to
the previous σagg, by taking the majority signatures. Since members of V′ will be in a minority, even if they return ⊥, it will
not affect the creation of σ′

agg. Finally S generates Alice’s signature over M ′, creates txA and submits it to Fbc. The view of
Z , who controls V′ will be (l, σA, hA, pkA, p, s, txA, blockcurr, pp, t1, t2, α)
3) Case 2: Alice, all verifiers are honest, C is corrupt

a) Real-world: On receiving VDF request from Alice, corrupt C could either pick l←$ P which has already been assigned to
another user or an l /∈ P, in this case the honest members of V identifying the C as corrupt, will not generate an accept message
which can be aggregated by the C and the C cannot proceed. If the C had picked l ←$ P correctly, on receiving the accept
messages and signatures from V, C can still choose to create σagg that would fail verification, in this case Alice’s checks would
fail, identifying the C as corrupt and she would not proceed further with the protocol. If the C had created σagg correctly, Alice
would generate the V proof and send it for verification to all V. Upon verification, V send their replies to C for aggregation. Like
the previous aggregation step, if the C creates a corrupt message in this step, Alice would be able to identify the C as malicious.
If the C sends Alice a valid σ′

agg, Alice eventually outputs txA. Z’s view will be (l, σA, h, pkA, π, y, txA, blockcurr, pp,t1, t2, α
, σVi

, Mi, σV ′
i
, M ′

i) for i ∈ [1 . . . |V|].
b) Ideal-world: S needs to simulate the actions of V and Alice to Z . Z picks an l←$ P, and sends to S. S sends (l, aliceID)

to Fconstruct and if it received (used, l) then l has been used before and S would return ⊥ stopping the protocol. If Z picked a
valid l, S simulates the operations of the honest V. S sends each Vi’s accept message to Z who creates an σagg by calling Fsetup’s
Aggregate Signature function call. S verifies σagg before proceeding, else return ⊥. This is sent to S who simulates Alice’s
operation of computing the VDF, before simulating the members of V’s response accepting Alice’s VDF proof computation,
and forwarding (M ′

1, . . .M
′
n, pk1, . . . , pkn, σ

′
V1

. . . σ′
Vn

) to Z . If Z does not aggregate the signatures from V correctly, and
sends corrupted/malformed σ′

agg to S, the signature verification by S would fail. Finally S simulates Alice’s signature over
txA and submits to Fbc, i.e., (sid, invoke, txA). The view of Z , who controls C will be (l, σA, h, pkA, p, s, txA, blockcurr, pp,
t1, t2, α, σVi

, Mi, σV ′
i
, M ′

i) for i ∈ [1 . . . |V|].
4) Case 3: Alice is honest, C and some verifiers are corrupt

a) Real-world: On receiving VDF request from Alice, corrupt C could pick l ←$ P which has already been assigned to
another user or an l /∈ P, in this case the honest majority of V − V′ would not generate a signature for C identifying the
C. The corrupt V′ could choose to generate accept messages and send them to C. The C can create σagg using the corrupt
V′’s accept messages but this would fail verification on when Alice receives σagg as |V′| < |V|/2. If the C had picked
l ←$ P correctly, on receiving the accept messages and signatures from V, C can still choose to create σagg that would fail
verification, in this case Alice’s checks would fail, identifying the C as corrupt and she would not proceed further with the
protocol. If the C had created σagg correctly, Alice would generate the V proof and send it for verification to all V. Upon
verification, honest members V−V′, send their replies to C for aggregation. The dishonest members V′ could either choose to
not send a valid “accept′′ message for aggregation or choose to send a corrupt message for aggregation. The C could choose
to create a corrupt message by aggregating less than |V|/2 messages or create a junk σ′

agg. Like the previous aggregation
step, if the C creates a corrupt σ′

agg in this step, Alice would be able to identify the C as malicious because of the checks
she does on receiving the messages from C. If the C sends Alice a valid σ′

agg, Alice eventually outputs txA. Z’s view will be
(l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α, σVi

, Mi, σV ′
i
, M ′

i) for i ∈ [1 . . . |V|].
b) Ideal-world: S needs to simulate the actions of V−V′ and Alice to Z . Z picks an l←$ P, and sends to S . If l has been

used before, then S would just return ⊥ on behalf of honest V. Z can still choose to create a σagg with V′ accept messages
but when this is sent to S it would fail verification since |V′| < |V|/2. If Z picked a valid l, S simulates operations of the
honest verifiers and sends each Vi ∈ {V−V′} accept message to Z who creates an σagg. This is sent to S who computes the
V proof and sends to Z . S also send accept messages from honest V to Z for C’s operations. Like the previous aggregation
step, Z could choose to create corrupt σ′

agg but this would fail verification when sent to S and the protocol would not proceed
further. To proceed further, Z has to create a valid σ′

agg with the accept messages from > |V|/2 members of V. Finally S
simulates Alice’s signature over (σ′

agg,MA,M
′
1, . . . ,M

′
n, pk1, . . . , pkn), creates txA and submits to Fbc. The view of Z , who

controls C and V′ will be (l, σA, h, pkA, p, s, txA, blockcurr, pp, t1, t2, α, σVi
, Mi, σV ′

i
, M ′

i) for i ∈ [1 . . . |V|].
5) Case 4: Alice is corrupt, C and all verifiers are honest

a) Real-world: Alice sends a V request to C and V. A corrupt Alice could choose to create a corrupt σA but this would
fail verification at the C and V and the protocol would stop. To proceed Alice has to compute valid (σA, h). C and V would
proceed as normal and return a σagg to Alice. Alice could choose to send a corrupt V for verification to V. Since verification
would fail there would be no σ′

agg generated for Alice so she cannot proceed further. If Alice computes a valid V proof, C

20

would return a σ′
agg to her and Alice eventually outputs txA. In txA Alice could choose to use a different M ′

A but the hash
of M ′

A would not match the h signed in σagg and would fail verification in the smart contract which checks h matches MA,
and the l and h in σ′

agg are tied to MA. Alice can only pass smart contract verification if she keeps the original MA and valid
Magg and M′

agg in txA. Z’s view will be (l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α, σVi
, Mi, σV ′

i
, M ′

i) for i ∈ [1 . . . |V|].
b) Ideal-world: S needs to simulate the actions of V and C to Z . Z picks a MA and sends a request to C with hash h

corresponding to MA. S simulates C and V by assigning l to h and generating a σagg. σagg is sent to Z who computes the V
proof. If Z decides to send a corrupted proof to S , then it would fail verification and S would not generate a corresponding
σ′
agg. The only way for Z to proceed is to compute valid V proof. Upon receiving valid proof S verifies it and generates σ′

agg

which is sent to Z . Z now creates txA and submits to Fbc. The code associated with SC.id verifies σ′
agg, the hash of MA

included in txA matches (h, l, ·) in σagg, and the l in previous tuple is same as in σ′
agg. The code also checks for freshness

using the blockcurr value. If any of these checks fail verification then the smart contract would not execute in favor of Z
and it would be identified as corrupt. Z’s view will be (l, σA, h, pkA, p, s, txA, blockcurr, pp, t1, t2, α, σVi , Mi, σV ′

i
, M ′

i) for
i ∈ [1 . . . |V|].
6) Case 5: Alice and some verifiers are corrupt, C is honest

a) Real-world: As in Case 4, if Alice sends corrupt σA the C would fail verification and not proceed further. If the σA is
valid, the C picks valid l and sends to all V. The corrupt minority of V′ could choose to not send their signatures or send
corrupt signatures which the C can discard and generate a σagg from the honest majority in V. Alice on receiving the σagg

can choose to send an invalid V proof which would not generate accept signatures from the honest majority in V. V′ could
choose to wrongly send accept signatures to C but since |V′| < |V|/2, C will not generate a σ′

agg. If Alice computed a valid
V proof then she will receive a σ′

agg from C and Alice eventually outputs txA. As described in Case 4, Alice can only pass
smart contract verification if she outputs a valid txA. Z’s view will be (l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α, σVi

,
Mi, σV ′

i
, M ′

i) for i ∈ [1 . . . |V|].
b) Ideal-world: S needs to simulate the actions of V−V′ and C to Z . Z picks a MA and sends a request to C with hash h

corresponding to MA. If h or σA are invalid then S would not generate l and the protocol would stop. If valid request is received
from Z , S assigns l to h and sends to Z . If V′ controlled by Z send corrupt signatures to S, it can just ignore those messages
and output a σagg to Z by simulating the honest majority of V’s actions. If Z decides to send corrupt proof to S, then it would
fail verification and S would not generate a corresponding σ′

agg. As in previous step, corrupt V′ messages corresponding to V
proof from Z can be ignored by S. The only way for Z to proceed is to compute valid V proof. Upon receiving valid proof S
verifies it and generates σ′

agg which is sent to Z . Z now creates txA and submits to Fbc. As described in Case 4, Z can only
pass smart contract verification if txA contains valid signatures and MA. Z’s view will be (l, σA, h, pkA, p, s, txA, blockcurr,
pp, t1, t2, α, σVi

, Mi, σV ′
i
, M ′

i) for i ∈ [1 . . . |V|].
7) Case 6: Alice, C are corrupt, all verifiers are honest

a) Real-world: If Alice sends corrupt σA to the C and V, or if Alice sends a valid request but C chose a corrupt l similar
to Case 2, the V will not send accept signatures to C since the request or l will not pass verification. The C can create corrupt
σagg but this would fail verification eventually at the smart contract. If the σA is valid and the C picks valid l, the V will reply
with accept messages so C can generate a valid σagg. Alice on receiving the σagg can choose to send an invalid V proof which
would not generate accept signatures from the V. Like the previous stage, the C can create corrupt σ′

agg but this would fail
verification eventually at the smart contract. If Alice computed a valid V proof, the C would receive accept signatures from the
V and C can compute a valid σ′

agg. Alice eventually outputs txA. As described in Case 4, Alice can only pass smart contract
verification if she outputs a valid txA. Z’s view will be (l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α, σVi , Mi, σV ′

i
, M ′

i)
for i ∈ [1 . . . |V|].

b) Ideal-world: S needs to simulate the actions of V to Z . Z picks a MA and sends to S, the hash h corresponding to MA,
σA, and l. If h or σA are invalid then S would not generate V signatures for Z . Z can decide to proceed with the protocol
by generating a corrupt σagg but this would fail verification in the code of the SC.id smart contract. If valid request and l is
received from Z , S sends V signatures to Z and Z can generate σagg. If Z decides to send corrupt proof to S, then it would
fail verification and S would not generate corresponding accept signatures from V to send to Z . Like the previous stage, the Z
can create corrupt σ′

agg but this would fail verification eventually at the SC.id smart contract. The only way for Z to proceed
is to compute valid V proof. Upon receiving valid proof S verifies it and generates V signatures which are forwarded to Z . Z
generates a valid σ′

agg, creates txA, and submits to Fbc. As described in Case 4, Z can only pass smart contract verification
if txA contains valid signatures and MA. Z’s view will be (l, σA, h, pkA, p, s, txA, blockcurr, pp, t1, t2, α, σVi

, Mi, σV ′
i
, M ′

i)
for i ∈ [1 . . . |V|].
8) Case 7: Alice, C and some verifiers are corrupt

a) Real-world: If Alice sends corrupt σA to the C and V, or if Alice sends a valid request but C chose a corrupt l similar
to Case 2, the honest majority V − V′ will not send accept signatures to C since the request or l will not pass verification.
The C can create corrupt σagg but this would fail verification eventually at the smart contract. If the σA is valid and the C
picks valid l, the honest majority V− V′ will reply with accept messages so C can generate a valid σagg. Alice on receiving
the σagg can choose to send an invalid V proof which would not generate accept signatures from the honest majority V−V′.
Like the previous stage, the C can create corrupt σ′

agg but this would fail verification eventually at the smart contract. If Alice

21

computed a valid V proof, the C would receive accept signatures from the honest majority V−V′ and C can compute a valid
σ′
agg. Alice eventually outputs txA. As described in Case 4, Alice can only pass smart contract verification if she outputs a

valid txA. Z’s view will be (l, σA, h, pkA, π, y, txA, blockcurr, pp, t1, t2, α,σVi
, Mi, σV ′

i
, M ′

i) for i ∈ [1 . . . |V|].
b) Ideal-world: S needs to simulate the actions of honest majority V−V′ to Z . As in Case 6, S will not send any accept

messages to Z when simulating the honest verifiers if Z sends corrupt σA and h on behalf of Alice and corrupt l on behalf of
the C. Z will not be able to create valid σagg and σ′

agg since the honest majority of verifiers will be simulated by S. The only
way for Z to proceed is to submit valid h, σA and l to S and compute a valid σagg and V proof. Upon receiving valid proof
S verifies it and generates V−V′ signatures which are forwarded to Z . Z generates a valid σ′

agg, creates txA, and submits to
Fbc. As discussed in Case 4, Z can output a corrupt txA but the verification checks in the smart contract code will fail. Z’s
view will be (l, σA, h, pkA, p, s, txA, blockcurr, pp, t1, t2, α, σVi

, Mi, σV ′
i
, M ′

i) for i ∈ [1 . . . |V|].
Let TXA represent the set of A’s transactions, TXZ represent the set of Z’s transactions, TXS represent the set of S’s

transactions, and let txA represent Alice’s transaction in the pending pool, i.e., txpoolTable, respectively. Let the time elapsed
since txA entered the txpoolTable be denoted by TE , the maximum miner fee allowed per block by the blockchain system
be blockMaxFee, let t1 be the time taken for computing a given VDF, and let P(A) denote the power set of set A. Then the
advantage of A in winning the FIRST game against Alice, i.e., Alice’s txA getting frontrunned is given by the following
inequality:

AdvA,FIRST (λ) ≤ Pr
[(

TXB = min(|X|);

X ∈ P((TXZ ∪ TXA) ∪ (TXS \ {txa}))
)
∧(

∀ tx ∈ TXB ,
∑

tx.txfee ⪅ blockMaxFee
)

∧ (TE > t1)
]
.

22

	Introduction and Related Work
	Preliminaries
	Ethereum and DeFi
	Cryptographic Preliminaries

	System and Threat Model
	System Model
	Threat Model and Assumptions

	The FIRST Framework
	Overview of FIRST
	Construction of FIRST

	Security Analysis of FIRST
	Informal Security Analysis
	Formal Security Analysis

	Experimental Results and Analyses
	Data Gathering
	Extension to non-EIP-1559 chain
	Aggregate Signature Implementation
	Scalability of VDF
	Analyses and Discussion

	Design Choices, Limitations, Compatibility, and Use Cases
	Conclusion
	References
	Appendix
	Proof of Theorem 5.1

