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INDISTINGUISHABLE ASYMPTOTIC PAIRS AND
MULTIDIMENSIONAL STURMIAN CONFIGURATIONS

SEBASTIAN BARBIERI AND SEBASTIEN LABBE

ABSTRACT. Two asymptotic configurations on a full Z%-shift are indistinguishable if for every finite
pattern the associated sets of occurrences in each configuration coincide up to a finitely supported
permutation of Z%. We prove that indistinguishable asymptotic pairs satisfying a “flip condition”
are characterized by their pattern complexity on finite connected supports. Furthermore, we prove
that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described
by codimension-one (dimension of the internal space) cut and project schemes, which symbolically
correspond to multidimensional Sturmian configurations. Together the two results provide a gener-
alization to Z¢ of the characterization of Sturmian sequences by their factor complexity n 4+ 1. Many

open questions are raised by the current work and are listed in the introduction.
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1. INTRODUCTION

Asymptotic pairs, also known as homoclinic pairs, are pairs of points in a dynamical system whose
orbits coalesce. These were first studied by Poincaré [2] in the context of the three body problem and
used to model chaotic behavior. Namely, two orbits which remain arbitrarily close outside a finite
window of time may be used to represent pairs of trajectories that despite having similar behavior for
an arbitrarily long time, present abrupt local differences.

In this work we consider asymptotic pairs of zero-dimensional expansive actions of Z¢. Concretely,
given a finite set X, we consider the space of configurations ¥z = {z: Z* — ¥} endowed with the
prodiscrete topology and the shift action Z¢ % $Z°. In this setting, two configurations x,y € 2% are
asymptotic if z and y differ in finitely many sites of Z<¢. The finite set F = {v € Z% : z, # y,} is
called the difference set of (z,y). An example of an asymptotic pair when d = 2 is shown in Figure

Given two asymptotic configurations =,y € ZZd, we want to compare the number of occurrences
of patterns. A pattern is a function p: S — X where S, called the support of p, is a finite subset
of Z4. The occurrences of a pattern p € £5 in a configuration = € X2 is the set occy(x) == {n e
Z%: o™ (z)|s = p}. The language of a configuration z € $%" over a finite support S « Z% is Lg(z) =
{pe¥:occy(z) # @}. When z,y € $2" are asymptotic configurations, the difference occ,(x)\oce,(y)
is finite because the occurrences of p are the same far from the difference set of  and y. We say that
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FIGURE 1. The indistinguishable asymptotic configurations z,y € {0, 1,2}Zz are
shown on the support [—7,7] x [=7,7]. The two configurations are equal except
on their difference set F' = {0, —e1, —ea} shown in red.

(z,y) is an indistinguishable asymptotic pair if (z,y) is asymptotic and the following equality
holds

(1) # (occp(x)\ocey(y)) = # (ocey (y)\ocey ()

for every pattern p of finite support.

In other words, an asymptotic pair (z,y) is indistinguishable if every pattern appears the same
number of times in x and in y while overlapping the difference set. The pair of configurations = and y
shown in Figure [1]is an example of an indistinguishable asymptotic pair: we may check by hand that
Equation holds for patterns with small supports such as symbols (patterns of shape {0}), dominoes
(patterns of shape {0, e1} and {0, e2}), etc. For instance, the configurations « and y in Figurecontain
eight different patterns with support {0, e1, 2e1, €2}, each occurring exactly once while overlapping the
difference set, see Figure

The notion of indistinguishable asymptotic pairs appears naturally in Gibbs theory. This theory
studies measures on symbolic dynamical systems which are at equilibrium in the sense that the con-
ditional pressure for every finite region of the lattice is maximized, so that every finite region is in
equilibrium with its surrounding. See [19, 27, 34}, [§] for further background. An important component
of Gibbs measures, the specification, can be formalized by means of a shift-invariant cocycle in the
equivalence relation of asymptotic pairs, see [I5[7]. With an appropriate norm, the space of continuous
shift invariant cocycles on the asymptotic relation becomes a Banach space, and every asymptotic pair
induces a continuous linear functional through the canonical evaluation map.

The set of indistinguishable asymptotic pairs are precisely those which induce the trivial linear
functional and thus a natural question is if there is an underlying dynamical structure behind this
property. We shall not speak any further of Gibbs theory in this work and study indistinguishable
asymptotic pairs without further reference to their origin in Gibbs theory. An interested reader can
find out more about the role of indistinguishable asymptotic pairs in the aforementioned setting by
reading sections 2 and 3 of [7].

In the case of dimension d = 1, it was shown that for the difference set F' = {—1,0} c Z, indistin-

guishable asymptotic pairs are precisely the étale limits of characteristic bi-infinite Sturmian sequences
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FIGURE 2. The 8 patterns of shape {0, e1,2e1,e2} appearing in the configurations x
and y. All of them appear intersecting the difference set in  and y.

([9 Theorem B]). In the case where one of the configurations in the indistinguishable pair is recurrent,
the asymptotic pair can only be a pair of characteristic bi-infinite Sturmian sequences associated to a
fixed irrational value ([9, Theorem Al). Furthermore, it was shown that any indistinguishable asymp-
totic pair in % can be obtained from these base cases through the use of a substitution and the shift

map ([9 Theorem C]), thus providing a full characterization of indistinguishable asymptotic pairs in Z.

Main results. In this article, we extend [9, Theorem A] to the multidimensional setting. It is based on
the following additional condition made on the difference set. Let {e1, ..., eq} denote the canonical basis
of Z4. We say that two indistinguishable asymptotic configurations z,y € {0,1,...,d}2" satisfy the
flip condition if their difference set is F' = {0, —e1, ..., —eq}, every symbol in {0,1,...,d} occurs in
and y at the support F', and the map defined by x,, — y,, for every n € F' is a cyclic permutation on the
alphabet {0,1,...,d}. Without lost of generality, we assume that o = 0 and y,, = x,, — 1 mod (d + 1)
for every n € F. For example, the indistinguishable asymptotic pair (x,y) illustrated in Figure
satisfies the flip condition with (2, 2—c,,Z—c,) = (0,1,2) and (Yo, Y—cy s Y—e,) = (2,0, 1).

It is a well known fact that Sturmian configurations in dimension one can be characterized by their
complexity [3T], 16], that is, they are exactly the bi-infinite recurrent words in which exactly n + 1
subwords of length n occur for every n € N. We first prove the following result providing a similar
characterization of indistinguishable asymptotic pairs satisfying the flip condition by their pattern

complexity which does not require uniform recurrence, or even recurrence, as an hypothesis.

Theorem A. Let d > 1 and x,y € {0,1,... ,d}Zd be an asymptotic pair satisfying the flip condition

with difference set F' = {0, —eq,..., —eq}. The following are equivalent:

(i) For every nonempty finite connected subset S = Z?¢ and p € Lg(z) U Ls(y), we have

# (occp(w)\ocey (y)) = 1 = # (occy(y)\ocey(2)) -

(ii) The asymptotic pair (z,y) is indistinguishable.
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(iii) For every nonempty finite connected subset S c Z9, the pattern complexity of x and y is
#Ls(x) = #Ls(y) = #(F = 5).

The proof of Theorem [A] relies on an extension of the notion of bispecial factor to the setting of
multidimensional configurations. Given a language, a bispecial factor is a word that can be extended
in more than one way to the left and to the right. The bilateral multiplicity of bispecial factors
in a one-dimensional language is closely related to the complexity of that language, see [14]. Here,
for a connected support S < Z¢ and two distinct positions a,b € Z%\S such that S U {a}, S U {b}
and S U {a,b} are connected, we say that a pattern w: S — A is bispecial if it can be extended
in more than one way at position a and at position b. The description of the bispecial patterns of
indistinguishable asymptotic pairs and their multiplicities, provides us a tool for bounding their pattern
complexity. Reciprocally, the rigid pattern complexity given in Theorem [A] forces the extension graphs
associated to the bispecial patterns to have no cycle, which in turn provides us a way to show that
the configurations are indistinguishable. In one dimension, sequences such as the extension graphs of
bispecial factors are trees are known as dendric words [I1] and thus we may think of our construction
as multidimensional analogues of those.

When S is a d-dimensional rectangular block, the number #(F — S) from Theorem |A| admits a
nice form. When d = 1, we compute #(F — S) = #({0,—1} — {0,1,...,n — 1}) = n + 1 which
is the factor complexity function for 1-dimensional Sturmian words. When d = 2, #(F — S) =
#({(0,0),(—1,0),(0,—1)} — {(4,7): 0 < i < n,0 < j <m}) =mn +m + n is the rectangular pattern
complexity of a discrete plane with totally irrational (irrational and rationally independent) slope,
see [I2] for further references. With our result above, we can provide an explicit formula for every

dimension.

Corollary 1. Let d > 1 and (my,...,mg) € N%. The rectangular pattern complexity of an indistin-

guishable asymptotic pair z,y € {0,1,..., d}Zd satisfying the flip condition is

1 1
#'C(ml,.“,md)(x) = #E(ml,,md)(y) =Mmy---Mq (]- + m71 + -+ ) .

mq

Our main result provides a beautiful connection between indistinguishable asymptotic pairs sat-
isfying the flip condition and codimension-one (dimension of the internal space) cut and project
schemes, see [20] for further background, and more precisely with multidimensional Sturmian con-
figurations. The definition of multidimensional Sturmian configurations from codimension-one cut
and project schemes is fully described in Section [I.I] A quick and easy definition of multidimen-
sional Sturmian configurations can be given with the following formulas. Given a totally irrational
vector a = (ay,...,aq) € [0,1)%, the lower and upper characteristic d-dimensional Sturmian

configurations with slope a are given by

~

Co: T4 > 7t -

~—

0,1,...,d} c R
d and d

~

0,1,

(2)

It turns out that these configurations are examples of indistinguishable asymptotic pairs which satisfy
the flip condition. In fact, we show that a pair of uniformly recurrent asymptotic configurations is
indistinguishable and satisfies the flip condition if and only if it is a pair of characteristic d-dimensional

Sturmian configurations for some totally irrational slope.

Theorem B. Let d > 1 and z,y € {0,1,..., d}Zd such that z is uniformly recurrent. The pair (z,y)

is an indistinguishable asymptotic pair satisfying the flip condition if and only if there exists a totally

/

., are the lower and upper characteristic

irrational vector o € [0,1)¢ such that * = ¢, and y = ¢

d-dimensional Sturmian configurations with slope a.
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The indistinguishable asymptotic pair shown in Figure [1] is an example as such, where = = ¢, and
y = ¢, with a = (a1, 0) = (v/2/2,4/19 — 4). Notice that c, and ¢/, are uniformly recurrent when o
contains at least an irrational coordinate (see Lemma, so that hypothesis is really only used in one
direction of the theorem. Note that a version of Theorem [B for rational vector o € Q¢ was considered
in [26] with an infinite difference set of the form F + K where K < Z¢ is some lattice.

The link with codimension-one cut and project schemes can be illustrated as follows. The configu-
rations x = ¢, and y = ¢, encode the rhombi obtained as the projection of the cube faces in a discrete

plane of normal vector (1 —aq, a1 — @, ), see Figure [3] This three symbol coding of a discrete plane

was proposed in [22], see also [10].
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FIGURE 3. The configurations = and y from Figure[I]are encoding a tiling of the plane
[5] by three types of pointed rhombus drawn using Jolivet’s notation [23] p. 112]. The
tilings shown above correspond to the projection of the surface of a discrete plane
of normal vector (1 — oy, 1 — ag,a2) ~ (0.293,0.348,0.359), with a = (a1, a0) =
(v2/2,4/19—4), in 3 dimensional space, and their difference can be interpreted as the
flip of a unit cube shown in yellow.

We also prove a slightly more general version of Theorem We say that two indistinguishable
asymptotic configurations z,y € »Z! satisfy the affine flip condition if their difference set F' has
cardinality #F = d + 1, there is m € F such that (F — m)\{0} is a base of Z%, the restriction z|r is a

bijection F' — 3 and the map defined by z,, — y, for every n € F' is a cyclic permutation on X.

Corollary 2. Let d > 1 and z,y € 2% such that = is uniformly recurrent. The pair (z,y) is an
indistinguishable asymptotic pair satisfying the affine flip condition if and only if there exist a bijection
7:{0,1,...,d} — ¥, an invertible affine transformation A € Aff(Z?) and a totally irrational vector

a€[0,1)% such that z = Toc,0Aand y = Tocl, 0 A.
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If we further assume that the configurations in the asymptotic pair are uniformly recurrent, we can
put together Theorem [A]and Theorem [B]and obtain the following characterization of uniformly recur-
rent multidimensional Sturmian configurations in terms of their pattern complexity. This generalizes

the well-known theorem of Morse-Hedlund-Coven to higher dimensions [311, [16].

Corollary 3. Let d > 1 and z«,y € {0,1,.. .,d}Zd be an asymptotic pair such that x is uniformly
recurrent and which satisfies the flip condition with difference set F' = {0, —ey, ..., —eq}. The following

are equivalent:

(i) For every nonempty finite connected subset S = Z% and p € Ls(z,y), we have

# (occp(w)\ocey(y)) = 1 = # (occp(y)\ocey(2)) -

(ii) The asymptotic pair (z,y) is indistinguishable.
(iii) For every nonempty finite connected subset S < Z9, we have

#Ls(x) = #Ls(y) = #(F = 9).
(iv) There exists a totally irrational vector « € [0,1)? such that x = ¢, and y = c,,.

Open questions. To fully generalize the theorem of Morse-Hedlund-Coven, we would hope the equiv-
alence holds for single configurations and not only for pairs of asymptotic configurations satisfying the
flip condition. More precisely, in the case of uniformly recurrent configurations, we believe that the
pattern complexity characterizes multidimensional Sturmian configurations. The formula defining s,
and s, o slightly extends Equation and can be found in Lemma

Question 1. Let d > 1 and z € {0,1,...7d}Zd be uniformly recurrent configuration. Let F =

{0,—e1,...,—eq}. Consider the following two statements:

(i) for every nonempty finite connected subset S = Z%, we have #Lg(x) = #(F — 9).
(ii) there exists a totally irrational vector a € [0,1)¢ and a intercept p € [0,1) such that z = s, ,
or T =5,

Since Sq,p, S, , and c, have the same language when « is totally irrational, we can deduce from

!
a,p

Corollary [3| that (ii) implies (i). Is it true that (i) and (ii) are equivalent?

Consider a sequence of totally irrational slopes (o, )nen for which both ¢,,, and ¢, converge in the
prodiscrete topology. Then (cq,,, ¢}, )nen converges in the asymptotic relation to an étale limit (c,c’),
see Definition[2:8 It turns out that étale limits preserve both the flip condition and indistinguishability,
and will thus satisfy all of the equivalences stated in Theorem[A] An example of such a limit is illustrated
in Figure

We believe that in fact every indistinguishable asymptotic pair on Z¢ which satisfies the flip condition

can be obtained through an étale limit as above.

Conjecture 1. Let d > 1 and z,y € {0,1,... ,d}Zd be an indistinguishable asymptotic pair which
satisfies the flip condition. Then there exists a sequence of totally irrational vectors (au,)nen such that

(z,y) is the étale limit of the sequence of asymptotic pairs (cq,,, Cl,, )nen-

It was proved that Conjecture [1| holds when d = 1, see [9, Theorem B]. Proving it for d > 1 is
harder due to the various ways a sequence (, )nen can converge to some vector a € [0,1)? leading to
infinitely many étale limits associated to a single vector. When d = 1, there are only two such ways:
from above or from below. Describing combinatorially what happens in these two cases was sufficient
in [9] to prove the result. An analogue combinatorial description of all different behaviors when d > 1
is still open.

In [9, Theorem C], indistinguishable asymptotic pairs were totally described when d = 1 by the image

under substitutions of characteristic Sturmian sequences. Describing indistinguishable asymptotic pairs
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FIGURE 4. An indistinguishable asymptotic pair (¢, ¢’) which satisfies the flip con-
dition obtained by taking the limit of the Sturmian configurations given by «,, =

(2(v2-1),1(+/3-1)).

in general when d > 1 (other than those satisfying the flip condition or some affine version of it) remains

an open question.

Question 2. Let d > 1 and z,y € {0,1,..., d}Zd be an indistinguishable asymptotic pair. Does there
exists a sequence of totally irrational vectors (ay)nen such that (z,y) can be derived from the étale

limit of the sequence of asymptotic pairs (cq,,,Cl, Jnen?

Our current work also leads to another interesting question. In dimension 1, it is known at least
since [30] that a sequence of factor complexity less than or equal to n is eventually periodic. In two
dimensions, it is still an open problem [I7, [24] known as Nivat’s conjecture [32] whether a configuration
x for which there are n, m € N with #L,, 1) (z) < nm is periodic or not. Another question which seems
to have been overlooked due to the difficulty of settling Nivat’s conjecture is to describe the minimal
complexity of an aperiodic configuration (trivial stabilizer under the shift map, that is ¢™(x) = z only
holds for n = 0) which admits a totally irrational vector of symbols frequencies. When d = 1, we
know that such sequences have complexity at least n 4+ 1 and are realized by Sturmian configurations.
However, when d = 2, configurations with rectangular pattern complexity mn + 1 are not uniformly
recurrent and do not have a totally irrational vector of symbol frequencies [I3]. As the symbol fre-
quencies of the multidimensional Sturmian configurations ¢, and ¢, is «, it follows by Theorem and
Theorem [A] that they provide an upper bound for this problem, namely, that these sequences can be
realized with complexity #(F — S) for every pattern of connected support S. According to Cassaigne
and Moutot (personal communication, January 2023), there exist 2-dimensional configurations with
totally irrational vector of symbol frequencies with pattern complexity strictly less than #(F — .S) for

infinitely many connected supports S. Therefore, we ask the following question.

Question 3. Let d > 1. Let z € {0,1,... ,d}Zd be a configuration with trivial stabilizer and assume
that the frequencies of symbols in x exist and form a totally irrational vector. Let S — Z<¢ be a

nonempty connected finite support. What is the greatest lower bound for the pattern complexity

#Ls(x)?
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It is known that bispecial factors within the language of a Sturmian sequence of slope « € [0,1) are
related to the convergents of the continued fraction expansion of « [I8]. Since our work extends the
notion of bispecial factors to the setup of multidimensional Sturmian configurations (see Figure [5)), it

is natural to ask the following question about simultaneous Diophantine approximation [35].

FIGURE 5. On the left, an L-shape pattern of support
{(1,0),(2,0),(3,0), (4,0),(4,1), (4,2),(4,3),(4,4)} is shown. It is bispecial at
positions a = (0,0) and b = (4, 5) because it can be extended in more than one way at
these positions within the language of the configurations z and y shown in Figure [I]
Thus b —a = (4,5) € V,, when o = (1/2/2,4/19 — 4).

Question 4. Let d > 1 and « € [0,1)? be a totally irrational vector. What is the relation between
the set

Vo = {b—a: there exists w € Lg(c,) which is bispecial at positions a,b € Z%}

and simultaneous Diophantine approximations of the vector a?

Structure of the article. Preliminary properties of indistinguishable asymptotic pairs are pre-
sented in Section[2] In Section[3] we study the pattern complexity of multidimensional indistinguishable
asymptotic pairs satisfying the flip condition and we prove Theorem [A] In Section [d] we define charac-
teristic Sturmian configurations in Z? from codimension-one cut and project schemes. We prove that
they are indistinguishable asymptotic pairs satisfying the flip condition. In Section[5} we complete the
proof of Theorem [B] more precisely that uniformly recurrent indistinguishable asymptotic pairs satis-
fying the flip condition are multidimensional Sturmian configurations. In the appendix (Appendix |A]),
we provide an analogous notion of indistinguishable pairs for pairs of asymptotic configurations on a
countable group and provide proofs of their basic properties for further reference.
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2. PRELIMINARIES

We denote by N the set of non-negative integers. Intervals consisting of integers are written using
the notation [n,m] = {k € Z : n < k < m}, for n,m € Z with n < m. A finite subset S c Z% is
connected if the subgraph induced by the vertices S within the graph with vertices V = Z¢ and edges
E = {(u,u+e;): ue Z% 1 <i<d} is connected, where e; is the canonical vector with 1 on position i
and 0 elsewhere.

Let 3 be a finite set which we call alphabet and d a positive integer. An element x € -

{z: Z% — ¥} is called a configuration. For u € Z¢ we denote the value z(u) by x,,. We endow set of
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all configurations »Z* with the prodiscrete topology. The shift action Z? % DIZEET given by the map

d d
0: 7% x T2 — ¥2° where
u . _ d Vi
c"(x)y = 0(u,x)y = Tytp for every u,ve Z¢ xze X .

The orbit of 2 € $2° is the set Orb(x) = {0%(x) : v € Z?}. For a finite subset S = Z%, a function
p: S — ¥ is called a pattern and the set S is its support. We denote it as p € ¥°. Given a pattern
p e X9, the cylinder centered at p is [p] = {x € Nz, x|s = p}. For finite subset S < Z9, the language

with support S of a configuration x is the set of patterns
Ls(r) = {pe X : there is u € Z% such that o*(z) € [p]}.

The language of x is the union £(x) of the sets Lg(x) for every finite S < Z<. We say a pattern p
appears in z € 52" if there exists u € Z¢ such that o%(z) € [p]. Let us also denote by occ,(z) = {u e

74: 6*(z) € [p]} the set of occurrences of a pattern p in the configuration z € $%°.

Definition 2.1. We say that two configurations x,y are asymptotic, or that (x,y) is an asymptotic
pair, if the set F' = {u € Z: x, # y,} is finite. The set F is called the difference set of (z,y). If

xr =y we say that the asymptotic pair is trivial.

Observe that when x,y € YZ° are asymptotic sequences, the difference occy(x)\occ,(y) is finite
because the occurrences of p are the same far from the difference set. More precisely, let F' denote
the difference set of an asymptotic pair x,y. Let S denote the support of a pattern p, then for every
ue ZA\(F — S) and every s € S, we have s +u ¢ F and thus

Uu(x)s = Tuts = Yu+ts = Uu(y)sa
which implies in turn that u € occ,(x) if and only if u € occ,(y) for all u € Z4\(F — S). Therefore,
occy(z)\occ,(y) S F—S={g—s:ge F,seS}.

In particular, the set occ,(z)\occ,(y) is finite. Moreover, since F is the difference set of x and y, we
have

occ,(x)\oce, (y) = occy(z) N (F — S).

Definition 2.2. We say that two asymptotic configurations x,y € Y2 are indistinguishable if for

every pattern p of finite support, we have
# (occy () \ocey () = # (occy(y)\occy () -

Notice that Definition 2.2] holds only for asymptotic pairs. A more general notion, known as local
indistinguishability exists in the context of tilings of R?, see [6, §5.1.1]. In terms of subshifts,
two configurations z,y € Y2 are locally indistinguishable, or LI for short, if they have the same
language, i.e., £L(z) = L(y). In this work, we always write “indistinguishable asymptotic pair” to
emphasize the context in which Definition [2.2] holds.

An example of an indistinguishable asymptotic pair over Z? is shown on Figure @ see also Figure
in the introduction.

Next we state equivalent conditions for indistinguishability which we will use interchangeably in the

proofs that follow. We use the symbol 1 4 to indicate the characteristic function of a set A.

Remark 2.3. The following conditions are equivalent:

(1) z and y are indistinguishable asymptotic configurations with difference set F',

2) for every pattern p with finite support S < Z¢, we have
( Y D p pp :

# (occy () n (F = 5)) = # (ocep(y) n (F = 5)),
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 6. A non-trivial indistinguishable asymptotic pair for ¥ = {0,1} and d = 2
where y = 031 (). The difference set is highlighted in red and the portions of the
configurations which are not shown consist only of the symbol 0.

(3) for every pattern p with finite support S < Z?, we have
Ap(z,y) = Y Ipy(e*(y)) — Iy (e*(x)) = 0.
ueF—S

2.1. Properties of indistinguishable asymptotic pairs.
Proposition 2.4. Let S; — Sy be finite subsets of Z¢, and let p e 5. We have

Ap(x,y) = Z Aq(xay)'
q€%52,[q]<[p]
Proof. Notice that [p] is the disjoint union of all [¢] where ¢ € ¥°2 and [¢] < [p]. It follows that for
any z € X2° we have 1p,(2) = 1 if and only if there is a unique ¢ € £ such that [¢] < [p] and
I4)(2) = 1. Letting F" be the difference set of x,y we obtain,

Ap(,y) = Y, Tpy(e(y) — Ty (e*(x))

UGF751

Z 1y (0" (y) — Ly (0¥ (2))

UEFfsz

NN 1(0° W) — 1 (0" (@),

VvEF =52 gexn®2
[q]=[p]

Exchanging the order of the sums yields the result. O

In particular, to prove that two asymptotic configurations are indistinguishable, it suffices to verify
the condition A, (z,y) = 0 on patterns p whose supports form a collection of finite subsets of Z¢ with
the property that every finite subset of Z¢ is contained in some set in the collection. In particular, we
may consider the collection of all rectangles (products of bounded integer intervals) or the collection
of all connected finite subsets of Z?.

The affine group Aff(Z?) of Z? is the group of all invertible affine transformations from Z¢ into
itself. We can represent it as the semidirect product Aff(Z?) = Z? x GL4(Z), where GL4(Z) is the
group of all invertible d x d matrices with integer entries, which represents the automorphisms of Z%,

and the factor Z¢ on the left represents translations.

Proposition 2.5. Let (x,y) be an indistinguishable asymptotic pair, then
(1) ((x),0™(y)) is an indistinguishable asymptotic pair for every u € Z°.
(2) (xoA,yoA) is an indistinguishable asymptotic pair for every A € GL4(Z).

In particular, the set of indistinguishable asymptotic pairs is invariant under the action of Aff(Z4).

Proof. Let F be the difference set of (z,y). A straightforward computation shows that the difference
set of (0%(x),0%(y)) is F1 = F — u and the difference set of (x 0 A,x0 A) is Fy = A~1(F).
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Let S < Z? be a finite set and p € ¥°. For the first claim we have

Ap(a(@),0 (W) = D L@ (0" () — L0 (0" (1)

’L)EFlfs

SN 1 @) — Ly (e (W)

veE(F—u)—S
>0 L' @) = Ly (o'(y) = Ap(x,y) = 0.

teF—S

Thus (c%(x),0"(y)) is an indistinguishable asymptotic pair.

For the second claim, let ¢ € ©4(5) be the pattern given by gas = p, for every s € S. We note that
for any v € Z4, 0¥ () € [q] if and only if O’A_lv(ZL’ o A) € [p]. This means that v € occy(z) if and only if
A~ (v) € occy(z 0 A).

As (z,y) is an indistinguishable asymptotic pair, there is a finitely supported permutation 7 of
Z* so that occy(w) = m(occy(y)). Then 7/ = Aomo A1 is a finitely supported permutation of Z<
so that occp(x 0 A) = 7'(occy(y o A)). We conclude that A,(zx o A,y o A) = 0 and thus they are
indistinguishable. t

Let 31, %5 be alphabets. A map ¢: Z%d — E%d is a sliding block code if there exists a finite set
D < 7% and map ®: ©P — ¥, called the block code such that

P(2)y = ®(c“(x)|p) for every ue Z%,z € E%d.

Notice that sliding block codes are continuous maps which commute with the shift action, that is,
o (¢(x)) = ¢(c¥(x)) for every ue Z% and z € E%d.

Proposition 2.6. Let x,y € E%d be an indistinguishable asymptotic pair and ¢: E%d — Z%d a sliding

block code. The pair ¢(x), d(y) € E%d is an indistinguishable asymptotic pair.

Proof. Let F be the difference set of z,y and D < Z¢, ®: ©P — 3, be respectively the set and block
code which define ¢. If u ¢ F — D, then ¢%(z)|p = o“(y)|p and thus ¢(z), = &(y)y. As F — D is
finite, it follows that ¢(z), ¢(y) are asymptotic.
Let S < Z? be finite and p: S — 5 be a pattern. Let ¢~ (p) < (X1)P*+° be the set of patterns g
with support D+ S so that for every s € S, ®((¢4+s)dep) = ps- It follows that ¢~1([p]) = Uges-1(mlal-
Let W < Z? be a finite set which is large enough such that W 2 F U (D + F). We have,

#ueW =S |o"@@)elplt= Y, #{ucW-5|o"(z) € [q}
q€d~1(p)

S #lueW -S| o"(y) e [ql)

q€p~1(p)

= t#H{ue W = 510"(6(y)) € [p]}-

As W o F, we conclude that A,(¢(z),¢(y)) = 0 and therefore (¢(z), ¢(y)) is an indistinguishable
asymptotic pair. U

Remark 2.7. The property of being an indistinguishable asymptotic pair is also preserved by d-
dimensional substitutions and the proof is essentially the same as [9, Lemma 5.2]. We will not make
use of this fact anywhere in the article. However, we remark that substitutions might be helpful in order
to answer Question [2] since they were the tool that provides the characterization of indistinguishable

asymptotic pairs for d = 1, see [9, Theorem C].

Let us recall that a sequence (z,)nen of configurations in nz converges to = € Y2 if for every
u € Z% we have that (z,), = x, for all large enough n € N. In what follows we use a notion of
convergence for asymptotic pairs which is stronger than the convergence in the prodiscrete topology

in order to ensure that limits of asymptotic pairs are themselves asymptotic. This notion comes from
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interpreting the equivalence relation of asymptotic pairs as an “étale equivalence relation”. For more
information on étale equivalence relations and their role in the theory of topological orbit equivalence

of Cantor minimal systems the reader can refer to [33].

Definition 2.8. Let (2, Yn)nen be a sequence of asymptotic pairs. We say that (T, yn)nen converges
in the asymptotic relation to a pair (x,y) if (Xn)nen converges to z, (Yn)nen converges to y, and

there exists a finite set F 7% so that xn|Zd\F = Yn|za\p for all large enough n € N.

If (24, Yn)nen converges in the asymptotic relation to a pair (z,y), then the pair (z,y) is necessarily
asymptotic. We call (z,y) the étale limit of (z,,yn)nen. In the next proposition, we see that

indistinguishability is preserved by étale limits.

Proposition 2.9. Let (., yn)nen be a sequence of asymptotic pairs in N2 which converges in the
asymptotic relation to (x,y). If for every n € N we have that (x,,y,) is indistinguishable, then (x,y)

is indistinguishable.

Proof. Let p € ¥% be a pattern. As (Z,,Yn)nen converges in the asymptotic relation to (z,y), there
exists a finite set F < Z% and N; € N so that Tplga\p = Ynlza\p for every n = Ni. In particular we
have that the difference sets of (x,y) and (z,,y,) for n = Ny are contained in F. It suffices thus to
show that
#{occy(z) N (F = 8)} = #{occy(y) n (F - 5)}.

As (z)nen converges to x and (Y, )nen converges to y, there exists Ny € Nso that z,|p_s+s = Z|F_s+s
and yn|F_s+5 = y|F—s+s for all n = Ny, Thus for n = Ny and every v € F'— S we have that o?(z)|s =
0¥ (zn)|s and 0¥ (y)|s = 0% (yn)|s. From this we obtain that occ,(x) N (F — S) = occy(zy,) N (F —5)
and occ,(y) N (F —8) = occy(yn) N (F — S) for every n = Ns.

Let N = max{Nj, No} and let n = N. As n > Nj, we have that (z,,y,) is an indistinguishable
asymptotic pair whose difference set is contained in F', it follows that #{occ,(z,) n (FF — §)} =
#{occy(yn) N (F — S)}. As n = Ny, we obtain #{occ,(z) n (F' — S5)} = #{occ,(y) n (F — S)}. As this

argument holds for every pattern p, we conclude that (x,y) is indistinguishable. O

Definition 2.10. Let z € $2° be a configuration.

(1) x is recurrent if for every p € L(x) the set occ,(x) is infinite.

(2) xz is uniformly recurrent if every p € L(x) appears with bounded gaps, that is, for every
p € L(x) there ewists a finite K < Z% such that for every u € Z% there is k € K such that
a“*(z) € [p].

Clearly both recurrence and uniform recurrence are properties that are satisfied either by both con-
figurations in an indistinguishable asymptotic pair simultaneously, or by none of them. Furthermore,
it can be easily verified that both of these properties are preserved under the action of Aff(Z?), just

as in Proposition [2.5

Proposition 2.11. Let x,y € 2% be an indistinguishable asymptotic pair. If x is not recurrent, then

x,y lie in the same orbit.

Proof. If z is not recurrent, there is a finite S < Z? and p € Lg(z) such that occy(x) is finite. As
A,(z,y) =0, it follows that occ,(y) is also finite.

Let (S, )nen be an increasing sequence of finite subsets of Z% such that Sp = S and Upen Sn = Z4
and let ¢, = z|s,. As z € [q,] and A,, (z,y) = 0, there exists u, € Z% so that o%"(y) € [gn].
Furthermore, as ¢,|s = p, it follows that o%~ (y) € [p] and thus u,, € occ,(y). As occ,(y) is finite, there
exists v € occy(y) and a subsequence such that u, ) = v and thus o”(y) € [g,)] for every k€ N. As

Mnenltn] = ﬂng[qn(k)] = {z} we deduce that o"(y) = z. O



INDISTINGUISHABLE ASYMPTOTIC PAIRS OVER Z< 13

Remark 2.12. All of the definitions and results stated so far in this section are valid in the more
general context where Z9 is replaced by a countable group I'. In Appendix [A| we provide definitions

and proofs in this more general setting with the hope that it might be useful for further research.

2.2. Known results on dimension 1. When considering d = 1, two phenomena, stated in the
lemmas below, simplify the study of indistinguishable asymptotic pairs: every word in the language
can be read from the difference set, and recurrent configurations which are part of an indistinguishable

asymptotic pair are in fact uniformly recurrent.

Lemma 2.13. [Lemma 2.8 of [9]] Let x,y € X% be a non-trivial indistinguishable asymptotic pair with
difference set F. For every finite S € Z and w € Lg(x) there is u € F — S such that o"(z) € [w].

Lemma 2.14. [Lemma 2.12 of [9]] Let z,y € % be a non-trivial indistinguishable asymptotic pair. If

x s recurrent, then x is uniformly recurrent.
Gathering Proposition 2.11] and Lemma [2.14] we obtain the following beautiful dichotomy.

Corollary 2.15 (Corollary 2.13 of [9]). Let x,y € X% be a non-trivial asymptotic indistinguishable
pair. Then exactly one of the following statements holds
(1) © = 0o"(y) for some nonzero n € Z,

(2) x and y are uniformly recurrent.

This dichotomy was the starting point which lead to our characterization of Sturmian configurations

through indistinguishable asymptotic pairs in Z.

Theorem 2.16. [Theorem A of [9]] Let z,y € {0,1}% and assume that x is recurrent. The pair (x,y)
is an indistinguishable asymptotic pair with difference set F = {—1,0} such that x_i1x9 = 10 and
Yy—1Y0 = 01 if and only if there exists a € [0, 1]\Q such that x = ¢, and y = |, are the lower and upper

characteristic Sturmian sequences of slope a.

When d > 2 there exist non-trivial indistinguishable asymptotic pairs where both of the above

lemmas fail.

Example 2.17. Let u,v € {0,1}” be any indistinguishable asymptotic pair. Consider the configura-
tions z,y € {0, 1, 2}Z2 given by
u(t) ifj=0 v(i) ifj=0
x(i,j) = Q J and y(i,j) = (@) J for every i, j € Z.
2 ifj#0 2 ifj#0
The words z,y form an indistinguishable asymptotic pair which does not satisfy Lemma (the
symbol 2 does not occur in the difference set) nor Lemma (it is recurrent but not uniformly

recurrent). See Figure m

In particular, a convenient consequence of Lemma [2.13|in d = 1 is that the complexity of any pair
of indistinguishable configurations is linear and the bound is given by the size of the difference set.
More precisely, if =,y € £Z is a non-trivial indistinguishable asymptotic pair whose difference set F' is

contained in an interval I, then for every n > 1
n+1< #L[[Ln]](x) <n+#{) -1

See [9, Proposition 3.4]. This consequence also fails in the multidimensional setting as shown in the

following example.

Example 2.18. Fix k > 1. Let u,v as in Example and let z,y € {0,... .,k — 1}Z2 be given by

) it =0 [ it =0
(i, j) = and y(i,j) = -
j modk ifj#0 j modk ifj#0
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FIGURE 7. An indistinguishable, recurrent but not uniformly recurrent asymptotic

V5—1

pair (x,y) given by the two characteristic Fibonacci words (o = 5

Trow.

) in the central

We obtain an indistinguishable asymptotic pair whose difference set has size 2, but such that the

alphabet can be as large as required by taking larger values of k.

This shows that a naive analogue of the complexity upper-bound given by Lemma also fails in
the multidimensional setting. However, under special conditions which we introduce in Section [2.3] we
show that an analogue of Lemma holds, which gives us a way to extend Theorem to 7.

2.3. The flip condition. As shown in the examples of Section [2.2] indistinguishable asymptotic pairs
in Z% in general are not related to Sturmian configurations as strongly as in dimension 1. Despite
these discouraging examples, we show that if we consider indistinguishable asymptotic pairs satisfying
an additional hypothesis, then many of the good properties from dimension 1 are still valid and we
will be able to obtain a characterization of multidimensional Sturmian configurations in terms of

indistinguishable asymptotic pairs.

Definition 2.19. Let z,y € {0,1,..., d}Zd be an asymptotic pair. We say it satisfies the flip condi-
tion if:

(1) the difference set of x and y is F = {0, —e1,...,—eq},

(2) the restriction x|p is a bijection F — {0,1,...,d},

(3) the map defined by x,, — y,, for everyn € F is a cyclic permutation on the alphabet {0,1,...,d}.
Without lost of generality, we assume that zo = 0 and y, = x, — 1 mod (d + 1) for everyn e F.

The flip condition may be interpreted as a symbolic coding of the act of geometrically flipping the
faces of a hypercube at the origin of a discrete hyperplane as in Figure

3. MULTIDIMENSIONAL INDISTINGUISHABLE ASYMPTOTIC PAIRS AND THEIR COMPLEXITY

The goal of this section is to prove Theorem [A] which characterizes indistinguishable asymptotic

pairs which satisfy the flip condition through their complexity.

3.1. Special factors in higher dimensions. In one dimension, the factor complexity is related to the
valence of left and right special factors [I4]. Similarly, in higher dimensions, the pattern complexity is
related with the valence of special patterns with connected support. In this section we shall generalize
the notion of special factors to higher dimensions, which will be the fundamental tool in the proof
of Theorem [Al

Since we will often consider all patterns which appear in configurations z,y € {0,1,... 7al}Zd, it is
practical to introduce the notations L£(z,y) = L(z) u L(y) and Ls(z,y) = Ls(x) v Ls(y) for every
finite support S < Z<. For a pattern w € Lg(x,y), and a position ¢ € ZNS, let the extensions at
position ¢ € Z¢ of the pattern w within the language £(x,%) be

E(w) = {us: ue Lsoey(w,y) and uls = w}.
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Observe that the extensions E*(w) always depend on the language £(z, y) but we do not write Ef  (w)
to lighten the notations. Following the terminology for d = 1, we say that a pattern w € Lg(x,y) such
that #E‘(w) > 2 is special at position £ € Z?. Notice that we have the equality
#ESU{E}($7ZJ) = Z #Ez(w>
weLlg(z,y)

Let £,7 € Z%\S be positions such that £ # 7. We say that a pattern w € Lg(z,y) is bispecial at
positions ¢, r if #FE*(w) = 2 and #E"(w) > 2. Moreover, for a pattern w € Lg(x,y) let the bilateral
extensions at positions £,7 € Z%\S of the pattern w within the language £(z,y) be

E“(w) = {(ug,ur): u € Ly o,y (x,y) and uls = w}.

The bilateral multiplicity m*" (w) of the pattern w at the positions ¢, € Z?\S within the language

L(x,y) is given by the expression
m® (w) = #E°7 (w) — #E (w) — #E" (w) + 1.

We use the same terminology as when d = 1 [I4] to describe bispecial factors: we say that a pattern
w € Lg(z,y) is strong (resp. weak, neutral) at the positions ¢,7 € Z%\S if m®"(w) > 0 (resp.
m®" (w) < 0, m>" (w) = 0).

Notice that we may interpret E*7(w) as an undirected bipartite graph called extension graph,
see [I1]. The vertices are given by the disjoint union V = Ef(w) u E"(w) and we have an edge
(a,b) € E(w) x E"(w) if there is u € Lsoge,ry(x,y) such that uy = a, u, = b and u|s = w. In this
manner #E°" (w) corresponds to the number of edges of the graph and #E*(w) +# E" (w) corresponds
to the number of vertices.

In the next lemma, we show that combinatorial properties of the extension graph E%"(w) impose

lower bounds on the bilateral multiplicity of the pattern w.

Lemma 3.1. Let w e Ls(x,y) be a pattern and ¢ be the number of connected components of E*" (w).

(1) m*"(w) =1 —c.

(2) The extension graph E*"(w) is acyclic if and only if m*"(w) = 1 — c.
(8) If E“"(w) is connected, then m*"(w) = 0.

(4) If E“"(w) is connected and contains a cycle, then m*"(w) > 0.

Proof. (1) Notice that
m"" (w) = #E°" (w) — #E (w) = #E"(w) + 1
= #edges — F#vertices + 1.

In each connected component we have that the number of edges is at least the number of vertices
minus 1. (2) If m*"(w) = 1 —c, it implies that #edges — #vertices = —1 in each connected component.
Therefore each connected component is a tree and we deduce that the extension graph E®"(w) is
acyclic. If m®" (w) > 1—c, it implies there is a connected component in which #edges —#vertices > —1.
That connected component must contain a cycle. Thus, the extension graph E“"(w) is not acyclic.

Part (3) is an immediate consequence of (1). Part (4) is an immediate consequence of (2). O

3.2. Complexity of indistinguishable asymptotic pairs with the flip condition. Here we shall
show that the flip condition along with indistinguishability impose that every pattern in the language
must occur in a position which intersects the difference set. This property implies an upper bound for

the pattern complexity.
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Lemma 3.2. Let x,y € {0,1,..., d}Zd be an indistinguishable asymptotic pair satisfying the flip con-
dition. For every finite nonempty subset S < Z%, we have Lgs(z,y) < {oc"(z)|s:n € F —S}. In
particular, #Ls(x,y) < #(F — 5).

Proof. For i € {0,1,...,d}, let g; = i, — i, where i, 1, are the unique positions in F so that z;, = i
and y;, = i. Let GV = {go,..., 94}, G " = —G" YV and G = G" Y L GYV".
We claim that the collection G = G*~Y U GY~F generates Z% as a monoid. Indeed, the flip condition

ensures that every position in F' occurs exactly once as an i, (and exactly once as an 4,). Moreover,

for every i € {0,1,...,d}, g1 = iy — iy # 0. As 0, = 0, using the previous properties we can suitably
add elements from G*¥ to produce all canonical vectors {ey,...,eq}. Similarly, adding elements from
GY~* we can produce {—ej, ..., —eq}. This provides a set which generates Z¢ as a monoid.

For m € Z%, let ||m||g be the word metric generated by G, that is, the least number £ so that m
can be written as a sum of ¢ elements of G (0 can be written as a sum of zero elements). Denote by
dg(m,m’) = |m — m/||g and for a set K < Z% let dg(m, K) = mingeg dg(m, k).

We just show that Lg(z) < {o"(x)|s: n € F — S}, as the other case is analogous. Let p € Lg(x).
There exists n € Z¢ such that o™ (x) € [p]. Choose n as above such that it minimizes dg(n, F — 9).
We claim that dg(n,F —S) = 0. If this were not the case, there is f € F and s € S so that
dg(n,F = 8) =dg(n, f —s) = |n—(f = s)lg = 1.

dg(n,F—S)
j:

By definition, we can write n — (f —s) = > .9} h; with each h; € G. Consider hy. There are

two cases:
(1) If hy € G*Y then hy = g; for some 0 < ¢ < d. Consider the support S” = {i,} U (n +5) and

let ¢ = z|g/. By definition x € [¢] and as z,y are indistinguishable, there must exist k € F'— 5’

so that 0% (y) € [¢] and thus o**"(y) € [p]. There are again two cases.

(a) If kK + n e F — S, then as z,y are indistinguishable there must exist n’ € F — S so that
o™ (z) € [p]. This contradicts the choice of n.

(b) If k + n ¢ F — S, then necessarily k € F' — {i,,}. We obtain that there is f* € F' so that
k= f*—iz. Aso*(y)i, = ypx_i, i, = i, it follows by the flip condition that f* = i, and
s0 k =14y — iy = —g; = —h1. We deduce that o M(y)e[pl. Ask+n=n—h ¢ F—S
and x,y are asymptotic, we have that ¢” "1 (z) € [p] and that

dg(n —hi,F=S)<|n—hi—f—sllg=I|n—f-sll¢g—1=dg(n, F-S)—1

Letting n’ = n—hy, we have o™ (z) € [p] and dg(n/, F—S) < dg(n, F—S)—1, contradicting
the choice of n.
(2) If hy € GY=7, then hy = —g; for some 0 < ¢ < d. The argument is analogous except that now

we consider S" = {iy} U (n+5) and ¢ = y|g.
We conclude that dg(n, F —S) =0 and thus ne F — S. O

Lemma |3.2| generalizes Lemma which is valid in Z without resorting to the flip condition. We
say that a permutation is cyclic if it consists of a single cycle and has no fixed points. In order to

obtain a lower bound and thus the equality, we will use the following technical result.

Lemma 3.3. Let m: U — U be a cyclic permutation on a finite set U. Let Ac U and f: A — B be
a surjective map for some finite set B. If A # U, then

#{(a, f(a)) [ a € A} U {(n(a), f(a)) |a € A} > #A + #B.

Proof. Let Py = {(a, f(a)) | a € A} and P, = {(w(a), f(a)) | a € A}. Tt is clear that P; and A have

the same number of elements, it suffices thus to show that for every b € B, there is a € A such that
(n(a), f(a) € P,\Py and f(a) = b.
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Indeed, fix be B and let Q = {a € A: f(a) = b}. Clearly Q # @ as f is surjective. Consider the
directed graph G = (Q, F) where (¢,7) € E if and only if 7(q) = r. Notice that ) does not contain a
cycle due to m being cyclic on U and A # U, therefore there is ¢ € @ such that 7(q) ¢ Q. Then we
have (7(q), f(q)) € P.\Py and f(q) = b. O

We will now use Lemma [3.3] to prove a lower bound for the pattern complexity of asymptotic pairs

satisfying the flip condition. Notice that we do not use indistinguishability in what follows.

Lemma 3.4. Let z,y € {0,1,... ,d}Zd be an asymptotic pair satisfying the flip condition. Then for

every finite nonempty connected subset S < Z%, we have

#Ls(x,y) = #(F - 9).

Proof. We do the proof of the inequality by induction on the cardinality of S. If S = {a} is a singleton,
the inequality holds since L4y () = Liq3(y) = {0,1,...,d} and thus

#(Liay (1) U L1y (y) = d + 1 = #F = #(F — {a}).

Proceeding by induction, we assume that #Lg(z,y) = #(F —S) holds for some finite connected subset
S < 74 and we want to show it for S U {a} for some a € Z%\S such that S U {a} is connected.
Let
G=(F—=(Su{ah)\(F=5) = (F—-a)\(F-9)
be the set of vectors m € Z? such that m + (S U {a}) intersects F without m + S intersecting F. Since
S U {a} is connected, G is a strict subset of F' — a.

Let f: G — Lg(x) be the map defined by f(m) = ¢™(z)|s, and g: G — {0,1,...,d} be the map
defined by g(m) = (6™(x))q = Tm+q for every m € G. Notice that if m € G, then f(m) = c™(y)|s
and f(G) = {o™(z)|s: me G} = {c™(y)|s: m e G}.

Putting together the flip condition and that G + «a is a strict subset of F', it follows that g is injective
and its image is a strict subset of the alphabet {0,1,...,d}. Also notice that the flip condition implies
that Ym+a = (g(m) — 1) mod (d + 1).

Since the asymptotic pair (z,y) satisfies the flip condition, we have that f(G) is a subset of patterns
that are special at position a. This provides a lower bound for the pattern complexity. More precisely,
because of the flip condition, for every m € G, we have that o™ (z)|s ey and 0™ (y)|suia} are two
distinct extensions to the support S U {a} of the pattern c™(z)|s = 0™ (y)|s. Therefore, we have the

inclusion
U {ue Lsogay(@,y): uls = w} 2 {0™(x)|sogay: m € G} U {0 (W)|sufay: me G}
we f(G)
The union on the left is disjoint, therefore, taking the cardinality of both sides, we obtain

>, #E(w) = # ({07 (@)sutay: me G} U {0™(y)|sugay: m € GY)
wef(G)

= # ({(g(m), f(m)): m e G} v {(g(m) — 1 mod (d + 1), f(m)): m € G})
=# ({(s. fg7'(s): s € g(G)} U {(s — 1 mod (d+1), fg~'(s)): s € g(G)})
> #9(G) + #(G) = #G + #[(G).
In the penultimate line, we use that g is injective and thus g~ !: g(G) — G is a bijection. In particular,

this implies that fg=!: g(G) — f(G) is surjective. As g(G) is a strict subset of the alphabet {0, 1,...,d}

we obtain the last line using Lemma
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Since every pattern in Lg(z,y) can be extended in at least one way to position a, we have #FE%(w) =
1 for every w € Lg(z,y). Also since f(G) < Lg(z,y), we have
#Lso(ay(,y) — #Ls(x,y) = . (#E(w)—1)= D (#E%(w)—1)

weLlg(z,y) we f(G)

D, #E(w) = #f(G)

wef(G)

(#G + #[(G) —#[(G) = #G

\%

Therefore,

#‘CSu{a}(xay) = #L:S(l',y) + #G = #(F - S) + #G = #(F - (S Y {a})) g

3.3. Properties of asymptotic pairs with the flip condition and complexity #(F —.S). In this
subsection, we fix an asymptotic pair (z,y) which satisfies the flip condition and study the properties
we can obtain from the assumption that Lg(z,y) = #(F — S) for every nonempty connected finite
S < Z%. For the remainder of the subsection, we fix a (possibly empty) connected set S < Z? and
0,7 e Z4\S such that SU{¢}, Su{r} and SuU{{,r} are connected. We also convene that Ly (z,y) = {},
where ¢ is the empty pattern. As our proof will be by induction, we shall often make use of the following

condition which will correspond to the inductive hypothesis.

Definition 3.5. We say that (z,y) satisfies condition (IND) if for every S’ € {S,Su{f},Su{r}} any
pattern p' € Lg/(x,y) occurs intersecting F in x, that is, for every p' € Lg/(x,y) there ist' € F — 5’

such that we have o* (z) € [p'].

It is clear that condition (IND) implies that #Lg (z,y) < #(F —5’). By Lemma [3.4] we have the
other inequality and thus condition (IND) in fact states two things: that #Lg (x,y) = #(F —5’) and
that the position ¢’ € F' — S’ such that ¥ () € [p] is unique.

Our general strategy will be similar to the proof of Lemma[3.4] that is, we will look at the positions
in F— (S v {{r}) for which only one of {/,r} intersects the difference set and nothing else does,
this will provide us with the means to describe E*"(w) for words w € {0,1,...,d}* and ultimately to
prove Theorem [A]

Let w e Ls(z,y). We are going to define three special subsets of E“"(w)

Lo(w) = {(x440,Ti1r) € ES"(w) : there is t € Z% such that of(z) € [w],t+£ € F, (t+(Su{r}))nF = &}.

Do(w) = {(i40, Trsr) € ES"(w) : there is t € Z¢ such that o' (x) € [w], t+r € F, (t+(Su{l}))nF = @}.

Dy (w) = {(x440,Ter) € BY"(w) : there is t € Z¢ with ¢'(z) € [w] such that either (t + S) N F # &
ort+{,t+reFand (t+5)nF =g}

The set T'y(w) consists of all edges in E*"(w) which can be obtained by a pattern (with support
S v {£,r} and whose restriction to S is w) which intersects F' solely on position ¢. Similarly, T',.(w)
consists of all edges in £*" (w) which can be obtained by a pattern which intersects F solely on position
7. Finally, I', (w) represents the edges in E*"(w) which occur in some pattern which intersects F, but
does so either having S intersect F', or having both ¢ and r do so at the same time. Notice that these
three sets cover all possible ways that S U {¢,r} can intersect the difference set F'.

In particular, if we want to show that no pattern appears twice on x intersecting the difference set,
we would need to show that I'y(w) n I',.(w) = @. This will be the main goal of this section.

We shall first show that under condition (IND) we can use the set I',(w) to bound the number of

connected components of E*"(w).

Lemma 3.6. For a symbol k € {0,1,...,d}, let us denote by k* = (k — 1) mod (d +1). Assume
condition (IND) and consider the bipartite graph E*(w).
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(1) If (a,b) € To(w), then (a*,b) € E*"(w) and there is b’ such that (a*,b') € Ty(w)
(2) If (a,b) € T (w), then (a,b*) € E“"(w) and there is a’ such that (a’,b*) € T'.(w)
(8) The number of connected components of E*7(w) is bounded above by #T',(w).

u T (w).
u T (w).
Proof. Let us show (1). Fix (a,b) € I'y(w) and let w’ be the pattern with support S u {£,r} such
that w'|s = w, w), = a and w,. = b. As (a,b) € [y(w), there is t € Z? such that t + ¢ € F,
(t+(Su{r})nF =@ and o(z) € [w']. On the one hand, as x,y are asymptotic with difference
set F', we have x|, (suqr)) = Yli+(sugry) and thus y;, = 241, = b. On the other hand, by the flip
condition y;1¢ = 2440 — 1 mod d + 1 = a*, which means we have both (a,b) and (a*,b) in E®"(w).
Furthermore, if we let w” be the pattern with support S u {¢} such that w”|s = w and w; = a*,
condition (IND) implies that w” must occur in z intersecting the difference set. It follows that there
is b’ such that (a*,0’) € T'y(w) U T's(w). The second claim is analogous to the first one.

Next we shall provide a bound on the number of edges of I'y(w) and I',.(w). Indeed, notice that by
condition (IND) we have that

HDy(w) < #{teZ:t+Le Fand (t+ (Su{r}) nF =02)}.

As S U {f,r} is connected, there is u € Z¢ with ||ul|; < 1 such that £ +u € S U {r}. In particular,
there is at least one t € Z% is such that t + € F and t + £+ ue F. As #F = d + 1, we deduce that
#I'y(w) < d. Analogously, we have #I'.(w) < d.

Let us finally prove (3). Let a € E*(w) and consider again the pattern w’ with support S U {¢} such
that w'|s = w and wj, = a. By condition (IND), it must occur intersecting F' and thus we have that a
must occur in some edge in I'y(w) U T'x(w). If it occurs in an edge of T',(w) we are done, otherwise by
(1), we know it is connected to a* = a—1 mod d + 1 and that a* occurs in some edge in I'y(w) UL, (w).
If said edge is in I'y(w) we are done, otherwise we iterate the process, as #I'p(w) < d it follows that
we eventually end up in a vertex which belongs to an edge in T'x(w). After an analogous argument for
b e E"(w) we obtain that every connected component of E%"(w) must contain an edge of ', (w), and

thus the number of connected components is bounded by #I'.(w). O

Next we will have to estimate the size of T'y(w) in order to have a lower bound on the multiplicities
m®" (w). It turns out that one particular case is harder to deal with and thus we shall give it a special

name to simplify the upcoming statements.

Definition 3.7. Let S < Z? be a connected nonempty finite support and £, € ZN\S with £ # r. We
say that (S,¢,r) is evil if there exists t € Z¢ such that {t + {,t +r} < F and (t + S) " F = @.

We also say that w € Ls(x) is an evil pattern if for t € Z¢ such that {t + {,t + r} < F and
(t+S) N F = & we have x44s = wy for every s € S.

We remark that by definition the empty pattern e with support S = & is not evil. Definition [3.7] is
illustrated in Figure [§| when d = 2.

0

F 1 T2
S S Ss

L3

3

FIGURE 8. (S1,£1,71) is evil, as both ¢; and r; can simultaneously overlap F' without
S1 doing so. Notice that (S3,£s,73) is not evil since by — 19 ¢ F — F. (Ss3,03,r3) is
also not evil since the unique ¢ € Z? with ¢+ {3, r3} < F is such that (t+S3) N F # @.
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Lemma 3.8. Let w e Lg(z,y) and assume conditon (IND). If w is an evil pattern, then m®"(w) >

—1. If w is non-evil, then m*"(w) = 0

Proof. In the case when S = @, as £ # r there is at most a unique t € Z¢ such that t + (,t +r € F,
and thus #I,(w) < 1. If S # @, condition (IND) implies that there is a unique ¢ € Z? such
that (t + S) n F # @ and o'(z) € [w]. The second possibility, namely, that there is ¢ such that
t'+S)nF=gandt +{,t+reF can only occur if w is evil, therefore we obtain that #I',(w) < 1
if w is non-evil and #T',(w) < 2 if w is evil.

By Lemma we obtain that the number of connected components of E*"(w) is bounded by 1
if w is non-evil, and by 2 if it is evil. Using Lemma we obtain that m®"(w) > 0 whenever w is

non-evil, and m®"(w) > —1 if w is evil. O

Next we shall show that the bound in Lemma [3.8| is tight. In order to do so we will produce a

formula for the sum of a bilateral multiplicities.

Lemma 3.9. Suppose that #Lgs gy (2,y) = #(F — (S u {{,r})) and that condition (IND) holds.

For every w e Lg(x,y), let ¢ be the number of connected components of E*"(w). We have

-1  ifw is evil,

0 otherwise.

In particular, the extension graph E“(w) contains no cycle.

Proof. Let us first deal with the case S # @. Summing each term in the definition of multiplicity we

obtain

Y, miw) = Y #ET(w) - Y #Ew)- Y #E(w)+ Y 1

weLlg(z,y) weLls(z,y) weLlg(z,y) weLlg(z,y) weLlg(z,y)
= #ESU{Z,T}(xay) - #‘CSU{Z}(J:’ y) - #[’Su{r}(xvy) + #ES(J:’ y)
On the one hand, we have the hypothesis that #Lg ) (2,y) = #(F — (S U {£,7})). On the other
hand, condition (IND) implies that #Lg (x,y) = #(F — §') for every S’ € {S,S u {¢},S u {r}}. We
obtain

Y mi(w) = #(E = (S {lr)) = #(F — (S {r}) = #(F — (S v {£) + #(F — 5)

weLlg(x,y)
= #((F = (S u{t,rYI\(F = (S v {r}))) = #((F = (S v {{H)\(F' = 5))
= #((F = {O\F = (S v {r}))) — #((F = {{Y\(F - 9))
= —#((F = {rP\(F = 5)) n (F = {£})).
Clearly if ((F — {r})\(F — S)) n (F — {¢}) = & the value of the sum is 0. Otherwise, there is t € Z%
such that t + r € F, t+ ¢ € F but t + s ¢ F for every s € S, which is precisely the evil case. Notice

that as £ # r, if such a t exists then it is unique (because any non-trivial intersection F' n (t + F') has

size at most 1), and thus in this case the sum has value —1. We obtain thus that for S # & we have

-1 if (S,4,7) is evil,
weLs(z,y) 0 otherwise.

Using Lemma and the fact that there is exactly one evil pattern for an evil (S, ¢, r), we obtain that
m®"(w) = 1 — ¢. By Lemma this implies that the extension graph E*"(w) is acyclic.

Let us now deal with the case when S = @. By assumption, S U {{,r} is connected and thus
without loss of generality we may write 7 = £ + e; for some i € {1,...,d}. By definition m®"(g) =
#EL"(e) — #E(c) — #E"(e) + 1. Clearly #E‘(e) = #E"(¢) = L{oy(z,y) = d + 1 and one can easily
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verify that for U = {¢,{ + e;} we have #E*"(¢) = #(F — U) = 2d + 1. It follows that m®"(¢) = 0.
As the number of connected components of E“"(g) is bounded by #I'4(¢) < 1, we conclude that ¢ = 1
and thus m*"(¢) = 1 — c¢. By Lemma this yields that the extension graph E®"(w) is acyclic. [0

Lemma 3.10. Suppose that #Lg e,y (2, y) = #(F — (S u {{,7})) and that condition (IND) holds.
For every non-evil w € Ls(z,y), if To(w) n T.(w) # O, then the evtension graph E“"(w) contains a

cycle.

Proof. Let w € Lg(x,y) be a non-evil pattern. It follows that #I',(w) = 1. Let (&,b) be the sole
element of T'y(w).

Suppose that Ty(w) n T (w) # &. Let (a,b) € Ty(w) n T')(w) and p be the pattern with support
SU{l,r} with pls = w, pe = a, p, = b. It follows that there exists ¢, € Z% such that of(z), 0" (z) € [p]
witht+/le F, t+(Su{r)nF =0,andt' +re F, (t' +(Su{{})) n F = @. It follows that
the subpatterns ¢, and ¢, of p, with supports S U {¢} and S U {r} respectively, already intersect the
support F in x (with vectors ¢ and ' respectively), and thus if ¢ € Z¢ is such that ot (x) € [w] and
(t"+5)n F # @, then both 4 = 24,4 # a and b= Ty 4 # b (otherwise the intersections of gy and
gr with F' on  would not be unique).

Iterating Lemma part (1), we can construct a path m, in E®"(w) from a to @ which begins by
the edge (a,b). Similarly, using part (2) we can build a path w5 from b to b which begins with the
edge (b,a). Notice that in each path either the edge (&,IA)) does not appear, or it is the last edge on
the path.

If (a, 13) does not appear in either 7, nor m,, we can put them together to construct a path from a
to b which does not use the edge (a, 5) Similarly, if (a, l;) appears in both of the paths, we can remove
it from both paths and again we have a path from a to b which does not use the edge (@, l;) In both
cases we obtain a cycle in E47 (w).

Finally, let us suppose that the (undirected) edge (é,b) appears at the end of just one path. As
both cases are analogous, let us assume that it appears in 7,. If we remove the first and last edge from
m, we obtain a path from b to b which does not use the edge (a,b) and in which a does not appear. If
we remove the first edge from m, we obtain a path from @ to b which does not use the edge (b,a) and
where b does not appear. Thus a and b are connected through a path that does not use the edge (a, b)
and thus we obtain a cycle in E"(w). t

Remark 3.11. Using a variation of the previous argument, it is also possible to show for evil patterns
that if T'y(w) N T'r(w) # @, then E4"(w) contains a cycle. However, we shall not need that statement
for the proof of Theorem [A]

Proposition 3.12. Let d > 1 and z,y € {0, 1,...,d}Zd be an asymptotic pair satisfying the flip
condition with difference set F' = {0, —ey,...,—eq}. Assume that for every nonempty finite connected
subset S < 74, the pattern complexity of x and y is #Ls(x) = #Ls(y) = #(F — S). Then for every
nonempty finite connected subset S < Z¢ and p € Lg(x) U Ls(y), we have

(3) # (ocey(x)\ocep(y)) = 1 = # (ocey(y)\ocey (x)) -

Proof. The proof is done by induction on the cardinality of S. If #S = 1, then it follows from the flip
condition that Equation holds for all patterns p: S — {0,1,...,d} with support S of cardinality
1. Let us assume (by the induction hypothesis) that Equation holds for all supports S < Z% with
cardinality #S5 < k for some integer k£ > 1. For the sake of contradiction, let us suppose that there
exists a finite connected subset U < Z? of cardinality #U = k + 1 such that Equation (3 does not
hold for some pattern p € Ly(x,y). As #Ly(x) = #Ly(y) = #(F — U), we may assume without
loss of generality that there exists a pattern p € Ly (x,y) such that # (occ,(x)\occy(y)) = 2. In other
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words, there are two distinct vectors ¢,# € F — U such that both ¢*(z),o" (x) € [p]. We claim that
there exist ¢,r € U which satisfy the following properties:

(A) € #r.

(B) U is a path in Z¢ whose extreme elements are £ and 7.

(C) ¢ is the unique element of U such that ¢t + £ € F.

(D) r is the unique element of U such that ¢ + r € F.

Indeed, as t,t’ € F' — U, there are {,r € U such that t + ¢,t' + r € F. If £ = r, then as t # t' it
follows that ¢ + ¢ # ' + £ are two distinct positions in F, however, as o'(z), 0" (z) € [p], it follows
that x;y¢ = 2y 40 = pg which contradicts the flip condition. Therefore we must have that £ = r. As U
is connected, we may extract a path U’ < U in Z¢ which connects ¢ and r. It follows that p’ = p|y
also breaks Equation because ot(z), 0 (z) € [p/] and t,# € F — U’, and thus from the induction
hypothesis we must have U’ = U and thus U is a path in Z¢ whose extreme elements are ¢,r. Using
the same idea, suppose there is ¢/ € U such that t + ¢ € F, then we could take the sub-path U” < U
which begins in ¢/ and ends in r and again p” = p|y» would violate the induction hypothesis. Thus ¢
is unique. Similarly, r is unique.

Let S = U\{/{,r}, w = p|s, a = py and b = p,. Notice that the induction hypothesis implies that
condition (IND) holds in (z,y) for (S,¢,r).

As t # ¢/, it follows that w is not an evil pattern. Furthermore, conditions (C) and (D) give
that (a,b) € Tp(w) and (a,b) € I',(w) respectively. Therefore we have I'y(w) n I'(w) # @ and
thus Lemma yields that the extension graph E"(w) contains a cycle. This is a contradiction
with Lemma [3.9) that states that E%"(w) is acyclic.

We conclude that Equation holds for all patterns p € Ly (x,y) for all finite connected subset
U c Z% of cardinality #U = k + 1. O

3.4. Proof of Theorem [Al We shall now prove our characterization of indistinguishable asymptotic
pairs with the flip condition through complexity. For the convenience of the reader, we recall the

statement.

Theorem Let d > 1 and z,y € {0,1,..., d}Zd be an asymptotic pair satisfying the flip condition

with difference set F' = {0, —eq,..., —eq}. The following are equivalent:

(i) For every nonempty finite connected subset S < Z% and p € Lg(z) U L5(y), we have

# (ocep(z)\ocey (y)) = 1 = # (ocep(y)\ocey(2)) -

(ii) The asymptotic pair (z,y) is indistinguishable.

(iii) For every nonempty finite connected subset S c Z%, the pattern complexity of x and ¥ is

#Ls(x) = #Ls(y) = #(F = 5).

Proof of Theorem[4] Let xz,y € {0,1,..., d}Zd be an asymptotic pair satisfying the flip condition with
difference set F' = {0, —ey, ..., —eq}. By Proposition it follows that (i) implies (ii).

Assume (ii) holds and let S = Z? be a finite nonempty connected subset. As (z,y) is indistin-
guishable, we have Lg(z) = Ls(y) = Ls(x,y). Furthermore, from Lemma we have #Lg(x,y) =
#(F — S). From Lemma [3.2] we have #Ls(z,y) < #(F — ). We conclude that #Lg(z) = #Ls(y) =
#(F — S) and thus (iii) holds.

In Proposition we proved that (iii) implies (i). O

Theorem [A] gives us two descriptions of the language of z and y for any connected support.

Corollary 3.13. Let x,y € {0,1,... ,d}Zd be an indistinguishable asymptotic pair satisfying the flip
condition. For every finite nonempty connected subset S — 7%, we have that the maps given by

n— o™(x)|s and n — o™ (y)|s are two distinct bijections from F — S to Ls(x).
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Proof. We proved Lg(z) < {o"(x)|s: n € F — S} in Lemma[3.2] The equality
Ls(z) ={o"(x)|s:ne F -5}

follows from Theorem [A| From this equality we deduce that the map n — o™ (z)|s is a bijection from
F — S to Lg(z). As Lg(z) = Ls(y) we deduce that

Ls(z) =Ls(y) ={o"(y)ls: ne F —S}.

Thus we conclude that the map n +— ¢™(y)|s is another bijection from F — S to Ls(z). O

3.5. Rectangular pattern complexity. We have so far shown that for any indistinguishable pair
(x,y) € {0,1,... ,d}Zd which satisfies the flip condition and any finite nonempty connected subset
S < 74 we have #Lgs(v) = #Ls(y) = #(F — S). This equation takes a beautiful form when S is a
d-dimensional box.
For a positive integer vector m = (my,...,mq) € N4 let S(m) < Z¢ denote the support
d
S(m) = n[O,mi —1] = {(ni)1<i<a € Z* : 0 < n; < m; for every 1 <i < d},
i=1
which represents the d-dimensional box whose sides have lengths mq,...,mgy. Also, for x € Y2 we
write L, (2) = Lg(m)(z) to denote the set of patterns with support S(m) occurring in x. We refer to

the function which maps m to #L,,(x) as the rectangular pattern complexity of x.

Proof of Corollary[d, Let m = (my,...,mq) € N be a positive integer vector. From Theorem |A} we
have that L, (z) = L, (y) = #(F — S(m)).
By a simple counting argument, we have that #(F — S(m)) is equal to the volume of S(m) plus the
volume of each of its d — 1 dimensional faces. We conclude that
#Em(x)=#£m(y):m1~-md<1+1+--~+1>. O
my mgq
The geometrical interpretation of the rectangular complexity of an indistinguishable pair (z,y) €
{0,1,... ,d}Zd which satisfies the flip condition provides meaning to a curious relation that one can find
perhaps by boredom or accident. Let us express the rectangular complexity as a real map f: R* — R

given by

1 1
f($1,...,xd)_1‘1---xd<1+_|_...+).
T T4

If we consider the derivative of f with respect to some x; we obtain

1 1 ~1
0 f(xlw':lid)—M(lJr+'~~+>+:C1“'Id(2>

ox; T; T1 T4 €Ly
Ty X 1 1 1
:1d<1++...+>_
T T Zd T

In other words, the derivative of the complexity function of a d-dimensional indistinguishable pair
(z,y) € {0,1,..., d}Zd which satisfies the flip condition with respect to any variable yields the rectan-
gular complexity function of a (d — 1)-dimensional indistinguishable pair (z/,3’) € {0,1,...,d — I}Zd
which satisfies the flip condition. The geometrical interpretation is that as this complexity corresponds
to the volume of a d-dimensional box of size (m; ---mg) plus the sum of the volume of the (d — 1)-
dimensional faces, then taking the derivative with respect to a canonical direction e; yields from the
box the volume ™ of the corresponding (d — 1)-dimensional face orthogonal to e;, and for each
of the (d — 1)-dimensional faces we either obtain the (d — 2)-dimensional face orthogonal to e;, or 0 if

the (d — 1)-dimensional face is orthogonal to e;.



24 S. BARBIERI AND S. LABBE

4. CHARACTERISTIC STURMIAN CONFIGURATIONS IN Z¢

In this section, we introduce characteristic multidimensional Sturmian configurations from codimension-
one cut and project schemes. We show that they are examples of indistinguishable asymptotic pairs

satisfying the flip condition.

4.1. Codimension-one cut and project schemes for symbolic configurations. Cut and project
schemes of codimension-one (dimension of the internal space) can be defined in several ways (for a
different definition see [20]). In what follows we follow the formalism of [6, §7], but note that we need

to adapt it in order to describe symbolic configurations over a lattice Z®. Let d > 1 be an integer and

T RdJrl s Rd
(0, X1, xq) +— (x1,...,2q)
be the projection of R?*! in the physical space R?. Let ag = 1, agr; = 0 and a = (ay,...,aq) €
[0,1)¢ be a totally irrational vector, that is such that {1, a,...,ag} is linearly independent over Q.
Let
Ting ° Rd+1 — R/Z
d
(9307I1, .- -aﬂﬂd) = Zizo Ti0

be the projection of R*! in the internal space R/Z. Consider the lattice £ = Z*! < R4*! whose
image is w(£) = Z%. This is the setting of a codimension-one cut and project scheme summarized

in the following diagram adapted from [6], §7.2]:

W c R/Z +2— Ré+L T 5 RE

U dense u u
Tint (£) L (L) > A(W)
(\ . /

Remark 4.1. The usual condition imposed in cut and project schemes is that 7|, is injective, see [6,

§7.2], which does not hold in our case. Here, it is more convenient to relax this condition to
(4) Kerm n £ < Ker mjyt.

Of course if 7| is injective, then is satisfied since Ker 7 n L = {0} < Ker mj,¢. Also, we may observe
that if (4]) holds, then the star map 7 (L) — min (L) is still well defined:

T ¥ = it (E N Wﬁl(x)) .

With the definition of 7 and 7y, above, we have that holds since Kermn L = Z x {O}d < Ker mint.

Moreover,

(5) n* =a-nmod 1

for every n € n(L£) = Z“. For a given window W < R/Z in the internal space,
AW):={zxeL|z*eW}

is the projection set within the cut and project scheme, where L = 7(£). If W < R/Z is a relatively
compact set with non-empty interior, any translate ¢ + A (W) of the projection set, t € R?, is called a
model set.

If W =[0,1), then A(W) = Z%. Thus, if W < [0,1), then A (W) < Z%. Moreover, if {Wi}e(0,...a}
is a partition of [0,1), then {A(W;)}ieqo
configurations Z¢ — {0, 1, ...,d} according to a partition of R/Z, or equivalently of the interval [0, 1),

4 is a partition of Z?. Using this idea, we now build

.....

into consecutive intervals.
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Definition 4.2. Let a = (ay, ..., aq) € [0,1)? be a totally irrational vector and T be the permutation of
{1,...,d}u{0,d+1} which fizes {0,d+1} and such that 0 = a(g41) < Qr(g) < - < Q1) < Qp0) = 1.
For everyie {0,1,...,d}, let

Wi =[1 = a;@), 1 — ar@z)); Wi =(1—=ar@), 1 — ar@zy)]
be such that {W;}icqo,....ay and {W}ico,....ay are two partitions of the interval [0,1). The configurations

co: 7% — {0,1,...,d} p 724 — {0,1,...,d}
an
n +— iifn eW; n +— iifn*eW/

are respectively the lower and upper characteristic d-dimensional Sturmian configurations
with slope a € [0,1)%. Moreover, if p € R/Z, the configurations

Sap: 24 — {0,1,...,d} nd sh,: LT — {0,1,....d}

n — iifn*+peW; n w— difn*+peW

are respectively the lower and upper d-dimensional Sturmian configurations with slope o €
[0,1)¢ and intercept p € R/Z.

/
a,p

of differences of floor functions thus extending the definition of Sturmian sequences by mechanical

It turns out that configurations s, , and s/, , can be expressed by a formula involving a sum

sequences [3I]. Tt also reminds of recent progresses on Nivat’s conjecture where configurations with
low pattern complexity are proved to be sums of periodic configurations [24, [36], although here it

involves a sum of non-periodic configurations.

Lemma 4.3. Let a = (ay,...,aq) € [0,1)? be a totally irrational vector and p € R/Z. The lower and
upper d-dimensional Sturmian configurations with slope o and intercept p are given by the following

rules:
Sap: LY — {0,1,....d}

and

Proof. Let n € Z% and j € {0,1,...,d} be such that n* + p € W;. Therefore sq,,(n) = j. From
Equation , recall that we have n* = n - a mod 1. Since the intervals Wy, Wy, ..., W, are ordered
from left to right on the interval [0, 1), we must have
Sapn)=j=#{ie{l,....d}:1—a; <n-a+p—|n-a+pl}
=#{ie{l,....d}:1<a;+n-a+p—|n-a+pl}
=#{ie{l,...,d}:las+n-a+p|—|n-a+p| =1}

d
=Y (lai+n-a+p|—|n-a+p]).
i=1

The proof for s, , follows the same argument after replacing inequalities (<) by strict inequalities (<)

and floor functions (|-]) by ceil functions ([-]). O

When d =1, s,,, and sg[, , correspond to lower and upper mechanical words defined in [31], see also
[29, 3, [I]. When d = 2, they are in direct correspondence to discrete planes as defined in [12] [, [5]. See
also Jolivet’s Ph.D. thesis [23]. In general, we say that a configuration in {0,1,... ,d}Zd is Sturmian,

if it coincides either with s, , or s;, , for some p € R and totally irrational a € [0, 1)4.
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When p = 0, we have 54,0 = cq and s, , = c,,. Thus, Equation in the Introduction follows from
Lemma [£3]

The fact that the configurations ¢, and ¢, are encodings of codimension-one cut and project schemes
is illustrated with o = (a1, a2) = (v/2/2,4/19 — 4) in Figure [3| in which we see a discrete plane in
dimension 3 of normal vector (1 — ay, a1 — ag, as) ~ (0.293,0.348,0.359). Below, we exhibit another

example and compute its language for small rectangular supports.

Example 4.4. Let a = (v/3 —1,4/2—1). The 2-dimensional characteristic Sturmian configurations
¢q and ¢, are shown on Figure@ In order to motivate the main ideas of the proofs in the next section,

we explicitly compute the language of these configurations for some rectangular supports of small size.

C(V3-1.72-1) “(VB-1.v2-1)
3210221022102110132102210221021101
;1021102102210221;1021102102210221
;2210221021022103;2210221021022103
1102210221021 102 | 102210221021102:
102110210221 0221 ' /0211021022102 21"
2102210211021 02' /21022102110210 2|
102102210221 021' [ 102102210221021"
2210211021 02210' /1 221021022102210
102210221021 022! 102210211021022 |
3021022102210211330210221022102113
2102110210221 02  1210211021022102 |
1022102210211021110221022102110211
;2110210221022101;2110210221022101
;1022102102210223;1022102102210223
1221022102110210' /'221022102110210 |

FIGURE 9. The 2-dimensional configurations ¢, and ¢, when a = (v/3 —1,4/2 —1)
are shown on the support [—7,7] x [—7,7]. The two configurations are equal except
on the difference set F' = {(0,0), (—1,0), (0,—1)} shown in red.

The patterns of shape (1,3) that we see in C(Va-1/3-1) and C/(\/E—l,ﬁ—l) are

The patterns of shape (3,1) that we see in C(V3-1,v3-1) and c’(\/g_17\/§_1) are

{021,022,102,110,210,211,221}

The patterns of shape (2,2) that we see in ¢(\5_; 51, and Cl(\/§71,ﬁ71) are

0 2 10 10 11 21 21 2 2 2 2
217027227 02702710710" 11

The patterns of shape (2, 3) that we see in C(V3-1/3-1) and C/(\/§—1,\/§—1) are

02 02 10 10 10 11 21 21 21 22 22
21, 21,02, 22,22,02, 02,10, 10, 10, 11
02 10 21 10 11 21 21 02 22 02 02
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The patterns of shape (3,2) that we see in C(\3—1/3-1) and C/(\/§71,ﬁ71) are

0 21 0 2 0 10 2 10 2 110
2102102112021 221’
210 210 211 2 21

0 271 271 2’71027 1

We may check on Figure [0] that each of these patterns has exactly one occurrence intersecting the
difference set. This is the main tool that allows us to show that d-dimensional characteristic Sturmian

configurations are indistinguishable.
4.2. Characteristic d-dimensional Sturmian configurations and the flip condition.
Lemma 4.5. For any o€ [0,1)? and p € R, the configurations Sa,p and s;’p are uniformly recurrent.

Proof. If all coordinates in o = (v, ..., aq) are rational, it is clear that s, , and s;’p have finite orbits
under the shift action and are thus uniformly recurrent.

Suppose there is 1 < i < d such that a; is irrational and let S < Z¢ be finite and p € Ls(5a,p)-
From the definition we have that 6" (sq,,) € [p] if and only if

n-oa+pe ﬂ(ka—a-k+Z).

From the definition, it is easy to see that for each j € {0,1,...,d}, the set Wj is either empty or has
nonempty interior. As p € Lg(sq,p), it follows that (),cq(Int(W),, ) — « - k + Z) is nonempty and thus
contains an open interval U < R/Z.

As o is irrational, it follows that there is M € N such that for any b € R/Z there is 0 < m < M such
that b+ ma; € U. Tt follows that for any n € Z¢, there is 0 < m < M such that (n +me;)-a+pe U,
and therefore 0"+ (s,,,) € [p]. This shows that s, , is uniformly recurrent. The argument for s,

p
is analogous. U

Lemma 4.6. If « is totally irrational, then (ca,c’a) is an asymptotic pair whose difference set is
F={0,—e1,...,—eq}.

Proof. Since « is totally irrational, we have that «; +n -« is an integer if and only if n = —e; and n- «

is an integer if and only if n = 0. Therefore, we have that
lo;+n-a)l—|n-a]=[a;+n-a]—[n-a
for every n € ZN\{0, —e;} and i € {1,...,d}. Therefore,
ca(n) = c4(n)

for every n € Z4\{0, —eq, ..., —eq}. This shows that (c,c),) is an asymptotic pair whose difference set
is F={0,—egq,...,—€4}. O

Proposition 4.7. Let a € [0,1)? be totally irrational. The characteristic d-dimensional Sturmian

configurations c, and cl, satisfy the flip condition.

Proof. From Lemma if o = (ag,...,a4) € [0,1)? is totally irrational, then (c4, c}) is an asymptotic
pair whose difference set is F' = {0, —eq,...,—eq}.
From Lemma [4.3] we have that for n € Z,

d

d
(cadn =25 (los +n-a] = [n-a]) and (c)n = 3, (las +n-a] = [n-a]).

i=1 i=1
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From here we obtain directly that (c4)o = 0 and (¢l,)o = d. For n = —e; we get

d

(6) (ca)—e Z (lay —as] —[—as]) =d—#{j : a5 < as} = #{j : o5 = a1},
d

(7) (ch)—e Z (Jog — o] —[—as]) = #{j : o5 > s}

As « is totally irrational, all a; are distinct non-zero values. From the above formula we obtain that
(ca)|F and (c))|F are bijections onto {0,1,...,d} and (ca)—e, — (¢},)—c, = 1, from where the second

condition follows. O

4.3. Characteristic d-dimensional Sturmian configurations are indistinguishable. For every
i with 0 < 1 < d, the set W; is a left-closed right-open interval sharing the same end-points as W}
which is a right-closed left-open interval. We have that P = {W; }oci<qg and P’ = {W/}o<i<a are two
partitions of the circle R/Z illustrated in Figure

Wi Wy
———O0 ¢—0
W@ M@
&—oO e—oO
0 1—arq I—are 1—a T 1= 1
W] W
o——— o——
Wi W3
o—=e o—e
FIGURE 10. Define ap = 1 and a44+1 = 0 and let 7 be the permutation of {1,...,d} u

{0,d + 1} which fixes {0,d + 1} and such that 0 < o, < -+ < ar4) < 1. The
intervals W; = [1 — a;(3), 1 — ar(341)) form a partition of the circle R/Z and similarly
for the intervals W/ = (1 — a;(1), 1 — ara41)]-

Let S < Z% be finite and p: S — {0,1,...,d} be a pattern with support S. Let

(8) I, = ﬂ (Wp(ny — - ) and I, = ﬂ (W;(n) —a- n) .

nes nes
And let P = {I}eq0.1,....aps and (P')S = {I]},c01,...ays be the partitions of R/Z determined by
the support S. Notice that the sets I, and I;, have the same interior (which is nonempty if and only
if these sets are nonempty) and thus differ only on their boundary points.
The pattern p appears in ¢, if and only if Int([},) # @. Similarly, the pattern p appears in ¢, if and
only if Int(/},) # @. As Int(I,) = Int(I},), we obtain that p appears in c, if and only if p appears in c,.
Therefore, the configurations ¢, and ¢, share the same language, that is: Lg(c,) = Lg(c),) for every

finite S = Z9. Also, #Ls(c,) is equal to the number of non-empty sets I, for p € {0,1,...,d}".

Lemma 4.8. For every nonempty connected finite set S < Z¢ and pattern p € {0,1,...,d}°, the sets

L, I, are either empty or intervals in R/Z.

Proof. We only prove this for I,, the argument for Izl) follows from the considerations stated above.
Let us notice that the intersection of two left-closed, right-open intervals on the circle is either empty,
a left-closed and right-open interval, or a disconnected union of them. This third case can only occur
when the sum of the lengths of both intervals exceeds 1.

Let us now prove the lemma by induction. If S = {n} is a singleton, then the result is direct: if
p(n) = i, we have that I, = I; — o - n, which is clearly a non-empty interval on the circle.

Now let S be a nonempty connected finite set, p € {0,1,..., d}S and suppose the result holds for
every strict nonempty connected subset of S. As S is finite, we can find n € S such that ' = S\{n}
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is also connected by removing a leaf in some spanning tree of S. Let p’ be the restriction of p to S,
then we have

I, = Iy 0 (I —a-n).
By the inductive hypothesis I,/ is an interval. We also have that (1,
the only case where I;, might not be an interval is when the sum of the lengths of I}, and I, is

(n) —@-n) is an interval. Therefore

strictly larger than 1.

As S is connected, there is 1 < j < d such that n —e; € S’ or n+e; € S’. Let us proceed in the
case where n — e; € S’, the other case is analogous. We have that I,y < I(,_.;) — - (n —¢;). Notice
that if p(n —e;) # p(n), then the sum of the lengths of Iy and I, is at most 1, hence the only issue
can arise when p(n — e;) = p(n) (and I, has length larger than ).

Suppose it is the case and let i = p(n—e;) = p(n). Let m be the permutation of {1,...,d}u{0,d+1}
which fixes 0 and d + 1 and such that

0= Qr(d4+1) < Qn(d) < < Q1) < Qo) = 1.
With this I; = [1 — az), 1 — ari11)), and hence we have
Iycli—a-(n—ej) =[1—ayq) +a5,1—arip) +o5) —a-n
Ly —a-n=[1-azru),1 = Qi) —a-n.
There are two cases to consider:
(1) If aj < ag(i41), we have that Iy + o-n < (I3 + a;) < [0,1). It follows that I, + a-n =
(I + - n) N I, is either empty or an interval in R/Z and therefore so is Ij,.
(2) If oy = ag), we have Iy +a-n < (I, +a;) < [1,2). It follows that I, +a-n = (Iy +a-n)n iy,
is either empty or an interval in R/Z and therefore so is I,,.

We conclude that in both of the problematic cases, I, is either empty or an interval in R/Z. O

Lemma 4.9. Let o = (aq,...,aq) € [0,1)? be totally irrational and S be a nonempty finite connected
subset of Z2. For every p € Lg(ca) = Ls(cl,), the sets occy(ca) N (F — S) and occy(cl) n (F — S) are

singletons.

Proof. The partition P = {I; }o<i<q of R/Z is a partition into d+ 1 intervals corresponding to the d + 1
symbols in the alphabet. The boundary points of the intervals I; € P are

F-a={0,1-—ay,...,1— a4}

Notice that P = {I, : p € Ls(ca)} = {I, : p € {0,1,...,d}° and I, # &}. Using Lemma we
obtain that P* is a partition of R/Z into nonempty (left-closed, right-open) intervals. It is therefore
clear from the definition of the intervals I, that their unique boundary points are described by the set
F-a—S-a=(F-9)-«a

For each p, there exists a unique boundary point £ € (F' — S) - a which belongs to I,, (the left-end
point of I,). Since « is totally irrational, the map n — n -« + Z is injective, thus there is a unique
vector n € F' — S such that n - o = {. We have that 0" (c,) = Sa.¢ € [p] and so n € occy(cq).

The argument for ¢, is identical, the only difference being that the unique boundary point is now
the right-end point of 1. O

Theorem 4.10. If a = (v, ...,aq) € [0,1)% is totally irrational, then (ca,c.) is a non-trivial indis-

tinguishable asymptotic pair which satisfies the flip condition.

Proof. By Lemma we have that (c4,c),) is a non-trivial asymptotic pair whose differences set is
F = {0,—e1,...,—eq}. Furthermore, by Proposition it satisfies the flip condition. Let S be a
nonempty connected finite subset of Z¢ and p € {0,1,...,d}*. From Lemma we obtain that the
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set of occurrences of p intersects F' — S exactly once for both ¢, and ¢, that is

#(occy(ca) N (F = 9)) = 1 = #t(occy(cy) N (F' = 9)).

By Proposition [2.4] it suffices to check the above condition for patterns whose support is a nonempty

/

finite connected subset of Z¢. We conclude that (cq, ¢,

) is indistinguishable. O

Remark 4.11. If we take a sequence of totally irrational vectors (o, )nen it follows that each associ-
ated pair (cq,,c,, ) satisfies the flip condition. It follows that if both (ca,, Jnen and (cf, )nen converge

to ¢ and ¢ in the prodiscrete topology, then (c,,, , ¢, ) converges in the asymptotic relation to the étale

an
limit (¢, ¢’) which thus also satisfies the flip condition. By Proposition we get that (¢, ) is there-
fore an indistinguishable asymptotic pair. This can be used to provide examples of indistinguishable

asymptotic pairs which satisfy the flip condition but that are not uniformly recurrent. See Figure [

5. UNIFORMLY RECURRENT INDISTINGUISHABLE ASYMPTOTIC PAIRS ARE STURMIAN

The goal of this section is to prove Theorem [B] We already proved in Theorem [.10] that if o =

/
(63

(a1,...,aq) € [0,1) is totally irrational, then (cq4,c)) is a non-trivial indistinguishable asymptotic
pair which satisfies the flip condition. Thus, it remains to show the existence of a totally irrational
vector a = (auy,...,aq) € [0,1)¢ describing an indistinguishable asymptotic pair which satisfies the
flip condition whenever the configurations are uniformly recurrent. The proof relies on an induction
argument on the dimension of Z? and on the existence of a factor map between the symbolic dynamical

system generated by a multidimensional Sturmian configuration and rotations on the circle R/Z.

5.1. Symbolic representations. Consider Z¢ A R/Z a continuous Z%-action on R/Z where R: Z¢ x
R/Z — R/Z. For some finite set A, a topological partition of R/Z (in the sense of Definition 6.5.3
of [28]) is a collection {P,}qe4 of disjoint open sets P, = R/Z such that R/Z = J .4 Pa. If S = Z% is
a finite set, we say that a pattern w € A° is allowed for P, R if
(9) (R P,,) 2.

keS
The intersection in Equation @ is related to the definition of I/, and I, done in Equation except
here the sets P, are open.

Let us recall that a Z<-subshift is a set of the form X < AZ" which is closed in the prodiscrete
topology and invariant under the shift action; and its language is the union of L£(x) for every z € X.
Let Lp gr be the collection of all allowed patterns for P, R. The set Lp g is the language of a subshift
XprC< AZ" defined as follows, see [21, Prop. 9.2.4],

Xppr={xe A | 0™(x)|s € Lp g for every n € Z? and finite subset S < Z7}.

We call Xp g the symbolic extension of Z< A R/Z determined by P.
For each 2 € Xp r and m > 0 there is a corresponding nonempty open set

Dp(z)= () R ™P,)cR/Z

[]lco <m

The sequence of compact closures (D, (z))men of these sets is nested and thus it follows that their
intersection is nonempty. Notice that there is no reason why diam(D,,(z)) should converge to zero,
and thus the intersection could contain more than one point. In order for X'p g to capture the dynamics

of ¢ A R/Z, this intersection should contain only one point. This leads to the following definition.

Definition 5.1. A topological partition P of R/Z gives a symbolic representation Xp r of 7¢ A
R/Z if for every x € Xp g the intersection ().-_, Dm(x) consists of exactly one point p € R/Z. We call

x a symbolic representation of p.
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If P gives a symbolic representation of the dynamical system Z< A R/Z, then there is a well-defined
map f: Xp rp — R/Z which maps a configuration x € Xp p < AZ" 0 the unique point f(x) € R/Z in
the intersection mf=0ﬁn(w). It is not hard to prove that f is in fact a factor map, that is, such that
f is continuous, surjective and Z-equivariant (f(c*(z)) = R*(f(z)) for every k € Z%). A proof of this
fact for the case d = 1 can be found in [28] Prop. 6.5.8]. A proof for Z?-actions can be found in [25]
Prop. 5.1] and a proof for general group actions follows the same arguments.

Now let us turn back to circle rotations. Let o € [0, 1)¢ and consider the dynamical system Z% A R/Z

where R: Z¢ x R/Z — R/Z is the continuous Z%action on R/Z defined by
R'(z) =R(n,x)=z+n-«

for every n e Z¢.
Recall that an action is minimal if every orbit is dense. The following lemma is well known, we

write it down for future reference and we give a quick proof sketch.

Lemma 5.2. Let a € [0,1)? be totally irrational and consider the topological partition of the circle
P = {Int(Wi>}ie{o,1,...,d}-

(1) The partition P gives a symbolic representation of the dynamical system 74 A R/Z.
(2) The symbolic dynamical system Xp g is minimal and satisfies Xp p = {o¥co: k € Z2}.
(3) f: Xp.r — R/Z where f(z) € (\;_y Dn(w) is a factor map.

Proof. As « is totally irrational, then every component «; is irrational and hence it follows that the
action Z4 A R/Z is minimal. From here it follows by standard arguments that P gives a symbolic
representation X'p g of the Z% A R/Z, as every Int(W;) is invariant only under the trivial rotation
(e.g., see [25] Lemma 3.4]). The second statement follows easily from the definitions of X'p r and c,,
and the third statement follows from the discussion below Definition 5.1l g

5.2. Ordered flip condition. In order to simplify the proofs in this section, we consider a particular

case of the flip condition in which the values of x|r and y|p are fixed.

Definition 5.3. Let d > 1 be an integer. An indistinguishable asymptotic pair x,y € {0,1,... ,d}Zd

satisfies the ordered flip condition if:
(1) the difference set of x and y is F = {0, —eq,..., —eq},
(2) xo =0 and x_., =1 for all 1 < i < d,
(3) yo=dand y_., =1i—1 forall1 <i<d.

Observe that if two configurations satisfy the ordered flip condition, they also satisfy the flip con-
dition. Moreover, notice that the ordered flip condition corresponds to the permutation of F' given
by

O— —eg—> —eg—> - — —eq — 0.

Lemma 5.4. Let d > 1 be an integer. Let x,y € {0,1,..., d}Zd form an indistinguishable asymptotic
pair satisfying the flip condition. Then there exists a matriz A € GL4(Z) which permutes the canonical
base {e1,...,eq} such that (xo A,yo A) is an indistinguishable asymptotic pair satisfying the ordered

flip condition.

Proof. As x,y satisfy the flip condition, then the restrictions of z and y to F' are bijections F' —
{0,1,...,d}, zp = 0 and y, = v, —1 mod (d + 1) for every n € F. Let A € GL4(Z) be the permutation
matrix which sends —e; to z|z' (i) for all i with 1 <i < d. Thus it satisfies z(—Ae;) = i.

By Proposition 2.5} z o0 A, yo A is an indistinguishable asymptotic pair. It is clear by definition of A
that their difference set is F', that (x 0 A)g =29 =0 and (xo A)_., = x(—Ae;) =iforall 1 <i<d.
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Finally, (yo A)g =yo =20 —1=0—1=dmod (d + 1), and for 1 < i < d, we have (yo A)_,, =
y(—Ae;) = x(—Ae;) —1 =1i—1mod (d+1). Thus (zoA,yo A) satisfy the ordered flip condition. [

It follows that if we show that every pair z,y € {0,1,.. .,d}Zd which satisfies the ordered flip

condition is equal to ¢, ¢}, for some totally irrational «, we immediately obtain that every non-trivial

/

indistinguishable asymptotic pair which satisfies the flip condition also coincides with ¢/, c,,, for some

totally irrational slope o’ where o’ is a permutation of a.

Proposition 5.5. Let d = 1 be an integer. Let a € [0,1)? be totally irrational such that 1 > ay >
ag > -+ > ag > 0. The characteristic d-dimensional Sturmian configurations c, and c,, satisfy the

ordered flip condition.

Proof. From Proposition (Ca,Cl,) satisfy the flip condition. Following Equation @ and Equa-
tion , we get

(Ca)*ei = #{J :aj = ai} = iv
()-e = #3105 > s} =i 1.

Thus (cq, c,) satisfy the ordered flip condition. O

5.3. Indistinguishable asymptotic pairs restricted to a (d — 1)-dimensional submodule. In
what follows we show that indistinguishable asymptotic pairs which satisfy the ordered flip condition
are Sturmian. Our strategy is to reduce the dimension of the underlying group by restricting the values
of the configurations to the (d—1)-dimensional submodule orthogonal to e, and then to apply a suitable
projection which fuses two symbols into a single one. We show that the resulting configurations in Z2~*
also satisfy the ordered flip condition, and thus it gives us the means to prove our result inductively.

In order to develop this strategy, we introduce the following notation. Let B = {by,..., by} < Z4.
For each starting point v € Z9, let

Ev,B: Zk - Zd
n — v+nb + -+ npbg.
IfzeY isa configuration, then z o/, p € 2" is the k-dimensional configuration which occurs in
x starting at position v € Z% and following the directions b; € B. Below, we use the shorter notation

et = {ea,...,eq} to denote the canonical basis without the vector e;.

Let us consider the projection
m: {0,1,...,d} — {0,...,d—1}
0 if j =0,
j—1 ifj#0.
which extends to configurations z € {0,1,...,d}%" by letting

m(x) = (7(2n)), g0 € {0, ..., d — 1}%".

Proposition 5.6. Let d > 2 be an integer. Let x,y € {0,1,..., d}Zd be an indistinguishable asymptotic
pair satisfying the ordered flip condition. Then mo x o gO,ef and T oy o KO,QIL are indistinguishable
asymptotic configurations in {0,1,...,d — I}ZUF1 which satisfy the ordered flip condition in dimension

d—1.

Proof. By Proposition [2.6] we have that (7(z),7(y)) is an indistinguishable asymptotic pair. Under
the ordered flip condition, the difference set of (7(z),7(y)) is F\{—e1} = {0, —eq, —e3,...,—eq} and
thus it follows that for any pattern p with support S < {ei ) we have
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Y I (@(y) = Iy (et (@) = 0.
ue(F\{—e1})—S
It follows that the pair (o x o Eo’eli ,TOYO Eo’eli) is also indistinguishable. It can be checked directly

that it also satisfies the ordered flip condition. O

If we were also able to show that moxo Eo’ell is uniformly recurrent, then Proposition provides a
way to prove Theorem [B| by induction on the dimension. Namely, if we were to proceed by induction
we would obtain that m oz o €07el¢ and moyo 60,6% are (d — 1)-dimensional characteristic Sturmian

configurations associated to a totally irrational slope (a(?,..., a(®) e [0,1)%, that is,

/
moxolyl =Ca,  aw) and  woyoly L =@ g

.....

And we could proceed from there to obtain our desired result.

The next two lemmas show that, for all v € Z<¢, the parallel (d — 1)-dimensional configurations

mowxol, 1 and moyol, . belong to Orb(mozoly,1) = Orb(moyol,, L), that is the (d — 1)-

dimensional subshift whose language is £ (C(a(z),_“7a(d))) =L (Cl(a(Z),...,a(d)))'

Lemma 5.7. Let d = 2 be an integer. Let x,y € {0,1,... 7d}Zd be an indistinguishable asymptotic pair
satisfying the ordered flip condition. For each finite nonempty connected subset S < {0} x Z4=1, let

AS = ‘CS(:E © 60,6{') o ‘CS(y © g&ei‘)a
Bg=Lg(@wol_, r) v Ls(yol ., 1)

We have Ag N Bg # O.

Proof. Let S < {0} x Z?~! be a finite nonempty connected subset. Since (7 oz o o et oY O £07eli)
satisfies the (d — 1)-dimensional ordered flip condition with difference set F\{—e;}, from Theorem

we have
#As > #m(As) = Ls(moxolys)u Lg(moyolyr)=#(F\{—e1} —5) =#(F —5) — #8S.

By contradiction, assume that Ag n Bg = @&. From Corollary we have that #Lg(a:offel,e%) =
#S and #Lg(y o E,el’ell) > #S5 so that #Bg > #S5. The case #Bg = #5S is impossible. Indeed,
#Bs = #5 implies that Bs = Ls(zol_, 1) = Ls(yol_,, .1). Observe that z(—e;) = 1 and
y(—e1) = 0. Let w € Bg be a pattern with the most occurrences of the symbol 0. Since z,y is an
indistinguishable asymptotic pair satisfying the flip condition, Corollary [3.13] implies that the pattern
w must appear in x intersecting the difference set F'. Since Ag N Bg = &, then necessarily the pattern
w appears in x intersecting the position —e;. Over the same support, there is a pattern in y with one
more occurrence of the symbol 0. This pattern also belongs to Bg, thus it contradicts the maximality
of the number of occurrences of the symbol 0 in w among all patterns in Bg. Therefore, #Bg > #S+1.

From Theorem [A] we have # (Ag U Bg) < #Lg(x) = #(F — S). Thus
# (As N Bs) = #As + #Bs — # (As U Bs)
> (4(F —8) — #5) + (45 + 1)~ #(F— §) = L

This contradicts the assumption Ag N Bs = &. Thus Ag n Bg # @. O

Lemma 5.8. Let d = 2 be an integer. Let z,y € {0,1,... 7d}Zd be an indistinguishable asymptotic pair

satisfying the ordered flip condition. For every v € Z%, we have
L(moxol, 1) Limoroly,t) and L(moyol, 1)< Lmoyoly,L).

Proof. As w(x),n(y) is an indistinguishable asymptotic pair whose difference set is contained in ef it

follows that Toz o f, .. =moyol, 1 for every v ¢ {et), and that L(mox o loer) =L(moyoly,s).
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Therefore it is sufficient to prove the inclusion L(r oz o f, 1) < L(m oz 0{y.+). By contradiction,
suppose that there is v € Ze; such that w € L(m oz ol L )\L(mozoly L) # D. Let w' e 7Y (w),
it follows that w' € L(z o {, .1)\L(x 0 ly.1). Using that z,y are indistinguishable and satisfy the
flip condition we conclude using Lemma that w' € L{z o l_,, 2)\L(z 0 y,1) and thus that w €
Lmozol_ g a)\L(moxoly,r) In other words, without loss of generality we may assume that
v =—ej.

For every sufficiently large n € N, if we let S,, = {—1} x [-n,n]¢"!, then the pattern p = (7(z))|s,
contains w and thus does not occur in m(z) o £y ... Define eg = 0 and let j € {0,...,d}\{1}, Si =
Spu{—e;}and p/ = m(x)|gi - As m(z),7(y) is indistinguishable, there must exist u; € (F\{—e1}) — Si
so that % (1(y)) € [p’]. As p = p’|s, does not occur in m(x)oly 1, we have that u; ¢ (F\{—e1}) — Sn.
From where we obtain that u; € ¢; + (F\{—e1}). By the ordered flip condition we have that

(1) If j = 0, then (7(z))o = 0 and (7(y))—e, = 0, hence we have u; = eg — e2 = —es.
(2) If2<j <d, then (7(z)) -, = j — 1 and (7(y))—c,,,
(3) If j = d, then (w(x))_., =d—1and (7(y))o = d — 1, hence we have u; = —eq + €9 = eq.

= j — 1, hence we have u; = ¢; — e;41.

Notice that in any case we have u; € {et). As m(z),m(y) is asymptotic outside of F\{—e;}, we
conclude that
o (m(x))]s, = 0" (m(y))]s, = (v(2))]s,
for every large enough n. Noting that the set G = {u; : j € {0,...,d}\{1}} generates (as a group)
{0} x Z471, it follows that the configuration oz o ¢
a singleton for every finite support S < {0} x Z4~1.

—ey,et 18 constant and thus Lg(rozol_, 1) is
Assuming S < {0} x Z9~1 is the shape of the pattern w, we have Lg(m oz o l_c, ) = {w}. From
Lemma [5.7] for all finite nonempty connected subset S < {0} x Z¢*, we have Ag N Bg # @ where

Asg=Ls(wolyer) v Ls(yolyer)=Ls(@oly,L),
Bg =Ls(wol_, 1) Ls(yol )=Ls(@ol ., 1)

1
—€1,€e7

which also holds under the projection by 7. Therefore, if S is the shape of the pattern w, we have

@ +# m(As) N (Bs)

=Ls(mozoly)nLs(mozol_, 1)

=Lg(mozoly,r)n{w}

This implies that w € Lg(m oz 0 {y 1) which contradicts the definition of w. Thus we conclude that
L(mroxol, 1) L{mozoly,s) for all v e Z4. O

Given a configuration x € AZd7 we say a pattern p € A% occurs with bounded gaps if there exists
n € N such that for any v € Z%, there is u € [-n,n]¢ such that o"+%(z)|s = p. If a pattern does not
occur with bounded gaps, this means that there is a sequence (v;);eny with v; € 7% such that p does

not occur in any accumulation point of the sequence (0% (x));en.

Lemma 5.9. Let d > 1 be an integer. Let x,y € {0, 1,...,d}Zd be an indistinguishable asymptotic
pair satisfying the ordered flip condition. If x is uniformly recurrent, then mo x o eo,ef is uniformly

recurrent.

Proof. Suppose that mox oy .. is not uniformly recurrent and let p € L(m oz 0y .1) be a pattern in
its language which does not occur with bounded gaps. Let S be the support of p. Let ¢: {0,1,...,d—
132" - {©,0}2" be the sliding-block code such that for any z € {0,1,...,d — 1}2* and v € Z¢,

© if 6Y(2)|101xs = P,

W(z) = o

O  otherwise.
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As 2z is uniformly recurrent, the topological closure of its orbit X = Orb(z) is a minimal subshift
and it follows that both 7(X) and ¥ (7(X)) are also minimal subshifts. Let us denote w = ¥(7(x)).
For n e N, let B,, = [-n,n]?! and let h,, denote the pattern with support B,, which is identically

O. For every t € Zey, we define
N(t) = sup{n € N | h,, occurs in w o €t7ell with bounded gaps}.

Notice that the values of N(t) do not change if we replace w by an accumulation point of a sequence
of shifts of w by vectors in {0} x Z?~!. Let (¢;);>1 be an enumeration of Ze;. We construct a sequence
(w;)i=0 of configurations in ¥(7(X)) as follows. Let wg = w. For every i = 1, we construct the
configuration w; from w;_; according to one of the following three cases:

Case 1: N(t;) = —oo. In this case, the symbol O does not occur in w o l; o+ with bounded
gaps and thus there is a sequence (un)neny With u, € {0} x Z9~! for which O does not appear in
(0" (wi-1) 04y, 1)|p,. We let w; be any accumulation point of this sequence.

Case 2: N(t;) € N. This means that there is a largest n € N for which h,, occurs in w;_; o Lo
with bounded gaps. In this case, there is a sequence (uy,)nen With u, € {0} x 721 for which hpa1 does
not appear in (0%~ (w;_1) o Et“ef”Bn. We let w; be any accumulation point of this sequence.

Case 3: N(t;) = . Here for every n € N the pattern h, occurs in w;—y o £, .+ with bounded
gaps. In this case there is a sequence (uy, )ney With u, € {0} x Z4~1 such that (o (w;_1) o by, et)|B.,
is identically ©. We let w; be any accumulation point of this sequence.

By construction, w; € ¥(mw(X)) for every i € N. Let w be an accumulation point of the sequence

(w;)ien. It follows that w € ¢ (7(X)). This sequence has the following properties:

(1) N(t) = —oo if and only if wo £, .1 is identically ©.
(2) N(t) =n e Nif and only if h,, occurs with bounded gaps in wo{, .1 and hy,1 does not occur.
(3) N(t) = oo if and only if w o ¢, .1 is identically O.

Let
N ={N(t):teZe}nN.

Suppose that the collection N is finite. This contradicts the minimality of ¥ (7(X)). Indeed, by
the assumption on p, we have that both the symbol ©® and the patterns h,, for every n € N occur
in wo 60,6%. In particular for every n € N there is a pattern ¢, with support B, 11 which occurs in
w oy .+, such that gn|p, = hn and qu|p, ,\p, is not identically ©. For any n > max(N), it follows
that g, does not occur in w, and thus w ¢ Orb(w), contradicting minimality.

Suppose now that the collection A is infinite. For any £ € N we can then find (k;);=1,. . with
k; € Ze; such that

0< N(k1) < N(kg) < -+ < N(kg).

For every i € {1,...,k}, let G(k;) be the smallest integer such that every pattern in wy, with support
a translate of Bg(,) contains hy,) as a subpattern. This value exists due to the fact that hyy,)
occurs in wy, with bounded gaps.

Let ¢ € N be such that the support of p is contained in By, let g = 1 + 2max;—1,.. , G(k;) and let
m € N be an arbitrary number which we shall later on take sufficiently large to find a contradiction.
Let us consider any pattern r; with support By, in £(wy,). By definition of ¢, there is a pattern
with support Byym4e in L(mox o fk,;,ef) whose image under i contains r; as a subpattern.

By Lemma it follows that L(m oz o {y 1) = L(m oz oly.1). Also, by Proposition the
configurations o x o 60)6% ,TOYO 607# are indistinguishable with the ordered flip condition and thus
by Lemma every pattern 7} must occur in 7o x o éo’ell intersecting its difference set. Applying the
map v, a simple estimate shows that an occurrence of r; must appear in w 03076% such that its support

Bgim is contained in the set Ba(gi )11
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Now let 4,7 € {1,...,k} be distinct. By construction, the patterns r; and r; can overlap at most in
their borders. More explicitly, if 7; were to occur at position v; € Z%~! and r; at position v; € 741,
then v; + B, nvj; + By, = &. This is due to the definition of g, because if the intersection were to
contain a block By, then it would contain a block of O larger than the maximum allowed size for one
of both patterns, see Figure

A A A
1000000000077 77 20000007005
00000 000000000000000000077722777777]
1000000000007
000000 000000007700077202277227777777]
s
00000 007000077700777702277722777777]
s
2011177777777
00000000 00000000500000777 7]
Ay
0000000 0000000000000000000777777]
1000000000007
00000 000000000000007700072222777777]
1000000000070
00000000000 007700077202272722777777]
s
000000 0000077700777702277722777777]
Y0 0777777777777777777777777 m +
Ay
000 000000000000000000007777)
220007 2000007007
0000000000000 00000007070077777 7]
1000 000000000007007
2000000 0000000000000277200777 2277
1000000000007
00000000000007700077702277222777777]
s
00000 007000077700277702277727777777]
L0000 0000%
7 o
AN 1 12577
7007 15577
;2;; NO overlap zone ;;;7;;
Y 20007
A
s <

FIGURE 11. Structure of the patterns r;

We conclude that within the support By(gim¢)+1 We must be able to fit x blocks of size By, with

no intersection. In particular we must have that
(4(g +m+0) +3)* = | Bygemsey41] = £|Bm| = £(2m + 1)%.

Let us fix £ = 4%, This fixes in turn the constant g, thus let K = g 4+ ¢ + 1. Using the previous

inequality, we obtain
ANK +m)? = (A(g+m+0) +3)% = w(2m + 1) = 44(2m)".

From where we deduce that
(K +m)? = (2m)? for every m € N.

The previous inequality is clearly false for large enough m, thus we have that A cannot be infinite

either. We conclude that mox o 607€1L is uniformly recurrent. ]
The next proposition shows, under some hypothesis, the existence of a factor map g: Orb(z) — R/Z.

Proposition 5.10. Let d = 2 be an integer. Let x,y € {0,1,... ,d}Zd be an indistinguishable as-

ymptotic pair satisfying the ordered flip condition and assume x is uniformly recurrent. Assume there

exists a factor map f: Orb(mowxoly 1) — R/Z commuting the actions 731 % Orb(rox 0 lyel)
and 74-1 L R/Z. Then there is p € [0,1) such that the map g: Orb(z) — R/Z defined by g(z) =
f(mozoly,.) is a factor map between the actions 7% % Orb(z) and Z4 Rext R/Z where R, is the

rotation by p.

Proof. The map g is continuous and onto since f is continuous and onto. Also since f is a factor map

commuting the Z~l-actions, for every z € Orb(x) and (0,7) € {0} x Z¢~!, we have

9(@O2) = ooz 0by 1) = flo"(moz0ly ) =T (f(mozoly,r)) =T (g(2))

Thus it remains to show that for every z € Orb(z) and k € Z, we have g(0*“'z) = RE(g(2)) for some
p € R/Z. Since Orb(z) is minimal and g is continuous, it is sufficient to prove it for z = x or z = y.
From Proposition the configurations 7oz o fy .. and moyoly 1 € {0,1,...,d — 1}20171 are

asymptotic with difference set F"\{—e1}. Therefore oz o/} .1 =moyol, 1 for every k € Z\{0}. So
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we have

g(dkelm) _ f(ﬁOJkEIIOEO,ef) = f(woxofk)ell)

]{)61

= f(royolyr) = flmrooiyoly 1) = g(c"y)

for every k € Z\{0}. Moreover, for every r € Z4~1 we have
f(ﬂ_ ox Ogo,ef‘) - f(’]T oy Ogo,ef‘) = f(,/T oTo g&ef) + TT(O) - f(,/T °y OZO,E%) - TT(O)
= f(ar7T oxo gO,ell) - f(o'rﬂ— °yo éO,ef)
which goes to 0 when ||r| — o0 since mox 0 £y .1 and woy ol .1 are asymptotic. We conclude that

(10) g(o*1z) = g(o™y)

for every k € Z.

The remaining of the proof is based on the following observation which we use several times.

Observation 5.11. Let d > 2 be an integer. Let z,2' € Orb(x). If for all m € N there exist two
patterns u and v of support {0} x [0,m — 1]9~! and a vector t € {0} x Z4~1 such that

m(z),m(2") € [u] n o' 0]
then
9(2) = g(o72) = g(z') — g(o™2").
Proof. The domain of the factor map f is compact so f is uniformly continuous. Therefore, for all

e > 0, there exists m € N such that for all patterns w of shape [—|%], —|%2] + m — 1]47!, the

Lebesgue measure of the interval f([w]) is less than £/2. Since the Lebesgue measure of the interval
f(o*[w]) = T*(f([w])) is equal to the Lebesgue measure of f([w]) for every k € Z9~! we also have
that for all patterns w of shape B = [0,m — 1]¢71, the Lebesgue measure of the interval f([w]) is
less than £/2. From the hypothesis, let u and v be two patterns of support {0} x [0,m — 1]¢~! and
t € {0} x Z9~! be a vector such that 7(z),7(2") € [u] N ot*1[v]. We obtain

9(2) —g(o™z) = f(mozoly ) — f(moo zoly,r)

= f(m(z) o by er) = flo ' m(2) 0 by 1)

f[ul oy er) = fo*[v] o by er)

which is an interval in R/Z of size at most § + § = . Similarly,

9(z") —glo™2) e flul o loot) — flo"[v] 0 by ).

m

Thus we have
(9(2) = g(072)) = (9(2) — g(0™2))| <e.

Since this holds for all € > 0, it concludes the proof of the observation. O
Our first goal is to show using Observation that for all k € Z we have

11)  g(o*z) — g™ Paz) e {g(c° 2) — g(), g(x) — glc '), g(c~"x) — g(c ™21 2)}.

Let m e N. Let B = {0} x [0,m — 1]?~! = Z9 be a d-dimensional box in Z% of size m in all directions
except the direction e;. Let u and v be two patterns of support {0} x [0,m — 1]¢~! appearing in the

configuration = such that o*¢1z € [u] N o [v]. Thus
n(o*z) € [r(u)] N o [r(v)].

The fact that the pair (z,y) is indistinguishable implies that the pattern [u] n o°![v] of support

B U (B — e1) must appear in z (and y) intersecting the difference set. Therefore, there exists r €
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{0} x 2971 and j € {—1,0,1} such that 07*1*"z € [u] N o®*[v]. Thus
m(0? %7 x) € [7(u)] N o [7(v)].
From Observation (here t = 0), we obtain
§(0*12) — glo~10*12) = (0977 2) — glo™ 15T )
907 2) + T7(0) — 9ol Ve2) — T7(0)
)

o)
(07°12) — 901 z)

which shows that holds.
Our next goal is to show the existence of some p € R/Z such that

(12) g(o%z) —g(z) = g(x) —glo™'z) = g(o~'z) — g(0 > z) = p.

The strategy is to find patterns satisfying Observation Let m € N. Let B = {0} x [0,m —
1]¢7t = Z¢ be a d-dimensional box in Z¢ of size m in all directions except the direction e;. Let
S < {0} x Z%! < Z? be the union of all translates of B that intersect the difference set F'\{—e;} of
the pair (7(z),7(y)), that is,
S=|JB+k whee K={keZ": (B+k)n(F\{-e})# 2}
keK

The restrictions of the configurations 7 (x) and 7(y) to the support S have the nice property of con-
taining their language of patterns of shape B in the most optimal way, i.e., they contain exactly one
occurrence of each pattern of shape B. Indeed, from Proposition the configurations 7o x o EO,ef
and moyoly 1 €{0,1,...,d— 132" satisfy the (d— 1)-dimensional ordered flip condition. Therefore,
from Corollary it follows that the patterns H, = n(z)|s and H, = 7(y)|s contain exactly one
occurrence of every pattern of shape B that are in Lp(w(x)) = Lp(7(y)).

We write 7(x) € [H,] and 7(y) € [H,] where the cylinders are within Orb(7(x)). Since m(x)y #
7(y)o, we have [H;| n [H,] = @. Observe also that, from Corollary the pattern H, has only
one occurrence in 7(z) whose support intersects the difference set F\{—e;}. More formally, if v €
F\{—e1} — S and [H;] n o¥[H,] # @, then v = 0.

From Proposition [5.6, we also have L(m oz 0fy 1) = L(moyoly,.). From Lemma for every

v e Z4% we have
,C(T( o Ogv,ef‘) = ‘C(’/TO:EOZO,ef) = ‘C(Woyogmef) = ‘C(ﬂ_oyogv,ef)'

Since x is uniformly recurrent, we have that mox o fy . and moyofy L are uniformly recurrent
by Lemma Thus Orb(m oz 0y 1) = Orb(moyo{y 1) is a minimal subshift. We deduce 7oz o
yer € Orb(moxoly i), moyol, . €Orb(moyol,.) and the equality of the languages:

E(’]TO.CCOKU&{.) = ‘C(ﬂ—oxoeo,ef‘) = ‘C(Woyogo,ef) = ‘C(Woyogv,ef‘)

for every v € Z4.
Let t € {0} x Z%! be such that 7(y) €

[o™7"H,]. Since mowol, o = moyol, ., we also have 7(z) € [07“*7'H,]. Recall that

Therefore, the pattern H, must occur in moyol, 1.
by Proposition we have that (7(x),n(y)) is an indistinguishable asymptotic pair. Since the pat-
tern 7(x)| gy (s—t—e,) appears in m(z) intersecting the difference set F'\{—e;}, it must appear in 7(y)
intersecting the difference set F\{—e;}. Formally, there exists v € F\{—e1} — (S u (S —t —e1)) such

that o~V (n(x)) € [~ "*H,| n [H,]. There are two cases to consider:

o Ifve F\{—e1}—S, then 0 (n(z)) € [H,]no"[H,]. Therefore v = 0and m(z) = o~ ¥(n(z)) €
[Hy]. But () € [H,], which contradicts [H,| n [Hy] = @.
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o Ifve F\{—e1}— (S —e; —t), then m(x) € [Hy] no? " [H,]. Alsov—e; —te F\{—e1} -89,

thus we must have v — ey — ¢ = 0. Therefore 7(z) € [0 H, | = [c®* T H,].

m(x) m(y)

€
D 0 i D
€1 €1

—e
! t

— D ot
0.261+2tQ _261 a.2€1+2tQ

FIGURE 12. The patterns H, and H, appearing in configurations 7(x) and 7(y). The
pattern 7r(x)|SU(S_t_el)U(S_2t_261) is shown in gray background. Since it appears in
7(x) intersecting the difference set F\{—e1}, it must appear in 7(y) intersecting the
difference set F\{—e1}.

Let Q = (0727 2'1(x))|s. We have that
7T(£U) € [O'_el—tHw] a) [Ha:] A [0.61+tHy] A [U2el+2tQ],
w(y) € o™ T Hy] 0 [Hy] 0 [0 H] n [0* Q).

The current situation is depicted in Figure [I2}

Since the pattern 7(x)| sy (s—t—e,)u(S—2t—2¢,) appears in 7(x) intersecting the difference set F'\{—ey },
it must appear in 7(y) intersecting the difference set F\{—e;}. Formally, there exists v € F\{—e1} —
(SU(S—t—e1)u(S—2t—2e))such that oY (w(z)) € [o~ " H,|n[Hy]|n[c“* "' H,]. We consider
three cases, see Figure [I3}

o Ifve F\{—e1}—3S, then 1% (n(z)) € [Hy|no¥[H,]. Therefore v = 0and 7(z) = 07" (mw(x)) €
[Hy]. But m(z) € [H;], which contradicts [H,] n [Hy] = @.

o If ve F\{—e1} — (S—t—e1), then o= (w(z)) € [Hy] no" 7 '[H,]. Alsov—e; —t€
F\{—e1}—S, thus we must have v—e; —t = 0. On the one hand, we have o~ "7 (z) € [c* ' H,].
On the other hand, we have o Vm(z) = o~ 'r(x) € [c°*1'Q]. We deduce the equality
@ = H,. We may now use Observation Let u = 7(y)|p be the pattern of support B
within H,. We have

n(y) € [Hy] < [u] and  7(y) €[0T Hy] < [0 u].
Also
o tny) e [H) c [u] and o~ n(y) € [0 Q] = [0 H,) < [0 ).
The pattern u also appears in H,, Let r € F\{—e1} — B such that [0"H,] < [u]. We have
ot () e [o"Hy] < [u]  and o T r(z) € [0 T H,] < [0 T ).

Since the above holds for pattern u of arbitrarily large size, from Observation [5.11] we conclude
that

—€1 7261

g(o“tx) —g(x) = g(y) —g(o™y) = glo™y) —glo™"y) = p
for some p € R/Z.

e If v e F\{—e1} — (S — 2t — 2ey), then o~ T2 (7(z)) € [Hy] n o™ ?T2+2[H,]. Since v —
2e1 — 2t € F\{—e1} — S, the support S +v — 2e; — 2t of the translated pattern o=+ 241 2¢[H ]

intersects the difference set F\{—e1}. Let v € {0} x Z¢~! be such that B+~ < S +v —2e; — 2t
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and B + v n F\{—e1} # @. By definition of S, we also have B +y < S. In other words,

uy = 7(z)| g+~ is a subpattern of H, and of o~ ?"21 72! [ thus satisfying
[Hz] N U_U+261+2t[Hy] < [ua].

Similarly, we have o~"(w(z)) € [Hy] n o7 272[Q]. We obtain that u, = 7(y)|p+, is a

subpattern of H, and of o~?T2¢172Q thus satisfying
[H,] o722 [Q]  [u,].
In summary, we have
o Tr(y) € [Hy] < [ug] and o 'r(y) € [0 T H,] < [0° T,

Also
m(z) € [Hy] < [u,] and  7(z) € [T H,] < [0 Tuy,].
Moreover,
J_U+€1+t7r(1') e J—v+el+t[oe1+tHy] c [Uz]

0.—U+€1+tﬂ_(.,1:) c 0_—’U+€1+t[0_2€1+2tQ] — 061+t[0—1J+261+2tQ] c [Jel+tuy]_

Since the above holds for patterns u, and u, of arbitrarily large size, from Observation [5.11}

we conclude that

9(0cy) —g(y) = g(z) — g(o™z) = g(0~“'z) —g(o>"'x) = p

for some p € R/Z.

@
A 0B
@ B

AR

FIGURE 13. The pattern m(z)|g0(s—t—e,)u(5—2t—2¢,), Shown in gray, appears in 7(y)
intersecting the difference set F\{—e;1} in one of three ways. To lighten the figure, we
omit the shifts o°*** in the ellipses. In the first case, the nontrivial overlap of H, with
itself is impossible, which implies H, = Hy, a contradiction. In the second case, the
nontrivial overlap of H, with itself is impossible, which implies that H, = @Q. In the
third case, the proof uses the existence of patterns u, and wu,.

Using Equation , we obtain that Equation holds. From Equation and Equation , we
conclude that there exists p € R/Z such that for all k € Z, we have

g(okelx) =g(x)+kp= R’;(g(m)).

Since Orb(z) is minimal and g is continuous, we conclude that for every z € Orb(z) and k € Z, we
have g(o*€12) = R’;(g(z)). O

5.4. Proof of Theorem In this subsection, we prove Theorem [B] The proof is essentially done
in Proposition which assumes the ordered flip condition. The proof is done by induction on the
dimension using results proved in the previous subsection. First, we need the next lemma which is

used thereafter.
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Lemma 5.12. Let A, B < R be two closed sets such that A U B is a compact interval I. If An B is

a singleton, then A and B are intervals.

Proof. Let = be the element in A n B and let A’ = Int(I)\A and B’ = Int(I)\B. Then A’ U B’ =
Int(I)\{x}.
If x is in the boundary of I, we conclude that either A’ or B’ is empty, as both are open disjoint
sets and Int(I) is connected. Therefore one of A, B is equal to I and the other is equal to the singleton
If z is in the interior of I, we may write Int(I)\{z} as the union of two open intervals. Again as
they are connected it follows that one must be A’ and the other B’, from where it follows that A and

B are intervals. O

Proposition 5.13. Let d > 1 be an integer. Let x,y € {0,1,... 7d}Zd be an indistinguishable asymp-
totic pair satisfying the ordered flip condition and assume x is uniformly recurrent. There exists a
totally irrational vector a = (g, ..., aq) € [0,1)¢ such that 1 > a; > ag > --- > ag > 0, and = = c,,

y = ¢, are the d-dimensional characteristic Sturmian configurations with slope «.

Proof. Our proof proceeds by induction on the dimension d. The base case d = 1 is given in Theo-
rem Let d > 1 and assume that Propositionholds for d—1. As the configurations moxzofy .1
and moyoly .1 € {0,1,..., d—l}ZM1 satisfy the (d—1)-dimensional ordered flip condition and mozof; .1
is uniformly recurrent (Lemma and Proposition it follows by the induction hypothesis that
moxoly 1 and moyoly 1 are (d — 1)-dimensional characteristic Sturmian configurations associated

to a totally irrational slope (g, ..., aq) € [0,1)471 satisfying 1 > ag > --- > a4 > 0, that is,

_ _
7Toxogo,eli = Clag,aq) and ﬂoyofo,ell = az,..0a)

Let f be the factor map f: Orb(r oz oy 1) — R/Z obtained in Lemma which commutes the
(d—1)-dimensional shift on Orb(m o z 0 {; 1) with the (d —1)-dimensional rotation by (az,...,aq) on
the circle R/Z. From Proposition there exist p; € R/Z and a topological factor map g: OT(Z’) —
R/Z that commutes the d-dimensional shift with the d-dimensional rotation by (p1, ag, ..., aq) on the
circle R/Z.

The map g is explicitly given by g(w) = f(row o {y,1). In particular, g([0] u [1]), g([2]), ...,

g([d]) are consecutive intervals from left to right on the unit interval.

Next we show that g([0]) and g([1]) are also intervals using Lemma As both [0] n Orb(z) and
[1] n Orb(x) are compact and g is continuous, it follows that their images are closed, thus it suffices
to show that their intersection is a singleton.

We have g(z) = g(y) = 0. Thus g(c=%z) = g6~ y) = —p1. Also, 0~z € [1] and o~y € [0].
Therefore —py € g([0]) ng([1]). By contradiction, suppose that g([0]) ng([1]) contains another element
v # —p1. Therefore, there exist w, z € Orb(z) with w € [0] and z € [1] such that g(w) = g(z) = .
Since g(w) = g(z), the configurations w and z are equal on many positions. More precisely, if v € Z¢
is such that g(o¥(w)) = v+ v (p1,Q2,...,aq) = g(c¥(z)) is in the interior of the interval g([i]) for

some i€ {2,...,d}, then w, =i = z,. In other words, the set
V={ve Zh: v+ v (pr,an,...,aq) € Int(g([i])) for some i € {2, ... ,d}}

satisfies w|y = z|v.

Let € > 0 be such that € < |y — (—p1)| and & < |ag|. Let m € N be such that the Lebesgue measure
of f([q]) is less than e for every allowed pattern ¢ : [0,m — 1]¢~! — {0,...,d — 1} appearing in the
configuration 7oz 0 fy 1. Let By, = {0} x [0,m — 1]47! and p’ € Lp,, () be a pattern such that
the number of sites S = {u € B, : p'(u) € {2,...,d}} is maximized. Let p: S — {2,...,d} be the

restriction of p’ to S. From the maximality of the set S — B,,, we know that for every u € Z¢ such that
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o"(x) € [p], we have 0" (x)|p,,\s is a pattern over symbols 0 and 1 only. Thus the pattern p occurs at
position v € Z¢ in z if and only if 7(p’) occurs at position u in 7(x). Also the pattern po £y occurs
at position u € Z41 in w o Cy e if and only if m(p’) o £y .1 occurs at position u in m(z) o fy 1. From
Theorem [A} the pattern m(p) o £y .. of connected support [0,m — 1]4-1 occurs in 7(z) o £y e+ with
support intersecting the difference set of the asymptotic pair (TF(:I?) o Eo,ef,w(y) o £07ell) in a unique
position. Therefore, the pattern p occurs in x in a unique position with support intersecting the set
F\{—e1}. We use this property multiple times below.

From the maximality of S, we also have that [m(p)] = [7(p')] where the cylinders are taken within
™ (OT(!E)) On the one hand, it is clear that [7(p')] € [7(p')|s] = [7(p)]. On the other hand, suppose

¢ € Orb(z) such that 7(c) € [w(p)]. If w(cx) # O for some k € B,,\S, then ¢, = w(ck) + 1€ {2,...,d}.
Thus the pattern c|g, gy is strictly larger than the pattern p and this contradicts the maximality of
the set S. Thus 7(c) € [7(p')], and hence [7(p)] S [7(p')]. Since the support of [7(p')] is connected,
we deduce from Lemma that g([p]) = f([r(p)] 0 ly,er) = f([m(p')] © Ly 1) is & nonempty interval
whose length is at most ¢.

As (ag,...,aq) is totally irrational, the interval g([p]) has nonempty interior and there exists u €
({0} x Z3=1)\S such that g(c=%(2)) = glo~*(w)) = y—u-(0,az,...,aq) € Int(g([p])). Thus c~*(w) €
[p] and 0~ %(2) € [p]. Equivalently, w € o"([p]) and z € o%([p]). For each i € {0,1,d}, let ¢;: {0} U
(S —u) — {0,1,...,d} be the pattern defined by

p(n+u) ifneS—u,
g:(n) =
i if n=0.
We have w € [0] n d¥([p]) = [¢0] and z € [1] n o™ ([p]) = [¢1]. Also [d] N o“([p]) = [ga]-

By Lemma the pattern ¢; must occur in = intersecting the difference set. Recall that x_., = 1.
But o~z ¢ [¢1] since the opposite implies that —p; = g(c7°z) € g([¢1]) < g(c“([p])). Since
v = g(w) € g(c"([p])) and g(c“([p])) = g([p]) + v - (p1,2,...,q) < R/Z is an interval of length at
most €, we have |y — (—p1)| < €, which is a contradiction. Therefore the pattern ¢; must occur in x
intersecting the difference set in such a way that the subpattern p intersects the difference set. Since
the symbol 1 = x_., is not in the pattern p, the pattern g; must occur in = in such a way that the
subpattern p intersects the set F\{—e1}.

The pattern gy must also occur in z intersecting the difference set. Since the pattern gy does not
contain the symbol 1 = z_.,, the pattern go must occur in z intersecting the set F\{—e1}. As there is
exactly one occurrence of the subpattern p occurring in x intersecting the set F\{—e;}, we must have
x € [go] < o¥([p]). This implies that y € [g4]. Thus the pattern g4 is in the language of x and must also
appear in x intersecting the difference set. Since the pattern gq does not contain the symbol 1 = z_.,,
the pattern g4 must occur in z intersecting the set F\{—e;}. Again, we recall that there is exactly one
occurrence of the subpattern p occurring in x intersecting the set F\{—ej}. Therefore, we must have
o4 € [qa] € o*([p]). Tn summary, we have 0 = g(z) € g(*([p])) and —aq = g(o~4z) € g(o*([p]))-
Since g(o*([p])) is an interval of length at most &, we have |0 — (—aq4)| < &, which is a contradiction.
Thus we conclude that g([0]) n g([1]) is a singleton and thus from Lemma we deduce that
g([0]) and g([1]) are intervals. More precisely, from the facts that g(x) = 0, g(oc~°y) = 1 and
—p1 € g([0]) n g([1]) we conclude that g([0]) = [0, —p1] and g([1]) = [—p1, —az].

We now claim that the vector & = (p1, s, ..., aq) is totally irrational. Indeed, were it not the case,
there would exist a non-zero n € Z¢ for which n-& = 0 mod 1. Let 3 € R/Z be rationally independent
with &, it follows that for any m € Z%, the value 8 + m - & € R/Z does not lie in the boundary of the
intervals g([1]). In particular g=!(3) is a singleton. Indeed, let w, 2 € g~*(3). Then for every m € Z%
we have g(c™(@)) = g(6™(2)) = B+ m - & € Int(g([i])) for some i € {0,...,d}. Thus Wy, =i = Z,,

and globally we have the equality @ = Z. Since n- & = 0 mod 1, then it follows that c™(@W) = @.
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By minimality of Orb(z), it follows that every configuration Z in Orb(x) satisfies 0™ (Z) = Z. This is

incompatible with x and y having a finite difference set as we would have
z|p = " (z)|p = o (y)|F = y|F for arbitrarily large k € N.

Hence & is totally irrational, it follows that the orbit Z? - & lies in the boundary of the intervals

exactly for values in F' - &. An inspection of the values on the difference set shows that
r=cy and y=_ch. O

Remark 5.14. Proposition is proven by induction starting with the base case d = 1 which is
dealt with in Theorem Technically it might be possible to perform the induction using as base
the case of dimension d = 0. In this way Proposition would contain an independent proof of the
case d = 1 about Sturmian configurations in Z. In the current state of our proof this would demand

significant changes to the previous lemmas so we do not do it here.
We now present the proof of Theorem [B}

Proof of Theorem[B, Let a € [0, 1)? be totally irrational. From Lemma the characteristic d-
dimensional Sturmian configurations ¢, and ¢, are uniformly recurrent. From Theorem (CasCl)
is a non-trivial indistinguishable asymptotic pair. From Proposition the pair (cq,c),) satisfies the
flip condition.

Let z,y € {0,1,..., d}Zd be an indistinguishable asymptotic pair satisfying the flip condition and
assume z is uniformly recurrent. Using Lemma we obtain a permutation matrix A € GL4(Z) such
that (x o A,y o A) is an indistinguishable asymptotic pair which satisfies the ordered flip condition. A
straightforward computation shows that x o A is uniformly recurrent. From Proposition there
exists a totally irrational vector a = (ay,...,aq) € [0,1)¢ such that 1 > a; > az > -+ > ag > 0,
and z o A = ¢,, yo A = ¢, are the d-dimensional characteristic Sturmian configurations with slope a.
Then z = c,0 A and y = ¢/, 0 A7%

Let us compute these configurations explicitly. Recall that the adjoint of a permutation matrix is

its inverse, that is AT = A~!. It follows, using Equation , that for every m € Z%, we have

Il

d

x(m) = cq 0 (A7'm) = Z
i=1
d

las + (A7 m) - a] — [(A71m) ~aJ)
(

(
(lei +m - (AQ)] = [m - (Aa)]) = caa(m).

2

i=1
Similarly, we get that y(m) = ¢, o A=*(m) = ¢y, (m) for every m € Z%. Thus we obtain that = = ca,

and y = ¢4, as required. O

We finish this section by extending our result to Corollary [2} Let us briefly recall the definition of
the affine flip condition.

Definition 5.15. We say that an indistinguishable asymptotic pair x,y € Y2 with difference set F
satisfies the affine flip condition if:

(1) there is m € F such that (F —m)\{0} is a base of Z¢,

(2) the restriction x|p is a bijection F — %,

(8) the map x,, — y, for alln € F induces a cyclic permutation on .

Notice that the first condition of Definition [5.15 implies that #F = d + 1.

Let us also recall that Corollary [2|states if =,y € YZ* is such that z is uniformly recurrent, then the
pair (z,y) is an indistinguishable asymptotic pair satisfying the affine flip condition if and only if there
exists a bijection 7: {0,1,...,d} — X, there exists an invertible affine transformation A € Aff(Z?) and

there exists a totally irrational vector o € [0,1)? such that # = Toc, 0 A and y = 7o ¢}, o A.
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Proof of Corollary[3 Recall first that the property that a configuration is uniformly recurrent is in-
variant under affine transformations of Z? and sliding-block codes. We shall use this fact implicitly in
this proof.

Suppose first that 2 = T oc, 0 A and y = 7o ¢, 0 A for some A € Aff(Z?) and 7: {0,1,...,d} — X.
By Theorem Ca, €, form an indistinguishable asymptotic pair which satisfies the flip condition.
By Propositionand Proposition we obtain that z = Toc,0A, y = Toc,,0A is an indistinguishable
asymptotic pair. Let us show that they satisfy the affine flip condition. As 7, A are bijections, it is
clear that if F is the difference set of x,y, then F = A~Y(F). It follows that #F = d + 1, that
{A7 (n) — A71(0) : n € {—e1, -+, —eaq}} is a base of Z4, that the restriction z|% is a bijection, and
that the map x,, — y, induces a cyclic permutation on X. That is, x, y satisfy the affine flip condition.

Conversely, if z,y satisfy the affine flip condition there is m € F such that B = (F — m)\{0} is a
base of Z?. Construct an integer matrix B € GL4(Z) by putting elements of B = {by,...,bs} in its
columns. Let A~! € Aff(Z9) be the affine transformation such that n ~— m + Bn and notice that it
maps F' onto F sending 0 to m. By the second and third conditions of the affine flip condition, there is
a unique bijection 77!: ¥ — {0,1,...,d} such that 7 !(z,,) = 0and 77 (x,) = 7" 1(y,) —1 mod d + 1
for every n € F. It follows directly from the choices of A=! and 77! that 7oz o0 A=t 77l oyo A1
satisfy the flip condition. Furthermore, by Propositions 2.5 and [2.6] they form an indistinguishable
asymptotic pair. Hence by Theorem [B| it follows that there is a totally irrational vector o € [0,1]¢

such that 77'oz oA ™t =c,and 77l oyo At =¢. Thusz =7oc,0Adand y =7oc, o A O
Proof of Corollary[3 Tt follows directly from Theorem [A] and Theorem O

APPENDIX A. INDISTINGUISHABLE PAIRS ON COUNTABLE GROUPS

As mentioned in Section[2] the results in the first part of that section can be stated and proven in the
context of an arbitrary countable group I'. At this moment we do not have any interesting application
in this context, but in order to avoid senseless repetition in potential future work, we provide proofs
of those statements in this appendix.

Let ¥ be a finite set which we call alphabet and I' a countable group. An element z € LI =
{z: T — X} is called a configuration. For g € T, let z, denote the value z(g). The set X of all
configurations is endowed with the prodiscrete topology.

The (left) shift action I' % X (by right multiplication) is given by the map o: I' x ©I' — »T
where

o9(x)p == o(g, ), = xpy for every g,he T,z e X',

Remark A.1. We may alternatively consider the left action by left multiplication given by o9(z);, =
241y, for every g,h € I' and z € YT, Here we chose right multiplication to be consistent with the

definition on Z?. All proofs below are also valid with this choice.

Two configurations x,y are asymptotic if the set F' = {g € I': x4 # y,} is finite. F is called the
difference set of (z,y). If x = y we say that the asymptotic pair is trivial.

For finite S < T, an element p € ¥ is called a pattern and the set S is its support. Given a
pattern p € £, the cylinder centered at p is [p] = {x € ¥'': z|s = p}. A pattern p appears in z €
if there exists g € I" such that ¢9(x) € [p]. We also denote by occ,(z) = {g € I': 09(z) € [p]} the set of
occurrences of p in x € X',

For finite S < T, the language with support S of a configuration x is the set of patterns
Ls(z) = {pe X% : thereis g e I' such that o9(z) € [p]}.

The language of x is the union £(z) of the sets Lg(x) for every finite S < I
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Definition A.2. We say that two asymptotic configurations  and y in XU are indistinguishable if

for every pattern p we have

#(ocey(x)\ocey (y)) = #(ocey(y)\occy(z)).
For a pattern p € X9, its discrepancy in z,y is given by
Ap(,y) = Y. Ly (e(y) — L (e?(@)).
geS—1F
It is clear that the following conditions are equivalent:

(1) z and y are indistinguishable asymptotic configurations with difference set F',

(2) for every pattern p with finite support S < Z?, we have

# (occy(z) N ST'F) = # (occ,(y) n STF)

(3) for every pattern p with finite support S = Z4, we have A,(z,y) = 0.
Proposition A.3. Let S; Sy be finite subsets of T, and let p € 5. We have

Ap(z,y) = Z Ag(z,y).
q€x52,[q]=[p]
Proof. Notice that [p] is the disjoint union of all [¢] where ¢ € X2 and [q] < [p]. It follows that for any
z € X1 we have 1,)(z) = 1 if and only if there is a unique ¢ € £92 such that [¢] < [p] and 1[4 (2) = 1.
Letting F' be the difference set of =,y we obtain,
Ap(z,y) = Y 1p(0(y) — Ly (0?(x))

geSle

DT 1 (e9(y)) = 1y (of())

geS; ' F

S 10t (w) - g (0¥(2).
geS; ' F qexS?
[a]l<[p]

Exchanging the order of the sums yields the result. O

Let us denote the group of automorphisms of I' by Aut(T").

Proposition A.4. Let (x,y) be an indistinguishable asymptotic pair, then
(1) (09(x),09(y)) is an indistinguishable asymptotic pair for every g € I.
(2) (xop,xop) is an indistinguishable asymptotic pair for every ¢ € Aut(T).
Proof. Let F be the difference set of (x,y). A straightforward computation shows that the difference
set of (09(x),09(y)) is F1 = Fg~! and the difference set of (x o, x0¢) is Fy = ¢ }(F).
Let S < T be a finite set and p € £°. For the first claim we have

Ap(0?(2),0%(y)) = >, (o™ (07(®) — Ly (0" (0% (%))

heS—1F;

= Y 1™ () — Lpy(e™(y)
heS—1Fg—!

= Y 1@t ®) — 1 (ety) = Ap(z,y) = 0.
teS—1F

Thus (09(x),09(y)) is an indistinguishable asymptotic pair.

For the second claim, let ¢ € £¥(%) be the pattern given by q(¢(s)) = p(s) for every s € S. We note
that for any h € T, o"(z) € [q] if and only if 6®~ (") (z o ©) € [p]. This means that h € occy(x) if and
only if ¢! (h) € occy(x o ).
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As (z,y) is an indistinguishable asymptotic pair, there is a finitely supported permutation 7 of

1 is a finitely supported permutation of T

I' so that occy(z) = m(occy(y)). Then 7 = pomo ™
so that occp(z o ¢) = 7'(occy(y o ). We conclude that Ap(z o,y 0 ) = 0 and thus they are

indistinguishable. U

Let X1, be alphabets. A map ¢: ¥ — ¥I is a sliding block code if there exists a finite set
D < T and map ®: ¥ — ¥, called the block code such that

o(x), = ®(a?(z)|p) for every ge T,z e X}

Proposition A.5. Let z,y € X1 be an indistinguishable asymptotic pair and ¢: X5 — XL a sliding
block code. The pair ¢(z), d(y) € X5 is also an indistinguishable asymptotic pair.

Proof. Let F be the difference set of x,y and D = T, ®: ¥ — ¥, be the set and block code which
define ¢. If g ¢ D'F, then o9(x)|p = 09(y)|p and thus ¢(z), = ¢(y)g. As D71F is finite, it follows
that ¢(x), #(y) are asymptotic.

Let S < T be finite and p: S — X3 be a pattern. Let ¢~!(p) = (£1)P be the set of patterns ¢ so
that for every s € S, ®((qus)aep) = ps- 1t follows that ¢~1([p]) = Uges—1(mlal-

Let W < T be a finite set which is large enough such that W 2 F v DF. We have,

#geSTW [o9(d() epl} = D, #{geS'W o (x)e[q]}
g€~ (p)

Y, #geSTW [ o%(y) e [q]}

g€~ (p)
=#{ge STW | 0%(¢(y)) € [p]}.

Taking W large enough such that W = F u DF, we conclude that (¢(z), ¢(y)) is an indistinguishable
asymptotic pair. U

Let (2, Yn)nen be a sequence of asymptotic pairs. We say that (z,,yn)neny converges in the
asymptotic relation to a pair (z,y) if (,)nen converges to x, (yn)nen converges to y, and there
exists a finite set /' < I' so that z,|p\p = yn|r\r for all large enough n € N. We say that (x,y) is the

étale limit of (z,, Yn)nen-

Proposition A.6. Let (z,,yn)nen be a sequence of asymptotic pairs in ¥ which converges in the
asymptotic relation to (x,y). If for every n € N we have that (x,,y,) is indistinguishable, then (x,y)

is indistinguishable.

Proof. Let p € ¥% be a pattern. As (2, Yn)nen converges in the asymptotic relation to (z,y), there
exists a finite set /' < I" and Ny € N so that z,|p\p = yn|r\r for every n = Np. In particular we have
that the difference sets of (z,y) and (z,,y,) for n = N are contained in F. It suffices thus to show
that
#{occ,(z) N ST F} = #{occ,(y) n STIF}.

As (2, ) nen converges to x and (y,, ), € N converges to y, there exists Ny € N so that z,|g5-1p = z|s5-1F
and y,|ss-1r = y|lss-1p for all n > Ny. This implies that occ,(z) N S™'F = occy(w,) N STHF and
occ,(y) N STLF = occy(yn) N STLF for every n > Ns.

Let N = max{Ny, N>} and let n = N. As n = Nj, we have that (2,,y,) is an indistinguish-
able asymptotic pair whose difference set is contained in F, it follows that #{occ,(x,) N ST'F} =
#{occ,(yn) N STIF}. As n > Na, we obtain #{occ,(z) n ST'F} = #{occ,(y) n ST'F}. As this

argument holds for every pattern p, we conclude that (x,y) is indistinguishable. O

A configuration z € X' is recurrent if for every p € £(z) we have that occ,(z) is infinite.
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Proposition A.7. Let xz,y € X' be an indistinguishable asymptotic pair. If = is not recurrent, then

x,y lie in the same orbit.

Proof. If x is not recurrent, there is a finite S < I' and p € Lg(x) such that occ,(x) is finite. As
A,(z,y) =0, it follows that occ,(y) is also finite.

Let (S),)nen be an increasing sequence of finite subsets of I" such that Sy = S and | J,,cy Sn = I' and
let ¢, = z|g,. As x € [g,] and A, (z,y) = 0, there exists g, € I" so that 09" (y) € [¢]. Furthermore,
as gn|s = p, it follows that 09" (y) € [p] and thus g, € occy(y). As occ,(y) is finite, there exists
h € occ,(y) and a subsequence such that g, = h and thus 0" (y) € [g,()] for every k € N. As

Nnenln] = ﬂkeN[qn(k)] = {2} we deduce that o"(y) = x. O
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