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The Coulomb excitations of charge density oscillation are calculated for a double layer heterostruc-
ture. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on a substrate.
From the obtained surface response function, we calculated the plasmon dispersion relations which
demonstrate the way in which the Coulomb coupling renormalizes the plasmon frequencies. Addi-
tionally, we present a novel result for the damping rates of the plasmons in this Coulomb coupled
heterostructure and compare these results as the separation between layers is varied.

I. INTRODUCTION

A huge number of researchers from various disciplines have been showing their interest in the new material silicene
especially, after the development of its fabrication process in 2012.1 Because of its exceptional potential applications
in electronic and optoelectronic devices, many industries are making substantial investments to harness its properties.
Additionally, before making investments for commercial gain, both theoreticians and experimentalists have been
exploring this material for many years. A credit of foremost importance goes to Takeda and Shiraishi,2 who, in 1994,
dealt with the atomic and electronic structure of the material for the first time. These authors calculated the band
structure of silicon in the corrugated stage having optimized atomic geometry. This work, though very novel, did not
receive the attention it deserves until in 2004 when single-layer carbon atoms named graphene were fabricated in the
laboratory from graphite by Novoselov et al.3 Their research not only validated the stability of two-dimensional (2D)
material but also opened the door for new research on thin film materials, silicene being one of them.

Both silicene and graphene were studied in parallel. The former has a buckled crystal geometry whereas the latter
has the honeycomb planar geometry. Due to this, differences arise between them. Ab initio calculations showed
that the bandgap of silicene is electrically tunable4–6 which is an advantageous property for designing a field effect
transistor which works at room temperature. Another distinct difference between these two materials is the strength
of the spin-orbital coupling (SOC), which is very weak in graphene. Consequently, the quantum spin Hall effect occurs
at extremely low temperature7,8. In contrast to this, silicene displays quantum spin Hall effect at temperature 18K,
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FIG. 1: (Color online) Schematic illustration of a heterostructure consisting of a pair of 2D layers separated by a a dielectric
medium ε1(ω). This structure lies on a substrate with dielectric function, ε2(ω)

.

ar
X

iv
:2

20
5.

00
05

3v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
9 

A
pr

 2
02

2



2

far higher than that for graphene.

Several investigations have been carried out on both graphene and silicene with respect to transport phenomena9–17,
as well as their magnetic and electric field effects18–25, the fabrication process26–29, and on plasmonic behavior30–38.
An intensive literature search on the plasmonic studies suggests that no study on the plasmon dispersion and its
rate of damping was carried out for composite silicene and graphene materials. This hybrid material could have
significant benefits for use in the advancement of: quantum information technology,39–42 sensing devices,43–45 and
protein analytic clinical devices,45–48 etc. With this motivation, in this research work, we choose a system composed
of silicene and graphene accompanied by a conducting substrates.

The plasmon mode is tunable by the thickness of the substrate and the variation of material behavior. We first
determine the surface response function of the structure, the same technique used recently by Gumbs et. al.49,50

which gives us the condition for the existence of the plasmon dispersion. The analytical result for the surface response
function is further used for different limiting cases and a comprehensive comparison is made with a variety of structures
composed of different graphene-silicene compositions. Furthermore, the same function is used to obtain the Landau
damping rate of the plasmon modes whose numerical calculation demonstrates that the it’s variation depends on the
layer separation, types of dielectric used and the type of 2D layer employed.

We have organized the rest of our paper as follows. In Sec. II, we present the core idea about our work where
we show the analytical result for the surface response function for the chosen structure. Under limiting conditions,
the result is used to derive the results for a variety of conditions. The graphical results and their interpretation are
presented in Sec. III. We conclude our paper with a summary of our main results and conclusions in Sec. IV.

II. THEORY

In this article, we have reported the plasmonic behavior of heterostructure consisting of graphene and silicene
together for which the Hamiltonian in the low energy regime near the K point is considered. One significant difference
between the Hamiltonian of graphene and silicene is: a small band gap, ∆ is present in the Silicene energy band
structure which is due to spin-orbit coupling and applied external electric field. This band gap is not seen in intrinsic
graphene.

A. Silicene

We now briefly describe the case pertaining to silicene whose Hamiltonian in the continuum limit is given by

Hξ = ~vF (ξkxτ̂x + ky τ̂y)− ξ∆soσzτz + ∆z τ̂z , (1)

where τ̂x,y,z and σx,y,z are Pauli matrices corresponding to two spin and coordinate sub-spaces, ξ = ±1 for the K
and K ′ valleys, vF (≈ 5× 105) m/sec is the Fermi velocity for silicene5,51, kx and ky are the wave vector components
measured relative to the K points. The first term represents the low-energy Hamiltonian whereas the second term
denotes the Kane-Mele system52 for intrinsic spin-orbit coupling with an associated spin-orbit band gap of 2∆so.
The last term in the expression describes the sublattice potential difference that arises from the application of a
perpendicular electric field. Equation (1) for the Hamiltonian is a block diagonal in 2× 2 matrices labeled by valley
(ξ) and spin σ = ±1 for up and down spin, respectively. These matrices are given by

Ĥσξ =

(
−σξ∆so + ∆z ~vF (ξkx − iky)
~vF (ξkx + iky) σξ∆so −∆z

)
. (2)

This gives the low-energy eigenvalues as

Ek = ±
√
~2v2

f |k|2 + ∆2
ξσ (3)

where ∆σξ = |σξ∆so −∆z|.
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B. Graphene

The low-energy model Hamiltonian for monolayer graphene is similar to that in Eq. (2) with the diagonal terms
replaced by zero and ξ labeling the valley. In this regime, the Hamiltonian for intrinsic graphene is given by

Ĥ = ~vF
(

0 (ξkx − iky)
(ξkx + iky) 0

)
(4)

with the linear energy dispersion, Ek = ±~vf |k| in either valley.

C. Polarization function: Π(q, ω)

Considerable work has been done on the dynamical properties involving the use of the dielectric function ε(q, ω)
of various types of free-standing 2D systems53–55 under different conditions. These include temperature effects,56,57

the role of an ambient magnetic field for the 2D electron gas (2DEG), graphene, silicene,58 and the dice lattice54.
For a single 2D layer, one can extract the plasmon dispersion relation and damping rate by employing the dielectric
function. However, the situation is more complicated for a multi-layer heterostructure which relies on a knowledge of
the surface response function that we have presented in detail below. However, in either case, we need to calculate the
polarization function obtained in the random phase approximation (RPA). For a 2D layer surrounded by a medium
with dielectric constant εb, the dynamic dielectric function is given by

ε(q, ω) = 1− V (q)Π(q, ω), (5)

where V (q) = 2πe2

4πε0εbq
is the Coulomb interaction potential and ε0 is the permittivity of free space, q is the wave

vector and e is the electron charge. The polarization function is an important quantity in calculations of the trans-
port, collective charge motion and, charge screening properties of the material. In the one-loop approximation, the
polarization function for gapped graphene is given by59

Π0(q, ω) =

∫
d2k

2π2

∑
s,s′=±1

{
~2v2

f (k + q) · k + ∆2
σ,ξ

Ek · E|k+q|

}
f0(sEk − EF , T )− f0(s′E|k+q| − EF , T )

sEk − s′E|k+q| − ~(ω + iδ)
,

(6)

where θk,k+q is the angle between k and k+q. At zero temperature, the Fermi function f0(z) is just a step function.
The analytical expression for the polarization function for silicene and graphene monolayer is given by Tabert et. al.58

and Wunsch et. al.53 respectively.

We now turn our attention to a crucial consideration in this paper regarding the structure consisting of a silicene
layer, a graphene layer and substrates as depicted in Fig. 1. By employing the boundary condition of continuity of
the potential and the discontinuity of the electric field at the interface, we solved for the various coefficients appearing
in the potential. The result for the surface response function g(q, ω) gives the required conditions for the plasmon
dispersion for our case, namely

φ<(z) = e−qz − g(q, ω)e−qz , z . 0 , (7)

φ>(z) = a1e
−qz + b1e

qz , 0 ≤ z ≤ d ,
φ1>(z) = k1e

−qz , z ≥ d .

Here, φ<(z), φ>(z) and φ1>(z) correspond to the electrostatic potential of region (I),(II), and (III) respectively as
shown in figure 1. In order to conduct numerical computation, we make use of linear response theory, for which we
have σ1 = χ1φ<(0), σ2 = χ2φ1>(2), with χ1, χ2 are 2D susceptibilities. Generalising, χi = e2Π0

i for convenience, we
obtain the solution of these equations for different coefficients, leading to

g(q, ω) =
1

D(q, ω)

{
[qε0(ε1 − 1)− χ1][qε0(ε1 + ε2)− χ2]− [qε0(ε1 + 1) + χ1][qε0(ε1 − ε2) + χ2]e−2dq

}
(8)
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D(q, ω) ≡ [qε0(ε1 − 1)− χ1][qε0(ε1 + ε2)− χ2]− [qε0(ε1 − 1) + χ1][qε0(ε1 − ε2) + χ2]e−2dq , (9)

where ε1(ω) is the dielectric function of the substrate between layers “1” and “2”, χ1 and χ2 correspond to the
susceptibilities of these two layers and d is the thickness of the substrate. The plasmon dispersion equation is
obtained from the solutions of D(q, ω) = 0 which we solve below. We note that when we set χ2 = 0 and take the
limit d→∞, Eq. (10) yields the well established form60

g2D(q, ω) = 1− 1
ε1+1

2 − χ1

2qε0

(10)

which is the surface response function for a 2D layer embedded in a medium whose average background dielectric
constant is εb = (ε1 + 1)/2. The plasma resonances, which Eq. (10) gives from its poles, are in agreement with the
zeros of the dielectric function in Eq. (5).

D. Damping rate

We now turn to a critical issue in this paper which concerns the rate of damping of the plasmon modes by the
single-particle excitations. If this rate of damping for a plasmon mode with frequency Ωp is denoted as γ, then
D(Ωp + iγ, q) = 0 in the complex frequency space. Carrying out a Taylor series expansion of both the real and
imaginary parts, we have

D(Ωp + iγ, q) = Re D(Ωp + iγ, q) + iIm D(Ωp + iγ, q)

= ReD(Ωp) + iγ
∂

∂Ω
ReD(Ω)

∣∣∣∣
ω=Ωp

+ iImD(Ωp)− γ
∂

∂Ω
ImD(Ω)

∣∣∣∣
ω=Ωp

+ · · · (11)

Therefore, setting the function in Eq. (11) equal to zero, we obtain γ to lowest order as

γ = − ImD(Ωp)

∂ReD(ω)/∂ω|Ωp

. (12)

With these formal results, we now evaluate the plasma spectra for double layer heterostructure. The expression
shows the dependence of γ on the imaginary part of D(Ωp) and the Real part of D(ω) which in turn are dependent
on the type of layer and the substrate considered. Eventually, we can infer that the viability of plasmon modes can
be tuned by the dielectric substrate thickness and by the choice of 2D layer. In addition, the rate of decay also helps
us in maintaining the intensity and the frequency of the obtained plasmon mode. This could have great impact in
the development of the quantum information sharing technology and the data storing devices.

III. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations, energy is scaled in units of E
(0)
F and wave vector is scaled with k

(0)
F =

√
πn which is

in the experimental range for electron hole doping densities n = 1010 per cm2. This gives k
(0)
F = 106 per cm and E

(0)
F

is equivalent to ∼60meV. From the preceding discussion, in Sec. II, it is clear that the plasmon mode for any system
is given by the pole of the dielectric function obtained from Eq. 9. Thus, making use of it, we computed the plasmon
mode dispersion for a heterostructure based on graphene and silicene with/without a substrate. For this, we have
first obtained a graphical result for graphene as shown in Fig. 2. One can clearly see that a single branch plasmon
mode originate from the origin in q−ω space which increases monotonically and decays out when the plasmon mode
reaches the interband particle-hole excitation region. In Fig. 2, the plasmon branches for two values of the Fermi
energy are shown in panels (a) and (b). The damping rates of these plasmon modes are demonstrated in panel (c) and
(d), correspondingly, where it is distinctly shown by an arrow pointing at the boundary of the region where Landau
damping takes place. The rate of decay for both types of graphene are monotonically increasing signifying that the
deeper into the single particle excitation region where the plasmon mode enters, the rate of plasmon decay becomes
larger. That is the lifetime of the plasmon mode is decreased in the same manner.
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FIG. 2: (Color online) Plasmon frequency ωp(q) and damping rates γ(ωp(q), q) for an isolated graphene layer(SLG) with

EF = 1.0E
(0)
F (left panels (a)and (c)) and EF = 1.5E

(0)
F (right panels (b) and(d)). Two top panels(a) and (b)demonstrate

the plasmon dispersion (either damped or undamped obtained as Re(ε(q, ω)) = 0, the lower plots (c) and (d)describe the
corresponding damping rate along the plasmon branches, also calculated and shown as insets(i1) and (i2).

Going next to the case when we have a structure with two graphene layers together, separated by various distances,
a set of plots as shown in Fig. 3 are obtained with two branches of plasmon modes originating from the origin in the
q − ω space. One can clearly see that the closer the graphene sheets are, the further apart are the plasmon modes.
In Figs. 3(a), (b), (c) and (d), plasmon modes for a structure with two graphene layers separated by a distance of

0.5(k
(0)
F )−1, 1.0(k

(0)
F )−1, 2.0(k

(0)
F )−1 and 5.0(k

(0)
F )−1 are shown, respectively, and all the plots portrays that the further

apart the graphene layers are, the closer the two plasmon branches become. For this same set of figures with the other
parameters remaining the same, the plasmon decay rate is shown in Fig. 4 which shows that the plasmon decay for
the lower plasmon branch always starts at larger wave vector value in comparison to upper plasmon branch. As the
distance of separation is increased, the two plasmon branches come closer and their decay also starts from the same
value of wave vector and the rate of decay is almost same in value.

Now, in addition, we carried out an investigation of the plasmon modes and their decay rate for the structure with
two silicene layer for various separations. The graphical results for these calculations are shown in Fig. 5 where we
again have two plasmon modes originating from the origin of q − ω plane. As in the case for a two-graphene-layer
structure, we again notice a similar effect on two plasmon branches coming closer to each other when their separation

increases. This clearly is demonstrated in Figs. 5(a), (b), (c) and (d) for their distance apart of 0.5(k
(0)
F )−1, 1.0(k

(0)
F )−1,

2.0(k
(0)
F )−1, and 5.0(k

(0)
F )−1 respectively.

As a representative calculation, we investigated the decay rate of plasmon modes for silicene-silicene structure when

their separation is d = 0.5(k
(0)
F )−1 and d = 5.0(k

(0)
F )−1. Figure 6 shows that the upper plasmon mode does not decay

at all and the lower plasmon branch decays after reaching a critical wave vector. This behavior is due to the presence
of a band gap for silicene, resulting in an opening in the single particle excitation region, which provides a larger area
in q − ω space for the plasmon mode to survive. The upper plasmon branch in this case has a larger space and is
more likely to self-sustain for a longer period of time without damping. On the other hand, the lower plasmon branch
enters the intraband single-particle excitation region where it decays. The rate of decay starts from a critical value of
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FIG. 3: (Color online) Acoustic (lower) and optical (upper) plasmon modes for a pair of identical graphene layers with EF =

1.0E
(0)
F . Each panel corresponds to a different values of the separation between the layers corresponding to d = 0.5(k

(0)
F )−1,

1.0(k
(0)
F )−1, 2.0(k

(0)
F )−1 and 5.0(k

(0)
F )−1 as labeled. The plasmon dispersion (either damped or undamped is obtained by solving

Re(D(q, ω|d)) = 0).

the wave vector and the magnitude of this decay rate monotonically increases.

A comparison of plasmon modes and their decay for graphene-graphene and silicene-silicene structures is shown
along with the single-particle excitation regions in Fig. 7. The figure in panel (a) of Fig.7 shows that two plasmon
modes which originate from the origin of the frequency-momentum space is steadily increased but decays after it
reaches the boundary of the single-particle excitation region. Corresponding red lines are drawn to further clarify the
point where the actual decay begins. The dark triangular region is the area where the plasmon mode survives without
Landau damping and mathematically, in this region, the imaginary part of the polarization function of graphene is
zero. This means that the plasmon mode has self-sustaining oscillations. The green region where the imaginary part
of the polarization function is nonzero is the single particle excitation region where the plasmon mode decays into
particle hole mode. The corresponding decay rate figure below this panel shows that the rate of decay for the upper
plasmon branch is greater and its critical wave vector is smaller compared with the lower plasmon branch.

Similar plots for silicene-silicene structures were demonstrate figure 7 (b) where one can clearly see the opening of
a gap in the single-particle excitation region yielding two parts which is a significant effect arising from band gap.
The imaginary part of the polarization function in this gap region is zero where the plasmon mode can sustain its
oscillation for long time. The upper break away region is single-particle excitation region due to interband transitions
of electrons from the valence to the conduction band and the lower break away region is the intraband single particle
excitations region which is due to transistions within the same band from below to above the Fermi level. In Fig.
. 7, two plasmon modes originate from the origin as demonstrated in the figure. The upper plasmon mode survives
without damping over a wider range of wave vector and the plasmon branch enters the gap created by the opening
within the single-particle excitation region. The corresponding decay rate appearing below the plasmon dispersion
shows that the upper plasmon branch does not decay at all. Whereas for the case of the lower plasmon branch, the
plasmon mode near the origin lies closer to the intraband single-particle region. Consequently, there is small plasmon
decay rate as illustrated in the corresponding figure in the panel fig 7(d) below. As the plasmon mode rises, it gets
separated from the single-particle excitation region where the decay rate is zero and as it moves further away from
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FIG. 4: (Color online) The damping rates corresponding to the acoustic and optical plasmon branches shown in Fig. 4 for two

identical graphene layers with EF = 1.0E
(0)
F . Each panel corresponds to a different values of the separation between the layers

with d = 0.5(k
(0)
F )−1, 1.0(k

(0)
F )−1, 2.0(k

(0)
F )−1 and 5.0(k

(0)
F )−1 as labeled.

the origin the plasmon branch comes in contact with the single particle excitation region where we notice the Landau
damping again. Correspondingly, the decay rate is increased monotonically, reaches a maximum before drops down,
indicating the reappearance of an undamped plasmon branch at a larger value of wave vector. Another noticeable
effect observed here is the closeness of the plasmon branches and the plasmon decay rate which can be altered by
changing the layer separation, this effect may be used as another plasmon mode tuning parameter.

In order to extract more information about the plasmonic behavior, in Fig. 8 (a), we have presented the figure to
show the result highlighting the changes in the plasmonic nature for a structure with different types of layer and a
substrate. In Fig. 8(a), we demonstrate the plasmon mode for a structure with silicene and graphene separated by a

distance of 1.0(k
(0)
F )−1 with vacuum in between. One can clearly observe two plasmon modes originate from the origin

in q − ω space. A special effect of overcoming the single particle excitation region of silicene by the single-particle
excitation region of graphene is observed which causes the shortening of the lower plasmon branch which used to be
there for silicene-silicene structure. AS soon as the plasmon branch reaches this region, the plasmon mode decays into
particle hole mode just because of the replacine one silicene layer by a graphene layer in silicene-silicene structure.
The effect due to the band gap in silicene is just nullified. Furthermore, the result of adding a substrate between
the silicene and graphene layer is illustrated in panel (b) of Fig. 8. In this case, we could see a new plasmon branch
originating from the bulk plasma frequency and one plasmon branch originating from the origin. Here, due to the
presence of a substrate, the lower plasmon branch bend sharply towards the intraband single-particle excitation region
where it decays causing complete disappearance. The upper plasmon branch and the plasmon from the bulk plasmon
frequency become closer and move towards the interband single-particle excitation region where they get damped.

These new effects on the plasmon branches in this type of structure was not reported previously. Results of this
type are helpful in developing electronic and quantum computing devices where knowledge of plasmonic behavior of
material is very essential.
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FIG. 5: (Color online) Acoustic (lower) and optical (upper) plasmon dispersions for two silicene layers with EF = 1.0E
(0)
F and

the band gaps ∆SO,1 = ∆SO,2 = 0.7E
(0)
F , ∆z,1 = 0.2E

(0)
F and ∆z,2 = 0.4E

(0)
F . Each panel corresponds to a different values of

the separation between the layers d = 0.5(k
(0)
F )−1, 1.0(k

(0)
F )−1, 2.0(k

(0)
F )−1 and 5.0(k

(0)
F )−1 as labeled.
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FIG. 6: (Color online) The damping rates corresponding to the acoustic and optical plasmon branches calculated in Fig. 6 for

two silicene layers with EF = 1.0E
(0)
F , and the band gaps ∆SO,1 = ∆SO,2 = 0.7E

(0)
F , ∆z,1 = 0.2E

(0)
F and ∆z,2 = 0.4E

(0)
F . Each

panel corresponds to a different values of the separation between layers with d = 0.5(k
(0)
F )−1, and 5.0(k

(0)
F )−1 as labeled.

IV. CONCLUDING REMARKS

In summary, we have shown that the effect due to the addition of a substrate and the difference from introducing
different types of 2D materials in the heterostructure resulting a novel tunning technique of the plasmon excitations
associated with these 2D systems. A completely new effect of a plasmon branch emerging from the bulk plasmon
frequency is seen which would be very helpful in engineering computing devices. Another discovery is the disappearance
of the lower plasmon branch and the suppression of the silicene band gap effect. These are other interesting new effects
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FIG. 7: (Color online) Plasmon modes for (a) graphene-graphene structure and (b) silicene-silicene structure with corresponding
plasmon damping rate in Fig (c) and (d), respectively.
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FIG. 8: (Color online) Plasmon mode dispersion for two layer of of 2D materials separated by a distance of 2k−1
F . In (a) Both

layers are silicene, ε1(ω) = 1 − Ω2
p/ω

2 and ε2 = 1 for the substrate. (b) The same as (a) except that the silicene layers are
replaced by graphene.

seen from our calculations. We have also developed an approach for calculating the decay rates for the plasmons due
to Landau damping by the particle-hole modes.

Additionally, our results infer that the number of plasmon branches emerging from the origin can be varied by
choosing the number of 2D layer. In brief, we can say that our study gives an important idea about the plasmonic
behavior of a graphene-silicene based heterostructure which would be very helpful in carrying out further study of
other type of heterostructure including various low dimensional material.
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