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Abstract

The correlated probabilistic model introduced and analytically discussed in Hanel et al (2009) is based on a
self-dual transformation of the index q which characterizes a current generalization of Boltzmann-Gibbs statistical
mechanics, namely nonextensive statistical mechanics, and yields, in the N →∞ limit, a Q-Gaussian distribution
for any chosen value of Q ∈ [1, 3). We show here that, by properly generalizing that self-dual transformation, it
is possible to obtain an entire family of such probabilistic models, all of them yielding Qc-Gaussians (Qc ≥ 1)
in the N → ∞ limit. This family turns out to be isomorphic to the Hanel et al model through a specific
monotonic transformation Qc(Q). Then, by following along the lines of Tirnakli et al (2022), we numerically
show that this family of correlated probabilistic models provides further evidence towards a q-generalized Large
Deviation Theory (LDT), consistently with the Legendre structure of thermodynamics. The present analysis
deepens our understanding of complex systems (with global correlations among their elements), supporting the
conjecture that generic models whose attractors under summation of N strongly-correlated random variables are
Q-Gaussians, might always be concomitantly associated with q-exponentials in the LDT sense.

KEYWORDS: Probabilistic models; Nonadditive entropic functionals; Entropic extensivity; Nonextensive statisti-
cal mechanics; Large deviation Theory

1 Introduction

Boltzmann-Gibbs (BG) statistical mechanics provides several cornerstone relations, of which the Maxwellian distri-
bution of velocities and the exponential distribution of energies are the most important ones [1]. This is reflected
in the Central Limit Theorem (CLT) [2, 3] which leads, when the number N of involved random variables increases
indefinitely, to convergence towards normal distributions, and to the Large Deviation Theory (LDT) [4, 5, 6, 7, 8]
which describes the speed at which Gaussians are approached as N increases.

The Gaussian is the N →∞ attractor of the appropriately centered and scaled sum of N independent (or weakly
correlated) discrete or continuous random variables whose second moment is finite (CLT). The simplest probabilistic
model that realizes these paradigmatic properties is a set of N independent equal binary random variables (each of
which, say, takes the values 0 and 1).

Consider then a binary stochastic system with N random variables yielding n times 0, and (N−n) times 1. In the
LDT, we are concerned with the probability PN (n/N > z) ∈ [0, 1] of the random variable n/N taking values greater
than a fixed value z ∈ R for increasingly large values of N . Under the hypothesis of probabilistic independence,
we expect PN to behave like an exponential function, i.e., PN (n/N > z) ∼ e−r1(z)N , where the rate function r1
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corresponds to a BG relative entropy per particle; r1(z)N plays the role of the total thermodynamic entropy, which
is extensive in agreement with the Legendre structure of classical thermodynamics, i.e., r1(z)N ∝ N (N >> 1).

The standard LDT reflects the BG statistical mechanics, which describes the thermal equilibrium of short-range
Hamiltonian systems with Maxwellian velocity distribution. Within this theory, exponential distributions emerge
naturally. It is generally applicable to a large class of relevant systems satisfying the Central Limit Theorem (CLT),
including dynamical systems whose maximal Lyapunov exponent is positive, which guarantees strong chaos and,
therefore, mixing in phase space and ergodicity. This fact enlarges the applicability of Markovian processes. We
remind that the CLT focuses on sums of the random variables. This is directly related to temporal averages, which
are of essential interest for statistical physics given their connection with ensemble averages through the ergodic
hypothesis.

In this paper, we are interested in what happens if these binary random variables are not independent (nor
nearly so) and the correlations between them are strong enough. In principle, there is no reason to expect that
the corresponding limiting distribution is a Gaussian. In fact, if the attractors are not Gaussian, we are not inside
the BG-statistics framework. If we focus on stationary states of typical complex systems, both the CLT and the
LDT must be generalized. In nonextensive statistical mechanics [9, 10, 11, 12] we typically deal with a wide class
of strongly correlated systems. The associated velocity distributions appear frequently to be Q-Gaussian ones with
Q > 1 [13, 14, 15, 16], with Q = 1 when the interactions are short-ranged. These facts are associated with the so-
called Q-Central Limit Theorem (Q-CLT) which, when N →∞, leads to convergence to a Q-Gaussian distribution

f(z) = eQ(−z2) [17]. We remind that eQ(z) = [1 + (1−Q)z]
1

1−q , with e1(z) = ez. If the attractors are Q-Gaussians
then we expect the LDT to yield a q-exponential function, with q(Q) being a monotonic function of Q such that
q(1) = 1.

We focus here on a scale-invariant stochastic process with strongly correlated exchangeable random variables,
known to yield a long-tailed Q-Gaussian attractor in the space of distributions. This is a class of correlated
processes that can be interpreted as mean-field models which might be relevant in artificial, social, and natural
systems. For example, numerical indications for the distributions of velocities in quasistationary states of long-
range Hamiltonians suggest q-Gaussians [13, 18]. Experimental and observational evidence for q-Gaussians exist
for the motion of biological cells [19] defect turbulence [20], solar wind [21], among others.

In [22], it was shown that the corresponding LDT probability distribution is given by P (N, z) = P0 e
−rq(z).N
q

with q = 2 − 1/Q ∈ (1, 5/3) for a scale-invariant stochastic process. The probabilistic model used, introduced in
[23], is based on the self-dual transformation q̄ → 7−5q

5−3q , hence q → 7−5q̄
5−3q̄ . In that work, another transformation

is suggested as an alternative, namely, q̄ → 5−3q
3−q , hence q → 5−3q̄

3−q̄ . We show here that, by using the generalized

self-dual transformation [24, 25]

q̄ =
(c + 2)–(c + 1) q

(c + 1)− c q
=

( c
2 + 1)–( c

2 + 1
2 ) q

( c
2 + 1

2 )− c
2 q

, (1)

it is possible to introduce a family of such models.

2 Model and results

In the present paper, we focus on a scale-invariant probabilistic family of models for exchangeable stochastic pro-
cesses. The random variables are binary (Ising-like) with correlated elements say from x ∈ {0, 1}. By exchangeable
we mean that the N-point probabilities pN (x1, x2, ..., xN ) are totally symmetric in their arguments for all N , and that
pN can be obtained by marginalization of pN+1. Particularly, the probability of a specific microstate (x1, x2, ..., xN )
does not depend on the order of binary events, but only on the number n of events in the state x = 0 and (N − n)
events in the state x = 1. We denote this probability as rNn .

The probabilistic model in [23], through the Laplace-de Finetti theorem for exchangeable random variables,
yields

rNn =
B
(

3/2−Q/2
Q−1 + n, 3/2−Q/2

Q−1 + N − n
)

B
(

3/2−Q/2
Q−1 , 3/2−Q/2

Q−1

) , (2)

where B(x, y) is the Euler Beta function.
We start by generalizing the transformations q̄(q) in [23] as described in Eq. (1). If we take c = 3/2 we obtain

q̄ = 7−5q
5−3q , indicated in [23]. If we take c = 1/2 we obtain q̄ = 5−3q

3−q , also indicated in [23] as an alternative possibility
to be associated with a probabilistic model including nontrivial correlations.
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We see in transformation (1) that c plays the role of 3/2 within [23]. Consistently we heuristically propose,
generalizing Eq. (2), the Ansatz described here below.

A specific micro-state with n values 0 and (N − n) values 1 corresponds, for Q = 1, to rNn = 1/2N ; and for
long-tailed distributions:

rNn =
B
(

c−(c−1)Qc

Qc−1 + n, c−(c−1)Qc

Qc−1 + N − n
)

B
(

c−(c−1)Qc

Qc−1 , c−(c−1)Qc

Qc−1

) , (3)

The case in [23] clearly corresponds to c = 3/2. In the present model there are N !/[n!(N − n)!] equivalent such
micro-states (n = 0, 1, 2, ..., N). Consistently, we have

N∑
n=0

N !

n!(N − n)!
rNn = 1. (4)

Following [23], we define,

uN
n ≡

(n/N − 1/2)√
(Qc − 1)(n/N)(1− n/N)

, (5)

and also

ũN
n ≡

uN
n

2maxn=1,2,...,N−1uN
n

. (6)

We also define the discrete width

duN
n ≡

[(n/N)(1−N/n)]−3/2

4(N + 1)
√
Qc − 1

, (7)

from which it follows the un-normalized distribution

FN
n = (duN

n )−1 N !

n!(N − n)!
rNn . (8)

After normalization we have

F̃N
n ≡

FN
n∑N−1

n=1 FN
n

. (9)

As an illustration, in Fig. 1a we have represented the data (NũN
n , F̃N

n ) for the case (c = 0.5, Qc = 2), whereas
in Fig. 1b the same data have been plotted with respect to ũ so that the distribution can be given in the region
[−1/2, 1/2].

In what concerns LDT, we now focus on the probability P (N ;Q, z) ∈ [0, 1], which is defined as the one whose
values of FN

n correspond to n/N > 1/2 + z. More precisely, it is the sum of all values whose ũ > z. We expect to
numerically verify that

P (N ;Q, z) = P0(Q, z) e−rq(Q,z)N
q . (10)

Since the argument of the Beta functions in Eq. (3) must be positive, if c > 1.5 then Qc < c/(c − 1). The
distributions in Fig. 1 generated with the pair (c,Qc) become a line when we apply a Q-logarithm function with
Q 6= Qc. In order to determine the value of Q, we compare Eqs. (2) and (3), and therefore, we impose

c− (c− 1)Qc

Qc − 1
=

3/2−Q/2

Q− 1
. (11)

It follows

Q(c,Qc) =
(5− 2c)Qc + 2c− 3

(3− 2c)Qc + 2c− 1
, (12)

hence Q(c, 1) = 1, Q(3/2, Qc) = Q and Q(c, 3) = 3−c
2−c .

3



(a) (b)

Figure 1: FN
n distributions are given for some representative values of N for the case (c = 0.5, Qc = 2). The sums

of the values of all points equals unity. Notice a relevant point, namely that the abscissa values of these points are
not equidistant. (a) The distribution is represented as a function of Nũ ∈ [−N/2, N/2]. (b) The distribution is
represented as a function of ũ ∈ [−1/2, 1/2]. A red vertical line representing z = 0.3 is plotted to illustrate that for
smoothing the P (N ;Q, z) curve one has to interpolate between points.

(a) (b)

Figure 2: (a) Q versus Qc. Note that when c = 1.5, Q = Qc. We numerically verified for some representative cases
that these values of Q effectively linearize the distributions. (b) lnQF̃

N
n versus (Nũ)2/N . Illustration of a linearized

distribution for a representative case. The factor 1/N in the abscissa was introduced with the aim to collapse all
the curves into a single one.

We represented Eq. (12) for several values of (c,Qc) in Fig. 2a, and we verified that those values of Q indeed
linearize the distributions, as shown in Fig. 2b.

With this value of Q, we found that the relation q = 2 − 1/Q found in [22] is preserved for all values of c, as
illustrated in Fig. (3)

For strongly correlated binary variables, we have

rq(z) =
1

qr

{
1

2
[(1 + 2z)qr + (1− 2z)qr ]− 1

}
, (13)

hence
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(a) (b)

Figure 3: P (N ;Q, z) for c = 0.5 and Qc = 2 in log-log (a) and q-log (b). Note that the only distribution which
provides, in all scales, straight lines in a lnqx versus x representation is the q-exponential function. A linear
interpolation was used to smooth the curves when values of z lays between points (see Fig. 1b).

rq(z) ∼ 2qrz
2 +

2

3
(3− qr)(2− qr)qrz

4 (z → 0). (14)

Through the optimized fitting of Fig. 4a, we found the same relation as in [22]

qr =
7

10
+

6

10

1

Q− 1
(1 < Q < 3), (15)

where Q is related to Qc through Eq. (12). This result was obtained by varying z typically up to 0.175 for different
values of Qc, which guarantees the verification of the dominant term in Eq. (14). Greater values of z were not
considered given our computational capacity.

(a) (b)

Figure 4: (a) rq values calculated from Eq. 10 are plotted as a function of z2 for a representative value of (c,Qc).
(b) qr versus Q is plotted for the case c = 0.5. Dots are obtained through optimization of the overall fitting of
P (N ;Q, z) with regard to (P0, qr) for typical values of Q and various values for z2. The optimization procedure
uses the scipy.optimize module in Python with method ’lm’. The range of values of Q plotted are related to Qc

through Eq. (12). The dashed line represents Eq. (15)
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The numerical determination of P0(Q, z) is much harder than that of (q, qr). A form was heuristically proposed
as a simple illustration in [22],

P0(Q, z) = 1/4− azu + a(1/2− z)u (0 < z < 1/2), (16)

where a = 2u/4 in order to satisfy the conditions P0(Q, 0) = 1/2, P0(Q, 1/2) = 0. However, Fig. 5 suggests that
this analytical form is only approximate. Let us emphasize here that the exact numerical values of P0 (as well as
its unknown exact analytical expression) are of no central importance. In fact, they play a rather minor role in the
conjecture (10), much like the corresponding prefactor in the standard LDT.

Figure 5: P0 versus z for an illustrative value of Qc; this particular example is one of the best results we obtained
for the graphic P0 versus z. The dashed line is given by Eq. (16) with the value u = 0.4. This comparison suggests
that the heuristic expression given in [22] is only approximate.

The figure of the case presented here, (c = 0.5, Qc = 2) is one of the best figures we obtained. Other combinations
of (c,Qc) produced more noisy figures. However, it appears that that the prefactor P0 depends on z, but not on
(c,Qc).

3 Conclusions

To sum up, let us first recall that, in the domain of q-statistics based on non-additive entropies, one typically obtains
a Q-Gaussian distribution for the velocities and a q-exponential weight for the energies, for Q ≥ 1, the equalities
Q = q = 1 holding precisely for the BG statistical mechanics. These generalizations should respectively reflect the
corresponding generalizations of the classical Central Limit Theorem and the Large Deviation Theory.

In the present work, we constructed a family of correlated probabilistic models and we reinforced the way
towards a q-generalized Large Deviation Theory. We unified the two transformations q̄(q) presented in [23] into a
single expression, and showed that this family of models yields, in the N → ∞ limit, a Q-Gaussian distribution
for any Q ∈ [1, 3). This entire family turns out to be isomorphic to the [23] model through the transformation
(c,Qc)→ (3/2, Q). We presented numerical evidence that the corresponding LDT probability distribution is given
by a q-exponential function, where q is a monotonic function of Q (with Q = 1 yielding q = 1). Then, we showed
that this family of correlated probabilistic models reinforces the path towards a q-Large Deviation Theory which is
consistent with the Legendre structure of thermodynamics.

In particular, we showed the possible identification of the rate function rq(z) with a non-additive relative entropy
whose index is qr. A definite numerical identification of rq(z) with the qr-entropy for the whole range of z was
not possible since our present computational capacity does not allow to increase z all the way up to z = 1/2.
The Q-dependence qr(Q), Eq. (15), as suggested in [22] was reconfirmed for all values of c. We also illustrated
numerically the dependence of the prefactor P0 with z, and its apparent independence from (c,Qc).

In the spirit of the promising results presented here, analytical approaches (or very accurate numerical ap-
proaches) would of course be very welcome, either for specific models or in the ambitious form of a q-generalized
Large Deviation Theory based, say, on a Q-generalized Central Limit Theorem for an important class of strongly
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correlated random variables that appears frequently in physics, geophysics, astrophysics, economics, and other
fields. We hope that the present numerical evidence will stimulate research on this topic and advance towards a
q-generalized Large Deviation Theory.
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