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1. Introduction

Nowadays noncommutative Geometry (NCG) [9, 23–26, 31] is a broad research field aiming,

among other things, at formulating candidate frameworks for the quantization of gravity (see e.g.

[3, 11]) or the unification of fundamental interactions (see e.g. [5, 8, 10]). It is natural to ask

whether and to what extent the notion of a submanifold, which is ubiquitous in mathematics and

physics (think e.g. of: equipotential hypersurfaces; wavefronts for wave equations; submanifolds

where to impose initial or boundary conditions for fields defined on the encompassing manifold;

ADS/CFT correspondence and the holographic principle; lightcones, event horizons and other null

hypersurfaces in general relativity, etc.) can be generalized from classical differential geometry to

NCG. So far these questions have been answered by making sense of many special examples of

noncommutative (NC) submanifolds1, but have not received sufficient general treatment, except in

few articles (see e.g. [18, 19, 21, 27, 30]). This proceeding summarizes the contributions to the

topic of Ref. [18, 19], which address the above questions systematically within the framework of

deformation quantization [6], in the particular approach based on Drinfel’d twisting [12] of Hopf

algebras, for embedded submanifolds " of R= consisting of points of G fulfilling a set of equations

5 0 (G) = 0, 0 = 1, 2, ..., : < =. (1)

Here 5 ≡ ( 5 1, ..., 5 : ) : R= → R: are smooth functions such that the Jacobian matrix � = m 5 /mG
is of rank : on all R=; or, more generally, where 5 is well-defined and � is of rank : on an

open subset D 5 ⊂ R=, and " consists of the points of D 5 fulfilling (1). In fact, in [18, 19] one

1For instance, the noncommutative algebra A “of functions on the quantum group (*@ (=)" is obtained from the one

on the quantum group *@ (=) by imposing that the so-called @-determinant be 1, as in the @ = 1 commutative limit, and

one can construct various differential calculi on A [31].
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obtains NC deformations of the geometry on a whole :-parameter family of embedded submanifolds

"2 := 5 −1 (2) ⊂ D 5 [with 2 ≡ (21, ..., 2: ) ∈ 5
(D 5

)
, "0 = "] of dimension =−:; each "2 is

the level set of 5 consisting of points G such that 5 02 (G) := 5 0 (G) − 20 = 0 for all 0 = 1, . . . , :.

Embedded submanifolds # ⊂ " can be obtained by adding more equations to (1).

In deformation quantization [6] the commutative algebra A = C∞ (R=) of smooth functions

on a smooth manifold R= is replaced by a star product algebra A★ = (C∞(R=) [[a]], ★), modelled

on the formal power series C∞ (R=) [[a]] in a deformation parameter a. ★ deforms the pointwise

product < ( 5 ⊗ 6) = 5 6 of functions 5 , 6 ∈ A, 5 ★ 6 = 5 6 + O(a), while staying associative and

unital. In the case of Drinfel’d twist deformation quantization [3, 12] any normalized 2-cocycle

F = 1 ⊗ 1 + O(a) ∈ (*Ξ ⊗ *Ξ) [[a]] (2)

(a twist) on the enveloping algebra *Ξ of the Lie algebra Ξ of vector fields (identified with first

order differential operators) on R= induces a twist star product★ := < ◦F −1 (⊲⊗⊲) on R=, where ⊲

is the extension of the Lie derivative. This process is functorial [7], i.e. F deforms A = C∞ (R=)-
modules into A★-modules, and A-linear operations into A★-linear operations. In particular, the

A-bimodules of vector fields Ξ and differential forms Ω on R= are deformed into A★-bimodules.

★-Lie derivatives are twisted derivations and one obtains a twisted Cartan calculus [3]. The guiding

idea of the notion of NC submanifolds in this setting is best explained by the commutativity of the

diagram

A = C∞ (R=) B = C∞ (")

A★ = (C∞ (R=) [[a]], ★) B★ = (C∞(") [[a]], ★′)

Submanifold Projection

Quantization Quantization

Submanifold Projection

(3)

In words, we induce a quantization of a submanifold " via a quantization of the manifold R=,

given the commutativity of (3). As said, in [18, 19] we are interested in the situation when "

is a submanifold given in terms of generators (G1, . . . , G=) and relations (1). We show that, in

case the deformation A★ is obtained by a twist F based on the Lie algebra ΞC of vector fields

tangent to all the "2, the twist star product on " makes the diagram (3) commute. If F is even

based on vector fields in ΞC that are Killing2 for a given (pseudo)Riemannian metric on R=, the

twist deformation extends to the level of (pseudo)Riemannian geometry so that quantization and

submanifold projection commute. Furthermore, in the case of quadrics " embedded in R=, we give

explicit descriptions of both star product algebras A★, B★, as well as of the corresponding twisted

vector fields and differential forms, via twisted generators and relations. Examples of codimension

2 twisted submanifold will appear in [20]. Note that the presented procedure is a global approach,

i.e. we consider the algebra of global functions or bimodules of global sections of a bundle and

deform them as such. One way to take locality into account is given by the sheaf-theoretic approach

to NC calculi on subalgebras proposed in [4].

The proceeding is organized as follows. In Chapter 2 we recall the notions of Hopf ∗-algebras

and their representations (Section 2.1), of their twist deformations (Section 2.2), of twisted Cartan

calculus (Section 2.3) and Riemannian geometry (Section 2.4). The first part of Chapter 3 concerns

2This restriction might be relaxed by adopting the more general framework recently introduced in [1].
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the twist deformation of submanifolds of R=, as discussed above; in Section 3.2 we present an

explicit treatment of twisted quadrics of R3, focusing on the family of hyperboloids and cone,

especially the circular ones in R3 endowed with Minkowski metric.

2. Twisted Riemannian geometry

2.1 Hopf ∗-algebras and their representations

In the followingK denotes the field or real numbers or the field of complex numbers. Fix a Hopf

∗-algebra (�,Δ, n , (, ∗) with coproduct Δ : � → � ⊗ �, counit n : � → K, antipode ( : � → �

and ∗-involution ∗ : � → �. The latter is an antilinear, involutive, anti-algebra map satisfying

(∗ ⊗ ∗) ◦ Δ = Δ ◦ ∗, n ◦ ∗ = ◦ n, ( ◦ ∗ ◦ ( ◦ ∗ = id� , (4)

where : � → � denotes the complex conjugation. The main class of examples we are interested

in is that of the universal enveloping algebra*g of a ∗-Lie algebra g. Here (g, [·, ·]) is a Lie algebra

together with an antilinear, involutive map ∗ : g → g such that [G, H]∗ = [H∗, G∗] for all G, H ∈ g.

After extension as an anti-algebra homomorphism ∗ constitutes a ∗-involution on *g, compatible

with the usual coproduct, counit and antipode on *g, which are determined on primitive elements

G ∈ g via

Δ(G) = G ⊗ 1 + 1 ⊗ G, n (G) = 0, ((G) = −G. (5)

The representation theory of a Hopf ∗-algebra concerns �-∗-modules, namely left �-modules

(M,⊲) together with a ∗-involution on M, denoted by the same symbol for simplicity, such that

(ℎ ⊲ B)∗ = ((ℎ)∗ ⊲ B∗ (6)

for all ℎ ∈ � and B ∈ M. Morphisms of left �-∗-modules are left �-module morphisms that

intertwine the ∗-involutions. A left �-module ∗-algebra is a ∗-algebra A endowed with a left

�-∗-module structure ⊲ : � ⊗ A → A such that for all 0, 1 ∈ A and ℎ ∈ �

ℎ ⊲ (01) = (ℎ(1) ⊲ 0) (ℎ(2) ⊲ 1), ℎ ⊲ 1A = n (ℎ)1A , (7)

where we utilize Sweedler’s summationΔ(ℎ) =: ℎ(1) ⊗ℎ(2) . For a left �-module ∗-algebra (A, ∗,⊲)
we call an A-bimodule M an �-equivariant A-∗-bimodule if M is a left �-∗-module such that

ℎ ⊲ (0 · B · 1) = (ℎ(1) ⊲ 0) · (ℎ(2) ⊲ B) · (ℎ(3) ⊲ 1), (0 · B · 1)∗ = 1∗ · B∗ · 0∗ (8)

for all ℎ ∈ �, 0, 1 ∈ A and B ∈ M. By a slight abuse of notation we denoted the left �-module

action and ∗-involution on M the same way as for A, while we used · for the left and right module

action of A on M. The notions of left �-∗-module, left �-module ∗-algebra and �-equivariant

A-∗-bimodule extend to N0-graded vector spaces by demanding the corresponding actions and

∗-involutions to be graded maps.

If � is cocommutative, i.e. Δop = Δ, the category of left �-∗-modules admits a symmetric

monoidal structure, where we endow the tensor product M ⊗ N of two left �-∗-modules M,N
with the left �-action and ∗-involution

ℎ ⊲ (B ⊗ C) := (ℎ(1) ⊲ B) ⊗ (ℎ(2) ⊲ C), (B ⊗ C)∗ := B∗ ⊗ C∗ (9)
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defined for all ℎ ∈ �, B ∈ M and C ∈ N . The isomorphism g : M ⊗ N → N ⊗ M defined by

g(B ⊗ C) = C ⊗ B, is the corresponding symmetric braiding.

In case A is a commutative left �-module ∗-algebra for � cocommutative we structure the

category of symmetric �-equivariant A-∗-bimodules as a symmetric monoidal category using the

tensor product ⊗A . Let M,N be such symmetric �-equivariant A-∗-bimodules. Here, symmetric

means that 0 · B = B · 0 for all 0 ∈ A and B ∈ M. The left �-module action and ∗-involution on

M ⊗A N are induced from (9) and again the braiding is given by the tensor flip.

For any K-vector space+ the formal power series+ [[a]] in a formal parameter a are aK[[a]]-
module and we can extend anyK-linear map 5 : + → , to aK[[a]]-linear map+ [[a]] → , [[a]],
denoted by the same symbol 5 . As a consequence any Hopf ∗-algebra � over K can be extended to

a Hopf ∗-algebra � [[a]] over K[[a]], where we have to employ the completed tensor product in

the a-adic topology.

2.2 Drinfel’d twists and twisted representations

Fix a Hopf ∗-algebra �. A (Drinfel’d) twist on� is an element F = 1⊗1+O(a) ∈ (�⊗�) [[a]]
satisfying 2-cocycle and normalization condition

(F ⊗ 1) (Δ ⊗ id) (F ) =(1 ⊗ F )(id ⊗ Δ) (F ),
(n ⊗ id) (F ) =1 = (id ⊗ n) (F ).

(10)

We frequently use leg notation F = F1 ⊗ F2 and similarly F = F 1 ⊗ F 2 for the inverse F of

F . If several copies of F or its inverse appear we write F = F 1′ ⊗ F 2′ for the second copy, et

cetera, to distinguish the different summations. For any twist we define V := F1((F2) ∈ � [[a]]
and V−1 := ((F 1)F 2 ∈ � [[a]]. One can show that V−1 is in fact the inverse of V. A twist F is

said to be

• real if F ∗
1
⊗ F ∗

2
= ((F2) ⊗ ((F1) [3] and

• unitary if F ∗
1
⊗ F ∗

2
= F 1 ⊗ F 2 [17] .

Assume that the Hopf ∗-algebra � is cocommutative. Consider a commutative left �-module

∗-algebra A and a symmetric �-equivariant A-∗-bimodule M. In the following we deform the

given data using a real or unitary twist F on �. First we construct the twisted Hopf algebra �F as

the algebra � [[a]] with extended counit, but coproduct and antipode given by

ΔF (ℎ) := FΔ(ℎ)F and (F (ℎ) := V((ℎ)V−1 (11)

for all ℎ ∈ �. If F is real the Hopf algebra �F becomes a Hopf ∗-algebra with respect to the

∗-involution ℎ∗F = Vℎ∗V−1 for all ℎ ∈ �F. For a unitary twist �F is a Hopf ∗-algebra with respect

to the undeformed ∗-involution.

The twist deformation A★ of A is theK[[a]]-module A[[a]] endowed with the same unit and

deformed product 0 ★ 1 := (F 1 ⊲ 0) (F 2 ⊲ 1) for all 0, 1 ∈ A★. It is a left �F-module algebra, i.e.

ℎ ⊲ (0 ★ 1) = (ℎ (̂1) ⊲ 0) ★ (ℎ (̂2) ⊲ 1), (12)

5
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where we denoted the twisted product by ΔF (ℎ) =: ℎ (̂1) ⊗ ℎ (̂2) . In addition, A★ is twisted

commutative, i.e. 1 ★ 0 = (R1 ⊲ 0) ★ (R2 ⊲ 1), where R = R1 ⊗ R2 is the inverse of the braiding

R := R1 ⊗ R2 := F2F 1′ ⊗ F1F 2′ ∈ �F ⊗ �F . If A is N0-graded and graded-commutative, i.e.

01 = (−1) |0 | · |1 |10, where |0 |, |1 | denote the degrees of 0, 1 ∈ A, then A★ is twisted graded-

commutative, i.e. 1★0 = (−1) |0 | · |1 | (R1 ⊲ 0)★ (R2 ⊲ 1) for all 0, 1 ∈ A★. The braiding R satisfies

R2 ⊗ R1 = R and the hexagon equations

(ΔF ⊗ id) (R) = R1 ⊗ R1′ ⊗ R2R2′ and (id ⊗ ΔF) (R) = R1R1′ ⊗ R2′ ⊗ R2. (13)

For real twists R∗F
1

⊗ R∗F
2

= R, while for unitary twists R∗
1
⊗ R∗

2
= R. If F is real then A★ is a

left �F-module ∗-algebra with respect to the undeformed ∗-involution (while we have to twist the

∗-involution of �F). On the other hand, if F is unitary (i.e. the ∗-involution of �F is undeformed)

A★ becomes a left �F-module ∗-algebra via 0∗★ := ((V) ⊲ 0∗ for all 0 ∈ A★.

Similarly, the twist deformation M★ of M is described as theK[[a]]-module M[[a]] together

with the A★-module actions

0 ★ B := (F 1 ⊲ 0) · (F 2 ⊲ B) and B ★ 0 := (F 1 ⊲ B) (F 2 ⊲ 0) (14)

for all 0 ∈ A★ and B ∈ M[[a]]. Together with the K[[a]]-linearly extended left �F-action M★ is

an �★-equivariant A★-bimodule. Furthermore, it is twisted symmetric, i.e.

B ★ 0 = (R1 ⊲ 0) ★ (R2 ⊲ B) (15)

for all B ∈ M★ and 0 ∈ A★. If F is real then M★ is an �F-equivariant A★-∗-bimodule with

respect to the undeformed ∗-involution, while if F is unitary M★ becomes an �F-equivariant

A★-∗-bimodule via B∗★ := ((V) ⊲ B∗ for all B ∈ M★.

For two left �-modules M,N the twisted tensor product M★⊗★N★ is given by (M⊗N)[[a]],
where B ⊗★ C := (F 1 ⊲ B) ⊗ (F 2 ⊲ C) for all B ∈ M and C ∈ N . It follows that M★ ⊗★ N★ is a left

�F-module and one can show that the left �F-module isomorphism

fM,N : M★ ⊗★ N★ ∋ (B ⊗★ C) ↦→ (R1 ⊲ C) ⊗★ (R2 ⊲ B) ∈ N★ ⊗★ M★ (16)

determines a symmetric braiding on the monoidal category of twisted left �-modules. If F is real

(respectively unitary) we structure M★ ⊗★ N★ as a left �F-∗-module via

(B ⊗★ C)∗ = (R1 ⊲ B∗) ⊗★ (R2 ⊲ C
∗), respectively (B ⊗★ C)∗★ = (R1 ⊲ B∗★) ⊗★ (R2 ⊲ C

∗★). (17)

Similar results hold for symmetric �-equivariant A-bimodules M,N , using M★ ⊗A★
N★.

One can complete [3, 22] the �F-module algebra (� [[a]], ★) itself into a triangular Hopf algebra

�★= (� [[a]], ★,Δ★, n , (★,R★) isomorphic to �F = (� [[a]], ·,ΔF, n , (F ,R) (cf. also [14, 15, 17]).

Examples of unitary twists on *g for a ∗-Lie algebra g are

• abelian twists F = exp(ia%), where % =
1
2

∑
8 (48 ⊗ 58− 58 ⊗ 48) [29] is a finite sum of pairwise

commuting (anti-)Hermitian elements 48 , 58 ∈ g and

• Jordanian twists F = exp
(

1
2
� ⊗ log(1 + ia�)

)
[28], where �, � ∈ g are anti-Hermitian

elements such that [�, �] = 2� .

The abelian twist is real, in addition.
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2.3 Twisted Cartan calculus

Let us substantiate the previous twist deformation procedure via the concrete example of the

tensor algebra of a smooth manifold " . For the rest of the article we operate in this framework.

The algebra X := C∞ (") of smooth K-valued functions on " is a commutative ∗-algebra with

respect to the pointwise product and the ∗-involution 5 ∗ (?) := 5 (?), where 5 ∈ X and ? ∈ " ,

given by complex conjugation. Vector fields Ξ := Γ∞ ()") on " form a Lie ∗-algebra with respect

to the ∗-involution L-∗ 5 := −(L- 5 ∗)∗ for all 5 ∈ X, where L- denotes the Lie derivative of

- ∈ Ξ. This amplifies to the Hopf ∗-algebra � := *Ξ, the latter acting on X via the Lie derivative,

structuring X as a commutative left �-module ∗-algebra. More in general, the tensor algebra

T :=
⊕

?,A ∈N0
T ?,A , where

T ?,A := Ω ⊗X . . . ⊗X Ω︸             ︷︷             ︸
?-times

⊗X Ξ ⊗X . . . ⊗X Ξ︸            ︷︷            ︸
A -times

(18)

andΩ := Γ∞ () ∗"), is a symmetric �-equivariant X-∗-bimodule. TheΞ-action on T ?,A is obtained

by the Lie derivative

- ⊲ (l1⊗X . . . ⊗X l? ⊗X .1 ⊗X . . . ⊗X .A )
=L-(1)l1 ⊗X . . . ⊗X L-(?)l? ⊗X L-(?+1).1 ⊗X . . . ⊗X L-(?+A ).A ,

(19)

where l1, . . . , l? ∈ Ω, -,.1, . . . ,.A ∈ Ξ and L-l8 = (i- ◦ d + d ◦ i- )l8, L-.8 = [-,.8]. We

extend (19) as an *Ξ-action by L-. = L-L. and L1K = id for all -,. ∈ Ξ.

A unitary or real twist F on � induces a twisted commutative left �F-module ∗-algebra X★

and a twisted symmetric �F-equivariant X★-∗-bimodule T★ according to the previous section. In

more detail, T★ =
⊕

?,A ∈N0
T ?,A
★ is defined by

T ?,A
★ := Ω★ ⊗X★

. . . ⊗X★
Ω★︸                   ︷︷                   ︸

?-times

⊗X★
Ξ★ ⊗X★

. . . ⊗X★
Ξ★︸                  ︷︷                  ︸

A -times

(20)

and the �F-action is given by (19), where we replace Δ by ΔF. Above, Ω★ denotes the X★-

bimodule of twisted 1-forms, i.e. Ω★ = Ω[[a]] as K[[a]]-modules and we endow the former

with the X★-actions 5 ★ l = (F 1 ⊲ 5 ) · (F 2 ⊲ l) and l ★ 5 = (F 1 ⊲ l) · (F 2 ⊲ 5 ) for all

5 ∈ X★ and l ∈ Ω★. Similarly Ξ is structured as an X★-bimodule and all the bimodules are twisted

symmetric. We understand the tensor product ⊗X★
with respect to this X★-bimodule structure, i.e.

()1★ 5 )⊗X★
)2 = )1⊗X★

( 5 ★)2) for all 5 ∈ X★ and)1, )2 ∈ T★. The dual pairing 〈·, ·〉 : Ξ⊗XΩ → X
deforms into an X★-bilinear operation

〈·, ·〉★ := 〈·, ·〉 ◦ F⊲ : Ξ★ ⊗X★
Ω★ → X★. (21)

We choose ★-dual frames {48} ⊂ Ξ★ and {\8} ⊂ Ω★, i.e. 〈48, \ 9〉★ = X
9

8
c.f. [3]. Employing the

twisted Lie derivative LF
b
) := LF1⊲b

(F 2 ⊲ ) ) for all b ∈ �F and ) ∈ T★ we obtain a deformed

action of �F on T★. In particular, Ξ★ becomes a twisted Lie algebra via

[-,. ]★ := LF
-
. = [F 1 ⊲ -, F 2 ⊲ . ] = - ★. − (R1 ⊲ . ) ★ (R2 ⊲ -), (22)

i.e. [., -]★ = −[R1 ⊲ -,R2 ⊲ . ]★ and [-, [., /]★]★ = [[-,. ]★, /]★ + [R1 ⊲ ., [R2 ⊲ -, /]★]★
for all -,. , / ∈ Ξ★. The entirety of those structures is referred to as the twisted Cartan calculus,

see [3, 30] for more information.

7
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2.4 Twisted Riemannian geometry

The process of twist deformation turns out to be functorial, i.e. module morphisms extend to

morphisms of the twisted modules. As an instance of this fact let us consider twisted covariant

derivatives [2] onX★. Those are left X★-linear maps ∇F : Ξ★⊗K[ [a] ]T★ → T★ which are compatible

with the ⊗X★
tensor product structure in the sense that

∇F
-
()1 ⊗X★

)2) = [R1⊲∇F
R2′⊲-

(R2′′ ⊲)1)] ⊗X★
[(R2R1′R1′′) ⊲)2] + (R1⊲)1) ⊗X★

∇F
R2⊲-

)2 (23)

for all - ∈ Ξ★ and )1, )2 ∈ T★. We further require that ∇F
-
5 = LF

-
5 and

∇F
-
〈., l〉★ = 〈R1 ⊲ ∇F

R2′⊲-
(R2′′ ⊲ . ), (R2R1′R1′′) ⊲ l〉★ + 〈R1 ⊲ .,∇F

R2⊲-
l〉★ (24)

for all -,. ∈ Ξ★, l ∈ Ω★ and 5 ∈ X★, meaning that ∇F should respect the underlying twisted

Cartan calculus. We define torsion and curvature of a twisted covariant derivative as the left

X★-linear maps TF
★ : Ξ★ ⊗X★

Ξ★ → Ξ★ and RF
★ : Ξ★ ⊗X★

Ξ★ ⊗X★
Ξ★ → Ξ★ such that

TF
★ (-,. ) :=∇F

-
. − ∇F

R1⊲.
(R2 ⊲ -) − [-,. ]★,

RF
★ (-,. , /) :=∇F

-
∇F
.
/ − ∇F

R1⊲.
∇F
R2⊲-

/ − ∇F
[-,. ]★/

(25)

for all -,. , / ∈ Ξ★. One proves that TF
★ (-,. ) = −TF

★ (R1 ⊲ .,R2 ⊲ -) and RF
★ (-,. , /) =

−RF
★ (R1 ⊲ .,R2 ⊲ -, /). In other words, torsion and curvature are completely determined by

elements TF ∈ Ω2
★ ⊗X★

Ξ★ and RF ∈ Ω★ ⊗X★
Ω2
★ ⊗X★

Ξ★ with

T F
★ (-,. ) = 〈- ⊗X★

.,TF〉★, RF
★ (-,. , /) = 〈- ⊗X★

. ⊗X★
/,RF〉★ (26)

for all -,. , / ∈ Ξ★. A metric is a left X★-linear non-degenerate map g★ : Ξ★ ⊗X★
Ξ★ → X★ such

that g★(., -) = g★(R1⊲ -,R2⊲. ) for all -,. ∈ Ξ★. Each metric g★ induces a braided-symmetric

tensor g = g0 ⊗X g0 = g� ⊗X★
g� ∈ Ω★ ⊗X★

Ω★ by

g★(-,. ) = 〈- ★ 〈., g�〉★, g�〉★. (27)

A twisted covariant derivative ∇F is said to be Levi-Civita with respect to a metric g★ if ∇Fg = 0

and TF
★ = 0. As in the classical setting we define the Ricci tensor as the contraction RicF★ (-,. ) :=

〈\8,RF
★ (48, -,. )〉 ′★, where 〈l, -〉 ′★ := 〈R1 ⊲ -,R2 ⊲ l〉★ for all -,. ∈ Ξ★ and l ∈ Ω★. Note that

RicF★ is independent of the choice of dual ★-frames {48}, {\8}.
We recall from [19] how to twist deform a classical covariant derivative ∇ : Ξ ⊗K Ξ → Ξ into

a twisted covariant derivative. First consider the following Lie subalgebra

e := {/ ∈ Ξ | L/∇-. = ∇[/,- ]. + ∇- [/,. ] for all -,. ∈ Ξ} (28)

of Ξ, called the equivariance Lie algebra of ∇. It follows that b ⊲ ∇-. = ∇b(1)⊲- (b (2) ⊲ . ) for all

b ∈ *e and -,. ∈ Ξ. Consider a twist F on *e. Then, according to [19] Proposition 2, the twist

deformation

∇F
-
. := ∇F1⊲-

(F 2 ⊲ . ), -,. ∈ Ξ★ (29)

8



Twisted geometry for submanifolds of R= Gaetano Fiore

extends to a twisted covariant derivative ∇F : Ξ★ ⊗K[ [a] ] T★ → T★ on X★. Moreover, ∇F is *eF-

equivariant, i.e. b ⊲ ∇F
-
) = ∇F

b(̂1)⊲-
(b (̂2) ⊲ ) ) and the compatibility conditions (23) and (24)

simplify to the expressions

∇F
-
()1 ⊗X★

)2) =∇F
-
)1 ⊗X★

)2 + (R1 ⊲ )1) ⊗X★
∇F
R2⊲-

)2,

∇F
-
〈., l〉★ =〈∇F

-
., l〉★ + 〈R1 ⊲ .,∇F

R2⊲-
l〉★

(30)

for all b ∈ *e, -,. ∈ Ξ★, ),)1, )2 ∈ T★ andl ∈ Ω★. For a classical (pseudo-)Riemannian manifold

(", g) with Levi-Civita covariant derivative ∇ : Ξ ⊗K Ξ → Ξ a further specification is obtained via

the Lie algebra of Killing vector fields k ⊆ e ⊆ Ξ, defined by

k := {/ ∈ Ξ | L/g(-,. ) = g([/, -], . ) + g(-, [/,. ]) for all -,. ∈ Ξ}. (31)

In Proposition 3 of [19] it is proven that for a twist F on *k the X★-bilinear metric (27) reduces

to g★(-,. ) = g(F 1 ⊲ -,F 2 ⊲ . ), and the twist deformation (29) of the Levi-Civita connection ∇
of (", g) is the unique twisted Levi-Civita covariant derivative for the g★. The curvature RF of

∇F is undeformed. Summarizing, in order to provide twist deformations of (Levi-Civita) covariant

derivatives we have to determine Drinfel’d twists based on the Lie algebra of (Killing) equivariant

vector fields.

3. Twist deformation of smooth submanifolds of R=

In this section we examine twisted differential geometry on a codimension : submanifold "

of the type (1). Actually, the same constructions with the same twist hold for each submanifold

"2 := 5 −1
2 ({0}) in the :-parameter family introduced there. We write X := C∞ (D 5 ) and

X"2 := X/C2
= {[6] := 6 + C2 | 6 ∈ X}, (32)

whereC2 ⊆ X denotes the ideal of smooth functions vanishing on "2 . It is proven in [19] Theorem 1

that C2 =
⊕:

0=1 X · 5 02 =
⊕:

0=1 5 02 · X, i.e. C2 is spanned by the components of 52 . A similar

result (Theorem 1 in [18]) holds in the setting of algebraic submanifolds of R=, i.e. if the 5 0 (G)
are polynomial functions and we define X as the algebra of polynomial functions on R=. The Lie

algebra of vector fields on D 5 is denoted by Ξ := {- 8m8 | - 8 ∈ X}, where we abbreviate m8 =
m
mG8

.

There are two Lie subalgebras and X-sub-bimodules ΞCC2 ⊆ ΞC2 ⊆ Ξ, defined by

ΞC2 := {- ∈ Ξ | - (C2) ⊆ C2} and ΞCC2 := {- ∈ Ξ | - (X) ⊆ C2}, (33)

respectively. Furthermore ΞCC2 =
⊕:

0=1 5 02 · Ξ is a Lie ideal in ΞC2 and thus the quotient Lie

algebra

Ξ
"2 := ΞC2/ΞCC2 := {[-] := - + ΞCC2 | - ∈ ΞC2 } (34)

is an X"2 -bimodule, identified with the vector fields on "2. In case 2 = 0 we suppress the index

and simply write X" , Ξ" , et cetera. We further define

ΞC := {- ∈ Ξ | - ( 5 0) = 0 for all 0 = 1, . . . , :} (35)

9
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the Lie subalgebra and X-sub-bimodule of vector fields that are tangent not only to " , but to all

submanifolds "2 (in fact - ( 5 02 ) = 0 for all - ∈ ΞC and 2 ∈ 5 (D 5 )). By Proposition 6 in [19],

each element [-] ∈ Ξ"2 contains a representative -C ∈ ΞC , the tangential projection of - . The

requirement that the algebras in both vertical columns of (3) are isomorphic as K[[a]]-modules

- i.e. the basic requirement of deformation quantization applied to both the algebra of functions

on R= and that on " - and the commutativity of the diagram (3) can be satisfied if the Drinfel’d

twist F is based on *ΞC , i.e if ΞC replaces Ξ in (2); as a bonus, the same holds for all other

"2. In fact, then U ★ 5 0 = U 5 0 = 5 0 ★ U for all U ∈ X and 0 = 1, .., :, implying that also

C★, C[[a]] are isomorphic as K[[a]]-modules3 . (On the contrary, using a twist based on *Ξ"

would only lead to U ★ 5 0 −U 5 0 ∈ C, 5 0 ★ U− 5 0U ∈ C, which is not sufficient to obtain

the same results.) Adopting a twist F based on *ΞC , we obtain deformations of all previously

defined spaces. Namely, ΞCC2★ ⊆ ΞC2★ ⊆ Ξ★ and ΞC ,★ are ★-Lie algebras and *Ξ
F
C -equivariant

X★-bimodules, while Ξ
"2

★ is a ★-Lie algebra and an *Ξ
F
C -equivariant X"2

★ -bimodule. There is an

isomorphism Ξ
"2

★ � ΞC2★/ΞCC2★ of K[[a]]-modules, i.e. deforming commutes with taking the

submanifold quotient (c.f. [19] Proposition 9). As described in the previous section, we obtain the

*Ξ
F
C -equivariant X★-bimodule Ω★ and the *Ξ

F
C -equivariant X"2

★ -bimodule Ω"2★, ★-dual to Ξ★

and Ξ"2★, respectively. Moreover, the★-orthogonal module corresponding to tangent vector fields

is the *Ξ
F
C -equivariant X★-sub-bimodule Ω⊥★ ⊆ Ω★ defined by

Ω⊥★ := {l ∈ Ω★ | 〈ΞC★, l〉★ = 0}, (36)

which is characterized by Ω⊥★ =
⊕:

0=1 X★★ d 5 0 =
⊕:

0=1 d 5 0 ★X★.

Given a (pseudo-)Riemannian metric g = gU ⊗ gU ∈ Ω ⊗X Ω on D 5 (by definition g is

non-degenerate and flip-symmetric) we can further consider the g-orthogonal spaces

Ξ⊥ := {- ∈ Ξ | g(-,ΞC ) = 0} and ΩC := {l ∈ Ω | g−1 (l,Ω⊥) = 0}, (37)

where g−1 = g−1U ⊗ g−1
U ∈ Ξ ⊗X Ξ is the inverse metric and Ω⊥ denotes the classical limit of

(36). There is a maximal open subset D ′
5

⊆ D 5 such that g−1
⊥ := g−1 : Ω⊥ ⊗X Ω⊥ → X is

non-degenerate. Note that D ′
5
= D 5 if g is Riemannian. If in the following D ′

5
≠ D 5 we restrict

all involved submanifolds to "2 ⊆ D ′
5
, so we can assume D ′

5
= D 5 . For a twist F on *ΞC the

deformations of (37) read

Ξ⊥★ := {- ∈ Ξ★ | g★(-,ΞC★) = 0} and ΩC ,★ := {l ∈ Ω★ | g−1
★ (l,Ω⊥★) = 0}. (38)

According to [19] Proposition 10 we obtain a convenient direct sum decomposition in case F is a

twist based on Killing vector fields *k: as X★-bimodules

Ξ★ � ΞC★ ⊕ Ξ⊥★ and Ω★ � ΩC★ ⊕ Ω⊥★ (39)

with 〈Ξ⊥★,ΩC★〉★ = {0}, ΞC★,Ω⊥★,Ξ⊥★,ΩC★ coincide with ΞC [[a]],Ω⊥[[a]], Ξ⊥ [[a]],ΩC [[a]] as

K[[a]]-modules. Similarly for ★-tensor (and ★-wedge) powers. The projections prC★ : Ξ★ → ΞC★,

3In fact, then all W ≡ ∑:
0=1

5 0W0 ∈ C (W0 ∈ X) can be written also in the form W =
∑:

0=1
5 0 ★ W0, so that for all

U ∈ X, by the associativity of ★, W ★ U = (∑:
0=1

5 0 ★ W0) ★U =
∑:

0=1
5 0 ★ (W0 ★U) = ∑:

0=1
5 0 (W0 ★U) ∈ C[[a]], as

claimed; and similarly for U ★ W.

10
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pr⊥★ : Ξ★ → Ξ⊥★, prC★ : Ω★ → ΩC★, pr⊥★ : Ω★ → Ω⊥★, are *kF-equivariant maps that K[[a]]-
linearly extend their classical limits prC , pr⊥; they are uniquely extended to ★-tensor (and ★-wedge)

powers. Furthermore, ΩC★ = {l ∈ Ω★ | 〈Ξ⊥★, l〉★ = 0}, and the restrictions gC★, g⊥★, g−1
C★ , g

−1
⊥★

of the metric and its inverse to tangent and normal vector fields, respectively 1-form, are non-

degenerate. As a consequence, the first fundamental form

gF
C := (prC★ ⊗X★

prC★) (g) = (prC ⊗X prC ) (g) = gC (40)

is undeformed.

We continue to describe the dual picture, namely twisted differential 1-forms on the submani-

folds "2. There we think of tangent vector fields as vector fields on "2, so with regard to the direct

sum decomposition (39) the following is natural. Setting ΩC2★ := {l ∈ Ω★ | 〈Ξ⊥★, l〉 ⊆ C2 [[a]]}
and ΩCC2★ :=

⊕:

0=1 Ω★★ 5 02 =
⊕:

0=1 5 02 ★Ω★ we obtain

Ω"2★ = ΩC2★/ΩCC2★ = {[l] = l + ΩCC2★ | l ∈ ΩC2★}. (41)

It turns out, c.f. [19] Proposition 11, that for every - ∈ ΞC2★ and l ∈ ΩC2★ we have

prC★(-) ∈ [-] ∈ Ξ"2★ and prC★(l) ∈ [l] ∈ Ω"2★. (42)

In other words, for every [-] ∈ Ξ"2★ and [l] ∈ Ω"2★ we can find representatives prC★(-) and

prC★(l) in ΞC★ and ΩC★, respectively.

Consider the Levi-Civita connection ∇ on (D 5 , g). In the following we describe the twisted

Riemannian geometry on the :-parameter family "2 of codimension : smooth submanifolds. We

already mentioned that for a twist F on *k the twist deformation ∇F is the twisted Levi-Civita

connection with respect to g★. This induces a twisted second fundamental form

Π
F
★ := pr⊥★ ◦ ∇F |ΞC★⊗X★ΞC★

: ΞC★ ⊗X★
ΞC★ → Ξ⊥★ (43)

and twisted Levi-Civita connection

∇F
C := prC★ ◦ ∇F |ΞC★⊗K [ [a] ]ΞC★

: ΞC★ ⊗K[ [a] ] ΞC★ → ΞC★ (44)

on "2. It is proven in [19] Proposition 12 that the tensors corresponding to the second fundamental

form, curvature, Ricci tensor and Ricci scalar of ∇F
C remain undeformed, i.e.

Π
F
=Π ∈ (ΩC ⊗X ΩC ⊗X Ξ⊥) [[a]],

RicFC =RicC ∈ (Ω ⊗X Ω) [[a]],
RF
C =RC ∈ (ΩC ⊗X Ω

2
C ⊗X ΞC ) [[a]],

RF
=R ∈ X.

(45)

However, the corresponding linear maps combine via the twisted Gauss equation

g★(RF
★ (-,. , /),,) =g★(RF

C★(-,. , /),,) + g★(ΠF
★ (-,R1 ⊲ /),ΠF

★ (R2 ⊲ .,,))
− g★(ΠF

★ (R1 (̂1) ⊲ .,R1 (̂2) ⊲ /),ΠF
★ (R2 ⊲ -,,))

(46)

for all -,. , /,, ∈ ΞC★, c.f. [19] Proposition 13.
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3.1 Twisted differential calculus on algebraic submanifolds by generators and relations

In this section we describe the twisted differential calculus on algebraic submanifolds "2 in

terms of generators and relations. We choose the convenient description via the differential calculus

algebra, which allows us to describe functions, differential forms, vector fields and their interaction

simultaneously. The construction is divided into two parts, where we first describe the calculus

algebra on R= and afterwards quotient by an ideal to achieve the description of the submanifolds.

Denote the Cartesian coordinate functions of R= by G8 and further abbreviate b8 = dG8 , m8 =
m
mG8

.

The unit function is denoted by G0 = 1 and [8 ∈ {G8 , b8, m8} can denote the 8-th coordinate function,

1-form or coordinate vector field. Those are the generators of our constructions and consequently

we focus on the subalgebra X := Pol• (R=) ⊆ C∞ (R=) of polynomial functions and vector fields

Ξ := {ℎ8m8 | ℎ8 ∈ Pol•(R=)} with polynomial coefficients in this section. Here and in the following

Latin indices 8, 9 , :, . . . run over 1, . . . , =, while Greek indices `, a, d, . . . run over 0, 1, . . . , =. The

differential calculus algebra of R= is the associative unital ∗-algebra Q• generated by the Hermitian

elements {G0, G8, b8, im8} modulo the relations

G0[8 − [8 = [8G0 − [8 = 0

G8G 9 − G 9G8 = 0

b8G 9 − G 9b8 = 0

m8m 9 − m 9m8 = 0

m8b
9 − b 9m8 = 0

b8b 9 + b 9b8 = 0

m8G
9 − G 9m8 − X

9

8
G0

= 0.

(47)

For any Lie subalgebra g ⊆ aff (=) (the affine Lie algebra on R=) we obtain a left*g-module algebra

action on Q•, determined by primitive elements 6 ∈ g on generators by

6 ⊲ G0
= n (6)G0, 6 ⊲ G8 = G`g`8 (6), 6 ⊲ b8 = b 9g 98 (6), 6 ⊲ m8 = g8 9 (((6))m 9 . (48)

The action is well-defined since aff (=) preserves the ideal (47). A basis of Q• is

B := {V ®?, ®@,®A := (b1) ?1 . . . (b=) ?= (G1)@1 . . . (G=)@=mA1

1
. . . mA== | ®? ∈ {1, 0}=, ®@, ®A ∈ N=

0 }. (49)

Introducing the total degrees ? :=
∑=

8=1 ?8, @ :=
∑=

8=1 @8 and A :=
∑=

8=1 A8 we can define gradings ♮, ♯

on Q• compatible with the ∗-algebra structure of the latter by setting ♮(V ®?, ®@,®A ) := ?, ♯(V ®?, ®@,®A ) :=

@ − A on the elements of B. There are three fundamental subalgebras X =
⊕∞

@=0 X@, Λ• =⊕=
?=0 Λ

?, D =
⊕∞

A=0 DA of Q•, where X@,Λ?,DA denote the homogeneous polynomials in,

respectively, G8, b8 and m8 and we set X0 = Λ0 = D0 = C · G0. Then X =
⊎∞

@=0 X̃@ and

D =
⊎∞

A=0 D̃A are filtered with respect to the inhomogeneous polynomials X̃@ :=
⊕@

ℎ=0
Xℎ and

D̃A :=
⊕A

ℎ=0 Dℎ, respectively. We further define the left *g-∗-modules Q ?@A := Λ?X̃@D̃A with

basis B ?@A := {V ®?, ®@,®A | ? =
∑=

8=1 ?8,
∑=

8=1 @8 ≤ @,
∑=

8=1 A8 ≤ A}. Then Q• is ?-graded and filtered

by @ and A with decomposition

Q•
=

∞⊕

?=0

∞⊎

@=0

∞⊎

A=0

Q ?@A . (50)

12
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For a real or unitary twist F on *g it turns out that the left *gF-module ∗-algebra Q•
★ is again

described in terms of generators and relations, namely

G0 ★ G8 − G8 = G8 ★ G0 − G8 = 0

G0 ★ b8 − b8 = b8 ★ G0 − b8 = 0

G0 ★ m ′
8 − m ′

8 = m ′
8 ★ G0 − m ′

8 = 0

G8 ★ G 9 − Ga ★ G`'`a
8 9
= 0

b8 ★ G 9 − Ga ★ bℎ'ℎa
8 9
= 0

m ′
8 ★ m ′

9 − '`a
ℎ:m ′

: ★ m ′
ℎ = 0

m ′
8 ★ b 9 − b 9 ★ m ′

8 = 0

b8 ★ b 9 + b: ★ bℎ'ℎ:
8 9
= 0

m ′
8 ★ G 9 − '`8

9:G` ★ m ′
: − X

9

8
G0

= 0,

(51)

where m ′
8

:= ((V) ⊲ m8 = g8 9 (V)m 9 is the ★-dual frame to b8 = dG8 , transforming via 6 ⊲ m ′
8
=

g8 9 ((F (6))m ′
9 . We further denoted '`a

8 9 := (g`8 ⊗ ga 9 ) (R). Eq. (51) are the analogue of the

relations defining the quantum group equivariant ‘quantum spaces’ introduced in [13] and the

associated differential calculi algebras (see e.g. formulae (1.10-15) in [16]). As in the untwisted

case, Q•
★ is ?-graded and filtered by @ and A with decomposition

Q•
★ =

∞⊕

?=0

∞⊎

@=0

∞⊎

A=0

Q ?@A
★ , (52)

where Q ?@A
★ := Λ

?
★X̃

@
★ D̃A

★ consists of (in)homogeneous ★-polynomials with basis B ?,@,A
★ . The

∗-involution on Q•
★ is undeformed if F is real and in case F is unitary it is defined on generators by

(G0)∗★ := G0, (G8)∗★ := G`g`8 (((V)), (b8)∗★ := b 9g 98 (((V)), (m ′
8 )∗★ := −g8 9 (V−1)m ′

9 , (53)

which follow from the general formula B∗★ = ((V) ⊲ B∗. Now we induce a twist quantization of

the submanifolds "2 corresponding to the common zero sets 5 02 (G) = 5 0 (G) − 20 = 0 for all

0 = 1, . . . , :. Choose a basis {41, . . . , 4�} of g and the corresponding structure constants �
W

UV
∈ X.

Instead of {m1, . . . , m=} we can consider {41, . . . , 4� , 4�+1, . . . , 4�+: } with 4�+0 :=
∑=

8=1
m 5 0

mG8
m8 as

a complete set of vector fields Ξ with relations

4�+0G
ℎ − Gℎ4�+0 − m 5 0

mGℎ
= 0, 0 = 1, . . . , :

4UG
ℎ − Gℎ4U − G`g`ℎ (4U) = 0, U = 1, . . . , �

CUℓ 4U = 0, ℓ = 1, . . . , � + : − =

4U4V − 4V4U − �
W

UV
4W = 0,

4Ub
8 − b84U = 0

(54)

for some CU
ℓ

∈ X. Consider the free algebra A′• generated by G0, . . . , G=, b1, . . . , b=, 41, . . . , 4�.

Similarly to the previous discussion one shows that A′• =
⊕∞

?=0

⊎∞
@=0

⊎∞
A=0 A

′?@A is a ?-graded,

@, A-filtered algebra. We denote the ideal in A′• generated by the usual relations on G8, b8, the

13
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relations (54) for U ≤ � and 5 02 (G) = 0 = d 5 0 by I"2
. The corresponding differential calculus

algebra is Q•
"2

:= A′•/I"2
. It is graded and filtered according to

Q•
"2

=

=−1⊕

?=0

∞⊎

@=0

∞⊎

A=0

Q ?@A

"2
(55)

where Q ?@A

"2
:= A′?@A/I ?@A

"2
and I ?@A

"2
:= I"2

∩ A′?@A . One shows that Q•
"2

is a left *g-module

∗-algebra. For a real or unitary twist F on *g the twisted differential calculus algebra Q•
"2★

on

"2 can be defined as the result of either path of the commuting diagram

(A′•,I"2
) Q•

"2

(A′•
★ ,I"2★) Q•

"2★

F

quotient

F
quotient

(56)

i.e. twist deformation and the quotient procedure commute. It is ?-graded and @, A-filtered via the

left *gF-∗-submodules Q ?@A

"2★
, i.e.

Q•
"2★

=

=−1⊕

?=0

∞⊎

@=0

∞⊎

A=0

Q ?@A

"2★
. (57)

The generators and relations determiningQ•
"2★

are precisely the twist deformations of the generators

and relations of Q•
"2

.

3.2 Twisted quadrics in R3

The determining function of quadric surfaces of R3 is 5 (G) =
1
2
08 9G

8G 9 + 008G
8 + 1

2
000 with

0`a = 0a` for `, a = 0, 1, 2, 3. Defining 58 :=
m 5

mG8
= 08 9G

9 + 008 and !8 9 := 58m 9 − 5 9m8 gives a

complete set (! := {!8 9 }8, 9=1,... ,= of tangent vector fields. Since

[!8 9 , !ℎ: ] = 0 9ℎ!8: − 08ℎ! 9: − 0 9:!8ℎ + 08:! 9ℎ , (58)

(! is a Lie algebra g, which is acting on X via

!8 9 ⊲ G
ℎ
= (08:G: + 008)Xℎ9 − (0 9:G

: + 00 9 )Xℎ8 , (59)

i.e. g ⊆ aff (=) is a Lie subalgebra of the affine Lie algebra. Following the procedure of Section 3.1,

starting from the differential calculus algebra Q• of R= with relations (51) we first obtain the

differential calculus algebra Q•
"

on the quadric surface " with relations (56). By an Euclidean

coordinate transformation we can make 08 9 = 08X8 9 , 008 = 0 if 08 ≠ 0 (quadrics in canonical form).

Given a twist F on *g we then get a quantization Q•
"★

of the quadric surface. The latter is

deformed as a ∗-algebra if F is unitary or real. In [18] this is exemplified via Abelian and Jordanian

twist deformations of all quadric surfaces of R3, except the ellipsoid. The results are summarized

in Figure 1.
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01 02 03 003 000 A quadric g ≃ Abelian Jordanian

(a) + 0 0 − 3 parabolic cylinder h(1) Yes No

(b) + + 0 − 4 elliptic paraboloid so(2) ⋉ R2 Yes No

(c) + + 0 0 − 3 elliptic cylinder
so(2)×R2

so(2) × R
Yes

Yes

No

No

(d) + − 0 − 4 hyperbolic paraboloid so(1,1)⋉R2 Yes Yes

(e) + − 0 0 − 3 hyperbolic cylinder
so(1,1)×R2

so(1,1)×R
Yes

Yes

Yes

No

(f) + + − 0 − 4 1-sheet hyperboloid so(2, 1) No Yes

(g) + + − 0 + 4 2-sheet hyperboloid so(2, 1) No Yes

(h) + + − 0 0 3 elliptic cone† so(2,1)×R Yes† Yes

(i) + + + 0 − 4 ellipsoid so(3) No No

Figure 1: Overview of the quadrics in R3: signs of the coefficients of the equations in canonical form (if not

specified, all 000 ∈ R are possible), rank, associated symmetry Lie algebra g, type of twist deformation; h(1)
stands for the Heisenberg algebra. For fixed 08 each class gives a family of submanifolds "2 parametrized by

2, except classes (f), (g), (h), which altogether give a single family; so there are 7 families of submanifolds.

We can always make 01 = 1 by a rescaling of 5 . The † reminds that the cone (e) is not a single closed

manifold, due to the singularity in the apex.

Twisted differential geometry on the hyperboloids and cone

Let us recall the family of hyperboloids in Minkowski R3 in detail. For positive numbers

0, 1 > 0 and 2 ∈ R we consider the solutions G ∈ R3 of the equation

52 (G) =
1

2
((G1)2 + 0(G2)2 − 1(G3)2) − 2 = 0 (60)

and denote their collection by "2. "2>0 is a family of 1-sheet hyperboloids and "2<0 a family of 2-

sheet hyperboloids. Together they from a foliation {"2}2∈R\{0} ofR3\"0, where "0 constitutes the

cone4. The submanifolds "2 have an g = so(2, 1) symmetry with base vectors !12 = G1m2 − 0G2m1,

!13 = G2m3 + 1G3m1 and !23 = 0G2m3 + 1G3m2. In fact, � := 2√
1
!13 and �± := 1√

0
!12 ± 1√

01
!23

satisfy

[�, �±] = ±2�±, [�+, �−] = −�. (61)

For computational reasons it is convenient to work in the coordinate system given by the eigenvectors

H± := G1 ±
√
1G3 and H0 := G2 of � corresponding to the eigenvalues _± = ±2 and _0 = 0. The

associated coordinate 1-forms and vector fields are [± = dH±, [0 = dH0 and m± =
m

mH± , m0 =
m

mH0 . In

this coordinate system we have

52 (H) =
1

2
H+H− + 0

2
(H0)2 − 2,

� = 2H+m+ − 2H−m− , �±
=

1√
0
H±m0 − 2

√
0H0m∓.

(62)

4By removing the origin we consider "0 as a smooth submanifold of R3 consisting of two disconnected components.
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For later use we also define m± = 20m∓ and m0 = m0. With this choice of basis the *g-action on

D8 ∈ {H8, m8, [8}, 8 = +,−, 0, is determined by

� ⊲ D8 = _D8 , �±
⊲ D8 = X80

1√
0
D± − X8∓

√
0D0. (63)

We consider the unitary twist F = exp(�/2 ⊗ log(1 + ia�+)) ∈ *g⊗2[[a]] and its deformed

Hopf algebra *gF. The latter coincides with the C[[a]]-linear extension of the algebra *g, with

C[[a]]-linear extended counit but twisted coproduct ΔF and antipode (F determined by

ΔF (�) = Δ(�) − ia� ⊗ �+

1 + ia�+ , ΔF (�+) = Δ(�+) + ia�+ ⊗ �+,

ΔF (�−) = Δ(�−) − ia

2
� ⊗

(
� + ia�+

1 + ia�+

)
1

1 + ia�+ − ia�− ⊗ �+

1 + ia�+ − a2

4
�2 ⊗ �+

(1 + ia�+)2
,

(F (�) = ((�) (1 + ia�+), (F (�+) = ((�+)
1 + ia�+ ,

(F (�−) = ((�−) (1 + ia�+) − ia

2
� (1 + ia�+)

(
� + ia�+

1 + ia�+

)
+ a2

4
� (1 + ia�+)��+.

The corresponding twist deformation Q•
★ of the differential calculus algebra of R3 is the free

algebra ★-generated by D8 ∈ {H8, m8 , b8}, 8 = +,−, 0, with ★-product of D8 ∈ {H8, m8, b8} and

F 9 ∈ {H 9 , m 9 , b 9}, 8, 9 = +,−, 0, given by

D8 ★F 9
= D8F 9 + ia(X8− − X8+)D8

(
1√
0
X
9

0
F+ − 2

√
0X 9

−F
0

)
+ X8+X

9
−2a2D+F+. (64)

One can formulate the differential calculus algebra only in terms of these generators and the relations

D+★D0
= D0★D+− ia√

0
D+★D+, D+★D− = D−★D++2ia

√
0 D0★D++2a2D+★D+,

D0★D− = D−★D0− ia√
0
D−★D+, D+★[+ = [+★D+, D+★[0

= [0★D+ − ia√
0
[+★D+,

D+★[− = [−★D+ + 2ia
√
0 [0★D++2a2[+★D+, D0★[+ = [+★D0 + ia√

0
[+★D+,

D0★[0
= [0★D0, D0★[− = [−★D0 − ia√

0
[−★D+, D−★[+ = [+★D− − 2ia

√
0 [+★D0,

D−★[0
= [0★D− + ia√

0
[+★D− + 2a2[+★D0,

D−★[− = [−★D− + 2ia
√
0
(
[−★D0 − [0★D−

)
+ 2a2 [−★D+
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for D8 = H8, m8, 8 = +,−, 0. The twisted Leibniz rule for the derivatives read

m+★H+ = H+★m+, m0★H+ = H+★m0 + ia√
0
H+★m+, m−★H+ = 20 + H+★m− − i2a

√
0H+★m0,

m+★H0
= H0★m+ − ia√

0
H+★m+, m−★H0

= H0★m− + i2a
√
0 + ia√

0
H+★m− + 2a2H+★m0,

m0★H0
= 1 + H0★m0, m+★H− = 20 + H−★m+ + i2a

√
0 H0★m+ + 2a2H+★m+,

m0★H− = H−★m0 − ia√
0
H−★m+, m−★H− = H−★m− + i2a

√
0
(
H−★m0 − H0★m−

)
+ 2a2 H−★m+,

while the twisted wedge products fulfill

[+★[+ = 0, [0★[0
= 0, [−★[− = 2ia

√
0 [0★[−,

[+★[0 + [0★[+ = 0, [+★[− + [−★[+ = 2ia
√
0 [+★[0, [0★[− + [−★[0

=
ia√
0
[−★[+.

In terms of star products

� = 2(m+ ★ H+ − 1 − H− ★ m−), �±
=

1√
0
m0 ★ H± − 2

√
0H0 ★ m∓.

The relations characterizing the *gF-equivariant ∗-algebra Q•
"2★

become

0 = 52 (H) ≡
1

2
H− ★ H+ + 0

2
H0 ★ H0 − 2,

0 =d 52 =
1

2
(H− ★ [+ + [− ★ H+) + 0H0 ★ [0,

0 =H− ★ �+ − H+ ★ �− −
√
0 H0 ★� + iaH+ ★ � − 2ia(1 + ia)H+ ★ �+.

The ∗-structures on *gF, Q•
★,Q•

"2★
remain undeformed except (D−)∗★ = (D−)∗ − 2ia

√
0(D0)∗.

Twisted Riemannian geometry on the circular hyperboloids

Let us consider the Minkowski metric g := dG1 ⊗ dG1 + dG2 ⊗ dG2 − dG3 ⊗ dG3 on R3 with

corresponding constants g(m8, m 9) = [8 9 . This metric is invariant under so(2, 1) and so it is equiv-

ariant under the induced *so(2, 1)-action. In this last section we specify the previous discussion

on hyperboloids to the family "2 = 5 −1
2 ({0}) of circular hyperboloids and cone, where

52 (G) =
1

2
((G1)2 + (G2)2 − (G3)2) − 2, (65)

or equivalently (62) with 0 = 1 in the transformed coordinates. The Lie ∗-algebra symmetry

g � so(2, 1) of "2 is spanned by !12, !13, !23, or equivalently �, �+, �−. Depending on the

sign of 2, the first fundamental form gC = g ◦ (prC ⊗ prC ) structures "2 as a Riemannian (for

2 < 0) or a Lorentzian (for 2 > 0) manifold. On the cone "0 there is a degeneracy of g.

Furthermore, for 2 ≠ 0 the second fundamental form is Π(-,. ) = − 1
22

g(-,. )+⊥ for -,. ∈ ΞC ,
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where +⊥ = (m 9 52)[ 98m8 = G8m8. Choosing a basis E1, E2 of ΞC and setting gUV = g(EU, EV) the

Gauss theorem determines the curvature, Ricci tensor and Ricci scalar on "2 by

RC
X
UVW =

gUWX
X
V
− gVWX

X
U

22
, RicC VW = RC

U
UVW = −

gVW

22
, RC = RicC VV = −1

2
. (66)

This implies that "2<0 is a de Sitter space 3(2 and "2>0 consists of two copies of anti-de Sitter

spaces �3(2. In the limit 2 → 0 the expressions (66) diverge. Now {�, �±} is a complete

set of vector fields on "2 with linear dependence relation H−�+ − H+�− − H0� = 0, where we

employed again the coordinate system H± := G1 ±
√
1G3 and H0 := G2 of eigenvectors of �. As

before we consider the twisted differential calculus algebra Q•
"2★

for the unitary Jordanian twist

F = exp(�/2 ⊗ log(1 + ia�+)). Following Section 2.4 the tensors (66) remain undeformed under

the twist, while

Π
F
★ (-,. ) = − 1

22
gC★(-,. )+⊥ = − 1

22
gC★(-,. ) ★+⊥

holds using the *k-invariance of +⊥. Similarly

RF
C★(-,. , /) =

(R1 ⊲ . ) ★ gC★(R2 ⊲ -, /) − - ★ gC★(., /)
22

, RicFC★(., /) = −gC★(., /)
22

for all -,. , / ∈ ΞC★ and we obtain explicit expressions of gC★ on the generating vector fields �, �±:

gC★(�, �) = −8H+H−, gC★(�, �±) = −2H±H0,

gC★(�+, �+) = (H+)2, gC★(�+, �−) = 22 + (H0)2 − 2iaH+H0 − 2a2(H+)2,

gC★(�+, �) = −2H+H0 + 2ia(H+)2, gC★(�−, �+) = 22 + (H0)2,

gC★(�−, �−) = (H−)2, gC★(�−, �) = −2H0H− − 2ia[22 + (H0)2] + 2iaH0H−.

Furthermore, the twisted Levi-Civita connection is determined by

∇F
�+�

+
= −2H+m−, ∇F

�+�
−
= −2H+m+ − 2H0m0 + 4iam− + 4a2H+m−,

∇F
�+� = 4H0m− − 4iaH+m−, ∇F

�−�
+
= −2H−m− − 2H0m0,

∇F
�−�

−
= −2H−m+ + 4iaH0m+, ∇F

�−� = −4H0m+ + 4ia(H0m0 + H−m−),

∇F
�
�+

= 2H+m0, ∇F
�
�−

= −2H−m0, ∇F
�
� = 4H+m+ + 4H−m−

on the generating vector fields �, �±.
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