
Molecular Identification from AFM images using the
IUPAC Nomenclature and Attribute Multimodal

Recurrent Neural Networks

Jaime Carracedo-Cosme,1,2 Carlos Romero-Muñiz,3
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Despite being the main tool to visualize molecules at the atomic scale, Atomic

Force Microscopy (AFM) with CO-functionalized metal tips is unable to chem-

ically identify the observed molecules. Here we present a strategy to address

this challenging task using deep learning techniques. Instead of identifying a

finite number of molecules following a traditional classification approach, we

define the molecular identification as an image captioning problem. We de-

sign an architecture, composed of two multimodal recurrent neural networks,

capable of identifying the structure and composition of an unknown molecule

using a 3D-AFM image stack as input. The neural network is trained to pro-
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vide the name of each molecule according to the IUPAC nomenclature rules.

To train and test this algorithm we use the novel QUAM-AFM dataset, which

contains almost 700,000 molecules and 165 million AFM images. The accu-

racy of the predictions is remarkable, achieving a high score quantified by the

cumulative BLEU 4-gram, a common metric in language recognition studies.
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1 Introduction

Scanning Probe Microscopes have played a key role in the development of nanoscience as the

fundamental tools for the local characterization and manipulation of matter with high spatial

resolution. In particular, AFM operated in its frequency modulation mode allows the character-

ization and manipulation of all kind of materials at the atomic scale (1, 2, 3). This is achieved

measuring the change in the frequency of an oscillating tip due to its interaction with the sam-

ple. When the tip apex is functionalised with inert closed-shell atoms or molecules, particularly

with a CO molecule, the resolution is dramatically enhanced, providing access to the inner

structure of molecules (4). This outstanding contrast arises from the Pauli repulsion between

the CO probe and the sample molecule (4, 5) modified by the electrostatic interaction between

the potential created by the sample and the charge distribution associated with the oxygen lone

pair at the probe (6, 7, 8). In addition, the flexibility of the molecular probe enhances the sad-

dle lines of the total potential energy surface sensed by the CO (9). These high resolution AFM

(HR-AFM) capabilities have made possible to visualize frontier orbitals (10), to determine bond

order potentials (11) and charge distributions (12, 13), and have opened the door to track and

control on-surface chemical reactions (14, 15).

In spite of these impressive achievements (16, 17) one of the most important goals remains

elusive: the molecular recognition. That is, the ability of naming a certain molecule exclusively

by means of HR-AFM observations. Molecules have been identified combining AFM with other

experimental techniques like scanning tunneling microscopy (STM) or Kelvin probe force mi-

croscopy (KPFM), and with the support of theoretical simulations (10,17,18,19,20,21). Chem-

ical identification by AFM of individual atoms at semiconductor surface alloys was achieved

using reactive semiconductor apexes (22). In that case, the maximum attractive force between

the tip apex and the probed atom on the sample carries information of the chemical species
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involved in the covalent interaction. However, the scenario is rather different when using

tips functionalised with the inert CO molecules where the main AFM contrast source is the

Pauli repulsion and the images are strongly affected by the probe relaxation. So far, the few

attempts to discriminate atoms in molecules by HR-AFM have been based either on differ-

ences found in the tip-sample interaction decay at the molecular sites (6, 23) or on character-

istic image features associated with the chemical properties of certain molecular components

(6, 17, 24, 21, 25, 26, 10, 27, 28). For instance, sharper vertices are displayed for substitutional

N atoms on hydrocarbon aromatic rings (24, 6, 23) due to their lone pair. Furthermore, the

decay of the CO-sample interaction over those substitutional N atoms is faster than over their

neighboring C atoms (6, 23). Halogen atoms can also be distinguished in AFM images thanks

to their oval shape (associated to their σ-hole (25)) and to the significantly stronger repulsion

compared to atoms like nitrogen or carbon (25). However, even these atomic features depend

significantly on the molecular structure (6,11) and cannot be only associated to a certain species

but to its moiety in the molecule. The huge variety of possible chemical environments renders

the molecular identification by a mere visual inspection by human eyes an impossible task.

Artificial Intelligence (AI) techniques are precisely optimized to deal with this kind of sub-

tle correlations and massive data. Deep learning (DL), with its outstanding ability to search for

patterns, is nowadays routinely used to classify, interpret, describe and analyze images (29, 30,

31, 32, 33, 34), providing machines with capabilities hitherto unique to human beings or even

surpassing them in some tasks (35). There are two main challenges to apply deep learning to

achieve a complete molecular identification (structure and composition) through AFM imag-

ing. The first one is the limited amount of experimental data available to train the models. In

a previous work (36), we have explored the performance of an specifically designed Convolu-

tional Neural Network (CNN), trained with a data set that includes 314,460 theoretical images

–calculated with the latest HR-AFM modeling approaches (6, 37)– and only 540 images gener-
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ated with a variational autoencoder from very few experimental images. This CNN, applied to

a set of 60 molecular structures that include 10 different atomic species (C, H, N, P, O, S, F, Cl,

Br, I), obtained almost perfect (99%) accuracy in the classification using simulated AFM im-

ages and very good accuracy (86%) for experimental AFM images. Encouraged by the success

of this proof–of–concept, we have recently extended the available data sets of theoretical AFM

images with the generation of QUAM–AFM (38), that aims to provide a solid basis for making

results from DL applications to the AFM field reliable and reproducible (39). QUAM–AFM

includes calculations for a collection of 686,000 molecules using 240 different combinations of

AFM operation parameters (tip–molecule distance, cantilever oscillation amplitude and tilting

stiffness of the CO-metal bond), resulting in a total of 165 million images (38).

The second challenge arises from the non–planar structure of the molecules, that mixes

up in the molecular charge density –ultimately responsible for the AFM contrast– the effects

of the geometry and the chemical composition, making it very difficult to disentangle them.

Alldritt et al. (40) developed a CNN focused on the task of determining the molecular geometry.

Results were excellent for the structure of quasi-planar molecules, even using the algorithm

directly with experimental images. For 3D structures, they were able to recover information for

the positions of the atoms closer to the tip. However, the discrimination of functional groups

produced non conclusive results. At variance with this study, as we already mentioned above,

a CNN (36) was able to solve the classification problem for 60 essentially flat molecules with

almost perfect accuracy, being able to identify, for example, the presence of a particular halogen

(F, Cl, Br or I) in molecular structures that, apart from this atom, were identical. Although

encouraging, the clear success of this proof of concept does not provide a solution to the general

problem of molecular identification. The classification approach can only identify molecules

included in the training data set. Given the rich complexity provided by organic chemistry, even

an extremely large data set, that already poses fantastic computational challenges (as the output
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vector has the dimension of the number of molecules in the dataset), would fail to classify many

of the already known or possibly synthesized molecules of interest.

In this work, we transform the problem of molecular identification into an image caption-

ing challenge: the description of the content of an image using language. Automatic image

captioning has been a field of intensive research for deep learning techniques over the last

years (41, 42, 43, 44). It has been recently and successfully used (45, 46) for optical chemi-

cal structure recognition (47), the translation of graphical molecular depictions into machine-

readable formats. These works are able to predict the SMILES textual representation (48) of

a molecule from an image with its chemical structure depiction by using standard encoder-

decoder (46) or transformer (45) models. In our case, we consider a stack of 10 constant-height

HR-AFM images, each corresponding to different tip–sample distances, as the “image” and

the International Union of Pure and Applied Chemistry (IUPAC) name of the molecule as the

description or caption. Most of the current methods for automatic image captioning have two

key components: (i) a CNN –a Neural Network (NN) with convolutional kernels as process-

ing units– that represents the high-level features of the input images in a reduced dimensional

space; and (ii) a Recurrent Neural Network or Elman network (49) (RNN) –a NN whose units

are complex structures that have an inner state that stores the temporal context of a time series–

that deals with language processing and predicts a single word at each time step (50, 51, 52).

The IUPAC name determines unambiguously the molecular composition and structure. This

is done by defining a hierarchical keyword list to name functional groups that are written fol-

lowing a systematic syntax that defines the structural position of each moiety or group in the

molecule (53). Therefore, we tackle the molecular recognition challenge with a deep learn-

ing architecture that decomposes into two models. The first one predicts the main chemical

groups that compose the molecule whereas the second model performs the IUPAC formulation.

QUAM–AFM (38), is used to train and test the networks. Our approach predicts the exact name
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in almost half of the cases and achieves a high accuracy according to the Bilingual Evaluation

Understudy (BLEU) algorithm (54), the most commonly applied metric to score the accuracy

of language-involved models.

2 A Deep Learning Approach for Molecular Identification

2.1 QUAM-AFM: Structures and AFM Simulations

One of the main challenges to automate the molecular identification through AFM imaging

arise from the limited availability of data to fit the parameters of deep learning models. We

use Quasar Science Resources S.L. - Universidad Autónoma de Madrid - Atomic Force Mi-

croscopy (QUAM-AFM) (38), a dataset of 165 million AFM images theoretically generated

from 686,000 isolated molecules. Although the general operation of the HR-AFM is common

to all instruments, operational parameter settings (cantilever oscillation amplitude, tip–sample

distance, CO tilt stiffness) lead to variations in the contrast observed on the resulting images.

The value of the first two can be adjusted by modifying the microscope settings to enhance

different features of the image. However, the latter depends on the nature of the tip, i.e. the

differences in the attachment of the CO molecule to the metal tip that have been consistently

observed and characterised in experiments (37, 55). In order to cover the widest range of vari-

ants in the AFM images, six different values for the cantilever oscillation amplitude, four for

the tilt stiffness of the CO molecule and 10 tip-sample distances were used to generate QUAM-

AFM, resulting in a total of 240 simulations from each structure. We use the stack of 10 images

resulting from the different tip–sample distances in a single input and the 24 parameter com-

binations as a data augmentation technique. That is, we feed the network with different image

stacks randomly selected from the combinations of simulation parameters in each of the epochs

for each of the molecules.
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2.2 IUPAC Tokenization

Deep learning has already proven to have an extraordinary capacity to analyse data. This capac-

ity is such that, in many cases, the biggest problem to be solved lies in defining an appropriate

descriptor rather than in improving the existing analysis capacity. This is the case for AFM

images, where the complexity to design the output of a model is due to the existence of infinite

molecular structures. To establish a model output that is unambiguous, uniform and consistent

for the terminology of chemical compounds, we have adopted the IUPAC nomenclature. Then,

we have turned the standard classification problem (36) for a finite number of molecular struc-

tures into an image captioning task, developing a model that manages to formulate the IUPAC

name of each molecule.

Most image captioning techniques to describe images through language consist of a loop

that predicts a new word at each iteration (time step). Our goal is to transfer this idea to the

identification of AFM images through the IUPAC formulation. Therefore, instead of predicting

words at each time step, our model has to predict segments of the molecule’s IUPAC name

(see fig. 1). That is, the set of tokens used to decompose each name are sets of letters, numbers

and symbols that we call terms and are used by the IUPAC nomenclature to denote functional

groups, to assemble additive names or to specify connections. Different combinations of these

terms generate IUPAC names for the molecules, as exemplified in fig. 1.

A systematic split of the IUPAC names in QUAM-AFM reveals that some of the terms have

a very small representation, not enough to train a NN. We have discarded those that are repeated

less than 100 times in QUAM-AFM, retaining a total of 199 terms (see table S1). Consequently,

we have also removed the molecules that have any of these terms in their IUPAC name. In

addition, we have dropped the molecules whose term decomposition has a length longer than

57, as there is not enough representation of such names in QUAM-AFM. Even so, the set of

annotations still contains 678,000 molecules, that we have split into training, validation and test
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Figure 1: Two molecular structures with five of their associated AFM images at different tip-
sample distances, the IUPAC name, the term decomposition of that name, and the associated
attributes (a selection of 100 IUPAC terms that represent common functional groups, or chem-
ical moieties, see text). The top structure shows that the attributes are sorted by length and
alphabetically, not by the position in which they appear in the term decomposition. The bottom
structure shows that attributes appear once even if they are repeated in the term decomposition.

subsets with 620,000, 24,000 and 34,000 structures, respectively.

Our first attempts based on feeding a single model with a stack of AFM images provides

poor results predicting the IUPAC nomenclature. For this reason, we decompose the problem

into two parts and assign each objective to a different NN (see figs. 1 and 2 and section 2.3 for a

detailed description). We define the attributes as a 100-element subset of the IUPAC terms (see

table S1) which mainly describes the most common functional groups in organic chemistry and,

thus, are repeated a minimum number of times. The first network, named Multimodal Recurrent
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Neural Network for attribute prediction (M-RNNA), uses as input the stack of AFM images and

its aim is to extract the attributes, predicting the main functional groups of the molecule (see

figs. 1 and 2). The second network, named Atribute Multimodal Recurrent Neural Network

(AM-RNN), takes as inputs both the AFM image stack and the attribute list with the aim of

ordering them and complete the whole IUPAC name of the molecule with the remaining terms

which are not considered attributes (see fig. 2B).

M-RNNA reports information neither on the order nor the number of times that the attribute

appears in the formulation. However, this first prediction plays a key role in the performance of

the model. Unlike most of the Natural Languaje Processing (NLP) challenges, the IUPAC name

completely identifies the structure and composition of the molecule. Thus, a prior identification

of the main functional groups, not only releases the CNN component of the AM-RNN from the

goal of identifying these moieties, but, more importantly, almost halves the number of possible

predictions of the AM-RNN. By feeding the AM-RNN with the attributes that are present in the

IUPAC name (predicted by the M-RNNA), we are also effectively excluding the large number

of them that do not form part of it. This is an extremely simple relationship that the network

learns and that improves significantly its performance.

2.3 Multimodal and Attribute Multimodal Recurrent Neural Networks
(M-RNNA and AM–RNN )

The standard approach for image captioning is based on an architecture that integrates a CNN

and a RNN (41,56). Here, we focus on the well–known Multimodal Recurrent Neural Network

(M-RNN), which integrates three components (see fig. S1). The CNN encodes the input image

into a high–level feature vector whereas the RNN component has two key objectives: Firstly, to

embed a representation of each word based on its semantic meaning and, secondly, to store the

semantic temporal context in the recurrent layers. The remaining component is the multimodal

10



(ϕ) component, which is in charge of processing both CNN and RNN outputs and generating

the output of the model.

As discussed in section 2.2, we have developed an architecture composed of two M-RNNs

(see fig. 2A and fig. 2B). The first one, the M-RNNA, predicts the attributes that are incorpo-

rated as input to the second one, the AM-RNN, which performs the IUPAC name prediction.

Although both AM-RNN and M-RNNA are based on the standard M-RNN (41), we introduce

substantial modifications in each component. In fig. 2A and 2B, we show the inputs for each

component. The input of the CNN component is a stack of 10 AFM images, whereas the input

of the multimodal component ϕ consists of a concatenation of the outputs of the CNN and RNN

components.

To explicitly define the inputs of the M-RNN components, it is worth recalling that a M-

RNN processes time series, so it will perform a prediction (attribute or term) at each time

step. Let us start by defining the inputs of the RNN component of the M-RNNA. We encode the

attributes of the model by assigning integer numbers (from 1 to 100) to each attribute. The input

of RNN is a vector of fixed size 19, the maximum number of different attributes in the names of

the molecules in QUAM-AFM (17) plus the startseq and endseq tokens. In the first step, it will

contain S0,M-RNNA
= startseq to provide the model with the information that a new prediction

starts. This input is padded with zeros until we obtain a length of 19 (see figs. 2A, 2C and

2E) and then processed by the RNN component while the stack of AFM images are processed

by the CNN component, each of them encoding the respective input into a vector. The two

resulting vectors are used to feed the multimodal component ϕ, where they are concatenated

and processed in a series of fully connected layers to finally produce a vector of probabilities

(see Figs. S1 and S2 for details on the RNN and ϕ layers). In this way the prediction at each

time step corresponds to the most likely attribute Y A
1 which replaces the padding zero of the

corresponding position in the input sequence of the RNN component in the next time step. This
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Figure 2: The architecture proposed for molecular identification through the IUPAC name is a
composition of two networks (M-RNNA and AM-RNN) whose data flow is shown in panels A
and B. The gray square boxes represent each component of the models: a convolutional neural
network CNN, a recurrent neural network RNN, and the multimodal component ϕ. The arrows
indicate the data flow within the model. M-RNNA predicts an attribute at each time step until
the loop is broken with the endseq token (blue-line printed), whereas the AM-RNN predicts the
sorted terms that give rise to the IUPAC name. Panel C shows the inputs and outputs at each time
step predicted by the M-RNNA and AM-RNN networks from a 3D image stack corresponding
to the perylene-1,12-diol molecule. Panels D, E and F show a representation of the RNN, in
the same format used panels A and B, corresponding to the fourth time step in M-RNNA and
AM-RNN for the perylene-1,12-diol molecule. This figure highlights the fact that the state of
the RNN, in particular, the recurrent layer, depends on the previous predictions.
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process is repeated until the endseq token is predicted, which breaks the loop. That is, for a

given time step t, we feed the RNN component of M-RNNA with the input (S0, Y
A
1 , ..., Y

A
t−1),

that concatenates the starseq token S0 with all the predictions already performed in previous

time steps, and is padded with zeros until we obtain a length of 19 (see fig. 2E for the example

of t = 4 in the indentification of perylene-1,12-diol molecule). Once the model has already

predicted the NA attributes it has to break the loop, so its last prediction must be the endseq

token (see fig. 2C).

Once the prediction of the attributes has finished, the AM-RNN starts to operate in or-

der to predict the IUPAC name of the molecule. For the input of the RNN component and

the prediction flow, we follow the same reasoning applied to M-RNNA, replacing S0,M-RNNA

by S0,AM-RNN = (Y A
1 , .., Y

A
18, startseq) (fig. 2B). Each RNN input is a vector of 76 compo-

nents, arising from the concatenation of 18 attributes (Y A
1 , .., Y

A
18) ∼ (A1, ..., A18) (padded if

necessary) with the startseq token and the predictions performed at each previous time step,

(Y1, ..., Yt−1), padded until we obtain a vector with length 57 –the maximum number of terms

in the decomposition of the IUPAC names in QUAM-AFM– (see Figs. 2C and F). Similarly as

in the M-RNNA, the semantic input is processed by the RNN component while the AFM image

stack is processed by the CNN, encoding the respective input into a vector. The multimodal

component ϕ processes the CNN output v, concatenates the result with the output of the RNN,

and process this combined result producing a vector of probabilities as output of the network.

(see Figs. S1 and S2 for details). The position of the larger component in the vector provides us

with the prediction of the new term Yt. The process stops when the endseq token is predicted

(see fig. 2C).

Denoting both S0,M-RNN and S0,AM-RNN by S ′0, the data flow of both M-RNN and AM-RNN

13



is described by the following recurrence rules:

x1 = S ′0

v = CNN(I)

ht = RNN(ht−1, xt)

Yt = ϕ(v, ht), t ≥ 1

xt = (S ′0, Y1, ..., Yt−1), t > 1

(1)

A more detailed description of each layer and the training strategy, far from trivial when

combining a CNN and a RNN, can be found in sections S2 and S3, respectively.

3 Results

We have benchmarked the model by testing the trained networks with the 34,000 molecule

test set, corresponding with 816,000 inputs from QUAM-AFM associated to variations of the

simulation parameters. The predicted IUPAC names are identical to the annotations for 43% of

the molecules. Taken into account the complexity of the problem, we can consider this as a good

result. Notice that each matching means that the model has identified from the images, without

any error, all the molecular moieties and it has also provided the exact IUPAC name, character

by character, as shown in fig. 3. Our model is able to identify planar hydrocarbons, both cyclic

or aliphatic, but also more complex structures as those including nitrogen or oxygen atoms that,

due to their fast charge density decay (6), usually appear on the images as faint features (see for

example fig. 3). Halogens, characterized on the images by oval features whose size and intensity

are proportional to their σ–hole strength (25), can be also correctly labeled (figs. 3b, 3d and 3e).

The model can even recognize the presence of the fluorine element, that does not induce a σ–

hole and, when bonded to a carbon atom, produces an AFM fingerprint that is very similar to the

one of a carbonyl group (compare fig. 3e with fig. 3f). More surprisingly, hydrogen positions

are often guessed, what is striking since hydrogen atoms bonded to sp2 carbon atoms are hardly
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Figure 3: Set of perfect predictions (4-gram scores of 1.00). Each subfigure shows the molecular
structure on the left, the AFM images at various tip–sample distances on the right and the
prediction, which matches exactly the ground truth, below the images.
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detected by the HR-AFM due to their negligible charge density (28, 57). Thus, many kinds of

molecules, over half of our test set, including those showing non–trivial behaviors, have been

correctly recognized by our model.

However, this statistic does not reflect the real accuracy of the model. A deeper analysis of

the results shows that its quality and usefulness is much higher than the naked figure of 43%

could indicate. Figure 4 shows that, even in those cases where the prediction is not correct,

the majority of the examples still provide valuable information about the molecule. In order

to quantify the accuracy of the prediction, we apply the n-grams of BLEU (54) (see fig. 4).

This method, commonly used for assessing accuracy in NLP problems, calculates the accuracy

based on n–grams of terms between predicted and reference sequences. An n–gram scores each

prediction by comparing the sorted n–word groups appearing in the prediction with respect to

the references. In our scenario, the comparison is with one single reference (ground truth), so

it compares the common groups of n terms that appear in both the prediction and the reference

(for example, perylene-1,12-diol, 4–gram reference groups include: “per, yl, ene, -”, “yl, ene,

-, 1”,“ene, -, 1, ,”, etc).

First, we assess the accuracy of the M-RNNA, the one that predicts the attributes, i.e., the

molecular moieties. A perfect match on the 1–gram’s means that every attribute in the reference

appears in the prediction and that the prediction does not contain any other attributes. Our

model scores a 0.95 under this assumption. This is a very high mark that means this network

does recognize the molecular components on 95% of the cases. This result answers one of the

more challenging open questions in the field (10, 23, 6): it demonstrates that the 3D HR-AFM

data obtained with CO terminated apexes carries information of the chemical species present

on the molecules, at least on the simulated images sets.

For the assessment of the overall prediction of the model, we propose the cumulative 4-

gram, a common metric for the evaluation of linguistic predictions. This metric weights the
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Figure 4: Examples of incorrect predictions, reflecting how the evaluation algorithm penalises
errors. Each subfigure shows, from left to right, the simulated structure, the structure that
matches the model prediction (where it exists), a set of AFM images at various tip–sample
distances and the 4–gram score. Below each subfigure is the IUPAC name of the molecule
(ground truth) and the prediction performed by the model (prediction).
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Metric 1–gram 2–gram 3–gram 4–gram
Score 0.88 0.84 0.79 0.76

Table 1: BLEU cumulative n–gram scores obtained with AM-RNN applied to QUAM-AFM.
The test has been performed on the set of 34,000 structures and their 24 combinations of simu-
lation parameters.

scores obtained with the 1,2,3,4–grams and also performs a product with a function that pe-

nalises the different lengths between prediction and reference. BLEU scores (see table 1) reveal

that AM-RNN also performs exceptionally well. Note that, in this case, the 1–gram shows the

set of terms that are in both prediction and reference. That is, despite not providing the correct

formulation, the model is able to predict 88% of the terms that the name contains, in agreement

with the prediction capability showed by our first M-RNNA, and indicating a great deal of chem-

ical information about the molecule. In addition, AM-RNN scores 0.76 in the evaluation with

the cumulative 4-gram, assessing large segments of the IUPAC name. Fig. 4 puts the accuracy

of the model based on this assessment in context with a set of examples with different scores.

Note that fig. 4f shows a frequently occurring case where, by applying a metric developed to

assess translation in longer texts with several references, mistakes in predictions composed of

only a few terms are overly penalised. Table 2 provides a systematic study of this limitation

of the metric, showing an analysis of the score obtained by splitting the test set according to

the number of terms into which the corresponding IUPAC name decomposes. The accuracy

of the model is worse in molecules whose term decomposition is shorter. The reason for this

seemingly contradictory fact is that the cumulative 4-gram metric penalises more for errors in

short chains. As shorter strings contain fewer subgroups of 4 terms, the 4–gram scoring method

penalises an error in a smaller chain more heavily than in a longer one (as shown in fig. 4a and

fig. 4f).

Comparing the predictions with the references on a term–by–term basis, we find that the
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25.1% of the errors are due to misclassification of one number term with another number, i.e.

misplacing a group of atoms, and the 17.1%, 4.8%, 4.7% and 2.7% of the errors are due to a

misclassification of the “-”, “(” or “)”, “yl” and “[” or “]” terms, respectively. Therefore, almost

half of the errors made are located in the prediction of characters more related to the chemical

formulation than to the information extracted from the images. Moreover, we must point out the

fact that when the model predicts incorrectly, it sometimes generates IUPAC names that do not

correspond to any molecule (see fig. 4e). These results indicate that it is not the capability of our

model to recognise the molecules but the ability of the RNN component to properly write the

name what is limiting the success rate. This conclusion is consistent with a recent work where

automated IUPAC name translation from the SMILES nomenclature (48), that completely char-

acterizes the structure and composition of a molecule, is done by a RNN (58), obtaining just a

BLEU 4–gram score of 0.86.

Deep learning architectures are developed based on human intuition to improve the accuracy

of the model. However, it is difficult to analyse in detail why the model succeeds or fails. When

representing the input terms in the RNN component, we apply a word embedding that is trained

with the rest of the model (see figs. S2 and S3). Previous research has shown that representa-

tions in this space capture the semantic meaning of words and establish algebraic relationships

between them (59, 60, 61). It is truly remarkable to see that these results have been transferred

to the formulation, grouping the terms according to their semantic meaning or according to the

interactions described by the image stacks. We have verified this by projecting each of the terms

into the 32–dimensional embedding space belonging to the AM-RNN, defining a L2 norm and

computing the distances between the terms. These results show that terms with similar semantic

meaning are close together (see fig. S9). For example, the closest terms to brom are chlor, fluor,

and iod, or the terms closest to nona are octa, deca, undeca and dodeca. This also reflects in

the fact that the terms that the model most commonly gets wrong are the closest ones, such as
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Number of terms
Term Decomposition 0–10 10–20 20–30 30–40 40–50 50–60

4–gram score 0.59 0.73 0.78 0.79 0.75 0.66

Atom height difference
Distance <0.5 Å <1.0 Å <1.5 Å ≥1.5 Å

4–gram score 0.79 0.62 0.62 0.50

Table 2: Score with the BLEU cumulative 4–gram metric based on the characteristics of the
molecules and their annotations. The top table divides the scores into subsets based on the
length of the string of terms into which the IUPAC name is broken down. The bottom table
divides the test set score into subsets based on the maximum difference in heights between
atoms in the molecule (excluding hydrogens).

the errors in the prediction of the numbers that place atomic groups in specific positions (see

figs. 4a, 4d and 4f), or the mistaken of one halogen for another. In other words, the erroneous

terms have, in general, a similar semantic meaning.

Non–planar structures are a challenge for AFM-based molecular identification. Table 2

shows an analysis of the score obtained by splitting the test set according to different ranges

of molecular torsion. In line with the conclusions reached in ref. (40), our model has a hard

work to fully reveal the structure of molecules whose height difference between atoms exceeds

1.5 Å. This is an expected result as the microscope is highly sensitive to small variations on

the probe–sample separation, and the interaction becomes highly repulsive on a distance range

of 50–100 pm, inducing large CO tilting and image distortions. This makes very difficult to

get a proper signal from lower atoms on molecules with non–planar configurations. However,

most of these molecules would adopt a flatter configuration upon surface adsorption. We have

tested our model by randomly selecting four of the non–planar structures whose prediction

scores an arithmetic mean of 0.40 in the cumulative prediction of the 4–gram. We force them to

acquire a flat structure and, then, we run the test again (see figs. S6 and S7). Prediction scores

improve in a range of 0.2 to 0.55, resulting in a new mean cumulative 4–gram of 0.73. This
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improvement represents semantically going from a prediction that barely provides any useful

information about the molecule to one that in many cases gets it absolutely right. Thus, while the

model already scores very high in the test with simulated images of gas–phase molecules, the

performance would definitely improve with the flatter configurations expected for the adsorbed

molecules measured in the experimental HR-AFM images.

4 Discussion

The results presented so far show that the stacks of 3D frequency shift images contain informa-

tion not only on the structure of the molecules but also regarding their chemical composition.

This information can be extracted by deep learning techniques, which, additionally, are able to

provide the IUPAC name of the imaged molecules with a high success rate. Our combination

of two M–RNNs is able to correctly recognize the molecule in many cases, even in those where

it is difficult to discern between similar functional groups –as fluorine terminations with either

carbonyl or even -H terminations–, or in image stacks where some moieties provide very subtle

signals (see fig. 3). Some mistakes do appear from the chemical recognition point of view, espe-

cially in those molecules showing significant non-planar configurations where the performance

is lower (see figs. S6 and S7 together with table 2). However, apart from these fundamental

drawbacks, most of the errors in the predictions are related to the spelling of IUPAC names.

That is, misplacement of functional groups or the incorrect use of parentheses, square brackets

or hyphen characters, etc. It seems that these errors are frequent for RNNs dealing with the

IUPAC nomenclature (58).

At this stage, it is worth considering if other DL architectures or alternative chemical nomen-

clatures could improve the molecular identification based on HR-AFM images. We have already

pointed out that, leaving out the additional problem of extracting the chemical information from

the images, a RNN only achieves a BLEU 4–gram score of 0.86 when translating from the
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SMILES to the IUPAC name (58). Nomenclature translation has been addressed with archi-

tectures based on the novel transformer networks (62), obtaining a practically perfect accu-

racy (63,64). Also, automatic recognition of molecular graphical depictions is able to correctly

translate them to their SMILES representation with a 88% or 96% accuracy by using either

a standard encoder-decoder (46) or a transformer (45) network. However, in our work we

face a different problem since we deal with identification from AFM images instead of either

molecular depictions, that contains all the chemical information needed to name a molecule, or

translation between nomenclatures. Furthermore, the application of transformers to the iden-

tification from AFM images is not straightforward. First, tokenization must be consistent and

each term must have a chemical meaning so that the embedding layers learn a meaningful in-

formation representation (see Fig. S9). This point has only been considered in ref. (63). More

importantly, our method achieves high accuracy due to the initial attribute detection, forcing us

to develop an architecture that is, in principle, incompatible with transformers, which are based

on encoder-decoder networks.

Regarding other nomenclature systems for describing organic molecules, besides the al-

ready cited SMILES (48), there are other proposals such as InChI (65) or SELFIES (66), whose

textual identifiers use the name of the atoms and bond connectivity. These systems miss rele-

vant chemical information that is not provided by describing the molecule as a set of individual

atoms rather than as moieties made up of atoms. Unlike these systems, the IUPAC nomen-

clature is focused on the classification of functional groups, an approach consistent with the

characteristics shown by the AFM image features, that reflects in our proposal of a dual ar-

chitecture composed by M-RNNA and AM-RNN. The SELFIES nomenclature establishes a

robust representation of graphs with semantic constraints, solving some problems that arise in

computer writing with other nomenclatures. However, the atom-based description would force

an approach without attribute prediction, which is the key to obtain a high accuracy with our
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model. Hence, it seems to be a trade-off between the limitations and improvements offered by

these nomenclatures, suggesting that a dramatic improvement in performance is not expected,

although further work is needed in order to reach a final conclusion.

Finally, we should point out that our analysis so far has been based on simulated HR-AFM

images. In ref. (36), we showed that the experimental images contain features that are not

reflected in the theoretical simulations. Data augmentation has been applied during the train-

ing of our model (see sections S3.2 and S3.4) to capture these effects. Although limited by

the scarcity of experimental results suitable to apply our methodology, we have obtained very

encouraging results. We have selected constant–height AFM images of dibenzothiophene and

2-iodotriphenylene from refs. (27) and (67), corresponding to 10 different tip–sample distances,

covering a height range of 100 pm for dibenzothiophene (identical to the one spanned by the

3D stacks of theoretical images used to train our model) and 72 pm for 2-iodotriphenylene (see

section S5 for details). Despite the strong noise in the images and the white lines crossing the

images diagonally (see fig. S8), the prediction of dibenzothiophene is perfect, scoring 1.00 on

the 4–gram, whereas for 2-iodotriphenylene the model predicts “2iodtriphenylene”, missing a

hyphen but providing all the relevant chemical information. Despite the good results obtained

with these two experimental image stacks, no significant conclusions can be extracted given

the very small size of the test. A larger, systematic analysis with a proper experimental data is

necessary to further address the accuracy of our model.

5 Conclusions

In this work, we have shown how deep learning models, trained with the simulated HR-AFM 3D

image stacks for 678,000 molecules included in the QUAM-AFM dataset, are able to perform

full chemical-structural identification of molecules. Motivated by the unfeasibility of defining a

classification in the usual sense of AI, we turned the problem into an image captioning problem.
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Thus, instead of aiming to have a model that knows every atomic structure, we endow it with

the ability to formulate. As a result the model is not only able to identify images that have not

been previously shown to it, but it is also able to predict the IUPAC name of these unknown

structures. We have devised a two–step procedure involving the combination of two M-RNNs.

In a first step, the M-RNNA identifies the attributes, the most relevant functional groups present

in the molecule. This initial step is already of importance because the algorithm provides useful

information about the chemical characteristics of the molecule. In a second step, the AM-RNN,

whose inputs arise from the M-RNNA, sorts the information of the functional groups, adds extra

characters (connectors, position labels, other tags, etc.) and the remaining functional groups that

are not part of the attributes set. That is, the AM-RNN assigns the positions of the functional

groups, completes the remaining terms and writes down the final IUPAC name of the molecule.

We have tested the model on a set of 816,000 AFM images belonging to 34,000 molecules

that have not been shown before to the network. The bare results point out that in a 43%

of the cases the predictions are exactly the same with respect to the reference in QUAM-AFM,

character by character. To further asses the usefulness of the wrong predictions by the model, we

apply the metrics defined by the BLEU n-gram. This is a robust methodology used in assessing

the accuracy of our model that weights the accuracy of a prediction against a reference. The

accuracy of the attribute prediction assessed with the 1-gram scores 0.95, whereas the overall

accuracy of the model is determined with the cumulative 4-gram, scoring 0.76. This high value

means that, even when the model does not achieve a perfect prediction, it provides valuable

chemical insight, leading to a correct IUPAC name of a similar molecule in the vast majority of

the cases. Finally, it is worth noting that this model could be applied to AFM images obtained

in experiments. Due to the lack of a systematic and large set of experimental images, we do not

have definitive conclusions yet, but we have obtained very encouraging results in two examples.
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S1 IUPAC tokenization

In order to tokenize the IUPAC nomenclature we selected a set of terms consisting of prefixes,

suffixes, numbers, etc., whose combinations generates the 686,000 IUPAC names correspond-

ing with the molecules belonging to Quasar Science Resources - Universidad Autónoma de

Madrid - Atomic Force Microscopy Image Dataset (QUAM-AFM) (1). Deep learning mod-

els require large datasets in which each target is repeated many times to be learned during the

training. We have analysed the number of times that each term appears in QUAM-AFM and re-

moved those terms that are repeated less than 100 times. This reduces the total number of terms

considered to a total of 199, shown in table S1. Consequently, we have discarded molecules

whose decomposed IUPAC name contains any of these terms. Similarly, extremely long IUPAC

names have very little representation in QUAM-AFM, so we also discard molecules whose IU-

PAC name decomposes into more than 57 terms. In this way, we have slightly reduced the set

of available inputs to a total of 678.000 molecules.

acen acet acid acr alde alen amate amide amido amim
amine amino amo ane ani anil ano anone anthr ate

ato aza aze azi azido azin azo azol benz brom
but carb chlor chr cyclo ene eno eth fluor form

furan furo hyde hydr ic ida ide idin idine ido
imid imidin imine imino ind ine ino iod iso itrile
ium meth mine naphth nitr nium nyl oate oic ol
ole oli olin oline olo om one oso oxo oxol
oxy oxyl oyl phen phth prop pter purin pyr pyrrol
quin sulf thi tri urea yl ylid yridin zin zine

dodeca undeca lambda phosph cinnam xanth porph coron deca guan
hept amic pent enal octa anal nona mido nida azet
tetr ulen anol hypo pine ysen anth tere acyl yrin
inin tris pino mid hex nia bis per nio pin
ite rin alo en di 11 yn an cy de
15 10 13 14 12 in 18 21 az al
bi et ep id ox il or 16 17 on
( 6 ) - [ a ] N ’ 1
7 4 5 3 9 2 8 H ,
o b e c C d O g f

Table S1: Table of terms for International Union of Pure and Applied Chemistry (IUPAC)
decomposition. The elements above the bold line are the subset of 100 attributes considered.
The grey cell does not correspond to any term, it has been coloured in order to distinguish it
from the term that spells an empty space between two words.
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As explained in the main text, we combine two different Multimodal Recurrent Neural Net-

work (M-RNN)s to achieve molecular identification. The first network, named Multimodal Re-

current Neural Network for attribute prediction (M-RNNA), uses as input the stack of Atomic

Force Microscopy (AFM) images and its aim is to extract the attributes, a 100-element subset of

the terms which are mainly used to designate functional groups and not positions (see table S1).

The second network, Atribute Multimodal Recurrent Neural Network (AM-RNN), consists of

an adaptation of the M-RNN (2) for the IUPAC nomenclature prediction, where we add an in-

put of semantic attributes predicted by the M-RNNA (see section S2 for details). This strategy

differs from the concept of attention (3,4,5), implemented in other Natural Languaje Procesing

(NLP) problems, and that has led to the development of the transformers (6,7,8,9). In this case

we assume that the relationship between each IUPAC name and each molecule is biunivocal,

(although there are some exceptions we suppose that the names of each compound have been

entered under the same rules in Pubchem). This approach makes the problem posed different

from most of the challenges faced in image captioning where there are multiple descriptions

for the same image. Therefore, a prior identification of the main functional groups, not only

releases the Convolutional Neural Network (CNN) component of the AM-RNN from the task

of identifying these moieties, but, more importantly, almost halves the number of possible pre-

dictions of the AM-RNN: By feeding the AM-RNN with the attributes that are present in the

IUPAC name (predicted by the M-RNNA), we are also effectively excluding the large number

of them that do not form part of it. This strategy improves significantly its performance.
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S2 M-RNNA and AM-RNN models: A layer description

As previously mentioned, the architecture developed for molecular identification with the IU-

PAC nomenclature is composed of two models, M-RNNA and AM-RNN, (see Figure 2 of the

main text). Each one is composed by a CNN, a RNN and a multimodal componet ϕ. Figure S1

displays the type of layers that constitute each component of both M-RNNA and AM-RNN.

The architecture of the CNN component is identical in both models, while RNN and ϕ share

the same structure and, except for the RNN layer, the same type of layers with different num-

ber of units (e.g. kernels in convolutional layers, vector length in fully connected layers, etc)

according to the specific purpose of the model. Figure S2 provides the details, highlighting the

Figure S1: Graphical layer representation of M-RNNA and AM-RNN with the layers that con-
stitute their three components, CNN, RNN and ϕ. The CNN component follows the Inception
ResNet V2 model, where the first 2D–convolutional layers have been replaced by two 3D con-
volutional layers (to process the image stack, shown in red), followed by a dropout layer (blue).
The yellow blocks are just a pictorial representation of each block of the original Inception
ResNet V2 model. Notice that the last fully connected layer of the model, which is specific for
the original classification task, has been removed, obtaining an output vector (v) with length
1539. The RNN and ϕ components include embedding (green), dropout (blue), fully connected
(brown) and recurrent (purple) layers. The purple box represents a Gated Recurrent Unit (GRU)
layer in M-RNNA, whereas in the AM-RNN it represents a Long Short-Term Memory (LSTM)
layer. S ′0 represents the input for the RNN component in the first time step: the startseq token in
the M-RNNA and the concatenation of the attributes with the starseq token in AM-RNN. The
subsequent inputs include the attributes (terms) predicted in previous time steps by M-RNNA

(AM-RNN). Although both M-RNNA and AM-RNN have the same structure, each layer of
RNN and ϕ components has different dimensions (see Figure S2 for a detailed description).
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differences between the layers of the RNN and ϕ components of the two models.

The CNN component consists of a modification of the Inception ResNet V2 model (10),

identical for both M-RNNA and AM-RNN. This well–known model has been developed to be

applied to 2D images whereas in our case we process 3D maps (stacks of 10 AFM images with

various tip–sample distances). Therefore we have replaced the first 2D–convolutional layers in

Inception ResNet V2 by two 3D convolutional layers, each one with 32 filters, (3,3,3) kernel

size and (2,1,1) strides, followed by a dropout layer. We have verified that this dropout layer

is essential for the model to generalize to different images, such as the experimental ones. In

addition, we have removed the last fully connected layer of the model, which is specific for the

original classification task, obtaining an output vector (v) with length 1539.

The goal of the RNN component is to use sequential data to add new terms to the for-

mulation. To this end, the architecture of this component is developed according to two key

Figure S2: Layer–by–layer details of the RNN and ϕ components integrated in M-RNNA and
AM-RNN. v denotes the output vector of the CNN component. The layers are the same for both
models, except for the recurrent one, a GRU in M-RNNA (attribute prediction) and an LSTM in
AM-RNN (term prediction).
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objectives: Firstly, to embed a representation of each term based on its semantic meaning and,

secondly, to store the semantic temporal context in the recurrent layers. To perform the repre-

sentation of each term in a vector space, the RNN component has an embedding layer that is

able to capture relationships between terms (see section S6 for a more detailed analysis). The

embedding layer is followed by a dropout layer that acts as a regularizer and finally the data

goes through a recurrent layer which, with the temporal context generated by all the predictions

made in previous time steps, makes a proposal of predictions that is processed by the multi-

modal component (see fig. S1). The recurrent layer is a GRU in M-RNNA (attribute prediction)

and an LSTM in AM-RNN (term prediction). The multimodal component ϕ first processes the

CNN output v in two fully connected layers with a dropout between them. Subsequently, this

output is concatenated with the output of the RNN (see fig. S1). Finally, the result of the con-

catenation feeds two fully connected layers, the first one activated with Rectified Linear Unit

Activation Function (ReLU) activation function whereas the second one is activated with Soft

Approximation of Max (Softmax) activation function, that converts the outputs from the layer

into a vector with components that represent probabilities that sum to one.
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S3 Model learning

Both M-RNNA and AM-RNN could, in principle, be trained in an end–to–end process, however,

this would require more than a year of training and it has been found that this type of training for

M-RNN results in not providing detailed descriptions (11). To avoid it, we train each component

of the models in different stages, fixing the weights of the CNN and RNN alternatively while

training the rest of the model.

In the first stage, both CNN and RNN components are initialised with random weights, so

if we fix the weights of the CNN while training the RNN, the CNN would perform a random

representation of the input image stack, and consequently, the weights of the RNN component

would be updated under random rules. An analogous reasoning can be applied for the reverse

case, in which we would fix the weights of the RNN and train the CNN. We solve this issue ini-

tialising the CNN component with pre–trained weights. To determine this weights, we perform

a classification with the CNN based on classes of molecules that shared the same chemical com-

position (number of different chemical species and number of atoms for each specie, excluding

the H atoms), as described in detailed in section S3.1.

S3.1 Molecular Classes for Transfer Learning

The classification of AFM images defining the model output as each individual molecule is

an impossible task because QUAM-AFM does not include enough images of each particular

structure and has an excessive number of molecules (classes). Thus, we simplify the problem

by grouping molecules based on their chemical composition. Hence, we define the class of a

molecule by the type of atomic species that it contains and the number of repeated atoms of

each of these species. To obtain a representative number of images of each class, we exclude

the hydrogens from the species list (see fig. S3), so that molecules with completely different

structures such as pyrazine, pyridazine, but-2-enedinitrile or butanedinitrile belong to the same

class (C4N2). This results in a total of 2339 classes for the molecule structures considered in

QUAM-AFM.
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Figure S3: Atomic structures belonging to different classes for classification according to their
chemical species.

S3.2 Pre–training the CNN component

As mentioned above, it is necessary to pre-train the CNN component with a classification that

groups the molecules in the QUAM-AFM dataset in classes describing its chemical compo-

sition, irrespective of their structure. We perform this classification with the same Inception

ResNet V2 model (10) that we used for the CNN element in the two M-RNNs . To this end,

we replace the first convolutional layer by two 3D convolutional layers followed by a dropout

layer and, instead of removing the output layer as described in the main text for the NLP tar-

get, we modify its number of units to 2339, corresponding to the number of classes defined in

section S3.1.

In each epoch, we select a single combination of simulation parameters from those included

in the QUAM-AFM dataset (1) for each molecule. Therefore, the model receives inputs of

the same molecules but different image stacks at each epoch. In addition, we apply an Image

Data Generator (IDG) (see fig. S4) to the input image stack in order to simulate experimental

features that are not captured in the theoretical simulations, as discussed in ref. (12). The

values selected for the distortions are randomly chosen in ranges of [1,360]–degree rotations,

±0.15 zoom range, ±0.1 shear range, and ±0.1 both vertical and horizontal shift range, as

illustrated in fig. S4. When a molecule is rotated or moved during an AFM experiment, all
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Figure S4: Results of applying the IDG to the same AFM image of a N-(5-amino-4-
methylpyridin-2-yl)-6-fluoro-1-benzothiophene-2-carboxamide molecule.

resulting images show similar variations, so we apply the same deformation parameters to the

ten images that compose each stack. These variations, coupled with the dropout layer in the

CNN component, ensure that the model is robust regarding soft variations of the inputs that are

present in experimental images.

We train the CNN minimizing the error of the Negative Log Likelihood loss function with

the Adaptive Moment estimator (Adam) optimizer (13). To speed up the convergence, we apply

a batch–normalization (10, 14), setting the mean to zero and the variance to one in the input

layers (15, 16). We found that this normalization not only makes the training faster but also

improves the classification results, reaching an accuracy of 0.97 in the test prediction.

S3.3 M–RNN and AM–RNN optimization

Because of the analogies between M-RNNA and AM-RNN, their loss functions and trainings

are similar, hence we define the optimization problem for both at the same time with the notation

used in the main text. The function to be maximized is the probability of obtaining a correct

sentence S = (S1, ..., SN) given an input (I, S ′0):

θ∗ = argmax
θ

∑

(I,S)

log p(S|I, S ′0; θ) (1)

where θ represents the model parameters, and I is the 3D image stack. Note that the predic-

tion of the IUPAC nomenclature, according to the decomposition performed on a set of terms,
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Figure S5: Details of the training scheme for each stage of each of the models. Lr is a short for
learning rate.

must depend on the predictions already performed, i.e. the prediction must take into account

previously predicted terms in order to have semantic meaning, so it is a time series. Dur-

ing the training, we feed the model at each time step t with the target of previous time steps

(S ′0, S1, ..., St−1) and not with the predictions performed (Y1, ..., Yt−1), which in some cases are

wrong. We refer to each input of the model at the time step t as the pair (S ′0, S1..., St−1; I).

Note that, in this way, the final prediction length of each molecule depends on t. Thus, the

prediction of S depends on the prediction of each specific term, which in turn depends not only

on I but also on all the predictions performed in previous time steps. Since the model predicts

a single term of the sequence at each time step, it is natural to apply the chain rule to model

the joint probability over the sequential terms. Hence, the probability of obtaining a correct

prediction for the complete sequence is described by the sum of the logarithmic probabilities

over the terms. Therefore, the maximum log–likelihood function is as follows:

L(S, I) =
N∑

t=1

log p(St|I, S ′0, S1, ..., St−1; θ). (2)

As the deep learning optimization techniques consist of searching for a minimum rather than a

maximum, the loss function is described by the sum of the negative log–likelihood:

L(S, I) = −
N∑

t=1

log p(St|I, S ′0, S1, ..., St−1; θ). (3)

S3.4 M–RNN and AM–RNN training

The training of both M-RNNA and AM-RNN proceeds in three stages in which the weights of

the CNN and RNN components are fixed (non-trainable) alternatively. In the first stage, the
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model initialises all its weights randomly except those of the CNN component, which are pre–

trained with the chemical classification explained in section S3.2, and focuses on the training

of the RNN. Although specialised in a different classification, the CNN component output al-

ready represents high–level features of each input stack. The model is then fed with the input

(I, S). In the same way as we do for the CNN pre-training described in section S3.2, a ran-

dom combination of the simulation parameters described in (1) is selected for each input at

each epoch. Thus, although the CNN’s weights are fixed, the high–level representation of each

structure is different in each epoch. This selection, coupled with the dropout layer of the ϕ

component, ensures that the RNN component does not overfit for specific representations of the

input images.

The aim of the second stage is to specialise the weights of the CNN component in the

semantic prediction. To this end, the weights of the RNN component are fixed and the IDG

described in section S3.2 is applied to the input stack. Furthermore, the selection of simulation

parameters is randomly chosen for each input I . In this stage the prediction is performed for a

single time step of each pair (S, I). After completion of this second stage, the CNN component

provides specific details for the IUPAC formulation rather than to the chemical classification.

Finally, the third training stage repeats the process of the first one, fixing the weights of the

CNN. Further details for the training at each stage (number of epochs, batch size, learning rate)

are shown in fig. S5.
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S4 Influence of the molecular torsion in the model perfor-
mance: gas–phase versus flat configurations

HR-AFM shows an outstanding lateral resolution for quasi-planar molecules, but it is more

limited to discern correctly molecules with a significant torsion. This is due to the nature of the

contrast and the probe flexibility. The exponential behavior of the Pauli repulsion with respect

to the tip-sample distance makes this contribution the most relevant contrast source. Thus, each

atom in the sample will behave as an umbrella of around 2-3 Å veiling any other electronic

charge density below this region (except some cases where deformations in the charge density

may occur). Furthermore, the CO molecule will tilt under this repulsion and will block the

access of the probe to the region underneath.

Previous works (17) suggest that it is difficult to retrieve information from parts of the

molecule that are located more than 1.5 Å below the topmost atoms. According to this, we

expect our algorithm to provide a poorer performance when finding out the IUPAC names of

molecules showing significant out-of-plane distortions. In order to quantify this, we have car-

ried out some tests to directly show how the model accuracy improves for planar structures.

We have selected four molecules showing a torsion of about 1.8 Å and recalculated them in a

forced planar configuration. These planar configurations have been determined by DFT calcu-

lations where we fix the z-position of all the atoms in the molecule and let them move in the

xy plane in order to reach the ground state configuration compatible with this constraint. If we

feed the algorithm with the image stacks of the planar configuration the Bilingual Evaluation

Understudy (BLEU) 4-gram score increases significantly in all cases, even when the chemical

nature of the molecule makes the recognition by our model more difficult. Figure S6 shows two

molecules where the prediction for the non planar failed but where we obtain a highly accurate

result (an almost perfect match in the cases shown) for the planar configurations, with only

an error in the misplacement of one of the functional groups. Figure S7 shows the result for

two other molecules that contain functional groups that are difficult to discern such as fluorine

atoms, easily mistakable with other terminations like diketones which may display faint AFM

features. Although the BLEU 4-gram for the planar configuration is not high there is a clear

improvement compared to the non–planar cases.
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Figure S6: Comparison of the model predictions for the gas–phase and the forced planar config-
uration of a representative molecule, whose ball–and–stick depiction and height map are shown
on the left. The upper AFM images correspond to the simulation with the structure in a com-
pletely planar configuration while the lower ones correspond to the images for the gas–phase
structure. To the right of the AFM images is the 4–gram score corresponding to the prediction
shown (flat and gas–phase structure, respectively). Further to the right is the average of the 4–
gram scores obtained for images generated with the 24 combinations of operational parameters
considered in QUAM-AFM. The prediction example shown is the one that scored closest to the
mean.
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Figure S7: As fig. S6 for two molecules that include chemical chemical groups, like F atoms
(top) and diketones (bottom), that display faint AFM features and thus are more difficult to
recognise by the model.
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S5 Experimental test

We have performed a test with 3D stacks of experimental AFM images for dibenzothiophene

and 2-iodotriphenylene (see fig. S8). In the first case, despite the strong noise in the images and

the white lines crossing the images diagonally, we obtain a perfect prediction. In the second

case, with images covering a tip-sample distance range of 72 pm (smaller that the 100 pm range

used for the training), the prediction performed by the model is “2iodtriphenylene”, which is

very close to the ground truth, just missing a hyphen but providing all the relevant chemical

Figure S8: Experimental images used to test the molecular identification with our model. The
top set of images corresponds to the 10 images of dibenzothiophene taken at 10 different tip-
sample distances (covering a height range of 100pm) in ref. (18) (reproduced courtesy of the
American Chemical Society, ACS), using a bias voltage V = 40 mV and a tip oscillation
amplitude of approximately 50 pm. Images were aligned and Laplace filtered in the original
publication to highlight the molecular structure while maintaining the feature shapes as well
as possible. The bottom set corresponds to 10 constant–height frequency shift images of 2-
iodotriphenylene, covering a height range of 72 pm (with a height variation of 8 pm between two
consecutive images), published in the supplementary material of ref. (19) (reproduced courtesy
of the American Physical Society, APS). A bias voltage V = −0.57 mV and an oscillation
amplitude of A = 52 pm have been used for the measurements.
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information. Notice that, in both cases, experimental images have been scaled close to the size

of the unit cell used in QUAM-AFM before feeding the model. Without this scaling, the score

in the 4-gram evaluation falls dramatically for both cases, suggesting that the typical sizes of

chemical moieties learned during the training are an important component in the success of the

identification process. This sensitivity to variations in image sizes can possibly be reduced by

increasing the zoom range of ±15% applied in our data augmentation during the training.
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S6 Embedding

The weights of the embeddings of the RNN components of models applied to image captioning

(20,21) are usually pretrained with Word Embeding to represent the semantic high-level features

in a vectorial space. The usefulness of this technique lies in the representation of words in a

vector space, in which words with similar semantic meaning are represented close together,

as shown in fig. S9. In this way, the models manage to use synonyms providing versatility

and improving its expressive capacity. The versatility of languages to express the same idea

in different ways is further exploited in image captioning providing the same input image with

different annotation outputs. Then those models succeed in learning that different words have

Figure S9: Distances in the L2 sense between some of the terms in the AM-RNN embedding
layer. The higher intensity of blue corresponds to smaller distances while the lighter ones
correspond to longer distances. The distance from a term to itself is zero, so it matches the
darkest blue.
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similar meaning.

However, there are no trivial synonyms in our case, due to the close relationship between

the IUPAC names assigned to the functional groups in a molecule. Thus, any change in the

output sequence will result likely in an error, as a different molecule would be predicted. Addi-

tionally, there is no freely available pre-trained Word Embeding for the IUPAC nomenclature,

and therefore all weights of the RNN component are initialised randomly. Consequently, we

train the embedding layer with the rest of the RNN component (stages 1 and 3 described in

section S3.4). Here we find that, although the IUPAC nomenclature does not use synonyms,

the representations made in this vector space have certain semantic relationships. To check

this, we define the distance in the L2 sense and calculate the distances among the terms (of the

AM-RNN). We find, for example, that the terms represented closest to brom are chlor, fluor

and iod. In addition to the terms associated with halogens, those designating numbers are also

represented in close proximity. It is also noteworthy that the terms closest to nona are octa,

deca, undeca and dodeca, as shown in fig. S9. It should be recalled that each of the terms is

represented by a number to feed the network, so the model is not learning lexical relations but

syntactic relations.
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