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Abstract

We obtain large n asymptotics for the m-point moment generating function of the disk
counting statistics of the Mittag-Leffler ensemble. We focus on the critical regime where all disk
boundaries are merging at speed n− 1

2 , either in the bulk or at the edge. As corollaries, we obtain
two central limit theorems and precise large n asymptotics of all joint cumulants (such as the
covariance) of the disk counting function. Our results can also be seen as large n asymptotics
for n × n determinants with merging planar discontinuities.

AMS Subject Classification (2020): 41A60, 60B20, 60G55.
Keywords: Determinants with merging planar discontinuities, Moment generating functions, Random ma-
trix theory, Asymptotic analysis.

1 Introduction and statement of results
In recent years, there has been a growing interest in both the physics and mathematics literature in
understanding the counting statistics of various two-dimensional point processes, see e.g. [31, 10, 29,
30, 22, 24, 41, 11, 42, 8, 1]. Most of the focus, so far, has been on the one-point counting statistics
(see however [24, 11]). In this work we study the m-point counting statistics for general m ∈ N>0 of
the Mittag-Leffler ensemble in the critical regime where all disk boundaries are merging.

The Mittag-Leffler ensemble with parameters b > 0 and α > −1 is the following probability
density function for n points in the complex plane

1
n!Zn

∏
1≤j<k≤n

|zk − zj |2
n∏
j=1
|zj |2αe−n|zj |

2b
, z1, . . . , zn ∈ C, (1.1)

where Zn is the normalization constant. This is a two-dimensional determinantal point process aris-
ing in the random normal matrix model [37] and generalizing the complex Ginibre process (which
corresponds to (b, α) = (1, 0) [27]). As n→ +∞, the zero counting measure of the average character-
istic polynomial of (1.1) converges weakly to the measure µ(d2z) = b2

π |z|
2b−2d2z, and the support of

µ is the disk centered at 0 of radius b− 1
2b [40]. The Mittag-Leffler ensemble has been widely studied

over the years, see e.g. [15, 2, 25, 3, 4, 9] for various universality and finite-n results. We also refer
the interested reader to [28] for more background on two-dimensional point processes.
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Figure 1: Left: three merging disks in the bulk; this case is covered by Theorem 1.2 with m = 3.
Right: two merging disks at the edge; this case is covered by Theorem 1.3 with m = 2. For both
pictures, b = 1 and α = 0.

For y > 0, we let N(y) := #{zj : |zj | < y}, i.e. N(y) is the random variable that counts the
number of points in the disk centered at 0 of radius y. In this paper we study the joint statistics of
N(r1), . . . ,N(rm), where m ∈ N>0 is arbitrary but fixed, in the critical situation where n→ +∞ and
all radii are merging near a certain value r ∈ (0, b− 1

2b ]:

0 < r1 < . . . < rm, r` = r

(
1 +
√

2 s`
rb
√
n

) 1
2b

, s` ∈ R, (1.2)

see also Figure 1. The case r ∈ (0, b− 1
2b ) corresponds to “the bulk regime” and r = b−

1
2b to “the edge

regime”. Our main results can be summarized as follows:

• Theorems 1.2 and 1.3 give precise large n asymptotics for the moment generating function
E
[∏m

j=1 e
ujN(rj)], up to and including the fourth term of order n− 1

2 . Theorem 1.2 deals with
the bulk regime and Theorem 1.3 deals with the edge regime.

• Corollary 1.5 (a) establishes precise large n asymptotics for all joint cumulants of N(r1), . . . ,
N(rm) in the bulk regime. The analogue of that for the edge regime is given in Corollary 1.5
(c). We also obtain several central limit theorems for the joint fluctuations of N(r1), . . . ,N(rm);
Corollary 1.5 (b) concerns the bulk regime and Corollary 1.5 (d) the edge regime.

The problem of determining the large n asymptotics for the one-point generating function, i.e.
the case m = 1 in our setting, was already considered in [10, 30, 24]. The work [10] considers
counting statistics of Ginibre-type ensembles in a more general geometric setting, and second order
asymptotics for the generating function of counting statistics of general domains (not just centered
disks) are obtained in [10, Proposition 8.1]. The work [30] focuses on disk counting statistics of
rotation-invariant ensembles with a general potential, and second order asymptotics for the generating
function are given in [30, eq (34)]. More precise asymptotics, including the third term, were obtained
in [24, Proposition 2.3] for the Ginibre ensemble (see also [24, Propositions 2.4 and 2.9] for analogous
results on other rotation-invariant processes). Large n asymptotics for E

[∏m
j=1 e

ujN(rj)], including
the fourth term and for general m ∈ N>0, were then obtained in [11] for Mittag-Leffler ensembles,
in the case where r1, . . . , rm are fixed (independent of n). This case contrasts with the regime (1.2)
considered here. In the setting of [11], the general case m ≥ 2 is actually not much different from the
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case m = 1. Indeed, it follows from [11, Theorem 1.1] that for general b > 0, α > −1, u1, . . . , um ∈ R
and r1 < . . . < rm fixed, we have

E
[ m∏
j=1

eujN(rj)
]

=
m∏
j=1

E
[
eujN(rj)

]
×
(

1 +O
(

(lnn)2

n

))
, as n→ +∞. (1.3)

In fact, by straightforward modifications of the proof of [11], the error term in (1.3) can be shown
to be exponentially small, see also [11, Remark 1.5]. In other words, when r1, . . . , rm are fixed,
the m-point generating function can be expressed asymptotically as the product of m one-point
generating functions (up to an exponentially small error term). This, in turn, implies that all
cumulants involving two random variables or more among N(r1), . . . ,N(rm) are exponentially small
— for the covariance, this fact (namely that Cov(N(r1),N(r2)) = O(e−cn) as n→ +∞) was already
noticed in [39, Theorem 1.7] for (b, α) = (1, 0), and for the joint fluctuations of N(r1), . . . ,N(rm),
this fact (namely that they become independent Gaussian random variables in the large n limit) was
already proved in [24, Proposition 1.3] for Ginibre-type ensembles. (We mention en passant that
the decoupling (1.3) is a particular feature of two-dimensional point processes such as (1.1). Indeed,
the analogues of (1.3) for the one-dimensional sine, Airy, Bessel and Pearcey point processes involve
explicit constant pre-factors of order 1, and the associated covariances are not small but of order 1,
see e.g. [12, 14].) In the regime considered here, namely (1.2), the m-point generating function does
not decouple as in (1.3), and all joint cumulants of N(r1), . . . ,N(rm) have non-trivial asymptotics as
n→ +∞.

Let us introduce the following functions:

H1(t; ~u,~s) := 1 +
m∑
`=1

eu` − 1
2 exp

[ m∑
j=`+1

uj

]
erfc(t− s`), (1.4)

H2(t; ~u,~s) := 1 +
m∑
`=1

e−u` − 1
2 exp

[
−
`−1∑
j=1

uj

]
erfc(t+ s`), (1.5)

G1(t; ~u,~s) := 1
H1(t; ~u,~s)

m∑
`=1

(eu` − 1) exp
[ m∑
j=`+1

uj

]
e−(t−s`)2

√
2π

1− 2s2
` + ts` − 5t2

3 , (1.6)

G2(t; ~u,~s) := 1
H1(t; ~u,~s)

m∑
`=1

(eu` − 1) exp
[ m∑
j=`+1

uj

]
e−(t−s`)2

18
√

2π

(
50t5 − 70t4s` − t3

(
73− 62s2

`

)
+ t2s`

(
33− 50s2

`

)
− t
(
3 + 18s2

` − 16s4
`

)
− s`

(
3− 22s2

` + 8s4
`

))
, (1.7)

where t ∈ R, ~u = (u1, . . . , um) ∈ Cm, ~s = (s1, . . . , sm) ∈ Rm, and erfc is the complementary error
function

erfc(t) = 2√
π

∫ ∞
t

e−x
2
dx. (1.8)

The functions Hj , j = 1, 2, appear in the denominators of (1.6)–(1.7) and inside logarithms in the
statements of our main theorems. The next lemma ensures that {Gj , lnHj}2

j=1 are well-defined and
real-valued for t ∈ R, ~u = (u1, . . . , um) ∈ Rm, s1 < . . . < sm. Here and below, ln always denotes the
principal branch of the logarithm.
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Lemma 1.1. Hj(t; ~u,~s) > 0 for j = 1, 2 and for all t ∈ R, ~u = (u1, . . . , um) ∈ Rm, s1 < . . . < sm.

Proof. In view of the identity H1(t; ~u,~s) = eu1+···+umH2(−t; ~u,~s), it is enough to consider H1. Since

∂u1H1(t; ~u,~s) = eu1+...+um

2 erfc(t− s1) > 0,

we only have to check that H1|u1=−∞ ≥ 0. It is easy to verify that

H1(t; ~u,~s)|u1=−∞ = 1
2[2− erfc(t− sm)] +

m∑
`=2

eu`+...+um

2 [erfc(t− s`)− erfc(t− s`−1)].

Since R 3 x 7→ erfc(x) is decreasing from 2 to 0 and s1 < . . . < sm, each of the m terms in the above
right-hand side is > 0, which implies H1|u1=−∞ > 0.

The following two theorems are our main results.

Theorem 1.2. (Merging radii in the bulk)
Let m ∈ N>0, r ∈ (0, b− 1

2b ), s1, . . . , sm ∈ R, α > −1 and b > 0 be fixed parameters such that
s1 < . . . < sm, and for n ∈ N>0, define

r` = r

(
1 +
√

2 s`
rb
√
n

) 1
2b

, ` = 1, . . . ,m.

For any fixed x1, . . . , xm ∈ R, there exists δ > 0 such that

E
[ m∏
j=1

eujN(rj)
]

= exp
(
C1n+ C2

√
n+ C3 + C4√

n
+O

(
(lnn)2

n

))
, as n→ +∞ (1.9)

uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}, where

C1 = br2b
m∑
j=1

uj ,

C2 =
√

2 brb
∫ +∞

0

(
lnH1(t; ~u,~s) + lnH2(t; ~u,~s)

)
dt,

C3 = −
(

1
2 + α

) m∑
j=1

uj + 4b
∫ +∞

0
t
(

lnH1(t; ~u,~s)− lnH2(t; ~u,~s)
)
dt+

√
2 b
∫ +∞

−∞
G1(t; ~u,~s)dt,

C4 = 6
√

2 b
rb

∫ +∞

0
t2
(

lnH1(t; ~u,~s) + lnH2(t; ~u,~s)
)
dt

+ b

rb

∫ +∞

−∞

(
4tG1(t; ~u,~s)− G1(t; ~u,~s)2

√
2

+ G2(t; ~u,~s)
)
dt.

In particular, since E
[∏m

j=1 e
ujN(rj)] depends analytically on u1, . . . , um ∈ C and is positive for

u1, . . . , um ∈ R, the asymptotic formula (1.9) together with Cauchy’s formula shows that

∂k1
u1
. . . ∂kmum

{
lnE

[ m∏
j=1

eujN(rj)
]
−
(
C1n+ C2

√
n+ C3 + C4√

n

)}
= O

(
(lnn)2

n

)
, as n→ +∞,

(1.10)

for any k1, . . . , km ∈ N, and u1, . . . , um ∈ R.
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Theorem 1.3. (Merging radii at the edge)
Let m ∈ N>0, s1, . . . , sm ∈ R, α > −1 and b > 0 be fixed parameters such that s1 < . . . < sm, and
for n ∈ N>0, define

r` = b−
1

2b

(
1 +
√

2b s`√
n

) 1
2b

, ` = 1, . . . ,m.

For any fixed x1, . . . , xm ∈ R, there exists δ > 0 such that

E
[ m∏
j=1

eujN(rj)
]

= exp
(
C1n+ C2

√
n+ C3 + C4√

n
+O

(
(lnn)2

n

))
, as n→ +∞ (1.11)

uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}, where

C1 =
m∑
j=1

uj ,

C2 =
√

2b
∫ +∞

0
lnH2(t; ~u,~s)dt,

C3 =
(

1
2 + α

)
lnH2(0; ~u,~s)− 4b

∫ +∞

0
t lnH2(t; ~u,~s)dt+

√
2 b
∫ 0

−∞
G1(t; ~u,~s)dt,

C4 = 6
√

2 b 3
2

∫ +∞

0
t2 lnH2(t; ~u,~s)dt+ b3/2

∫ 0

−∞

(
4tG1(t; ~u,~s)− G1(t; ~u,~s)2

√
2

+ G2(t; ~u,~s)
)
dt

− 1 + 6α+ 6α2

12
√

2b
H′2(0; ~u,~s)
H2(0; ~u,~s) +

(
1
2 + α

)√
bG1(0; ~u,~s).

In particular, since E
[∏m

j=1 e
ujN(rj)] depends analytically on u1, . . . , um ∈ C and is positive for

u1, . . . , um ∈ R, the asymptotic formula (1.9) together with Cauchy’s formula shows that

∂k1
u1
. . . ∂kmum

{
lnE

[ m∏
j=1

eujN(rj)
]
−
(
C1n+ C2

√
n+ C3 + C4√

n

)}
= O

(
(lnn)2

n

)
, as n→ +∞,

(1.12)

for any k1, . . . , km ∈ N, and u1, . . . , um ∈ R.

Remark 1.4. We believe that O
( (lnn)2

n

)
in (1.9) and (1.10) is not optimal and can be improved to

O(n−1).

Let (Nm)>0 := {~j = (j1, . . . , jm) ∈ N : j1 + . . .+ jm ≥ 1}.
Recall that the joint cumulants {κ~j = κ~j(r1, . . . , rm;n, b, α)}~j∈(Nm)>0

of N(r1), . . . ,N(rm) are
defined by

κ~j = κj1,...,jm := ∂
~j
~u lnE[eu1N(r1)+...+umN(rm)]

∣∣∣
~u=~0

, ~j ∈ (Nm)>0, (1.13)

where ∂~j~u := ∂j1
u1
. . . ∂jmum and ~0 := (0, . . . , 0). In particular, we have

E[N(r)] = κ1(r), Var[N(r)] = κ2(r), Cov[N(r1),N(r2)] = κ(1,1)(r1, r2).

Corollary 1.5 below follows from Theorems 1.2 and 1.3. As already mentioned, it contains the large
n asymptotics of all joint cumulants of N(r1), . . . ,N(rm) when the radii are merging, either in the
bulk or at the edge, and also contains several central limit theorems for the joint fluctuations of
N(r1), . . . ,N(rm).
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Corollary 1.5. (a) (bulk regime) Let m ∈ N>0, ~j ∈ (Nm)>0, α > −1, b > 0, r ∈ (0, b− 1
2b ) and

−∞ < s1 < . . . < sm < +∞ be fixed, and for n ∈ N>0, define

r` = r

(
1 +
√

2 s`
rb
√
n

) 1
2b

, ` = 1, . . . ,m.

As n→ +∞, we have

κ~j = ∂
~j
~uC1

∣∣
~u=~0n+ ∂

~j
~uC2

∣∣
~u=~0
√
n+ ∂

~j
~uC3

∣∣
~u=~0 +

∂
~j
~uC4

∣∣
~u=~0√
n

+O
(

(lnn)2

n

)
, (1.14)

where C1, . . . , C4 are as in Theorem 1.2. In particular, for any 1 ≤ ` < k ≤ m, as n→ +∞ we have

E[N(r`)] = br2bn+
√

2 brbs`
√
n+ b− 1− 2α

2 +O
(

(lnn)2

n

)
, (1.15)

Var[N(r`)] = brb√
π

√
n+ b s`√

2π
− b(1 + 4s2

`)
16
√
πrb

1√
n

+O
(

(lnn)2

n

)
, (1.16)

Cov(N(r`),N(rk)) = c(1,1)(s`, sk)
√
n+ d(1,1)(s`, sk) + e(1,1)(s`, sk)n− 1

2 +O
(

(lnn)2

n

)
,

where

c(1,1)(s`, sk) = brb√
2

∫ +∞

0

{
erfc(t− s`)

(
1− 1

2 erfc(t− sk)
)

+ erfc(t+ sk)
(
1− 1

2 erfc(t+ s`)
)}
dt, (1.17)

d(1,1)(s`, sk) = b

∫ +∞

0
t
{

erfc(t− s`)
(
2− erfc(t− sk)

)
− erfc(t+ sk)

(
2− erfc(t+ s`)

)}
dt

+ b

∫ +∞

−∞

{(
2− erfc(t− sk)

)e−(t−s`)2

2
√
π

1− 5t2 + ts` − 2s2
`

3

− erfc(t− s`)
e−(t−sk)2

2
√
π

1− 5t2 + tsk − 2s2
k

3

}
dt,

e(1,1)(s`, sk) = −br
−be−

(s`−sk)2
2

288
√
π

(
51 + 55s4

` + 55s4
k + 96s2

` + 96s2
k + 128s3

`sk + 128s`s3
k + 180s`sk

+ 210s2
`s

2
k

)
+ 3br−b√

2

∫ +∞

0
t2
{

erfc(t− s`)
(
2− erfc(t− sk)

)
+
(
2− erfc(t+ s`)

)
erfc(t+ sk)

}
dt

+ br−b

36
√

2π

∫ +∞

−∞

[(
2− erfc(t− sk)

)
e−(t−s`)2

p(t, s`)− erfc(t− s`)e−(t−sk)2
p(t, sk)

]
dt,

p(t, s) = −3s + 22s3 − 8s5 + t(21− 66s2 + 16s4) + t2(57s− 50s3) + t3(−193 + 62s2)− 70t4s + 50t5.

(b) (joint fluctuations in the bulk) Let α > −1, b > 0, r ∈ (0, b− 1
2b ), m ∈ N>0 and s1, . . . , sm ∈ R be

fixed, and for n ∈ N>0, define

r` = r

(
1 +
√

2 s`
rb
√
n

) 1
2b

, ` = 1, . . . ,m.

Consider the random variables

N` := π1/4 N(r`)− (br2bn+
√

2 brbs`
√
n)√

brb n1/4
, ` = 1, . . . ,m. (1.18)
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As n → +∞, (N1, . . . ,Nm) convergences in distribution to a multivariate normal random variable
of mean (0, . . . , 0) and whose covariance matrix Σ is given by

Σ`,` = 1, Σ`,k = Σk,` =
c(1,1)(s`, sk)
brb/
√
π

, 1 ≤ ` < k ≤ m,

where c(1,1)(s`, sk) is given by (1.17).

(c) (edge regime) Let m ∈ N>0, ~j ∈ (Nm)>0, α > −1, b > 0 and −∞ < s1 < . . . < sm < +∞ be
fixed, and for n ∈ N>0, define

r` = b−
1

2b

(
1 +
√

2b s`√
n

) 1
2b

, ` = 1, . . . ,m.

As n→ +∞, we have

κ~j = ∂
~j
~uC1

∣∣
~u=~0n+ ∂

~j
~uC2

∣∣
~u=~0
√
n+ ∂

~j
~uC3

∣∣
~u=~0 +

∂
~j
~uC4

∣∣
~u=~0√
n

+O
(

(lnn)2

n

)
, (1.19)

where C1, . . . , C4 are as in Theorem 1.3. In particular, for any 1 ≤ ` < k ≤ m, as n→ +∞ we have

E[N(r`)] = n+ c1(s`)
√
n+ d1(s`) + e1(s`)n−

1
2 +O

(
(lnn)2

n

)
,

Var[N(r`)] = c2(s`)
√
n+ d2(s`) + e2(s`)n−

1
2 +O

(
(lnn)2

n

)
,

Cov(N(r`),N(rk)) = c(1,1)(s`, sk)
√
n+ d(1,1)(s`, sk) + e(1,1)(s`, sk)n− 1

2 +O
(

(lnn)2

n

)
,

where

c1(s) =
√
b s√
2

erfc(s)−
√
b√

2π
e−s

2
, (1.20)

d1(s) = −1
2

(
1
2 + α− b

2

)
erfc(s)− b s

3
√
π
e−s

2
,

e1(s) = e−s
2

√
2π

(
b(2 + 4α)− 1− 6α− 6α2

12
√
b

+ (3b− 2− 4α)s2

6
√
b− 2s4

9 b3/2
)
,

c2(s) =
√
b

2
√
π

erfc(
√

2 s) +
√
b
e−s

2

√
2π
(
1− erfc(s)

)
+
√
b s√
2

erfc(s)
(

1
2erfc(s)− 1

)
, (1.21)

d2(s) = − b

12π e
−2s2

+ b s

2
√

2π
erfc(
√

2 s) + b s

3
√
π
e−s

2(
1− erfc(s)

)
+ b− 1− 2α

4 erfc(s)
(

1
2erfc(s)− 1

)
,

e2(s) = e−s
2

12
√

2πb

(
1− 2b+ 6α− 4bα+ 6α2 + 2(2− 3b+ 4α)b s2 + 8b2

3 s4
)(

1− erfc(s)
)

− b3/2s

72
√

2π
e−2s2

− b3/2(1 + 4s2)
32
√
π

erfc(
√

2 s),

c(1,1)(s`, sk) =
√
b

2
√

2

∫ +∞

0
erfc(t+ sk)

(
2− erfc(t+ s`)

)
dt, (1.22)
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d(1,1)(s`, sk) = 1 + 2α
8

(
2− erfc(s`)

)
erfc(sk)− b

∫ +∞

0
t erfc(t+ sk)

(
2− erfc(t+ s`)

)
dt

+ b

∫ 0

−∞

{(
2− erfc(t− sk)

)e−(t−s`)2

2
√
π

1− 5t2 + ts` − 2s2
`

3

− erfc(t− s`)
e−(t−sk)2

2
√
π

1− 5t2 + tsk − 2s2
k

3

}
dt,

e(1,1)(s`, sk) = (2− erfc(s`))
e−s

2
k

√
2π

1 + 6α+ 6α2 + 2b(1 + 2α)(2s2
k − 1)

24
√
b

− erfc(sk)e
−s2

`

√
2π

1 + 6α+ 6α2 + 2b(1 + 2α)(2s2
` − 1)

24
√
b

− b
3
2 e−

(s`−sk)2
2

288
√
π

1
2erfc

(
s` + sk√

2

)(
51 + 55s4

` + 55s4
k + 96s2

` + 96s2
k + 128s3

`sk + 128s`s3
k

+ 180s`sk + 210s2
`s

2
k

)
+ b

3
2

144
√

2
e−s

2
`−s

2
k

2π

(
55(s3

` + s3
k) + 73(s` + sk + s2

`sk + s`s
2
k)
)

+ 3b 3
2
√

2

∫ +∞

0
t2
(
2− erfc(t+ s`)

)
erfc(t+ sk)dt

+ b
3
2

36
√

2π

∫ 0

−∞

[(
2− erfc(t− sk)

)
e−(t−s`)2

p(t, s`)− erfc(t− s`)e−(t−sk)2
p(t, sk)

]
dt,

p(t, s) = −3s + 22s3 − 8s5 + t(21− 66s2 + 16s4) + t2(57s− 50s3) + t3(−193 + 62s2)− 70t4s + 50t5.

(d) (joint fluctuations at the edge) Let α > −1, b > 0, m ∈ N>0 and s1, . . . , sm ∈ R be fixed, and for
n ∈ N>0, define

r` = b−
1

2b

(
1 +
√

2b s`√
n

) 1
2b

, ` = 1, . . . ,m.

Consider the random variables

N` := N(r`)− (n+ c1(s`)
√
n)√

c2(s`) n1/4
, ` = 1, . . . ,m, (1.23)

where c1 is given by (1.20) and c2 is given by (1.21). As n → +∞, (N1, . . . ,Nm) convergences
in distribution to a multivariate normal random variable of mean (0, . . . , 0) and whose covariance
matrix Σ is given by

Σ`,` = 1, Σ`,k = Σk,` =
c(1,1)(s`, sk)√
c2(s`)

√
c2(sk)

, 1 ≤ ` < k ≤ m,

where c(1,1)(s`, sk) is given by (1.17).

Remark 1.6. Some of the results contained in Corollary 1.5 were already known:

• In [31, eq (70)], Lee and Riser obtained second-order asymptotics for the number of points lying
outside the droplet of the Ellictic Ginibre ensemble (in particular, the coefficients c1(0)|(b,α)=(1,0)
and d1(0)|(b,α)=(1,0) of part (c) above were contained in their results).

• Given a Borel set A, let NA := #{zj : zj ∈ A}. In [10], Charles and Estienne proved that if A
is independent of n, has smooth boundary and lies strictly in the bulk of the Ginibre ensemble,
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the cumulants {κj(A)}+∞
j=1 enjoy an all-order expansion of the form

κj(A) =


αj,0n +

∑N
k=1 αj,kn

1−k +O(n−N ), if j = 1,∑N
k=1 αj,kn

1−k +O(n−N ), if j is odd and j ≥ 3,
βj,0n

1
2 +

∑N
k=1 βj,kn

1
2−k +O(n−N− 1

2 ), if j is even,
(1.24)

where N ∈ N is arbitrary. Furthermore, the coefficients αj,0 and βj,0 were computed explicitly.
It can be verified (see [11, Corollary 1.4 (a)]) that (1.14) is consistent with (1.24): for m = 1
and s1 = 0, we have ∂juC1

∣∣
u=0 = 0 for j ≥ 2, ∂juC2

∣∣
u=0 = 0 = ∂juC4

∣∣
u=0 = 0 for j odd, and

∂juC3
∣∣
u=0 = 0 for j even.

• Second order asymptotics for the cumulants {κj}+∞
j=1 (i.e. the case m = 1) were obtained in

[29, eqs (55)–(67)] for general b > 0 and α > −1, both in the bulk and the edge regimes.

• Third order asymptotics for the cumulants {κj}+∞
j=1 (i.e. the case m = 1) were obtained in

[24, Remark 4] for the Ginibre case, and the leading coefficient c(1,1)(s`, sk)|(b,α)=(1,0) (given in
(1.17) for the bulk and in (1.22) for the edge) was obtained in [24, Proposition 2.3]. Parts (b)
and (d) above, when specialized to (b, α) = (1, 0), were also already known from [24, Proposition
2.3].

• Part (a) with m = 1 and s1 = 0 and part (c) with m = 1 and general s1 ∈ R were already
known from [11, Corollary 1.4].

Proof of Corollary 1.5. Proof of parts (a) and (c): The asymptotics (1.14) and (1.19) directly follow
from (1.10), (1.12) and (1.13). The simplified asymptotics for E[N(r`)], Var[N(r`)], and Cov(N(r`),N(rk))
are then obtained by performing a long but straightforward computation. Proof of part (d): Let
t1, . . . , tm ∈ R be arbitrary but fixed. Note that c2(s) > 0 for s ∈ R, because c′2(s) = 2−3/2

√
b(erfc(s)−

2)erfc(s) < 0 and lims→+∞ c2(s) = 0. By Theorem 1.3, we know that (1.11) holds uniformly for
u1, . . . , um ∈ {z ∈ C : |z| ≤ δ} for a certain δ > 0. Hence, using Theorem 1.3 with

u` = t`√
c2(s`)n1/4

, ` = 1, . . . ,m,

we obtain

E
[ m∏
`=1

et`N`
]

= exp
(

1
2

∑
1≤`<k≤m

Σ`,kt`tk +O(n− 1
4 )
)
, as n→ +∞.

Thus the above asymptotics imply pointwise convergence in (t1, . . . , tm) ∈ Rm of E
[∏m

`=1 e
t`N`

]
to exp

( 1
2
∑

1≤`<k≤m Σ`,kt`tk
)

as n → +∞. This, in turn, implies by standard theorems that
(N1, . . . ,Nm) convergences in distribution to a multivariate normal random variable of mean ~0 and
covariance matrix Σ, which finishes the proof of (d). The proof of (b) is similar.

Determinants. Here we express E
[∏m

`=1 e
u`N(r`)

]
as a ratio of two determinants. Using that∏

1≤j<k≤n |zk − zj |2 is the product of two Vandermonde determinants, we obtain after standard
manipulations that

E
[ m∏
`=1

eu`N(r`)
]

= 1
n!Zn

∫
C
. . .

∫
C

∏
1≤j<k≤n

|zk − zj |2
n∏
j=1

w(zj)d2zj

= 1
Zn

det
(∫

C
zjzkw(z)d2z

)n−1

j,k=0
(1.25)
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= 1
Zn

(2π)n
n−1∏
j=0

∫ +∞

0
u2j+1w(u)du, (1.26)

where the weight w is defined by

w(z) := |z|2αe−n|z|
2b
ω(|z|), ω(x) :=

m∏
`=1

{
eu` , if x < r`,

1, if x ≥ r`.
(1.27)

Formula (1.26) directly follows from (1.25) and the fact that w is rotation-invariant. Indeed, since
w(z) = w(|z|), the integral

∫
C z

jzkw(z)d2z is 0 for j 6= k and is 2π
∫ +∞

0 u2j+1w(u)du for j = k. So
only the main diagonal contributes for the determinants in (1.25).

Related works. We note from (1.25) that the problem of determining the large n asymptotics of
E
[∏m

j=1 e
ujN(rj)] can equivalently be seen as a problem of obtaining large n asymptotics for an n×n

determinant whose weight is supported on C, rotation-invariant, and with m merging discontinuities
along circles. For Theorem 1.2, the discontinuities are merging in the bulk, while for Theorem 1.3
the discontinuities are merging at the edge.

The one-dimensional analogue of this merging of discontinuities has been studied by several
authors in the context of Toeplitz, Hankel and Toeplitz+Hankel determinants. Large n asymptotics
of n×n Toeplitz determinants with two merging discontinuities were first obtained in the important
works [19, 20]. In both [19] and [20], the term of order 1 in the asymptotics is characterized in terms
of the solution to a Painlevé V equation. The generalization of [20] to the case where an arbitrary
number of discontinuities are merging is a challenging problem and only recently important progress
has been made [23]. Toeplitz+Hankel determinants with merging singularities have also recently been
studied in [26, 18], and some applications of these results are given in [17]. In the aforementioned
works, the discontinuities are merging in the bulk. Hankel determinants with merging discontinuities
at the edge are also related to the Painlevé theory, see [45, 35] for soft edges, [36] for a hard edge,
and e.g. [16, 13, 12] for studies on related Fredholm determinants. It is interesting to note that,
in contrast to these works, the asymptotics obtained in Theorems 1.2 and 1.3 for merging circular
discontinuities do not involve transcendental functions.

Let us also discuss related results on determinants with singularities in a two-dimensional setting.
The works [10, 30, 24, 11] were already mentioned at the beginning of the introduction and deal with
determinants having (non-merging) discontinuities. Beyond determinants with discontinuities, deter-
minants with root-type singularities and related planar orthogonal polynomials have also attracted
considerable attention in recent years [5, 7, 32, 44, 6, 33, 34, 21]. The analogues of Theorems 1.2 and
1.3 for planar root-type singularities can be found in [21, Theorem 1.5] (two merging singularities in
the bulk) and [21, Theorem 1.14] (an arbitrary number of merging singularities at the edge).

2 Proof of Theorem 1.2
Recall that ω was defined in (1.27). For convenience, let us rewrite it as

ω(x) =
m+1∑
`=1

ω`1[0,r`)(x) =
m+1∑
`=1

Ω`1[r`−1,r`)(x), (2.1)
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where rm+1 := +∞ and

ω` :=


eu`+...+um − eu`+1+...+um , if ` < m,

eum − 1, if ` = m,

1, if ` = m+ 1,
Ω` =

m+1∑
j=`

ωj =
{
eu`+...+um , if ` ≤ m,
1 if ` = m+ 1.

(2.2)

The starting point of our proof is the following formula:

ln En =
n∑
j=1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, (2.3)

where En := E
[∏m

`=1 e
u`N(r`)

]
and γ(a, z) is the incomplete gamma function

γ(a, z) =
∫ z

0
ta−1e−tdt.

The identity (2.3) can easily be derived from (1.26) and was also obtained in [11, eqs (1.23) and (1.26)].
We infer from (2.3) that the asymptotics of γ(a, z) as z → +∞ uniformly for a ∈ [ 1+α

b , z
br2b

1
+ α

b ] are
needed to obtain large n asymptotics for En — we recall these asymptotics in Appendix A.

In (2.3) and below, ln always denotes the principal branch of the logarithm.
Our proof strategy follows [11]. Let us define

j− := d bnr2b

1+ε − αe, j+ := b bnr2b

1−ε − αc,

where ε > 0 is independent of n. We assume that ε is sufficiently small such that

br2b

1− ε <
1

1 + ε
,

so that we can write

ln En = S0 + S1 + S2 + S3, (2.4)

where

S0 =
M ′∑
j=1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, S1 =

j−−1∑
j=M ′+1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, (2.5)

S2 =
j+∑
j=j−

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, S3 =

n∑
j=j++1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
. (2.6)

In the above, M ′ > 0 is an integer independent of n. For j = 1, . . . , n and k = 1, . . . ,m, we also
define aj := j+α

b , zk := nr2b
k and

λj,k := zk
aj

= bnr2b
k

j + α
, λj := bnr2b

j + α
, ηj,k := (λj,k − 1)

√
2(λj,k − 1− lnλj,k)

(λj,k − 1)2 . (2.7)

Lemma 2.1. For any x1, . . . , xm ∈ R, there exists δ > 0 such that

S0 = M ′ ln Ω1 +O(e−cn), as n→ +∞, (2.8)

uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.
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Proof. We infer from (2.5) and Lemma A.1 that

S0 =
M ′∑
j=1

ln
(m+1∑

`=1
ω`
[
1 +O(e−cn)

])
=

M ′∑
j=1

ln Ω1 +O(e−cn), as n→ +∞.

In the above, the error terms before the second equality are independent of u1, . . . , um, so the claim
follows.

Lemma 2.2. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xm ∈ R, there exists δ > 0 such that

S1 = (j− −M ′ − 1) ln Ω1 +O(e−cn), S3 = O(e−cn),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.

Proof. The proof is identical to the proof of [11, Lemma 2.2], so we omit it.

We now focus on S2. Let M := M ′
√

lnn. For the analysis we need to split S2 as follows

S2 = S
(1)
2 + S

(2)
2 + S

(3)
2 , S

(v)
2 :=

∑
j:λj∈Iv

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, v = 1, 2, 3, (2.9)

where

I1 = [1− ε, 1− M√
n

), I2 = [1− M√
n
, 1 + M√

n
], I3 = (1 + M√

n
, 1 + ε].

From (2.9), we see that the large n asymptotics of {S(v)
2 }v=1,2,3 involve the asymptotics of γ(a, z)

when a→ +∞, z → +∞ with λ = z
a ∈ [1− ε, 1 + ε]. These sums can also be rewritten using

∑
j:λj∈I3

=
g−−1∑
j=j−

,
∑

j:λj∈I2

=
g+∑
j=g−

,
∑

j:λj∈I1

=
j+∑

j=g++1
, (2.10)

where g− := d bnr2b

1+ M√
n

− αe, g+ := b bnr2b

1− M√
n

− αc.

It turns out that S(1)
2 , S(2)

2 and S
(3)
2 have oscillatory asymptotics as n → +∞. To handle these

oscillations, we follow [11] and introduce the following quantities:

θ
(n,M)
− := g− −

(
bnr2b

1 + M√
n

− α
)

=
⌈
bnr2b

1 + M√
n

− α
⌉
−
(
bnr2b

1 + M√
n

− α
)
,

θ
(n,M)
+ :=

(
bnr2b

1− M√
n

− α
)
− g+ =

(
bnr2b

1− M√
n

− α
)
−
⌊
bnr2b

1− M√
n

− α
⌋
.

Note that θ(n,M)
− , θ

(n,M)
+ ∈ [0, 1) are oscillatory but remain bounded as n→ +∞.

Lemma 2.3. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xm ∈ R, there exists δ > 0 such that

S
(1)
2 = O(n−10),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.
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Proof. Using (2.9) and Lemma A.2, we get

S
(1)
2 =

∑
j:λj∈I1

ln
(

1 +
m∑
`=1

ω`

[
1
2erfc

(
− ηj,`

√
aj/2

)
−Raj (ηj,`)

])
.

Furthermore, for all sufficiently large n we have

ηj,` = λj,` − 1 +O((λj,` − 1)2) ≤ − M√
n

+O( 1√
n

), − ηj,`
√
aj/2 ≥ Mrb√

2 +O(1), (2.11)

uniformly for j ∈ {j : λj ∈ I1}. Hence, for sufficiently large M ′ we have

Raj (ηj,`) = O(e− r
2bM2

4 ) = O(n−11), 1
2erfc

(
− ηj,`

√
aj/2

)
= O(e− r

2bM2
4 ) = O(n−11),

as n→ +∞ uniformly for j ∈ {j : λj ∈ I1}. Thus, by (2.10),

S
(1)
2 = O(n−10), as n→ +∞. (2.12)

The error terms in (2.11) are independent of ω1, . . . , ωm, and therefore the error term in (2.12) is
uniform for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.

Lemma 2.4. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xm ∈ R, there exists δ > 0 such that

S
(3)
2 =

(
br2bn− j− − bMr2b√n+ bM2r2b − α+ θ

(n,M)
− − bM3r2bn−

1
2

)
ln Ω1 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.

Proof. The claim can be proved in a similar way as Lemma 2.3. Using (2.9) and Lemma A.2, we
obtain

S
(3)
2 =

∑
j:λj∈I3

ln
(

1 +
m∑
`=1

ω`

[
1
2erfc

(
− ηj,`

√
aj/2

)
−Raj (ηj,`)

])
.

Since for all sufficiently large n we have

ηj,` = λj,` − 1 +O((λj,` − 1)2) ≥ M√
n

+O( 1√
n

), − ηj,`
√
aj/2 ≤ −Mrb√

2 +O(1),

uniformly for j ∈ {j : λj ∈ I3}, we can choose M ′ large enough such that

Raj (ηj,`) = O(e− r
2bM2

4 ) = O(n−10), 1
2erfc

(
− ηj,`

√
aj/2

)
= 1−O(e− r

2bM2
4 ) = 1−O(n−10),

as n→ +∞ uniformly for j ∈ {j : λj ∈ I3}, and thus, by (2.10),

S
(3)
2 =

g−−1∑
j=j−

ln Ω1 +O(n−9) = (g− − j−) ln Ω1 +O(n−9).

The claim now follows from
g−−1∑
j=j−

1 = g− − j− =
(
bnr2b

1 + M√
n

− α
)

+ θ
(n,M)
− − j−

= br2bn− j− − bMr2b√n+ bM2r2b − α+ θ
(n,M)
− − bM3r2bn−

1
2 +O(M4n−1), as n→ +∞.
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We now turn to the asymptotic analysis of S(2)
2 . For all k ∈ {1, . . . ,m} and j ∈ {j : λj ∈ I2} =

{g−, . . . , g+}, define

Mj,k :=
√
n(λj,k − 1), Mj :=

√
n(λj − 1).

Note that Mj,k and Mj decrease as j increases. Since I2 = [1− M√
n
, 1 + M√

n
], as n→ +∞ the points

Mg−,k, . . . ,Mg+,k run over the interval[√
n
(
( rkr )2b(1− M√

n
)− 1

)
,
√
n
(
( rkr )2b(1 + M√

n
)− 1

)]
≈ [−M +

√
2r−b sk,M +

√
2r−b sk]

for each k ∈ {1, . . . ,m}, and the points Mg− , . . . ,Mg+ run over the interval [−M,M ]. For the large
n asymptotics of S(2)

2 we will need the following lemma.

Lemma 2.5. (Taken from [11, Lemma 2.7]) Let f ∈ C3(R) be a function such that |f |, |f ′|, |f ′′|, |f ′′′|
are bounded. As n→ +∞ we have
g+∑
j=g−

f(Mj) = br2b
∫ M

−M
f(t)dt

√
n− 2br2b

∫ M

−M
tf(t)dt+

(
1
2 − θ

(n,M)
−

)
f(M) +

(
1
2 − θ

(n,M)
+

)
f(−M)

+ 1√
n

[
3br2b

∫ M

−M
t2f(t)dt+

(
1
12 +

θ
(n,M)
− (θ(n,M)

− − 1)
2

)
f ′(M)
br2b −

(
1
12 +

θ
(n,M)
+ (θ(n,M)

+ − 1)
2

)
f ′(−M)
br2b

]
+O(M4n−1). (2.13)

Lemma 2.6. For any x1, . . . , xp ∈ R, there exists δ > 0 such that

S
(2)
2 = C̃

(M)
2
√
n+ C̃

(n,M)
3 + 1√

n
C̃

(n,M)
4 +O(M4n−1),

C̃
(M)
2 = br2b

∫ M

−M
f1(t)dt,

C̃
(n,M)
3 = br2b

∫ M

−M

(
− 2tf1(t) + f2(t)

)
dt+

(
1
2 − θ

(n,M)
−

)
f1(M) +

(
1
2 − θ

(n,M)
+

)
f1(−M),

C̃
(n,M)
4 = br2b

∫ M

−M

(
3t2f1(t)− 2tf2(t) + f3(t)

)
dt+

(
1
2 − θ

(n,M)
−

)
f2(M) +

(
1
2 − θ

(n,M)
+

)
f2(−M)

+
(

1
12 +

θ
(n,M)
− (θ(n,M)

− − 1)
2

)
f ′1(M)
br2b −

(
1
12 +

θ
(n,M)
+ (θ(n,M)

+ − 1)
2

)
f ′1(−M)
br2b ,

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where

g(x) = 1 +
m∑
`=1

ω`
2 erfc

(
− rb√

2
(x+

√
2 r−bs`)

)
, f1(x) = ln(g(x)),

f2(x) = 1
g(x)

m∑
`=1

−ω`e−
(x+
√

2r−bs`)2r2b
2

6rb
√

2π

(
5r2bx2 +

√
2rbxs` + 4s2

` − 2
)
,

f3(x) = −f2(x)2

2 + 1
g(x)

m∑
`=1

ω`e
− (x+

√
2r−bs`)2r2b

2

72r2b
√

2π

{
− 25r5bx5 − 35

√
2 r4bx4s` + r3bx3(73− 62s2

`)

+
√

2 r2bx2s`(33− 50s2
`) + 2rbx(3 + 18s2

` − 16s4
`)− 2

√
2s`(3− 22s2

` + 8s4
`)
}
.

14



Proof. Using (2.9) and Lemma A.2, we obtain

S
(2)
2 =

∑
j:λj∈I2

ln
(

1 +
m∑
`=1

ω`

[
1
2erfc

(
− ηj,`

√
aj/2

)
−Raj (ηj,`)

])
. (2.14)

For j ∈ {j : λj ∈ I2}, we have 1− M√
n
≤ λj = bnr2b

j+α ≤ 1 + M√
n

, −M ≤Mj ≤M , and

Mj,k = Mj +
√

2 r−bsk +
√

2 r−bskMj√
n

, k = 1, . . . ,m.

Furthermore, as n→ +∞ we have

ηj,` = (λj,` − 1)
(

1− λj,` − 1
3 + 7

36(λj,` − 1)2 +O((λj,` − 1)3)
)

= Mj,`√
n
−
M2
j,`

3n +
7M3

j,`

36n3/2 +O
(
M4

n2

)
,

= Mj +
√

2 r−bs`√
n

+ 1
3n

(√
2 r−bs`Mj −M2

j − 2r−2bs2
`

)
+ 1

3n3/2

(
Mj +

√
2 r−bs`

)( 7
12
(
Mj +

√
2 r−bs`

)2 − 2
√

2 r−bs`Mj

)
+O

(
M4

n2

)
(2.15)

and

−ηj,`
√
aj/2 = −Mj,`r

b
`√

2
+

5M2
j,`r

b
`

6
√

2
√
n
−

53M3
j,`r

b
`

72
√

2n
+O(M4n−

3
2 )

= − (Mj +
√

2 r−bs`)rb√
2

+ rb

12
√
n

(
5
√

2M2
j + 2r−bMjs` + 4

√
2r−2bs2

`

)
− rb

144n

(
53
√

2M3
j + 18r−bM2

j s` + 12
√

2 r−2bMjs
2
` + 56r−3bs3

`

)
+O(M4n−3/2),

(2.16)

uniformly for j ∈ {j : λj ∈ I2}. Hence, by (A.2), as n→ +∞ we have

Raj (ηj,`) = e−
(Mj+

√
2r−bs`)2r2b

2
√

2π

(
−1

3rb
√
n

−
10M3

j r
3b + 12

√
2M2

j r
2bs` + 12Mjr

bs2
` + 8

√
2s3
` + 3Mjr

b − 3
√

2s`
36r2bn

+O((1 +M6
j )n− 3

2 )
)

and

1
2erfc

(
− ηj,`

√
aj/2

)
= 1

2erfc
(
− rb√

2
(Mj +

√
2 r−bs`)

)
− e−

(Mj+
√

2r−bs`)2r2b

2

12
√
πrb
√
n

(
5
√

2r2bM2
j + 2rbMjs` + 4

√
2s2
`

)
+ e−

(Mj+
√

2r−bs`)2r2b

2

144
√
πr2bn

{
53
√

2r3bM3
j + 18r2bM2

j s` + 12
√

2rbMjs
2
` + 56s3

`

−
√

2
(
rbMj +

√
2s`
)(

5r2bM2
j +
√

2rbMjs` + 4s2
`

)2
}

+O
(
e−

(Mj+
√

2r−bs`)2r2b

2 (1 +M8
j )n− 3

2

)
,
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uniformly for j ∈ {j : λj ∈ I2}. The identity g(−
√

2r−bt) = H1(t; ~u,~s) in combination with Lemma
1.1 shows that g(x) > 0 for all x ∈ R; in particular, the functions f1(x), f2(x), f3(x) are well-defined
and real-valued for x ∈ R. Substituting the above asymptotics into (2.14) and using that the error
terms are suppressed by exponentials of the form e−cM

2
j , we obtain

S
(2)
2 = Σ(n)

1 + 1√
n

Σ(n)
2 + 1

n
Σ(n)

3 +O(n−1), as n→ +∞, (2.17)

where

Σ(n)
1 =

g+∑
j=g−

f1(Mj), Σ(n)
2 =

g+∑
j=g−

f2(Mj), Σ(n)
3 =

g+∑
j=g−

f3(Mj).

The functions fj , j = 1, 2, 3, satisfy the assumptions of Lemma 2.5. Moreover, f2(x), f3(x), and
their derivatives have exponential decay as x→ ±∞. Hence, by (2.13), we have

Σ(n)
1 = Σ1,2

√
n+ Σ1,3 + 1√

n
Σ1,4 +O(M4n−1),

1√
n

Σ(n)
2 = Σ2,3 + 1√

n
Σ2,4 +O(n−1), 1

n
Σ(n)

3 = 1√
n

Σ3,4 +O(n−1),

as n→ +∞, for some explicit Σ1,2,Σ1,3,Σ1,4,Σ2,3,Σ2,4,Σ3,4. A computation gives

Σ1,2 = C̃
(M)
2 , Σ1,3 + Σ2,3 = C̃

(n,M)
3 , Σ1,4 + Σ2,4 + Σ3,4 = C̃

(n,M)
4 ,

which is the claim.

We are now ready to derive the asymptotics of S2 as n→ +∞.

Lemma 2.7. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xp ∈ R, there exists δ > 0 such that

S2 =
(
br2bn− j−

)
ln Ω1 + C2

√
n+ C̃3 + 1√

n
C4 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where

C2 = br2b
[ ∫ 0

−∞
f1(t)dt+

∫ +∞

0

(
f1(t)− ln Ω1

)
dt

]
,

C̃3 =
(

1
2 − α

)
ln Ω1 + br2b

[ ∫ 0

−∞
(−2tf1(t) + f2(t))dt+

∫ +∞

0
(−2t[f1(t)− ln Ω1] + f2(t))dt

]
,

C4 = br2b
[ ∫ 0

−∞

(
3t2f1(t)− 2tf2(t) + f3(t)

)
dt+

∫ +∞

0

(
3t2(f1(t)− ln(Ω1))− 2tf2(t) + f3(t)

)
dt

]
.

Proof. It follows from Lemmas 2.3, 2.4 and 2.6 that

S2 =
(
br2bn− j−

)
ln Ω1 + Ĉ

(M)
2
√
n+ Ĉ

(n,M)
3 + 1√

n
Ĉ

(n,M)
4 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where

Ĉ
(M)
2 := C̃

(M)
2 − bMr2b ln Ω1,
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Ĉ
(n,M)
3 := C̃

(n,M)
3 +

(
bM2r2b − α+ θ

(n,M)
−

)
ln Ω1,

Ĉ
(n,M)
4 := C̃

(n,M)
4 − bM3r2b ln Ω1.

Provided M ′ is chosen sufficiently large, as n→ +∞ we get

Ĉ
(M)
2 = C2 +O(n−10), Ĉ

(n,M)
3 = C̃3 +O(n−10), Ĉ

(n,M)
4 = C4 +O(n−10),

and the claim follows.

End of the proof of Theorem 1.2. Let M ′ > 0 be sufficiently large such that Lemmas 2.2 and 2.7
hold. Using (2.4) and Lemmas 2.1, 2.2 and 2.7, we conclude that for any x1, . . . , xp ∈ R, there exists
δ > 0 such that

ln En = S0 + S1 + S2 + S3

= M ′ ln Ω1 + (j− −M ′ − 1) ln Ω1 +
(
br2bn− j−

)
ln Ω1 + C2

√
n+ C̃3 + 1√

n
C4 +O(M4n−1)

=
(
br2b ln Ω1

)
n+ C2

√
n+ C3 + 1√

n
C4 +O(M4n−1),

as n → +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where
C3 = C̃3 − ln Ω1. Using (1.4)–(1.7), (2.1) and (2.2), the constants C2, C3 and C4 can be rewritten
as in (1.9) after a change of variables.

3 Proof of Theorem 1.3
As in the proof of Theorem 1.2, our starting point is formula (2.3).

Let

j− := d n
1+ε − αe,

where ε > 0 is a small constant independent of n. Using (2.3), we write ln En in 3 parts

ln En = S0 + S1 + S2, (3.1)

with

S0 =
M ′∑
j=1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, S1 =

j−−1∑
j=M ′+1

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, (3.2)

S2 =
n∑

j=j−

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, (3.3)

where M ′ > 0 is a large integer independent of n. Recall the definition of Ω` in (2.2).

Lemma 3.1. For any x1, . . . , xm ∈ R, there exists δ > 0 such that

S0 = M ′ ln Ω1 +O(e−cn), as n→ +∞, (3.4)

uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.

Proof. The proof is identical to the proof of Lemma 2.1.
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Lemma 3.2. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xm ∈ R, there exists δ > 0 such that

S1 = (j− −M ′ − 1) ln Ω1 +O(e−cn),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.
Proof. The claim follows as in Lemma 2.2.

We now focus on S2. For j = 1, . . . , n and k = 1, . . . ,m, define aj , zk, λj,k, λj and ηj,k as in (2.7)
with r replaced by b− 1

2b , i.e.

λj,k := zk
aj

= bnr2b
k

j + α
, λj := n

j + α
, ηj,k := (λj,k − 1)

√
2(λj,k − 1− lnλj,k)

(λj,k − 1)2 ,

with aj := j+α
b , zk := nr2b

k and r1, . . . , rm as in the statement of Theorem 1.3. Let M := M ′
√

lnn.
We split S2 in two pieces as follows

S2 = S
(2)
2 + S

(3)
2 ,

where

S
(v)
2 =

∑
j:λj∈Iv

ln
(

1 +
m∑
`=1

ω`
γ( j+αb , nr2b

` )
Γ( j+αb )

)
, v = 2, 3, (3.5)

and

I2 = [ 1
1+α

n
, 1 + M√

n
], I3 = (1 + M√

n
, 1 + ε].

The sums S(2)
2 and S

(3)
2 can also be rewritten using

∑
j:λj∈I3

=
g−−1∑
j=j−

,
∑

j:λj∈I2

=
n∑

j=g−

, (3.6)

where g− := d n
1+ M√

n

− αe. Let us also define

θ
(n,M)
− := g− −

(
n

1 + M√
n

− α
)

=
⌈

n

1 + M√
n

− α
⌉
−
(

n

1 + M√
n

− α
)
.

Clearly, θ(n,M)
− ∈ [0, 1).

Lemma 3.3. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xm ∈ R, there exists δ > 0 such that

S
(3)
2 =

(
n− j− −M

√
n+M2 − α+ θ

(n,M)
− −M3n−

1
2

)
ln Ω1 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , um ∈ {z ∈ C : |z − xm| ≤ δ}.
Proof. The proof follows the proof of Lemma 2.4, except that at the last step we need to use

g−−1∑
j=j−

1 = g− − j− =
(

n

1 + M√
n

− α
)

+ θ
(n,M)
− − j−

= n− j− −M
√
n+M2 − α+ θ

(n,M)
− −M3n−

1
2 +O(M4n−1), as n→ +∞. (3.7)
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For k ∈ {1, . . . ,m} and j ∈ {j : λj ∈ I2} = {g−, . . . , n}, we define Mj,k :=
√
n(λj,k − 1) and

Mj :=
√
n(λj − 1).

Lemma 3.4. (Taken from [11, Lemma 2.7]) Let f ∈ C3(R) be a function such that |f |, |f ′|, |f ′′|, |f ′′′|
are bounded. As n→ +∞ we have

n∑
j=g−

f(Mj) =
∫ M

0
f(t)dt

√
n− 2

∫ M

0
tf(t)dt+

(
1
2 − θ

(n,M)
−

)
f(M) +

(
1
2 + α

)
f(0)

+ 1√
n

[
3
∫ M

0
t2f(t)dt+

(
1
12 +

θ
(n,M)
− (θ(n,M)

− − 1)
2

)
f ′(M)− 1 + 6α+ 6α2

12 f ′(0)
]

+O(M4n−1).

(3.8)

Lemma 3.5. For any x1, . . . , xp ∈ R, there exists δ > 0 such that

S
(2)
2 = C̃

(M)
2
√
n+ C̃

(n,M)
3 + 1√

n
C̃

(n,M)
4 +O(M4n−1),

C̃
(M)
2 =

∫ M

0
f1(t)dt,

C̃
(n,M)
3 =

∫ M

0

(
− 2tf1(t) + f2(t)

)
dt+

(
1
2 − θ

(n,M)
−

)
f1(M) +

(
1
2 + α

)
f1(0),

C̃
(n,M)
4 =

∫ M

0

(
3t2f1(t)− 2tf2(t) + f3(t)

)
dt+

(
1
2 − θ

(n,M)
−

)
f2(M) +

(
1
2 + α

)
f2(0)

+
(

1
12 +

θ
(n,M)
− (θ(n,M)

− − 1)
2

)
f ′1(M)− 1 + 6α+ 6α2

12 f ′1(0),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where g, f1,
f2 and f3 are as in the statement of Lemma 2.6 with r replaced by b− 1

2b .
Proof. The first part of the proof is identical to the beginning of the proof of Lemma 2.6, except that
one needs to replace r and g+ by b− 1

2b and n, respectively. In particular, we find

S
(2)
2 = Σ(n)

1 + 1√
n

Σ(n)
2 + 1

n
Σ(n)

3 +O(n−1), as n→ +∞, (3.9)

where Σ(n)
1 , Σ(n)

2 and Σ(n)
3 are in the proof of Lemma 2.6 with r and g+ replaced by b−

1
2b and

n, respectively. The asymptotics of these sums can then be obtained using Lemma 3.4. After a
computation, we then find the claim.

Lemma 3.6. The constant M ′ can be chosen sufficiently large such that the following holds. For
any x1, . . . , xp ∈ R, there exists δ > 0 such that

S2 = (n− j−) ln Ω1 + C2
√
n+ C̃3 + 1√

n
C4 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where

C2 =
∫ +∞

0

(
f1(t)− ln Ω1

)
dt,

C̃3 =
(

1
2 − α

)
ln Ω1 +

∫ +∞

0
(−2t[f1(t)− ln Ω1] + f2(t))dt+

(
1
2 + α

)
f1(0),

C4 =
∫ +∞

0

(
3t2(f1(t)− ln(Ω1))− 2tf2(t) + f3(t)

)
dt− 1 + 6α+ 6α2

12 f ′1(0) +
(

1
2 + α

)
f2(0).
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Proof. By combining Lemmas 3.3 and 3.5, we have

S2 = (n− j−) ln Ω1 + Ĉ
(M)
2
√
n+ Ĉ

(n,M)
3 + 1√

n
Ĉ

(n,M)
4 +O(M4n−1),

as n→ +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where

Ĉ
(M)
2 := C̃

(M)
2 −M ln Ω1,

Ĉ
(n,M)
3 := C̃

(n,M)
3 +

(
M2 − α+ θ

(n,M)
−

)
ln Ω1,

Ĉ
(n,M)
4 := C̃

(n,M)
4 −M3 ln Ω1.

Provided M ′ is chosen sufficiently large, as n→ +∞ we get

Ĉ
(M)
2 = C2 +O(n−10), Ĉ

(n,M)
3 = C̃3 +O(n−10), Ĉ

(n,M)
4 = C4 +O(n−10),

and the claim follows.

End of the proof of Theorem 1.3. Let M ′ > 0 be sufficiently large such that Lemmas 3.2 and 3.6
hold. Using (3.1) and Lemmas 3.1, 3.2 and 3.6, we conclude that for any x1, . . . , xp ∈ R, there exists
δ > 0 such that

ln En = S0 + S1 + S2

= M ′ ln Ω1 + (j− −M ′ − 1) ln Ω1 + (n− j−) ln Ω1 + C2
√
n+ C̃3 + 1√

n
C4 +O(M4n−1)

= n ln Ω1 + C2
√
n+ C3 + 1√

n
C4 +O(M4n−1),

as n → +∞ uniformly for u1 ∈ {z ∈ C : |z − x1| ≤ δ}, . . . , up ∈ {z ∈ C : |z − xp| ≤ δ}, where
C3 = C̃3 − ln Ω1. Using (1.4)–(1.7), (2.1) and (2.2), the constants C2, C3 and C4 can be rewritten
as in (1.11) after a simple change of variables. This concludes the proof of Theorem 1.3.

A Uniform asymptotics of the incomplete gamma function
Lemma A.1. (From [38, formula 8.11.2]). Let a > 0 be fixed. As z → +∞,

γ(a, z) = Γ(a) +O(e− z2 ).

Lemma A.2. (From [43, Section 11.2.4]). We have

γ(a, z)
Γ(a) = 1

2erfc(−η
√
a/2)−Ra(η), Ra(η) = e−

1
2aη

2

2πi

∫ ∞
−∞

e−
1
2au

2
g(u)du,

where erfc is defined in (1.8),

λ = z

a
, η = (λ− 1)

√
2(λ− 1− lnλ)

(λ− 1)2 , g(u) := dt

du

1
λ− t

+ 1
u+ iη

, (A.1)

with t and u being related by the bijection t 7→ u from L := { θ
sin θ e

iθ : −π < θ < π} to R given by

u = −i(t− 1)

√
2(t− 1− ln t)

(t− 1)2 , t ∈ L,
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and the principal branch is used for the roots. Furthermore, as a→ +∞, uniformly for z ∈ [0,∞),

Ra(η) ∼ e−
1
2aη

2

√
2πa

∞∑
j=0

cj(η)
aj

, (A.2)

where all coefficients cj(η) are bounded functions of η ∈ R (i.e. bounded for λ ∈ [0,+∞)). The first
two coefficients are given by (see [43, p. 312])

c0(η) = 1
λ− 1 −

1
η
, c1(η) = 1

η3 −
1

(λ− 1)3 −
1

(λ− 1)2 −
1

12(λ− 1) .

In particular, the following hold:
(i) Let z = λa and let δ > 0 be fixed. As a→ +∞, uniformly for λ ≥ 1 + δ,

γ(a, z) = Γ(a)
(
1 +O(e−

aη2
2 )
)
.

(ii) Let z = λa. As a→ +∞, uniformly for λ in compact subsets of (0, 1),

γ(a, z) = Γ(a)O(e−
aη2

2 ).
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