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THE MIGHTY FORCE: STATISTICAL INFERENCE
AND HIGH-DIMENSIONAL STATISTICS

ERIK AURELL, JEAN BARBIER, AURELIEN DECELLE, AND ROBERTO MULET

Full well hath Clifford play’d the orator,
Inferring arguments of mighty force.
— Henry VI, Part 3, Act II, Scene II.

1. INTRODUCTION

Inference is an English noun formed on the verb infer, from the Latin inferre, meaning to carry
(fero) in or into (in-) something. That originally concrete meaning can still be felt in the portal
quote of this chapter'. In modern non-technical use the meaning of inference is more abstract, and
rendered either as “A conclusion reached on the basis of evidence and reasoning” or as “The process
of reaching such a conclusion” [1]. In scientific language these translate into characteristics of a
phenomenon that are not observed directly, but which are arrived at (inferred) from observations
with the help of mathematical and/or statistical methods, and those methods themselves. We
will discuss three prominent examples of inference in both senses of modern usage, and how they
naturally open up new perspectives and possibilities.

Statistical physics is played out on the terrain between individual items and distributions over
properties of items. The canonical example is the Langevin equation which describes the motion of
a Brownian particle interacting with a thermal reservoir, and the Fokker-Planck equation which
describes the evolution of the distribution of possible positions and velocities of the particle. In
inference the goal can analogously be to reach one conclusion or retrieve one object, or to establish
characteristics of a distribution over objects. The second kind of inference is also called statistical
inference. We will here discuss inference in this sense.

In the “big-data era”, statistical inference of different kinds is routinely performed based on
data sets containing millions or even billions of samples, which themselves may live in spaces of
tremendously large dimensionality. In this realm, classical statistical wisdom and tools fail: new
mathematics and algorithms able to tackle the phenomena emerging in this regime are necessary.
In the very same way, phase transitions were understood to emerge from the complexity (i.e.
high-dimensionality) of physical systems more than a century ago, whose understanding required
to develop statistical mechanics. It turns out that this is more than an analogy as the theory and
methods to perform high-dimensional inference are directly connected to statistical mechanics as
we will see in this chapter (and others in the book [2]). High-dimensional inference itself is part of
a broader statistical theory of complex systems, referred to as high-dimensional statistics, a very
active research field at the crossroads of (statistical) physics, computer science, information theory
and machine learning, and which is the powerhouse of modern information processing systems.

1To appear as a contribution to the edited volume ”Spin Glass Theory & Far Beyond - Replica Symmetry
Breaking after 40 Years”, World Scientific.
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Let us now dive in some specific models whose richness, generality and wide applicability make
them ideal candidates to showcase modern high-dimensional inference and its links with physics. A
canonical example of statistical inference is to retrieve the interaction graph and the parameters
of the interactions of an energy function of the Ising or Potts model type. In statistics the first
task would be called model learning and the second parameter inference. All together the task
would be referred to as learning and inference in an exponential family [3]. The set of Gibbs-
Boltzmann distributions with unknown energy function is the model family, which in statistics
is called exponential because the energy function appears in the exponent. In statistical physics
the term inverse Ising/Potts model has been used [4]. We prefer to avoid this term since it is
now well established, and discussed in detail in [4], that the best learning and inference procedure
is not (or is rarely) to infer model parameters from means and correlations. We will instead
use the term Direct Coupling Analysis (DCA) introduced in [5] which does not have the same
restrictive connotation, and which encompasses several new aspects which have turned out to be
very important in applications. Below we will discuss the distinguishing characteristics of DCA, its
main methods applied, and successes in biological data analysis.

After DCA we will move towards the problem of community detection (COMDEC) — or
graph partitioning —, the paradigmatic model of inference from an observed graph. The main
focus of COMDEC is to partition a given graph into two or more communities, possibly without
prior knowledge on the number of hidden communities or their statistical properties, such as the
connectivity among the different communities or their fractions of nodes. In this model, whose
study has quickly become a whole field of research [6, 7], one notable success of statistical physics
has been to exhibit in the celebrated Stochastic Block Model (SBM) the notion of phase where a
given graph could not be distinguished by any mean from a purely random structure-less graph
despite the fact that it has been built according to a process dependent on hidden communities
(i.e. sets of nodes sharing the same property). Of course, this is true in the thermodynamic limit
where the number of nodes diverges. Digging deeper in the landscape of solutions of the problem,
it has been then demonstrated the presence of interesting regimes such as when the true partition
can be recovered information-theoretically, but is impossible in practice to retrieve without prior
knowledge [8]. Other approaches from the physics community [9] have also emphasized the presence
of retrieval and spin glass phases, suggesting that the design of new methods for clustering should
be done with great care. We refer to [2] for a discussion of phase transitions in high-dimensional
inference and learning and in combinatorial optimization.

The Gibbs-Boltzmann distribution which underlies both DCA and COMDEC is the ther-
modynamic equilibrium of a system which exchanges energy with a thermal reservoir. In the
weak-interaction limit this distribution is the fixed point of a stochastic process which satisfies
detailed balance, e.g. the Metropolis-Hastings process. The parameters of the distribution are then
related to the process rates and can be assimilated to causes, in opposition to correlations, which
can be assimilated to effects®. Non-equilibrium dynamics which do not obey detailed balance on
the other hand typically lead to distributions qualitatively different from Gibbs-Boltzmann, for a
famous instance, see [10]. As a third contribution of statistical physics to statistical inference we
will review attempts to extend the cavity method in order to describe data which is not generated
by a process in detailed balance, and/or where one has access to a time series. This dynamic cavity
method (DYNCAV) brings specific challenges compared to standard (static) cavity, which we will
outline together with some advances and current problems.

2This relation is the likely backdrop to “Direct Coupling” in the acronym DCA.
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To sum up, the purpose of the present chapter is to showcase a selection of contributions from
the spin glass community at large to high-dimensional statistics, by focusing on three important
“eraph-based” models and methodologies having deeply impacted the field: inference of graphs
(DCA), inference from graphs (COMDEC), and inference from graphs encoding causal relations,
which is one of the motivations of (DYNCAV).

2. DIRECT COUPLING ANALYSIS (DCA)

2.1. Definition, under-sampling, and evaluation criteria. In this chapter we use DCA as
the collective term encompassing a wide array of methods to arrive at point estimates of parameters
in the exponential family of the Gibbs-Boltzmann distribution of Ising or Potts models. Point
estimates means that the outcome of the analysis is one numerical value for each parameter. Ising
and Potts models have pairwise Hamiltonians, which for Ising models are over spins (s; = +1)
(1) %]’h(S) = - Z hisi - Z Jijsisj-

7 i<j
Up to a re-definition of the parameters, spin variables are equivalent to Boolean variables b; € {0, 1}.
Potts models are analogously built on categorical variables z; € {1,2,...,¢}.

In equilibrium statistical mechanics the probability of a configuration s is the Gibbs-Boltzmann
distribution
1 1
2 = -—70 :
(2) Pan(s) 2700 exp ( T 50(s))

In inference temperature is not relevant as it can always be absorbed in a redefinition of the
parameters of the Hamiltonian. We will therefore from now on set kg7’ = 1. The normalization Z,
the partition function, is then a functional of the Hamiltonian only, and given by

3) 2(3.0) = Zexp (- Ain(s))

DCA, the basic task: Let D = {s(™},, .1/ a set of independent samples of configurations of an
Ising or Potts system, the parameters of which are unknown. The basic task of DCA is to infer the
parameters from D.

Obviously one could relax the assumption that the samples are independent. In most applications
where DCA has been used successfully, samples have almost surely not been independent. However,
dependence between samples is a complication and has been little investigated in the methodological
literature, except under the assumption that they have been generated by a dynamics of known
type (Glauber model [11,12] or parallel dynamics [13]). On the other hand, in this setting other
methods are available which take advantage of access to time series data cf. [14]. We will therefore
throughout assume that samples are independent draws from the same probability distribution.

The number of parameters of a general Ising model on N spins is N(N +1)/2, and correspondingly
larger for a Potts model. Each of the M samples consists of N Boolean variables (categorical
variables for the Potts model). It is easy to imagine that for many data sources, M can be of the
order of N, if not less. Such problems are under-sampled. Indeed, in the flagship application of
DCA to biological data reviewed below in Sect. 2.5, a protein typically consists of 10? — 103 amino
acids (N), a protein family would often consist of 10 — 10° proteins (M), and there are 20 amino
acids (q), hence a = ¢gM N /(¢g?N?) ~ 1. We find this sufficiently important to state it as
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DCA, distinguishing property: Real-world applications of DCA are usually under-sampled:
the amount of data is of the order of the number of parameters, and sometimes less. Any version
of DCA intended for practical use hence has to be evaluated in the under-sampled regime.

If the number of samples M is less than the number of parameters NV, it is not possible to infer all
parameters. A natural assumption is to then use supplementary conditions. Sparsity in general
refers to the situation where a fraction of all parameters are known to be zero; if the remaining
fraction of non-zero parameters is small enough, it is (in principle) possible to infer them. We here
only state the empirical fact that sparsity assumptions and L; penalties have (up to now) not
been very useful in DCA applications. Usually a much simpler L, penalty (which does not enforce
sparsity) has given more useful predictions. We posit that the reason is the following:

DCA, importance of criteria: In real-world applications of DCA one is rarely or never interested
in all the parameters. In practice, one is interested in a small subset of leading predictions, typically
the inferred parameters of largest numerical value.

We note that if the task is from the outset formulated as retrieving k largest parameters where £ is
much less than N2 and also less than M, the problem is no longer under-sampled. All successful
applications of DCA known to us are in fact of this type. The task of inferring k& largest parameters
in the Hamiltonian from M samples with some given inference procedure is a mathematically well-
defined problem. Some (not all) of the procedures to be reviewed below are statistically consistent,
meaning that given an infinite number of samples they will almost surely return the correct value.
A problem which has been much less studied is the spread around the correct value given finite
number of samples. We formulate this as

DCA, a problem in extreme value statistics: Given M independent samples from a Gibbs-
Boltzmann distribution of an Ising/Potts model and a DCA procedure, find the probability distribution
of the k largest inferred model parameters.

An obvious analogy showing that the problem is not trivial is the Marchenko-Pastur distribution
of empirical (sample) correlations from a distribution with given ensemble (model) correlations® [15].
An equally obvious complication is that computing correlations is a linear transformation of
the data®, while all DCA procedures are nonlinear transformations. For the pseudo-likelihood
maximization method (PLM, see below) and assuming that the Ising coupling parameters J;; are

independent random variables of typical amplitude N ‘%, the expected mean square error of the
inferred parameters was computed in [16] and [17] using the replica and cavity methods. More
recently this analysis was extended to the dilute case [18], i.e. when the known interaction matrix
is locally tree-like, again with the use of replica and cavity methods.

The full probability distribution of the retrieved parameters has to our knowledge only been
considered theoretically in [19], for J;; distributed as in the Sherrington-Kirkpatrick model, and
for an Ls-regularized naive mean-field inference, a DCA procedure which can be implemented

3Marchenko-Pastur relates the sample correlation matrix C* to the ensemble correlation C of the underlying
probability law. For models of the Ising/Potts type C is a function of the parameters J (forward Ising/Potts problem).
At the same time, some versions of DCA infer parameters J* from C* (inverse Ising/Potts problem solved by naive
mean-field or TAP). For these versions of DCA Marchenko-Pastur hence implies a complicated but in principle
precise probabilistic relation between J and J*. More generally, for versions of DCA that do not rely on correlations,
e.g. pseudo-likelihood maximization, there should be an analogous though so far imperfectly known probabilistic
relation between J and J* which does not go through ensemble and sample correlations.

4For simplicity, assume zero means.
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as a nonlinear matrix transformation [20]. Some numerical results for other and more uneven
distributions of interaction parameters were reported in [21]. We believe that the issue merits
further attention.

2.2. Thermodynamics, maximum likelihood, and max-entropy. As we have defined it
above, DCA has aspects not germane to equilibrium statistical mechanics. Nevertheless, a relation
obviously exists, and has been the source of inspiration for several important versions of DCA. Let
us start from the Helmholtz free energy at a conventional value of kgT = 1:

(4) F(J,h) =-log Z(J,h),
In the forward problem, the first and second order moments are given by derivatives of (4):
oOF oOF
(5) Xi = (si) = _8_m(J’h)’ ij = (sis;) = —@(J,h).
The correlation (covariance matrix) is defined by x;; = ¢;; — xiX; and can also be expressed as
?F
6 g = J,h).
(6) Xis = g on, OB

In inference the roles of the parameters J,h and the observables ¢, x are reversed: the latter are
now fixed, the former to be determined. As noted in [22] one can construct a thermodynamic
potential which is a function of the observables, the partial derivatives of which give the parameters.
That potential is a Legendre transform of the Helmholtz free energy with respect to both couplings
and fields:

(7) 8(¢.x) = min| - S hixi= X it - F (3, h)|

i<j

It is immediate that this is the entropy of the Gibbs-Boltzmann distribution (2) as function of
magnetizations and correlations. Given that § is a convex function, the Helmholtz free energy is
given by a second Legendre function of the entropy functional i.e.

(8) P =min [ = Xk - 5 0 - 56,30 |

i<j

From this follows a second type of variational equations:

(9) Jij = 9 6. hi--

a¢z]

Let us now assume M independent samples and the maximum likelihood criterion to infer parameters
from samples. According to this criterion the best estimate 8V based on the available data is
given by

(10) oML = arg max, p(z1,. ..,z | 0).

For numerical reasons, it is common practice to maximize the average logarithm of the likelihood

1
(11) Zp(J,h) = = logp(as,....ax | J,h).
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A penalty (for concreteness here Ly penalty) in maximizing log-likelihood means to maximize
instead

1
(12) Zp(J,h)x = i logp(D |J,h) - Z Ailhal? - Z Aijl ij.
7 1]
Clearly this is the same as maximum likelihood with a modified probability distribution
M
(13) pap(J h) ~[Jexp (—%’ﬁ,h(sm) RIS )\ij|Jij|2)-
i=1 i ]
For Ising parameters J,h we can write the average log-likelihood more concretely as
(14) Lp(I.h)x = Y hilsi),+ ) Jijsisg) + F(I.0) = 2o NilRif* = 30 Ayl Jiyl?
% i ? v
where e stands for empirical expectation value, i.e. (s;), = 77 M sgm) , etc. Since only empirical
expectation values enter in the function to be maximized it follows that the optimal parameter

values are determined only by them. This is true both with penalties and without. One says that
these empirical expectation values are sufficient statistics.

Let us now consider the case without penalties. Maximizing the likelihood (14) with respect to J
and h for given samples D = {s(™},,.)/ is then the same as the minimization of the right-hand
side of (7), but where the values of ensemble averages (the parameters in (7)) take now the values
of the sample averages (the parameters in (14)). We state this important fact as

Max-entropy principle: Mazimum-likelihood inference of parameters in an exponential family
18 equivalent to maximizing the entropy of a probability distribution given empirical expectation
values of the functions of the variables multiplying the parameters.

A large literature starting from Jaynes assigns an independent epistemological importance to
the max-entropy principle [23-25]. We rather subscribe to the alternative point of view that the
undisputed practical utility of max-entropy is most easily explained by the importance of the
maximum-likelihood inference criterion and the ubiquity of probability distributions in exponential
families. In statistics this side has been argued in the framework of information geometry [26,27].
An argument formulated in the language of DCA and applications to biological data analysis
can be found in [28]. From the point of view of thermodynamics and statistical mechanics the
most commonly held point of view is indeed that Gibbs-Boltzmann distributions have objective
existence, and are not only expressions of ignorance and/or limits on what empirical averages can
be determined. For a discussion with references to the literature on the foundations of statistical
mechanics, see [29)].

2.3. The two main DCA methods: nMF and PLM. Naive mean-field inference (nMF), or
simply mean-field inference, is a versatile and computationally efficient DCA procedure which can
be derived in several different ways. The most straight-forward is to say that it treats probability
distributions of the Ising/Potts type as if they were Gaussian probability distributions over
continuous variables. The matrix of the quadratic form of the Gaussian is the inverse correlation
matrix. The naive mean-field inference procedure applied to Ising variables is hence

(15) J’ZMF = _X_17

where x is the empirical correlation matrix and * indicates inferred value. When the problem is
under-sampled the empirical correlation matrix does not have full rank, and the inverse does not
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exist. Regularized nMF can hence be seen as regularized matrix inverse. Lo-regularized nMF is
explicitly so, in that it can be written as as well-defined (and simple) matrix transformation [29]. L;-
regularized nMF was used in the DCA context in [30], and can be computed by convex optimization
techniques. The breakthrough paper for DCA in biological applications [31] used a regularization
with pseudo-counts which is equivalent to adding a matrix proportional to the identity to the
empirical correlation matrix before taking the inverse. The naive mean-field inference formula
(15) was first obtained in [32]. Other ways to obtain it can be found therein and in the standard
methodological reference [4].

Pseudo-Likelihood Maximization (PLM) [33,34] is computationally more demanding than nMF
inference but, however, it has the advantage that it is statistically consistent. It has also proven
to be a more accurate predictor in many applications. PLM is an attempt to match parameters
not to the full probability distribution but only to the set of conditional probabilities of each
variable conditioned on all the others. In the context of exponential models, optimization of the
PseudolLikelihood function is particularly simple. The conditioned variables do not intervene in the
normalization constant and the parameters related to these variables cancel out. Indeed, for Ising
models the conditional probability of s; under the observation of the other variables s,; is

1
(16) p(si | sy) = [1+sltanh(h £ 3 Jysi )]
jj¢2
which only depends on the field h; and on the couplings {J;;};;j+. From this one can form the
log-pseudo-likelihood per sample,

. 1 1 m m
(17) gé({z]ij}j;j#i, hz) = M Zlog 5[1 + SE )tanh (hz + Z JZ]S§ ))]
m ]J

which can be optimized over its N parameters. The log-pseudo-likelihood can be regularized in the
same manner as log-likelihoods. The authors of [34], an article where the focus was on recovering
the sparsity structure, used an L; penalty. In most later applications of DCA instead an L, penalty
was used, following [35, 36].

It follows from above that the outcome of PLM is a set of values hZ ", one for each i, and a set
Jf,i?M’i, inLjM’j , two for each pair (ij). The underlying probability distribution on the other hand
only contains one parameter J;; for each pair (ij). As part of PLM one therefore needs an output
precedure. One possibility is to sum all the log-pseudo-likelihood functions (17) and maximize all
parameters at the same time. This substitutes N optimization problem on N parameters with
one optimization problem on N(N +1)/2 parameters. Typically this increases the computational
burden. An alternative procedure is to take for the final inferred parameters the averages of the
separately inferred values:

(18) JPLM (JPLMZ PLM,j)/Q

*,1] *,1] *,1]

In practice the second procedure is more used because it is computationally easier, and the first
has not led to more accurate predictions.

2.4. Advanced DCA methods. Naive mean-field inference is built on a mean-field approximation
of the thermodynamic potentials. This can be generalized by improving the approximation which
has been done by adding an Onsager reaction term. The resulting inference procedure is called
Thouless-Anderson-Palmer (TAP) [37] and substitutes the equality in (15) with a quadratic
transformation [32]. TAP inference has also been derived by methods of information geometry [38,39].
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A second type of generalization is obtained by starting from more complicated trial functions.
Considering all pair-wise trial functions together with correlation-response leads to an iterative
procedure called susceptibility propagation [40]. Later it was shown that the fixed point of suscepti-
bility propagation can be computed in closed form [41,42]. This gives an inference formula of the
same general form as (15) involving trancendental functions but still factorized over parameters to
be retrieved. For appropriately chosen models all the above methods outperform naive mean-field
inference. Still, these methods are limited when the samples are drawn from “clusterized” dataset,
such as low-temperature samples from the Ising model [43,44]. For a unified treatment, see [4].

A major advance in the analysis of PLM and similar DCA algorithms was obtained in [16,17,45,46]
building on earlier results in [34] and [47]. In all these papers were proven results of the type that
perfect structure recovery is achievable with only M ~ log N samples when the interaction graph
is sparse, that there is a gap between the smallest nonzero coupling and the set of strictly zero
couplings, and which successively weakened additional assumptions. In [45] it was shown for the
Regularized Interaction Screening Estimator (RISE) algorithm that if the goal is to recover top-k
predictions a gap is not needed, and in [46] a similar result was shown for PLM (in section S1
of Supplementary Material). The authors of [45] showed that RISE is asymptotically optimal (in
a certain sense) and rigorously better than PLM (under certain assumptions). In [16] a further
level of optimality was considered when some summary characteristics of the distributions over
parameters was assumed known, and the optimum was computed using the replica method. At
this time, all these methodological advances are however limited to bounded maximum interaction
strength and bounded degree of the interaction graph.

2.5. DCA in computational biology. The origins of the interest in DCA for biological data
analysis can be traced to maximum-entropy arguments advanced in [48]. In the terminology of
above, that paper proposed naive mean-field inference of an Ising model. Four years earlier, in a
paper never published in a major journal, and therefore for a long time not widely known, it was
proposed in [49] that the parameters of a Potts model inferred from protein sequences in a protein
family are good predictors of physical proximity. Such amino acid-amino acid spatial contacts
(residue-residue contacts) contain important information on protein structure, non-local in the
sequence. It can therefore be used (and was later used) as part of a protein structure prediction
pipeline. Residue-residue contacts also make sense as an evolutionary mechanism which contributes
to the total biological fitness of the organism. The technical term for such non-additive contributions
to biological fitness is epistasis. The relation between epistasis and DCA was reviewed in [50]
and [51].

The flavour of DCA used in [49] was maximum likelihood, computed by an iterative method. The
same problem was later addressed for a well-characterized family of bacterial signal transduction
pathways [5]. Since for that data it proved possible to predict physical contacts between enzymes
in the pathway which could be validated from other points of view, this was an important step
forward toward biological relevance. The DCA implemented in [5] was however susceptibility
propagation [40] and thus also fairly computationally costly. At the same time residue-residue
contacts were derived from tables of sequences by another method not explicitly in the DCA
family [52].

The first result using DCA to predict residue-residue contacts in proteins and which had wide
resonance used naive mean-field inference [31], with a regularization using pseudo-counts. DCA
built on mean-field inference with other regularization schemes were introduced in the same
application area in [20,30,53]. The second main type of DCA in computational biology has been
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pseudo-likelihood maximization [35,36,54], and has been considered somewhat superior to naive
mean-field inference in this application domain [55]. Later versions of DCA on the protein structure
prediction problem were meta-algorithms incorporating also other information sources [56-59];
although exhibiting higher performance they (and the earlier undiluted DCA methods) have more
recently been overtaken by Al/deep learning methods [60,61]. For other biological inference tasks
with less abundant training data and/or where the goal is to uncover new biology, DCA (usually
either mean-field of pseudolikelihood) remains an important tool cf. [62-68].

To end on a forward perspective, we consider human genome data. The human genome contains
about 3-10° nucleotides out of which about 60-10° are in exons (parts of genes that code for
proteins). About a decade ago several large meta-studies on the origin of human obesity were
published in leading journals where M (total number of patients) was on the order of hundred
of thousands or millions [69-71]. Those studies were mainly built on exon sequencing, and with
some filtering out of amino acids fixed or almost fixed in the whole human population, the effective
number of loci of variability (N) was on the order of millions. The under-sampling ratio (~ M/N)
was hence in these studies from order one to order 1072. We formulate the challenges which pose
themselves as

DCA, human-scale genomic data: 7o design smart speed-ups yielding interesting predictions
and are computationally feasible on the human exome scale (N ~ 10°) and eventually on the human
genome scale (N ~10°).

We note that determining the largest elements or set of largest elements of large correlation
matrices is known in computer science as “the light bulb problem”. The challenge can hence be
considered an analogous problem from the perspective of DCA. While the light bulb problem is not
computationally hard (the elementary algorithm scales as N?) it is still not trivial in practice when
N is in the range of millions or billions. Advanced algorithms are known to work in sub-quadratic
time, but with significant pre-factors, and only appear to become competitive for N as large as
105 [72].

2.6. From DCA to Restricted Boltzmann Machines. While all the previous approaches
to DCA are concerned with the inference of pairwise interactions of an underlying statistical
model, it is quite natural to consider generalizations that can also adjust for higher moments of
the distribution. The most (seemingly) natural way would be to add higher-order terms in the
Hamiltonian. However, this seems not reasonable since in order to include all possible terms of
n-body interactions, the number of parameters to add is of order O(n?). To avoid this issue, it is
possible to use hidden-variable models. In these models, it is considered that a subset of nodes
are not observed in the dataset but can still help in the modelization of the statistical properties
when integrating them out. When integrated, they create effective many-body interactions between
the variables to which they are connected. This type of approach has given rise to the celebrated
Restricted Boltzmann Machine in the field of Machine Learning [73, 74].

RBM, definition and learning: 7o design a practical machine, the Hamiltonian of the model is
defined on a bipartite graph. A first layer regroup the variables that are observed (from the dataset),
named visible nodes, while the other layer is made of hidden nodes whose role is to induce effective
interactions between those in the first layer.
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In its formulation, we usually distinguish the notation between the visible, s;, and the hidden
nodes 7,, yet both of them takes value in £1. This led to the following Hamiltonian:

(19) Hyn(s,7)=- Z WiqSiTa — Z h;s; — Z haTa.

The bipartite structure, the fact that there is no coupling between two visible nodes or two hidden
nodes, is a crucial aspect here to make Monte Carlo sampling much easier than in a fully connected
model, making it practical to use the maxium likelihood approach in order to learn the parameters
w, h. As one can see from (19), the distribution over the set of visible nodes, after integrating the
hidden nodes, is no longer an exponential distribution and in particular, can adjust for higher
moments of the dataset. This model has been used in the context of proteins [75-77], but has not
shown a further progress in the contact prediction task, and is thus more dedicated to extract
useful features from a given dataset.

3. COMMUNITY DETECTION: THE ART OF INFERRING CLUSTERS IN A SPIN GLASS WORLD

In the COMDEC problem, rather than inferring the parameters of the model like in DCA, the
goal is the following: given a graph and an hypothesis on the nature of the interactions between
its nodes, one has to infer the nodes states (i.e. the “community” to which each node belongs
to). The two standard hypotheses on the interactions are the assortative case, meaning that the
graph has been generated in a way that connections are statistically more present between nodes
of the same community; this, in turns, make this problem a cousin of the Ising model (or Potts
model when there are more than two hidden communities) with ferromagnetic interactions on
a random graph. It is relevant to model, e.g. friendships on social networks where people with
similar opinions tend to be more friends. In the disassortative case it is the opposite: links between
members of different communities are favored, relating this model to an anti-ferromagnetic spin
model. Ecological networks of predators-preys are of this nature.

To deal with this kind of problem, a successful approach has been to design a generative
model that, given certain parameters, generates a graph where communities have been planted
by construction. The paradigmatic generative model for graphs encoding community structures is
the Stochastic Block Model (SBM) [6,7,78]. With the SBM and its parameters in hand, it is then
possible to design an inference procedure for the community structure, with the parameters being
known. But also a learning algorithm which intend to estimate the values of the parameters given
a particular family of models.

The Stochastic Block Model: The SBM is a generative model of graphs with communities. As
1s often the case in Bayesian inference, first a generative model is defined before working out the
form of the posterior distribution needed in order to estimate the parameters of the model.

Many heuristic approaches have been considered for COMDEC [79]. For instance simple spectral
methods were developed in order to partition a graph using the eigenvectors of variations of the
adjacency matrix and/or Laplacian of the graph; later we are going to present state-of-the-art
spectral clustering algorithms. But the lack of a proper model for how the graph communities were
generated prevented to do much better than these simple approaches. The SBM was designed for
that purpose. It is rooted on random graphs with additional ingredients forcing the network to
develop a partition in the generation process. The ingredients are:

e the probabilities {n,}.<, of a node to belong to the community a € {1,...,q};
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e the probability matrix {pap}aps, to have a link between two randomly chosen nodes, one in
community a and the other in b;
e a hidden (or “planted”) partition of the nodes into g communities or groups: {t;}i<y €

(1.}

Major differences arise when considering different scaling regimes. In the dense regime of the SBM,
meaning p,, = O(1) when N — +o0, the generated graphs have many (O(NN?)) links, each node being
connected to O(N) other ones. The logarithmic degree regime corresponds to p,, = O(In(N)/N) [80].
Finally, in the sparse regime pgp = cap/N = O(1/N) the generated graphs have O(N) links and most
nodes are connected to a finite number of other ones in the thermodynamic limit, up to few “hubs”.
In the dense regime, the communities can be “read off” from the degrees of the nodes, which makes
the inference task rather straightforward using standard spectral methods. The real challenge arises
in the sparse case, where completely novel ideas are needed, from a conceptual and algorithmic
point of views, and where techniques from spin glasses have been particularly fruitful. We will thus
focus on this sparse regime.

We now expose the four main algorithmic approaches which have altogether lead to a leap forward
in the understanding of the COMDEC problem. We start with the Bayesian inference approach,
given that it is in this context that one of the most striking phenomenon in COMDEC/SBM has
been discovered: below the detectability transition, it is information-theoretically impossible to
distinguish a graph generated from the SBM from a purely random one.

3.1. Approach 1: Bayesian inference. Given the parameters of the SBM and under the assump-
tion that the nodes partition and the observed graph G (parametrized by its edges A;; between
nodes 7 and j) were drawn according to this generative model, it is possible to write down the joint
law of G and the partition:

P(G = {Aij}7 {tl} ‘ {na}a {pab}) = P(G | {tz}v {na}7 {pab})P({tl} ‘ {na})
(20) =TT (1=pu,) ™ T

i<j i

Hence, the probability to put a link between two nodes now depends on the community of each
node and the probability to have a link precisely between those two nodes.

Inference of the groups: Having defined our generative model, we need to decide how to infer
the probability that a given node of the graph belongs to one of the possible groups.

With this generative model it is now theoretically possible to infer the nodes states by computing
their marginal probabilities to belong to one of the communities. This can be done using Bayes
theorem. Given parameters {n,} and {ps} (in addition to G) the posterior reads

PG, {ti} [ {1}, {Pa})
Z{tl} P(G7 {tz} | {na}a {pab}) '

(21) P({t:} | G, {na},{pa}) =

It relates the probability of an assignment to the generative model that we defined in (20). This
distribution can be rephrased as the Gibbs-Boltzmann distribution of a Potts model by taking
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(minus) the log of the un-normalized probability (21) (recall that pa, = cap/N):

H({ti}) ==Y logne, = 3 logprs, = 3. log(1-pr,)

(i7)<€ (i)¢€

Y. log ey, + % >, +C

(ij)e€ (ij)¢€

(where the second equality is true up to a negligible o(/N') correction) with £ = {(ij) : A;; = 1}
is the set of edges of GG, and C' is an irrelevant constant. It is possible to write the first term as
~Yia dat; logn,, and the second one too using a similar trick with Potts interacting terms d,,
and dy;, living on the interaction graph G. The third term is interesting because it describes
an interaction between nodes that do not share an edge, which is rather uncommon in typical
disordered spin systems.

(22) — Y logn,, -

Both edges and non-edges contain information: A specific feature of the SBM 1is that not
only an observed edge of G yields information, but also the absence of an edge does so. Each edge
results in a O(1) interaction in the equivalent Potts model, which, e.g. is ferromagnetic in the
assortative case; absence of an edge yields a “weak” O(1/N) interaction term, which overall compete
with the “edge” interactions due to their large number.

Hence, the inference task of computing the marginals in the SBM is equivalent to the estimation
of the local mean magnetizations of a peculiar Potts model, with a field generated by the non-edges
which prevents the Potts variables to end up in a ferromagnetic state where most have same value.
Said differently, this field enforces phase separation, i.e. appearance of separated communities. The
standard approach for sampling would be to use Monte Carlo methods, but, as we will see, Belief
Propagation (or equivalently the cavity method) can be used in a very efficient way.

The second task is to estimate, or learn, the parameters of the model. Again using the Bayes
theorem, we can write a posterior probability distribution but this time on the parameters:

(23) P({na}, {pu} | G) = P(G | {n.}, {p;b(}c):;’({na}, {pa})

Without being too specific, the simplest case to deal with is by considering the absence of prior on
the parameters, and to look only at a (possibly local) maximum of the probability distribution by
performing a gradient ascent. The above expression therefore tells us that we need to maximize
the free energy In P({ny}, {pw} | G) of our SBM with respect to the parameters. Interestingly, this
gradient can be expressed in terms of the mean values computed during the inference problem, and
using the expectation-maximization method we get the following iterative algorithm:

1 1
(24) p(t;z;l = Z (5ti,a5tj,b>t; n?l = NZ(%,a)ta

where (-); means an average taken using the parameters at iteration ¢.

Learning the parameters of the models: In the context of the RBM, it is also possible using
the Bayes theorem to define a leaning algorithm to estimate the graph’s parameters if unknown.

3.2. Phase diagram and the detectability transition. The inference performance in the SBM
have received a particular attention in the symmetric case, where the intra-community and inter-
community connectivity is the same for all groups: ¢4 = Cin, Cap = Cout- Tuning the difference between
these values allows to interpolate between graphs where no communities are present (by imposing
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that an edge is present between two nodes independently of the node’s group) and thus inference is
impossible, to a regime where the graph is made of disconnected clusters and inference is trivial. It
was shown in [81] that along this interpolation, the model exhibits a second order phase transition
between a paramagnetic phase, where no information can be retrieved on the communities (in
the large size limit) to a condensed phase where the equilibrium properties of the Boltzmann
distribution are dominated by a state with a strong overlap with the planted community: this is
the detectability transition which has revived the research on COMDEC. It was later on rigorously
validated [82-84] (including in more general settings, see [6]).

Detectability threshold in the two-groups symmetric SBM: For a graph drawn from the
SBM, non-trivial inference of the communities is possible in the large size limit if and only if
(Cin = Cout)? > 2(Cin + Cout)- If this condition is not met, it is impossible to distinguish a graph from
the SBM from a purely random one.

In both the sparse and dense regimes when the inference occurs on the “Nishimori line” of the
Hamiltonian [85], i.e. is done in the Bayesian optimal regime where the SBM parameters are known,
it implies that no spin glass phase can be present as strong concentration-of-measure effects take
place; this is true more generically for optimal Bayesian inference problems [86]. Therefore the
replica symmetric solution for the free energy is exact [87-90].

The phase diagram of the model can be obtained by investigating the local stability of the Belief
Propagation (BP) equations close to the paramagnetic fixed point. The BP equations for the SBM
are given by

(25) VI (t) oy, TT Yo piit (L= pra ) 041 (t)

k+j,i ti

where ¢>J is the marginal of node ¢ when the link (ij) has been removed. We note again the
interesting property of the SBM that “non-edges” yield a contribution in the BP equation. In
the symmetric case discussed in the previous paragraph, we can therefore easily identify the
paramagnetic fixed point as the one where all the BP messages are uniform ¢#7(¢;) = 1/q. The
perturbation near this solution can be used to find the parameters at which the condensed phase
starts, i.e. when the paramagnetic fixed point becomes unstable. It is to be noted that this is the
analog to the de Almeida-Thouless line for spin glasses [91].

This description is not always correctly describing the physics of the problem. In fact, the presence
of a first order phase transition can complicate the phase diagram. It is possible to verify if it is the
case by analyzing the metastable states nearby the planted community structure. In [8], it is shown
that when dealing with some graph’s parameters (higher connectivity and number of communities),
the SBM can have this type of dynamical transitions preventing efficient algorithms to infer the
groups, yielding to even richer phase diagrams with, standing in between the detectability transition
and the dynamical one, the presence of an algorithmically “hard phase” (also called statistical-to-
computational gap). In this phase, the communities do have a statistical reality, yet the inference
process is plagued by the “paramagnetic” solution to which the BP algorithm converges in absence
of good initial condition provided by an oracle. To distinguish clearly which of the two states
(possible recovery or not) dominates the equilibrium distribution and hence to understand if the
planted solution is statistically distinguishable from the paramagnetic one, it is enough to compare
the free energy of both states. We end up with a picture where the physics of phase-coexistence
explains here the different phases of the inference process in the SBM. This past decade it has been
understood that the same type of phase diagram and phenomenology holds more generically in
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a broad class of high-dimensional Bayesian inference and learning problems such as, e.g. in the
generalized linear model [92], see also [2].

Statistical-to-computational gap: For certain parameters of the SBM with more than two
communities, a dynamical transition may prevent efficient algorithms to saturate the detectability
transition: an algorithmically hard phase emerges. This phenomenon occurs in many other high-
dimensional inference problems.

Finally, the learning equations (24) can also be analyzed in some restricted cases [93]. Interestingly,
for a given type of graphs parametrized by the degree structure and number of communities, it is
possible to understand whether the EM equations can learn the true graph’s parameters. Again, the
typical phase diagram is made of distinct regions. First, an uninformative region, where basically
the learning dynamics is stuck. This region encompasses both the regime where the created graph
has no statistically relevant community structure and also a regime where the communities are
present but the dynamics is not able to drive the parameters toward their correct values. Finally,
in the last region, the EM equations might bring the meta-parameters to their correct values.

3.3. Approach 2: Modularity optimization. While in the previous section COMDEC was
settled by using first a generative model and second an inference algorithm to recover the graph’s
structure conditionally on this model, other approaches have studied settings where the model
mismatched the dataset, which is particularly relevant when dealing with real data for which the
generative process is unknown. One of these approaches [94,95] is based on the maximization of
the modularity of the graph. Given a graph and the degree k; of each nodes, the modularity for
partitioning two clusters is given by

1 kik;
(26) Q(s|G.k) = M ( ij ~ W)Sisja

i<j

M being the total number of edge and the variables s; represents the group assignment (here +1)
of a given node. The modularity tends to optimize the number of edges within a community with
respect to the expected number of edges resulting from a random graph. In the first approaches, the
modularity was optimized in order to find the best possible partition of the nodes. Yet, since the
problem is hard, it is probably impossible to design a polynomial algorithm that finds in general
the optimal value of ). This problem was then addressed in two successive works [9,96] where a
temperature is introduced in order to define the Gibbs-Boltzmann distribution associated to the
modularity:

exp (-MBQ(s | G, k)

(27) P(s|G,k) = Z(G.K)

The effect of the temperature is to help avoiding possible overfitting of the modularity, since the
marginals obtained by this mean have now to take into account the entropy of the inferred clusters.
With this approach it is now possible to study the phase diagram of the model in temperature and
as a function of the true graph parameters when dealing with networks generated by the SBM for
instance. Interestingly, a spin glass phase is often found at low enough temperature, implying that
the optimization problem becomes very hard. At the same time, it emerges a retrieval phase where
the communities can be retrieved easily, and which underlines the importance of correctly selecting
the temperature.
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3.4. Approach 3: Spectral clustering. A particularly fruitful approach to COMDEC is spectral
clustering. Spectral algorithms are very practical, given that they use only basic linear algebra
(eigen-decomposition and singular value decomposition) to partition the graph. All the point is
therefore to design smartly the matrices to analyze. Variations of the adjacency matrix A of the
graph or of its graph Laplacian L = D — A (D being the diagonal matrix of nodes degrees) are
natural choices [97], but all suffering from the curse of eigenvector localization: their eigenvectors
tend to encode local graph structures (like atypical nodes of high connectivity) rather than global
ones such as potential communities. But much better choices exist.

A breakthrough in COMDEC came from the discovery that by analyzing the so-called non-
backtracking matriz B introduced in the theory of zeta functions [98], one could recover the
communities in the SBM down to the detectability threshold whenever no hard phase is present, or
down to the best known algorithmic threshold (set by BP), see [99]. This matrix indexed by the
directed edges i - j € & of the graph (£, being of size twice the one of the edge set &) is defined as

(28) Bijre = 61(1 = i)

and therefore encodes all possible non-backtracking paths of length two of the graph. As such it is
also called “edge adjacency operator”. When the graph is sparse, its dimension is of the same order
as the number of nodes. Considering again the two-groups symmetric SBM, let the average degree be
¢ = (Cin + Cout ) /2. The key properties of this non-symmetric matrix B are: () it is much less sensitive
to the eigenvector localization problem (i.e. to atypical high-degree nodes) than standard operators;
(i) its complex eigenvalues are (asymptotically) confined in a the complex disk of radius /¢ except
for two real eigenvalues \; ~ ¢ and Ay » (¢, — Cout)/2; (477) the eigenvector v associated with Ay is
strongly correlated to the hidden communities. More precisely, letting ¢; = sign > VjLq, then
{t;}i<n correlates with the hidden community structure almost as good as the BP estimate, itself
conjectured optimal among polynomial algorithms and information-theoretically optimal when
there is no statistical-computational gap (like in the two-groups symmetric SBM).

j—>ie€y

Why the spectral algorithm associated to the non-backtracking matrix behaves so similarly
to BP? Simply because they are closely related. We mentioned already in the Sect. 3.2 that the
phase diagram of the inference in the SBM could be studied through a linearization of the BP
equations around the paramagnetic fixed point. But this idea can also be turned into a spectral
algorithm as follows. Still considering the symmetric two-groups SBM, let the BP messages close to
the paramagnetic solution be 1i>7(£1) = 1/2 + §*>J. Thus, the vector § quantifies the first order
deviation of the BP messages around the paramagnetic fixed point. Then the linearization of the
BP equation can be re-written as

(29) B§= (o),

Cin — Cout

Therefore the “BP message deviation” § is an eigenvector of the non-backtracking operator B. It
thus makes sense that this spectral approach matches closely BP, at least close to its paramagnetic
transition. That its performance remains so good far from it is a surprising fact.

Belief Propagation inspired spectral algorithms: By defining a matrix related to the lin-
earization of the BP equations around its paramagnetic non-informative fixed point, it is possible to
saturate the BP performance using its spectral analysis, even without knowing the parameters of the
model.
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These desirable properties extend when considering more than two communities: the estimator
extracted from B remains competitive with the BP one until the BP algorithmic transition.
Interestingly, the number of real eigenvalues escaping the disk in the complex plane even indicates
the number of hidden communities while BP needs that prior information. So it seems that this
spectral approach solves all problems at once: it is simply based on linear algebra, robust to
localization and competitive with BP. But there are two catches. Firstly, even if the average degree
of the graph is bounded the size of this (directed) edges-indexed matrix B can quickly become
unpractical when it comes to diagonalize it. Moreover it is non-symmetric while numerical routines
for linear algebra tend to be much more optimized for symmetric matrices. Secondly, despite being
robust to localization, it turns out to be hyper sensitive to other type of “noises”, i.e. to deviations
from the ideal setting where the graph is locally tree-like as in the sparse SBM. One example
noticed, e.g. in [100-102] is the appearance of very few small cliques (fully connected sub-graphs)
in the graph G which completely breaks apart the approach of [99] based on B. See also [103, 104]
for robustness issues.

The first issue on the computational cost has been solved by introducing another linear operator H
sharing the very same desirable properties of the non-backtracking operator while being symmetric
and of smaller size N x N: it is the Bethe Hessian [105] (recall k; are the nodes degrees)

(30) Hij(r) = (7’2—14—]%)51'3'—7’141']'.

It can be shown that any r such that H possesses a vanishing eigenvalue corresponds to a real
eigenvalue of the non-backtracking operator, thus its similar properties. Moreover, the minimum
of its non-informative bulk of eigenvalues reaches 0 when r » /¢, so that the informative isolated
eigenvalues whose associated eigenvectors correlate with the community structure are on the
negative axis, a quite convenient property. The name of this matrix comes from the fact that it
is proportional to the Hessian of the Bethe free energy (the matrix of second derivatives with
respect to the spin magnetizations) of an Ising model living on the edges of the graph G, evaluated
at the paramagnetic solution. The approach has also been extended to a close relative of the
COMDEC problem, namely tensor principal components analysis. The authors of [106] defined
the Kikuchi Hessian which, as the name suggests, is related to the Hessian of the Kikuchi free
energy, a hierarchical free energy approximation whose first order is the tree approximation (i.e.
Bethe free energy) and that takes more and more local structures (such as loops) into account at
the next levels of the hierarchy [107]. But despite its many advantages, like the non-backtracking
operator, the Bethe Hessian fails whenever the graph is not “locally tree-like enough”, see the
previous references.

An elegant proposal to cure this latter issue of lack of robustness of spectral approaches is the
X-Laplacian Lx = A +X [102]. In this rather generic method to solve the eigenvector localization
problem and improve noise robustness, a problem-dependent fine tuned Laplacian matrix is
iteratively computed by regularizing the adjacency matrix A with a diagonal X strongly penalizing
eigenvectors which are localized (roughly meaning that their norm is dominated by a few/sub-linear
fraction of the components). Along the iterations of the learning procedure the most localized
eigenvectors of Ly among those paired with the top eigenvalues living towards the end of the
bulk, and which hide the informative eigenvalues/eigenvectors, are pushed back inside the bulk
by the learned regularization X. This has for effect to “uncover” the informative eigenvalues, left
untouched by the procedure as their associated eigenvectors were delocalized in the first place.
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3.5. Approach 4: Convex relaxation. Another success story is an algorithm rooted in computer
science: convex relaxation and semi-definite programming [108]. In [100] it is proposed to recover
the communities in the symmetric two-groups SBM as follows. First, notice that an SBM instance
can be mapped onto the Zy-synchronization problem [87]: infer x € {-1,1}" given the gaussian
corrupted observations

(31) Y~ N(m=yN""Pzz;,0%=1), 1<i<j<N.

An heuristic argument to see the connection with the SBM goes as follows: edges being present
or not are, conditionally on the planted partition, independent Bernoulli random variables A;; ~
Ber(¢/N + x;x;(¢in — Cout)/(2N)). Their variance is, whenever ¢;, and ¢, are close, approximately
equal to ¢/N. Matching its first two moments with gaussian variables yields ffij ~N(¢/N+xixi(cim—
Cout)/(2N'),¢/N) which are equivalent in terms of information content to Y;; when setting the
signal-to-noise ratio v = (¢ — Cou ) /(2¢/¢) in (31). This fruitful connection between the SBM and Zo-
synchronization can be made rigorous and has been exploited to carry precise information-theoretic
analyses [87,109-111].

With this mapping in mind [100] considers the following convex relaxation of Zs-synchronization:
given Y,

(32) maximize Tr(XY") s.t. X >0 and X;;=1fori=1,..., N.

Its N x N matrix solution is easily obtainable with a convex solver. The final estimator is then
%(Y) = VNT(y)v;, where T(7) is an appropriate scaling and v, is the eigenvector of the non-
negative definite solution of (32) with highest eigenvalue. Surprisingly, this estimator is almost as
good as BP; it does not quite saturate the detectability transition in the two-groups case (while
BP does) but its algorithmic transition is extremely close to it. Moreover, by studying a certain
vectorial spin model thanks to the replica and cavity methods, it is possible to precisely predict the
asymptotic performance of this powerful procedure.

Zs-synchronization/SBM equivalence: The information-theoretic analysis of the stochastic
block model is closely related to the analysis of the Za-synchronization (or rank-one matrix factor-
ization) problem. This mapping also serves as inspiration to design new inference algorithms.

4. DYNAMIC CAVITY METHOD

In the previous sections the graphs represented static interactions. But what about inference
from graphs encoding causality and/or time dependencies? In this section we present an approach
exploiting message passing techniques. In the literature it is known as Dynamic Cavity. The natural
way in which messages and cavity-like equations can be used to solve dynamical problems suggests
a more general view of inference outside the realm of Gibbs-Boltzmann distributions which has
been our focus this far.

4.1. Definition, specificity and main problem. The standard cavity method is a means to
compute marginals of a Gibbs-Boltzmann distribution by exchanging messages [112]. We consider
a dynamics specified by an interaction graph of the same locally tree-like type as where the cavity
method has found its main applications. Let the history of variable ¢ up to time ¢ be X}, and let the
value of variable 7 at time ¢ be ;(¢). For an Ising variable we formally define X! = (0;(to), 1,2, ..)
where o;(tp) is the initial value of the spin and ¢;,ts,... are the set of spin flip times. For a
categorical variable history one would additionally have to keep track of between which states the
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jumps happen. The joint probability of all the variables is supposed to satisfy a high-dimensional
differential equation (master equation) of the type

d I /
(33) EP(O'l,...,O'N,t)Z Z FU’U/P(O'l,...,O'N,t).

OOy
The locally tree-like interaction graph describes the transition matrices I', ,» which satisfy >, 'y »» = 1
for every value of ¢’. The joint probability over the histories of all the variables can then, up to
technicalities, be written

(34) Pt(Xf, e ,X}V) = Fa(t)p(t_g)"-Fa(t0+€)7g(t0) . PO(O'l, ...,ON, tO)-

We either assume that the initial probability distribution P is so far in the past that it does not
matter, or that it only has the same dependencies as in I'. For instance, it can be factorized. We
now additionally assume that the probabilities of different variables to flip in a time interval At =€
are independent. This is natural in the continuous-time limit where these probabilities are given
by At-r; where r; is the instantaneous flip rate of spin i. For the Ising ferromagnet with Glauber
dynamics, which we show as a numerical example in Fig. 1, the rates are

J g
6_ kgT Zjeai 00

(35) ri(oi,00;) =« 5 ,
Zs ¢ FBT Y jedi SO;

where « is a constant of dimension inverse time and J is the pairwise interaction energy. In this
example the dependencies in the joint probability distribution (34) includes effects of the type
that if £ and j are both in the neighborhood of ¢ as given by the energy function, they are also
related by the denominator in the expression for the rate r;. The total statistical dependencies in
(34) therefore include many local loops. A systematic approach to resolve these loops is by graph
expansion [113,114]. This approach associates a pair of variables (X, X}) to each link (ij) in the
original dependency graph and imposes hard constraints C; that all variables of the type X! in all
links (i) take the same value. The probability distribution (34) can then equivalently be written

(36) Pt({)(;‘/:(ij)7 X;(ij)}) _ H (I)z(Xlt7 {X;(ij)}jeaz‘) H Cz

where the local loops have been resolved. The first argument X! on the right hand of above can be

any of the Xf () ag by the constraint C; they are all the same. Using the theory of Random Point
Processes [115] the local weight functionals can be written

B1) B(XLXE) = [T (ot on(t)) - meOmoDir [ o it o) oni
s=1 s=1

where we recall that X! is defined by n, the number of jumps of spin ¢ in a time interval [to,tf],
the initial spin state, and the jump times. For given n the last time (¢,,1) in above is ¢;.

After applying the graph expansion the right-hand side of (36) is like a Boltzmann weight with
hard constraints in the standard cavity method. In the original formulation (34) the marginal
probability over one history is defined as

(38) PH(X{) =) P(X{,....X})

X\i

and in the expanded graph we can first marginalize to the joint probability of the set { X Zt (i) , X;’(ij ) }jedis

where all the X f @) are the same due to the constraint C;, and then marginalize separately over
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the th.’(ij ). The cavity (or Belief Propagation) output equation is then
(39) P{(X]) = XZ O (XF, X5) [T ey (X5, X)),

Jeoi

In above ,u;q(ji)(X;, X1) (a message with two arguments) follows from the graph expansion, and the

egress node notation (ji) indicates that these messages are actually passed around in the expanded
graph. The cavity (or BP) update equation is on the same level of abstraction
(40) M;‘a(ji)(X;’ Xi) = Z P, (X;7X§j) H Mkﬁ(kj)(Xli’X}?)'

ng\i kedjNi
The problem of using (39) and (40) is that the the argument is very high-dimensional. Various
approximations have been introduced in the literature to nevertheless make the dynamic cavity an
efficient and accurate modelling approach. As in this chapter we consider statistical inference we
will not discuss the use of dynamic cavity to retrodict the origin of epidemics and similar processes,
for this see [116] and [117]. To stay inside the sphere of physical problems we will also not consider
the recent use of dynamic cavity to model and predict the evolution of an epidemic [118,119].

4.2. Dealing with the histories. After deriving (40), the next step is to find a convenient
parametrization for the histories. In a discrete time setting, a simple parametrization is to consider
the values of the spins at different times. Each X! is then approximated by the values of the spins
at different times, X! ~ (¢t,0t¢,---,0%). To arrive at finite-dimensional messages one can then
consider a closure on the last n times, which means to take into account a memory of length ndt.
This was the approach (for n = 2) followed in [114,120] when studying of the kinetic Ising model
under synchronous update dynamics. A more advanced approach based on the matrix product
expansion from quantum condensed matter theory was investigated in [121].

Continuous-time dynamics is problematic using both the above approaches. In a series of papers
reviewed in [122] a continuous-time closure was introduced leading to a cavity master equation.
Apart from the kinetic Ising model (pair-wise interactions) this versatile approach has also been
applied with good results to the ferromagnetic p-spin model under Glauber dynamics [123], and
to the dynamics of a focused search algorithm to solve the random 3-SAT problem in a random
graph [124]. The method has also generalized to provide master equations for the probability
densities of any group of connected variables [119].

Here we will exemplify by a recent development closer in spirit to the form of the dynamic cavity
embodied by (39) and (40). The fundamental object of the cavity update equations are then the
final-time marginalizations

(41) Di—(ji) (0i,05) = Z Z Hi—(ji) (Xit7XJt')

Xtoi(t)=0; th.:aj (t)=0;

and the closure of the cavity update equations as master-equation-like differential equations
reads [125]

d
%pia(ij)(ai70j>: Z [7”1(01'70'61') H pk—»(m‘)(ak|‘7i)Pi—>(z’j)(0'mUj)
09iNg keding

—7’1‘(_0'@'708@') H pkz—»(ki)(ak | _Ui)pia(ij)(_aiao'j):l
kediNj

(42) —15(05,00)Pis(i) (03, 05) +1i(=05,0)Pics(35) (035 =0;).
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In the above the conditional probabilities in the cavity are defined as

pia(ij)(o-ia Uj)

Zspzs(z‘j)(sﬁj)

Further, r;(0;,04;) and 7;(0;,0;) are the defined jump rates of spins ¢ and j in the cavity graph

obtained by eliminating all neighbours of j except 7. The rate r; hence depends on all neighbours
of 7 in the original graph, including j, while the rate r; only depends on ¢ and j.

(43) Pis(i) (03 | 05) =

The fundamental object of the cavity output equations are analogously the final-time marginal-
izations

(44) P(o)= ) PIX)
Xtioi(t)=0;
and the differential equations substituting for (39) are
d
%Pi(o-i) = [Ti(Ui,Uaz') [T pr-iy(okloi) Pi(o:)
09i

keding

(45) ~7ri(=05,00) [] pk%(ki)(0k|_ai)Pi(_Ui):|'

keding

In Fig. 1 we show numerical results on the kinetic Ising model obtained using (42) and (45); it
can be checked that they improve on the earlier version of the continuous-time closure [122].
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FicURE 1. Continuous-time dynamics of the Ising ferromagnet in a single instance of
an Erdos-Renyi graph of size N = 5000 and average connectivity ¢ = 3. Temperature
from T'=1.5 to T' = 3.6 in standard parameterization (J = kg = 1) as indicated. The
main panel shows the time evolution of the system magnetization. Points are the
averages of s = 10,000 kinetic Monte Carlo simulations of the dynamics, lines are the
results from simulating (42) and (45). In all calculations, an initially fully magnetized
system evolves in time in contact with a heat bath at a given temperature. The insert
shows the mean square error dm(t) = (N-L TN, (mPCAY (1) = mM())2)2 on scale

(2

of order 1072. Figure contributed by David Machado Perez.
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4.3. Problems and challenges. We end by listing a set of open problems of a general nature.

Representation of history in dynamic cavity Almost all uses of dynamic cavity, including
the recent one outlined above, have relied on some kind of Markov assumption. As shown in Fig. 1
the results can be quite accurate, but are not exact. By analogy to other problems in physical
kinetics the Markov assumption ought to be a restrictive assumption when spatial and temporal
correlations may dominate the dynamics of the system. At the moment it is a clear challenge to

Develop efficient and general methods to handle the properties of trajectories in a compact way
beyond Markov assumptions.

Average dynamics in dynamic cavity A great success of the cavity method as a physical
theory is that it can deal with disorder considering self-consistency equations of distributions over
messages. In most cases this has been considered on the level of Replica Symmetry where the
self-consistency equations take the form average or representative equations. This is the framework
exploited by the Dynamic Cavity Method, and then extended to the Cavity Master Equation for
continuous time. One approach has been developed for the average case [126], but does not work in
many cases. The problem may be on the level of the closure, and not on a more fundamental level
(for this, see below). Nevertheless, this remains a challenge which we formulate as

To develop a scheme on the Replica Symmetry level to describe the typical properties of dynamic
cavity.

Replica Symmetry Breaking An even wider success of the cavity method has of course been
its extension beyond Replica Symmetry, first for the Bethe spin glass [127], and later for many
famous constraint satisfaction and combinatorial optimization problems [8,128-130]. How to extend
this theory to dynamics is not clear. On the technical level, iterations in 1-step Replica Symmetry
Breaking (survey propagation) are weighted by a free energy shift. As non-equilibrium dynamics
includes cyclic motion, in general it is not associated to a globally defined free energy function. We
state this challenge as

Can Replica Symmetry be broken in dynamics? And can one construct a survey-propagation-like
scheme to describe a putative 1-step Replica Symmetry Breaking phase of dynamics?
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