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Competing interactions of nearest and next-nearest-neighbor electron spins on a lattice with
coupling constants 𝐽1 and 𝐽2, respectively, give the system some interesting and unusual properties
and may even underlie high temperature superconductivity according to the resonant valence bond
theory. Here we study the 𝐽1 − 𝐽2 Ising model on the square lattice using the Random local field
approximation (RLFA) and Monte Carlo (MC) simulations for various values of the ratio 𝑝 = 𝐽2/|𝐽1|.
We show that the accuracy of the RLFA is comparable to the mean field cluster approximation,
but, in addition, and most surprisingly, the RLFA predicts metastable states with zero polarization
at low temperature for 𝑝 ∈ (0, 1). This is confirmed by our MC simulations, in which the system
reaches these states after the energy relaxation of initially randomly oriented spins. Furthermore,
in a moderate external field, the MC simulations reveal the existence of still other metastable states
with nonzero polarizations. These findings could be crucial for explaining the magnetic and electric
properties of materials, in particular, under ultrafast nonequilibrium conditions.

In recent years, many compounds have been discov-
ered in which electron spins-1/2 form a two-dimensional
square lattice and interact with their nearest and diag-
onal next-nearest neighbors via isotropic exchange in-
teraction with the constants 𝐽1 and 𝐽2, respectively
(Fig. 1) [1, 2]. This includes also the parent compound
of the high-temperature superconductivity La2CuO4 [3]
and is likely relevant to the mechanism of the high-
temperature superconductivity of the iron pnictides [4].
The corresponding Heisenberg model has been studied
extensively by a variety of methods, e.g. [5]. For the val-
ues of the ratio 𝑝 = 𝐽2/|𝐽1| near 𝑝0 = 1/2, where two dif-
ferent ordered states have the same energy, the quantum
spin liquid ground state was predicted [1, 6, 7], which may
be the key to solving the problem of high-temperature su-
perconductivity according to the resonating valence bond
theory [8]. This ground state has recently been observed
experimentally in several compounds [2, 9], and another
exotic nematic ground state at high magnetic field has
also been reported [10].

The 𝐽1−𝐽2 Ising model, in which spins can only point
in two directions, up and down, has also been thoroughly
studied theoretically using cluster mean field theory [11–
13], Monte Carlo (MC) simulations [11, 14–16], and accu-
rate tensor network simulations [17]. The nematic phase
was also predicted for moderate external fields [18, 19].
Although its implementations seem less common in na-
ture, the easier to study the 𝐽1−𝐽2 Ising model nonethe-
less is interesting in its own right, and can also shed
light on some properties of its more complex Heisen-
berg counterpart. This is especially true for the Ising
model in a transverse field, where quantum fluctuations
induce gap between two phases around 𝑝0 [13, 19–21]
with the valence-bond-solid state predicted [20]. Indeed,
the phase diagrams of both models have a lot in com-
mon [1, 2, 7, 13].
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Fig. 1 |The 𝐽1−𝐽2 Ising model scheme. a, Square lattice
of Ising spins (white - up, blue - down) with the interaction
constant 𝐽1 between nearest neighbors along horizontal and
vertical (solid) lines and 𝐽2 between next-nearest-neighbors
along (dashed) diagonals. b, Random (very high tempera-
ture) spin configuration; the number of spins along each side
of the square sample is 𝐿 = 100.

At present, MC simulations can be used to calcu-
late model properties with very high accuracy, neverthe-
less, easy-to-implement, adequate and efficient approxi-
mations are highly desirable to quickly and reliably de-
termine the most salient system properties. Here we use
the Random local field approximation (RLFA) [22] to
study the phase transition in the 𝐽1 − 𝐽2 Ising model
on the square lattice. We show that the RLFA reveals
metastable states with zero uniform for 𝑝 ∈ (0, 𝑝0) and
staggered for 𝑝 ∈ (𝑝0, 1) polarization at low temperature.
We then confirm this finding with our MC simulation and
discuss the properties of these states.

We thus consider the Hamiltonian

𝐻 = 𝐽1
∑︁
⟨𝑖,𝑗⟩

𝑠𝑖𝑠𝑗 + 𝐽2
∑︁

⟨⟨𝑖,𝑗⟩⟩

𝑠𝑖𝑠𝑗 −
∑︁
𝑖

ℎ𝑖𝑠𝑖, (1)

where the sums are over nearest ⟨𝑖, 𝑗⟩ and next-nearest
(diagonal) ⟨⟨𝑖, 𝑗⟩⟩ neighbors (see Fig. 1a), as well as over
each spin coupled to the external field ℎ𝑖 at its position;
𝑠𝑖 = ±1. In what follows, we set ferromagnetic (FM)
𝐽1 = −1 and antiferromagnetic (AFM) 𝐽2 = 𝑝 > 0 cou-
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Fig. 2 | Polarization as a function of temperature obtained using the RLFA analytical approach and MC
simulations. a, Solution of the RLFA equation (lines) and MC results (markers) for uniform polarization in a uniform field,
𝑝 < 𝑝0, and b, for staggered polarization in a staggered field, 𝑝 > 𝑝0. The magnitude of the field is ℎ = 0.001 (purple dashed
line and triangles) and ℎ = 0 (blue solid line and circles). Each data point is derived from a single MC run with a random
initial state at each temperature. The magenta diamonds in the bottom left panel (a) indicate the temperatures 𝑇0 < 𝑇1 < 𝑇𝑐.

pling constants, providing together the frustration of the
system. For this choice of couplings, the ground state is
FM at 𝑝 < 𝑝0 (being AFM with Néel checkerboard order
for 𝐽1 > 0) and striped or super- AFM at 𝑝 > 𝑝0; at
𝑝 = 𝑝0 the ground state is not ordered.

The starting point of the RLFA is the exact formula
for the average spin value [22]:

⟨𝑠𝑖⟩ = ⟨tanh𝛽(ℎ𝑠
𝑖 + ℎ𝑖)⟩, (2)

where 𝛽 = 1/𝑇 is the inverse temperature (in energy
units), ℎ𝑠

𝑖 =
∑︀

𝑗 𝐽𝑖𝑗𝑠𝑗 is the local field acting on the spin
𝑠𝑖 due to neighboring spins 𝑠𝑗 ; the brackets stand for the
thermal averaging.

In contrast to the Mean field approximation (MFA),
the spins on the right-hand side of Eq. (2) are not fixed
to their mean value 𝑚. The averaging in Eq. (2) is carried
out with the product of the probability distributions for
each spin [23]:

𝑃 (𝑠𝑖) = (1 + 𝑚𝑖𝑠𝑖)/2, (3)

where 𝑚𝑖 = ⟨𝑠𝑖⟩ = 𝑚𝑒𝑖qr𝑖 is the thermally averaged po-
larization at the position r𝑖 determined by the propaga-
tion vector q. The uniform polarization corresponds to
q = (0, 0), while the staggered polarization refers to the
vectors (0, 𝜋) and (𝜋, 0). The same applies to the spatial
dependence of the external field ℎ𝑖.

Eqs. (2) and (3) together constitute the essence of the
RLFA. Eq. (2), which is a seventh degree polynomial in
𝑚 according to the eight neighbor spins in the model,
can be solved numerically.

The solution of the RLFA equation for uniform (at
𝑝 < 𝑝0) and staggered (at 𝑝 > 𝑝0) polarization is shown

in Fig. 2. This solution corresponds to the zero value of
the Landau potential derivative with respect to 𝑚 and,
therefore, corresponds to its local minimum (stable or
metastable state), local maximum or inflection point (un-
stable states). In the absence of an external field, zero
polarization is always a solution to the equation, and it is
unique and stable at high temperatures. At zero temper-
ature, there is always (except in the case of 𝑝 = 𝑝0) an-
other solution 𝑚 = 1, which corresponds to full polariza-
tion and supposed to be stable. And there is still a third
solution about 𝑚 ≈ 0.29 for 𝑝 ∈ (0, 𝑝0) and 𝑚 ≈ 0.65 for
𝑝 ∈ (𝑝0, 1). It is natural to assume that it corresponds to
a local maximum of the Landau potential separating two
local minima at 𝑚 = 1 and 𝑚 = 0, the first of which is a
stable solution, and the second is a metastable one. In an
external field, the metastable state exists only in a cer-
tain temperature window (dashed purple lines in Fig. 2)
and completely disappears at fields above ℎ ≃ 0.01.

The phase diagram for the 𝐽1 − 𝐽2 Ising model ob-
tained using the RLFA is shown in Fig. 3a. The critical
temperatures obtained from the maxima of the dielectric
susceptibility in the MC simulation (see Methods) are in
good agreement with the literature data [14, 16]. In the
RLFA, the transition turns out to be of the first order for
𝑝 from about 0.25 up to 1.25, while recently it has been
shown to be of the second order everywhere using the
tensor network simulation technique [17], which appar-
ently resolves the long-standing dispute about the order
of the phase transition at 𝑝 > 𝑝0 [15]. The agreement
of the RLFA with MC results is good for 𝑝 > 𝑝0. At
these points, the rise of polarization is steep enough, re-
sulting in smaller fluctuations, which are neglected by the
RLFA. However, at 𝑝 just below 𝑝0, the discrepancy turns
out to be significant, with the critical temperature deter-
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Fig. 3 | Critical temperatures and energies in the 𝐽1 − 𝐽2 Ising model as functions of 𝑝 = 𝐽2/|𝐽1|. a, Phase
diagram obtained using the RLFA, MFA and MC. Solid dark blue curves correspond to the mean-field approximation, open
blue circles, magenta up-triangles and purple down-triangles are 𝑇𝑐, 𝑇0 and 𝑇1 obtained within RLFA (Fig. 2a). The red
square is the exact Onsager’s solution for the 2D Ising model. Dark blue filled circles are calculated using the MC method. b,
Energy per dipole obtained using MC simulation at zero temperature in the absence of a field (red squares), at a temperature
𝑇 = 10−9 and a field ℎ = 0 (blue circles) and 𝑇 = 0, ℎ = 10−9 (cyan up-triangles for uniform and magenta down-triangles for
staggered field). Each data point is averaged over 100 samples (see Methods). Standard deviations of the energy distribution
histogram over 100 samples for each data point are smaller than the markers (Extended Data Fig. 3). Blue solid and dashed
lines correspond to the energy of the FM and AFM states, respectively.

mined by the RLFA going almost linearly to zero, where
it should have a finite value. In Fig. 3a, we also traced
the temperatures 𝑇0 and 𝑇1 (see Fig. 2a, left bottom
panel), which indicate the range of the zero-polarization
metastable state and the temperature of the first-order
phase transition in the absence of an external field. The
overall accuracy of the RLFA turns out to be comparable
to the commonly used cluster MFA [11–13].

It should be noted that neither staggered for 𝑝 ∈ (0, 𝑝0)
nor uniform for 𝑝 ∈ (𝑝0, 1) polarizations with 𝑚 = 1 are
solutions to the RLFA equation, although they are very
close to it. At the same time, these states are metastable
at zero temperature. Indeed, any spin flip in these states
leads to an increase in energy.

To further explore the metastable states, we perform
MC simulations with single-spin-flip dynamics (see Meth-
ods), making a deep quench from a high-temperature
(random) spin configuration. It was previously shown
that under these conditions a 2D Ising system (with
𝑝 = 0) on a square lattice at zero temperature reaches
either a frozen stripe state (Fig. 4a) with a probabil-
ity of about 1/3 or a fully polarized ground state with
a probability near 2/3 [24]. Later, this behavior and
the probability of the occurrence of a metastable state
were explained by revealing a deep connection between
the zero-temperature coarsening with critical continuum
percolation [25, 26].

In the absence of an external field, MC simulations
do indeed show zero-polarization metastable states, even
though at temperatures several times lower than follows
from the RLFA (Fig. 2). Typical spin configurations of

these states at zero temperature are shown in Figs. 4b,
4f. For 𝑝 ∈ (0, 𝑝0) the real-space correlation function of
these states is exponential and the correlation length is
about 𝑙𝑐 ≈ 1.8 with no apparent dependence on 𝑝. The
result is the same when the initial state at each temper-
ature is AFM for 𝑝 ∈ (0, 𝑝0) or FM for 𝑝 ∈ (𝑝0, 1).

Surprisingly, for a small external field (uniform for
𝑝 < 𝑝0 and staggered for 𝑝 > 𝑝0) at low temperature,
these states do not relax to the ground state, as it would
be according to the RLFA, but get stuck instead in other
metastable states (Fig. 2). At zero temperature, these
metastable states appear already in an infinitesimally low
external field (down to 10−9) with their typical configu-
rations shown in Figs. 4c, 4h. The polarization of these
states is about 𝑚 ≈ 0.5 for 𝑝 < 𝑝0, and very close to
𝑚 = 1 for 𝑝 > 𝑝0. It first decreases with increasing tem-
perature, and then increases to 𝑚 = 1 in both cases in ac-
cordance with the RLFA solution. When a uniform field
is applied for 𝑝 > 𝑝0, which is an experimentally relevant
situation, the system relaxes into even other metastable
states, see Fig. 4g.

We note that some data with an intermediate polariza-
tion value in Fig. 2 actually correspond to incompletely
relaxed FM and AFM states divided into slowly relax-
ing large domains (Figs. 4a, 4e). At the same time, the
energy of these states does not differ much from a com-
pletely ordered state, but it is significantly higher for
truly disordered states (Extended Data Fig. 1).

Thus, we plot the energy per dipole at zero tempera-
ture as a function of 𝑝 (Fig. 3b), where the metastable
states at 𝑝 ∈ (0, 1) (red squares) are clearly visible. For
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Fig. 4 | Spin configuration in relaxed states at zero temperature. Examples of spin configurations of final absorbing
states after energy relaxation, starting from a random spin configuration, has been performed in the absence or in a very small
uniform or staggered external field ℎ for the values of 𝑝 = 𝐽2/|𝐽1| equal to 0, 0.01, 0.99, and 1.

some values of 𝑝 > 𝑝0, the energy of metastable states in
Fig. 3b appears to be slightly higher and goes above the
general trend. However, it suffices to apply an infinitely
small temperature of 𝑇 ∼ 10−9 for these states to quickly
relax into “strong” metastable states for 𝑝 ∈ (𝑝0, 1) or
stable states for 𝑝 > 1. Similar to the 2D Ising model
(𝑝 = 0) [24], relaxation of strong metastable states into
the ground FM or AFM states is apparently determined
by the activation energy 𝐸𝑎 as 𝜏 ≃ 𝐿3 exp(−𝐸𝑎/𝑇 ) and
occurs at temperatures of the order of 𝑇 ≃ 0.1 (Extended
Data Fig. 2). Fig. 3b also shows the effect of a small ex-
ternal field (up- and down triangles), which we discussed
above. At zero temperature, relaxation to the ground
state occurs in electric fields higher than about ℎ ≃ 0.1
(Extended Data Fig. 2).

The metastable states discussed here should also ex-
ist in a moderate transverse external field, and therefore
they could be equally expected in the Heisenberg quan-
tum model relating to magnetism in high-temperature
superconductors [3, 4], depending on 𝑝, however. For
𝑝 ∈ (𝑝0, 1), metastable states with zero staggered po-
larization can be achieved by polarization in a uniform
magnetic field and subsequent relaxation in the absence
of a field at low temperature. A suitable compound is

BaCdVO(PO4)2 with 𝐽1 = −3.6 K and 𝐽2 = 3.2 K [10],
which gives 𝑝 ≃ 0.9. However, the expected temper-
ature of metastable states is approximately two orders
of magnitude lower than the already low phase transi-
tion temperature 𝑇𝑁 = 1.05 K [10] (Fig. 2b and Ex-
tended Data Fig. 1). For 𝑝 ∈ (0, 𝑝0), which is the case of
VOMoO4, PbVO3 [1], and Sr2Cu(Te1−𝑥W𝑥)O6 [27] com-
pounds, metastable states with zero uniform polariza-
tion can possibly be revealed in ultrafast light-pump ex-
periments under highly nonequilibrium conditions, such
as [28]. We also note that metastable states have re-
cently been reported in incipient ferroelectric SrTiO3 un-
der high-intensity THz pumping [29, 30].

In conclusion, using the Random local field approxima-
tion, we predict the existence of metastable states with
zero polarization in the 𝐽1 − 𝐽2 Ising model at low tem-
perature, which is further confirmed by our Monte Carlo
simulation. In a small external field, our MC simulations
also reveal metastable states with non-zero polarization.
These findings may be crucial for explaining the mag-
netic and electric properties of materials and may directly
manifest themselves, in particular, under the nonequilib-
rium conditions of modern experiments with high-power
ultrashort light pumping.



5

[1] H. Ishikawa, N. Nakamura, M. Yoshida, M. Takigawa,
P. Babkevich, N. Qureshi, H. M. Rønnow, T. Yajima,
and Z. Hiroi, 𝐽1-𝐽2 square-lattice Heisenberg antiferro-
magnets with 4d1 spins: AMoOPO4Cl (A=K,Rb), Phys-
ical Review B 95, 064408 (2017).

[2] O. Mustonen, S. Vasala, E. Sadrollahi, K. P. Schmidt,
C. Baines, H. C. Walker, I. Terasaki, F. J. Litterst,
E. Baggio-Saitovitch, and M. Karppinen, Spin-liquid-like
state in a spin-1/2 square-lattice antiferromagnet per-
ovskite induced by d10 – d0 cation mixing, Nature Com-
munications 9, 1085 (2018).

[3] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D.
Frost, T. E. Mason, S.-W. Cheong, and Z. Fisk, Spin
Waves and Electronic Interactions in La2CuO4, Physical
Review Letters 86, 5377 (2001).

[4] Q. Si, R. Yu, and E. Abrahams, High-temperature super-
conductivity in iron pnictides and chalcogenides, Nature
Reviews Materials 1, 16017 (2016).

[5] J.-F. Yu and Y.-J. Kao, Spin- 1
2
𝐽1-𝐽2 Heisenberg anti-

ferromagnet on a square lattice: A plaquette renormal-
ized tensor network study, Physical Review B 85, 094407
(2012).

[6] L. Balents, Spin liquids in frustrated magnets, Nature
464, 199 (2010).

[7] H.-C. Jiang, H. Yao, and L. Balents, Spin liquid ground
state of the spin- 1

2
square 𝐽1-𝐽2 Heisenberg model, Phys-

ical Review B 86, 024424 (2012).
[8] P. W. Anderson, The Resonating Valence Bond State

in La2CuO4 and Superconductivity, Science 235, 1196
(1987).

[9] J. Wen, S.-L. Yu, S. Li, W. Yu, and J.-X. Li, Experimen-
tal identification of quantum spin liquids, npj Quantum
Materials 4, 12 (2019).

[10] K. Y. Povarov, V. K. Bhartiya, Z. Yan, and A. Zheludev,
Thermodynamics of a frustrated quantum magnet on a
square lattice, Physical Review B 99, 024413 (2019).

[11] S. Jin, A. Sen, W. Guo, and A. W. Sandvik, Phase tran-
sitions in the frustrated Ising model on the square lattice,
Physical Review B 87, 144406 (2013).
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Frustrated spin-1/2 Ising antiferromagnet on a square
lattice in a transverse field, Physical Review E 97, 022124
(2018).

[22] B. E. Vugmeister and V. A. Stephanovich, New random
field theory for the concentrational phase transitions with
appearance of long-range order. Application to the impu-
rity dipole systems, Solid State Communications 63, 323
(1987).

[23] D. Mertz, F. Celestini, B. E. Vugmeister, H. Rabitz, and
J. M. Debierre, Coexistence of ferrimagnetic long-range
order and cluster superparamagnetism in Li1−𝑥Ni1+𝑥O2,
Physical Review B 64, 094437 (2001).

[24] V. Spirin, P. L. Krapivsky, and S. Redner, Freezing in
Ising ferromagnets, Physical Review E 65, 016119 (2001).

[25] J. Olejarz, P. L. Krapivsky, and S. Redner, Fate of 2D
Kinetic Ferromagnets and Critical Percolation Cross-
ing Probabilities, Physical Review Letters 109, 195702
(2012).

[26] T. Blanchard and M. Picco, Frozen into stripes: Fate of
the critical Ising model after a quench, Physical Review
E 88, 032131 (2013).

[27] O. Mustonen, S. Vasala, K. P. Schmidt, E. Sadrollahi,
H. C. Walker, I. Terasaki, F. J. Litterst, E. Baggio-
Saitovitch, and M. Karppinen, Tuning the S=1/2 square-
lattice antiferromagnet Sr2Cu(Te1−𝑥W𝑥)O6 from Néel
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𝛼 = exp(−∆𝐸/𝑇 ) for the Metropolis algorithm, and
𝛼/(1 + 𝛼) for the Glauber dynamics. Both algorithms
satisfy the detailed balance criteria and give the same
final result. Periodic boundary conditions were used
in all calculations and the sample size was equal to
𝐿 = 100. To obtain the data in Fig. 2 and Extended
Data Fig. 1, relaxation was performed at each temper-
ature, starting from a random spin configuration, with
105 Monte Carlo steps per spin (MCS) used for ther-
malization and the same number of MCS for subsequent
calculations of thermodynamic quantities for each run.

For staggered polarization, the largest of the values cor-
responding to the propagation vectors q = (0, 𝜋) and
q = (𝜋, 0) is taken. We also calculated the susceptibili-
ties of 𝑁 interacting spins via fluctuations of the average

spin, 𝑠 = 𝑁−1
∑︀𝑁

𝑖=1 𝑠𝑖𝑒
𝑖qr𝑖 , with the propagation vector

q as 𝜒 = 𝑁𝑇−1(⟨𝑠2⟩ − ⟨𝑠⟩2) and obtained critical tem-
peratures from their maxima (Fig. 3a). When simulating
at zero temperature (Fig. 3b), each data point was aver-
aged over 100 samples with a relaxation time of 104 MCS
(Extended Data Fig. 3).
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a b

Extended Data Fig. 1 | MC results for polarization and energy per dipole for different values of 𝑝 = 𝐽2/|𝐽1|.
a, Uniform polarization (left y-axis) and energy per dipole (right y-axis) in a uniform field, 𝑝 < 1/2. b, Staggered polarization
and energy per dipole in a staggered field, 𝑝 > 1/2. Open markers correspond to polarization, filled markers indicate energy.
Purple triangles correspond to the field magnitude ℎ = 0.001, blue dots correspond to the absence of a field. Each data point
is derived from a single MC run with a random initial state at each temperature.
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Extended Data Fig. 2 | Energy per dipole obtained by MC simulations for different values of the ratio 𝑝 =
𝐽2/|𝐽1|. Red squares correspond to zero temperature and no field, dark blue circles and blue triangles correspond to 𝑇 = 0.1,
ℎ = 0, and 𝑇 = 0, ℎ = 0.1, respectively. The applied external field is uniform for 𝑝 < 1/2 , and it is staggered for 𝑝 > 1/2.
The standard deviations of the energy distribution histogram over 100 samples is smaller than the markers (Extended Data
Fig. 3). Dark blue solid and dashed lines correspond to the energy of the FM and AFM states at ℎ = 0. For 𝑇 = 0, ℎ = 0.1,
the transition between stable and metastable states occurs around 𝑝FM = 0.05 and 𝑝AFM = 0.95.
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Extended Data Fig. 3 | Monte Carlo simulation for 𝐽2/|𝐽1| = 0.1 at zero temperature. a, Energy relaxation for
100 samples. b, Final energy histogram and superimposed Gaussian function with a calculated mean value of ⟨𝐸⟩ = −1.19 and
a standard deviation of 𝜎𝐸 = 0.015.


