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Competing interactions of nearest and next-nearest-neighbor electron spins on a lattice with
coupling constants 𝐽1 and 𝐽2, respectively, give the system some interesting and unusual properties
and may even underlie high temperature superconductivity according to the resonating valence
bond theory. Here we study the 𝐽1 − 𝐽2 Ising model on the square lattice using the Random
local field approximation (RLFA) and Monte Carlo (MC) simulations for various values of the
ratio 𝑝 = 𝐽2/|𝐽1|. We show that the accuracy of RLFA is comparable to the mean field cluster
approximation, but, in addition, and most surprisingly, RLFA predicts metastable states with zero
polarization at low temperature for 𝑝 ∈ (0, 1). This is confirmed by our MC simulations, in which
the system reaches these states after the energy relaxation of initially randomly oriented spins.
Furthermore, in a moderate external field, the MC simulations reveal the existence of still other
metastable states with nonzero polarizations. These states also appear when the initial state before
relaxation has a nonzero polarization. We list compounds appropriate for experimental verification
of our predictions, with high-temperature superconductors being the most suitable. These findings
could be crucial for explaining the magnetic and electric properties of materials, in particular, under
ultrafast nonequilibrium conditions.

In recent years, many compounds have been discov-
ered in which electron spins-1/2 form a two-dimensional
square lattice and interact with their nearest and diag-
onal next-nearest neighbors via isotropic exchange in-
teraction with the constants 𝐽1 and 𝐽2, respectively
(Fig. 1) [1, 2]. This also includes the parent com-
pound of the cuprate high-temperature superconductors
La2CuO4 [3] and is likely relevant to iron-based super-
conductors [4]. The corresponding Heisenberg model has
been studied extensively by a variety of methods, see e.g.
[5] and references therein. For the values of the ratio
𝑝 = 𝐽2/|𝐽1| near 𝑝0 = 1/2, where two different ordered
low energy states have the same energy, the quantum spin
liquid ground state was predicted [1, 6, 7], which may be
the key to solving the problem of high-temperature su-
perconductivity according to the resonating valence bond
theory [8]. This ground state has recently been observed
experimentally in several compounds [2, 9], and another
exotic nematic ground state at high magnetic field has
also been reported [10].

The 𝐽1−𝐽2 Ising model, in which spins can only point
in two directions, up and down, has also been thoroughly
studied theoretically using cluster mean field theory [11–
13], Monte Carlo (MC) simulations [11, 14–16], and ten-
sor network simulations [17]. The nematic phase was pre-
dicted for moderate external fields [18, 19]. Although its
implementations seem less common in nature, the easier
to study the 𝐽1 − 𝐽2 Ising model nonetheless is inter-
esting in its own right, and can also shed light on some
properties of its more complex Heisenberg counterpart.
This is especially true for the Ising model in a transverse
field, where quantum fluctuations induce gap between
two phases around 𝑝0 [13, 19–21] with the valence-bond-
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Fig. 1 |The 𝐽1−𝐽2 Ising model scheme. a, Square lattice
of Ising spins (white - up, blue - down) with the interaction
constant 𝐽1 between nearest neighbors along horizontal and
vertical (solid) lines and 𝐽2 between next-nearest-neighbors
along (dashed) diagonals. b, Random (very high tempera-
ture) spin configuration; the number of spins along each side
of the square sample is 𝐿 = 100.

solid state predicted [20]. Indeed, the phase diagrams of
both models have a lot in common [1, 2, 7, 13].

At present, MC simulations can be used to calcu-
late model properties with very high accuracy, neverthe-
less, easy-to-implement, adequate and efficient approxi-
mations are highly desirable to quickly and reliably de-
termine the most salient system features. Here we use the
random local field approximation (RLFA) [22] to study
the phase transition in the 𝐽1 − 𝐽2 Ising model on the
square lattice. We show that RLFA reveals metastable
states with zero polarization at low temperature in zero
field. We then confirm this finding with our MC simula-
tion and show that, in fact, metastable states can have
an arbitrary polarization value.

Thus, we consider the Hamiltonian

𝐻 = 𝐽1
∑︁
⟨𝑖,𝑗⟩

𝑠𝑖𝑠𝑗 + 𝐽2
∑︁

⟨⟨𝑖,𝑗⟩⟩

𝑠𝑖𝑠𝑗 −
∑︁
𝑖

ℎ𝑖𝑠𝑖, (1)
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Fig. 2 | Polarization as a function of temperature obtained using the RLFA analytical approach and MC
simulations. a, Solution of the RLFA equation (lines) and MC results (markers) for uniform polarization in a uniform field,
𝑝 < 𝑝0, and b, for staggered polarization in a staggered field, 𝑝 > 𝑝0. The magnitude of the field is ℎ = 0.001 (purple dashed
line and triangles) and ℎ = 0 (blue solid line and circles). Each data point is derived from a single MC run with a random
initial spin configuration at each temperature. The magenta diamonds in the bottom left panel (a) indicate the temperatures
𝑇0 < 𝑇1 < 𝑇𝑐.

where the sums are over nearest ⟨𝑖, 𝑗⟩ and next-nearest
(diagonal) ⟨⟨𝑖, 𝑗⟩⟩ neighbors (see Fig. 1a), as well as over
each spin coupled to the external field ℎ𝑖 at its position;
each 𝑠𝑖 can take values ±1. In what follows, we set fer-
romagnetic (FM) 𝐽1 = −1 and antiferromagnetic (AFM)
𝐽2 = 𝑝 > 0 coupling constants, providing together the
frustration of the system. For this choice of couplings,
the ground state is FM at 𝑝 < 𝑝0 (being AFM with Néel
checkerboard order for 𝐽1 > 0) and striped or super-
AFM at 𝑝 > 𝑝0; at 𝑝 = 𝑝0 the ground state is not or-
dered.

The starting point of RLFA is the exact formula for
the average spin value [22, 23]:

⟨𝑠𝑖⟩ = ⟨tanh𝛽(ℎ𝑠
𝑖 + ℎ𝑖)⟩, (2)

where 𝛽 = 1/𝑇 is the inverse temperature (in energy
units), ℎ𝑠

𝑖 =
∑︀

𝑗 𝐽𝑖𝑗𝑠𝑗 is the local field acting on the spin
𝑠𝑖 due to neighboring spins 𝑠𝑗 ; the brackets stand for the
thermal averaging.

With RLFA the fluctuations of each spin are considered
as independent, and averaging in Eq. (2) is carried out
with the product of the probability distributions for each
spin [22, 24]:

𝑃 (𝑠𝑖) = (1 + 𝑚𝑖𝑠𝑖)/2, (3)

where 𝑚𝑖 = ⟨𝑠𝑖⟩ = 𝑚𝑒𝑖qr𝑖 is the thermally averaged po-
larization at the position r𝑖 determined by the propaga-
tion vector q. The uniform polarization corresponds to
q = (0, 0), while the staggered polarization refers to the
vectors (0, 𝜋) and (𝜋, 0). The same applies to the spatial
dependence of the external field ℎ𝑖.

Eqs. (2) and (3) together constitute the essence of
RLFA. Eq. (2), which is a seventh degree polynomial in
𝑚 according to the eight neighbor spins in the model,
can be solved numerically.

The solution of the RLFA equation for uniform (at
𝑝 < 𝑝0) and staggered (at 𝑝 > 𝑝0) polarization is shown
in Fig. 2. This solution corresponds to the zero value of
the Landau potential derivative with respect to 𝑚 and,
therefore, corresponds to its local minimum (stable or
metastable state), local maximum or inflection point (un-
stable states). In the absence of an external field, zero
polarization is always a solution to the equation, and it is
unique and stable at high temperatures. At zero temper-
ature, there is always (except in the case of 𝑝 = 𝑝0) an-
other solution 𝑚 = 1, which corresponds to full polariza-
tion and supposed to be stable. And there is still a third
solution about 𝑚 ≈ 0.29 for 𝑝 ∈ (0, 𝑝0) and 𝑚 ≈ 0.65 for
𝑝 ∈ (𝑝0, 1). It is natural to assume that it corresponds to
a local maximum of the Landau potential separating two
local minima at 𝑚 = 1 and 𝑚 = 0, the first of which is a
stable solution, and the second is a metastable one. In an
external field, the metastable state exists only in a cer-
tain temperature window (dashed purple lines in Fig. 2)
and completely disappears at high fields.

The phase diagram for the 𝐽1 − 𝐽2 Ising model ob-
tained using RLFA is shown in Fig. 3a. The critical
temperatures obtained from the maxima of the dielec-
tric susceptibility in the MC simulation (see Methods)
are given for comparison and are in good agreement with
the literature data [14, 16]. Within RLFA, the transi-
tion turns out to be of the first order for 𝑝 from about
0.25 up to 1.25, while recently it has been shown to be
of the second order everywhere using the tensor network
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Fig. 3 | Critical temperatures and energies in the 𝐽1−𝐽2 Ising model as functions of 𝑝 = 𝐽2/|𝐽1|. a, Phase diagram
obtained using RLFA, MFA and MC. Solid dark blue curves correspond to MFA, open blue circles, magenta up-triangles and
purple down-triangles are 𝑇𝑐, 𝑇0 and 𝑇1 obtained within RLFA (Fig. 2a). The red square is the exact Onsager’s solution for
the 2D Ising model. Dark blue filled circles are calculated using the MC method. b, Energy per dipole obtained using MC
simulation at zero temperature in the absence of a field (red squares), at a temperature 𝑇 = 10−9 and a field ℎ = 0 (blue
circles) and 𝑇 = 0, ℎ = 10−9 (cyan up-triangles for uniform and magenta down-triangles for staggered field). Each data point
is averaged over 100 samples (see Methods). Standard deviations of the energy distribution histogram over 100 samples for
each data point are smaller than the markers (see Extended Data Fig. 4). Blue solid and dashed lines correspond to the energy
of the FM and AFM states, respectively.

simulation technique [17], which apparently resolves the
long-standing dispute about the order of the phase tran-
sition at 𝑝 > 𝑝0 [15]. The agreement between the RLFA
and MC results is good for 𝑝 > 𝑝0. At these points, the
rise of polarization is steep enough, resulting in smaller
fluctuations, which are neglected by RLFA. However, at
𝑝 just below 𝑝0, the discrepancy turns out to be signifi-
cant, with the critical temperature determined by RLFA
going almost linearly to zero, where it should have a fi-
nite value. In Fig. 3a, we also traced the temperatures
𝑇0 and 𝑇1 (see Fig. 2a, left bottom panel), which indi-
cate the range of the zero-polarization metastable state
and the temperature of the first-order phase transition in
the absence of an external field. The overall accuracy of
RLFA turns out to be comparable to the commonly used
cluster mean field approximation (MFA) [11–13].

It should be noted that neither staggered for 𝑝 ∈ (0, 𝑝0)
nor uniform for 𝑝 ∈ (𝑝0, 1) polarizations with 𝑚 = 1 are
solutions to the RLFA equation, although they are very
close to it. At the same time, these states are metastable
at zero temperature. Indeed, any spin flip in these states
leads to an increase in energy 8𝐽2 and −8(𝐽1 + 𝐽2), re-
spectively.

To further explore the metastable states, we perform
MC simulations with single-spin-flip dynamics (see Meth-
ods), making a deep quench from a (high-temperature)
random spin configuration. It was previously shown that
under these conditions a 2D Ising system (correspond-
ing to 𝑝 = 0) on the square lattice at zero temperature
reaches not only a completely polarized ground state,
but sometimes a frozen stripe state with a probability

of about ≈ 0.3 [25, 26]. Later, this behavior and the
probability of the occurrence of a metastable state were
explained by revealing a deep connection between the
zero-temperature coarsening with critical continuum per-
colation [27, 28].

In the absence of an external field, MC simulations
do indeed show metastable states with nearly zero polar-
ization for 𝑝 ∈ (0, 1), although at temperatures several
times lower than follows from RLFA (Fig. 2). Typical
spin configurations of these states at zero temperature
are shown in Figs. 4b, 4f. For 𝑝 ∈ (0, 𝑝0) the real-space
correlation function of these states is exponential and the
correlation length is about 𝑙𝑐 ≈ 1.8 with no apparent de-
pendence on 𝑝. The result is the same when the initial
state at each temperature is AFM for 𝑝 ∈ (0, 𝑝0) or FM
for 𝑝 ∈ (𝑝0, 1). Furthermore, when we start relaxation
from a random spin configuration with nonzero polariza-
tion at low temperatures, the resulting state also has a
nonzero polarization, slightly higher than the initial one
(Extended Data Fig. 1). This proves the existence of
metastable states with an arbitrary polarization value in
the 𝐽1 − 𝐽2 Ising model, in contrast to the case 𝑝 = 0,
when there are only metastable states with zero polariza-
tion [25, 26]. Next, we discuss quenching from random
spin configurations with zero polarization or close to it.

For a small external field (uniform for 𝑝 < 𝑝0 and stag-
gered for 𝑝 > 𝑝0) at low temperature, the metastable
states do not relax to the ground state, as it would
be according to RLFA, but get stuck instead in other
metastable states (Fig. 2). At zero temperature, these
metastable states appear already in an infinitesimally low
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Fig. 4 | Spin configuration in relaxed states at zero temperature. Examples of spin configurations of final absorbing
states after energy relaxation, starting from a random spin configuration, has been performed in the absence or in a very small
uniform or staggered external field ℎ for the values of 𝑝 = 𝐽2/|𝐽1| equal to 0, 0.01, 0.99, and 1.

external field (down to 10−9) with their typical configu-
rations shown in Figs. 4c, 4h. The polarization of these
states is about 𝑚 ≈ 0.5 for 𝑝 < 𝑝0, and very close to
𝑚 = 1 for 𝑝 > 𝑝0. It first decreases with increasing tem-
perature, and then increases to 𝑚 = 1 in both cases in ac-
cordance with the RLFA solution. When a uniform field
is applied for 𝑝 > 𝑝0, which is an experimentally relevant
situation, the system relaxes into even other metastable
states, see Fig. 4g.

We note that some data with an intermediate polariza-
tion value in Fig. 2 actually correspond to incompletely
relaxed FM and AFM states divided into slowly relax-
ing large domains (Figs. 4a, 4e). At the same time, the
energy of these states does not differ much from a com-
pletely ordered state, but it is significantly higher for
truly disordered states (Extended Data Fig. 2). Thus,
we plot the energy per dipole at zero temperature as a
function of 𝑝 (Fig. 3b), where the metastable states at
𝑝 ∈ (0, 1) (red squares) are clearly visible. For some val-
ues of 𝑝 > 𝑝0, the energy of metastable states in Fig. 3b
appears to be slightly higher and goes above the general
trend. However, it suffices to apply an infinitely small
temperature of 𝑇 ∼ 10−9 for these fragile metastable
states to quickly relax into robust metastable states for
𝑝 ∈ (𝑝0, 1) or stable states for 𝑝 > 1. Similar to the
2D Ising model (𝑝 = 0) [25, 26], relaxation of robust
metastable states into the ground FM or AFM states

is apparently determined by the activation energy 𝐸𝑎

as 𝜏 ≃ 𝐿3 exp(−𝐸𝑎/𝑇 ) (Extended Data Fig. 3). For
𝑝 ∈ (0, 𝑝0), where the ground state is FM, metastable
states consist of rectangles with more than two spins on
each side, surrounded by spins with the opposite direc-
tion. These rectangles are then interconnected, making
up the whole picture (Figs. 4b - 4d). The energy cost for
a spin flip in the corner of the rectangle is 4𝐽2, on its side
is 4𝐽1, and in the middle of a long line of one spin wide
is 8𝐽2. Thus, the activation energy in this case is deter-
mined by the minimum of these energies, 𝐸𝑎 = 4𝐽2. At
the same time, the external field sufficient for spin flip in
the metastable state is half this value. For 𝑝 = 0.05, for
example, it is ℎbar = 0.1 in agreement with the MC sim-
ulation results in Extended Data Fig. 3. For 𝑝 ∈ (𝑝0, 1),
the excitations are rings with opposite polarization inside
(Figs. 4f - 4h) and the activation energy −4(𝐽1 + 𝐽2).

According to the results of the MC simulation, the
energy landscape of the 𝐽1 − 𝐽2 Ising model resem-
bles a hedgehog when mapped onto an imaginary two-
dimensional configuration space with radially increasing
polarization. Different spin configurations with a cer-
tain polarization have different energies, but their av-
erage energy decreases with increasing polarization. At
sufficiently low temperatures, relaxation of the system to
the ground state with polarization 𝑚 = 1 becomes im-
possible because of the traps due to metastable states
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lying on its way there.

Experimentally, strongly nonequilibrium conditions
equivalent to quenching can be achieved in ultrafast light-
pump experiments, such as [29]. Note that metastable
states have recently been reported in incipient ferroelec-
tric SrTiO3 under high-intensity THz pumping [30, 31]
and were predicted from ab-initio calculations in the an-
tiferroelectric NaNbO3 [32]. The nonequilibrium condi-
tions can also be created by applying an external field
to bring the system out of the fully polarized state with
𝑚 = 1 and turning off the field abruptly. The switch-off
time in this case must be less than the spin relaxation
time, while in electrical circuits it is limited to hundreds
of microseconds for magnetic fields [33], and hundreds
of picoseconds for electric fields [34]. However, in ex-
periments with laser pumping, it can be short enough
in both cases [35–38]. We also note that in some cases
metastable states can be achieved with slowly varying
external fields. Indeed, as described in the previous sec-
tion, a field less than ℎbar = 2𝐽2 does not cause a tran-
sition between two metastable (or metastable and sta-
ble) states. However, for 𝑝 > 𝑝0, a field larger than
ℎtr = 𝐸AFM − 𝐸FM = −4𝐽2 − 2𝐽1, see Fig. 3, can make
the FM state stable, i.e. the ground state. Therefore, by
cooling in the field ℎtr < ℎ < ℎbar and then turning the
field off, we can trap the system in a metastable state.
This is possible when ℎtr < ℎbar, i.e. for 𝑝 ∈ (𝑝0, 2/3).

The metastable states discussed here should also ex-
ist in a moderate transverse external field, and therefore
they could be equally expected in the Heisenberg quan-
tum model relating to magnetism in high-temperature
superconductors [4, 39], depending on 𝑝, however. In
La2CuO4 with the Néel AFM ground state, the values
of 𝐽1 ≈ 1300 K [3] and later about 1700 K [40] were
obtained from fitting inelastic neutron scattering data
in general agreement with ab-initio calculations [41–44].
However, the value and the sign of 𝐽2 differ in different
sources with 𝑝 ≈ −0.1 reported in [3, 43] and ranging
from about 0.2 [40, 42, 44] to 0.8 in [41]. At the same
time, in Sr2IrO4, similar to cuprates in many aspects,
apart from superconductivity, 𝐽2 < 0 [45–47] and, con-
sequently, with no frustration, metastable states are not

expected.
For iron-based superconductors, which have a striped

AFM ground state in their parent compounds [39, 48],
it was shown that biquadratic coupling together with
isotropic in-plane coupling constants explain many of the
observed features [49, 50]. For CaFe2As2, for example,
experimental data are well fitted for 𝐽1 = 102 K and
𝑝 = 0.86 [49]. We also mention LaFeAsO, where 𝑝 is
very slightly more than one, as calculated in [51], while
it was claimed about 0.71 in [52, 53]. In both compounds
𝐽1 > 0 and they could be tested as well as La2CuO4 for
metastable states.

Other suitable magnetic compounds corresponding to
the 𝐽1−𝐽2 Heisenberg model also include VOMoO4 with
𝐽1 = 100 − 150 K and 𝑝 ≃ 0.2, and the Néel tem-
perature 𝑇𝑁 = 42 K [54, 55]. In BaCdVO(PO4)2, the
ground state is striped AFM with 𝐽1 = −3.6 K and
𝐽2 = 3.2 K [10, 56], which gives 𝑝 ≃ 0.9. However,
the expected temperature of metastable states is approx-
imately two orders of magnitude lower (Fig. 2) than the
already low phase transition temperature 𝑇𝑁 = 1.05 K
[10], which may complicate its experimental study. In
PbVO3, where 𝐽1 ≈ 190 − 200 K and 𝑝 ≈ 0.2 − 0.4 is
close to the gap in the phase diagram around 𝑝0, there is
no long-range magnetic ordering down to 1.8 K [57]. The
solid solution Sr2Cu(Te1−𝑥W𝑥)O6 is unique for studying
frustrated square-lattice antiferromagnetism as it can be
tuned from the Néel (𝑥 = 0, 𝐽1 ≈ 83 K, 𝑝 ≈ 0.03) to
the striped AFM order (𝑥 = 1, 𝐽1 ≈ 14 K, 𝑝 ≈ 7.92) by
varying the composition [58]. Thus, this compound may
also be a preferred choice for studying metastable states.

In conclusion, using RLFA, we predict the existence of
metastable states with zero polarization in the 𝐽1 − 𝐽2
Ising model at low temperature. Our MC simulation con-
firm this predication but also indicate metastable states
with an arbitrary polarization value. We point to some
antiferromagnets, including known high-temperature su-
perconductors, where these states can be revealed at low
temperature. These findings may be crucial for explain-
ing the magnetic and electric properties of some materials
and may directly manifest themselves, in particular, un-
der the nonequilibrium conditions of modern experiments
with high-power ultrashort light pumping.
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Extended Data Fig. 1 | Polarization versus temperature. Polarization after Monte Carlo relaxation (104 MCS) for
𝐽2/|𝐽1| = 0.3 and two values of initial polarization 𝑚init = 0.2 and 0.8.
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a b

Extended Data Fig. 2 | MC results for polarization and energy per dipole for different values of 𝑝 = 𝐽2/|𝐽1|.
a, Uniform polarization (left y-axis) and energy per dipole (right y-axis) in a uniform field, 𝑝 < 1/2. b, Staggered polarization
and energy per dipole in a staggered field, 𝑝 > 1/2. Open markers correspond to polarization, filled markers indicate energy.
Purple triangles correspond to the field magnitude ℎ = 0.001, blue dots correspond to the absence of a field. Each data point
is derived from a single MC run with a random initial state at each temperature.
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Extended Data Fig. 3 | Energy per dipole obtained by MC simulations for different values of the ratio 𝑝 =
𝐽2/|𝐽1|. Red squares correspond to zero temperature and no field, dark blue circles and blue triangles correspond to 𝑇 = 0.1,
ℎ = 0, and 𝑇 = 0, ℎ = 0.1, respectively. The applied external field is uniform for 𝑝 < 1/2 , and it is staggered for 𝑝 > 1/2.
The standard deviations of the energy distribution histogram over 100 samples is smaller than the markers (see Extended Data
Fig. 4). Dark blue solid and dashed lines correspond to the energies of the FM and AFM states at ℎ = 0. For 𝑇 = 0, ℎ = 0.1,
the transition between stable and metastable states occurs around 𝑝FM = 0.05 and 𝑝AFM = 0.95.
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Extended Data Fig. 4 | Monte Carlo simulation for 𝐽2/|𝐽1| = 0.1 at zero temperature. a, Energy relaxation for
100 samples. b, Final energy histogram and superimposed Gaussian function with a calculated mean value of ⟨𝐸⟩ = −1.19 and
a standard deviation of 𝜎𝐸 = 0.015.


