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Abstract. Nonlinear partial differential equations appear in many domains of physics, and
we study here a typical equation which one finds in effective field theories (EFT) originated
from cosmological studies. In particular, we are interested in the equation ∂2t u(x, t) =

α(∂xu(x, t))
2 + β∂2xu(x, t) in 1 + 1 dimensions. It has been known for quite some time

that solutions to this equation diverge in finite time, when α > 0. We study the nature of
this divergence as a function of the parameters α > 0 and β ≥ 0. The divergence does not
disappear even when β is very large contrary to what one might believe (note that since we
consider fixed initial data, α and β cannot be scaled away). But it will take longer to appear as
β increases when α is fixed. We note that there are two types of divergence and we discuss the
transition between these two as a function of parameter choices. The blowup is unavoidable
unless the corresponding equations are modified. Our results extend to 3 + 1 dimensions.

Submitted to: Nonlinearity

1. Introduction

In physics, effective field theories (EFT) are employed to describe fundamental theories at the
low energy limit in a unified form. This approach is widely used to express different physical
phenomena [13, 27, 18, 17, 16]. This framework, which is constructed based on perturbative
expansion, usually leads to non-linear partial differential equations.

Recently, the effective field theory approach has become very popular in cosmological
studies, especially to study the late time accelerating expansion of the Universe which is
driven by the so-called dark energy component [6, 14]. Based on cosmological observations
[2, 32, 4] the clustering of the dark energy component is supposed to be small, so the
linear approximations are justified [37, 25]. However, in the near future high precision
measurements of the Universe will be done by the new cosmological surveys [6, 30, 36, 3].
This motivated cosmologists [20, 21, 15] to study non-linear PDEs arising from these EFT
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approaches to have more accurate predictions of these theories. Thus, cosmological N -
body simulations have been developed [23, 1] which describe the evolution of structures in
the Universe by solving Einstein field equations as well as a non-linear PDE for the dark
energy component. In a nutshell, this non-linear PDE has non-linearities that sometimes are
dominated by a (∂xu(x, t))

2 term [24]. This motivates our current study.
Using extensive numerical simulations with k-evolution [23] it was discovered earlier

in [24] that the solutions of such equations can form violent singularities at finite time. And,
depending on the cosmological parameters, these singularities can even appear at a time before
the current epoch of the Universe. Obviously, this asks for a change of parameters, or for
regularising the models with additional smoothing terms. In [24] it is specifically argued that
appearance of the Laplace term β∂xxu(x, t) with large enough β makes the system stable.
It is worth noting that in cosmological context

√
β = cs where cs is the “speed of sound”

and determines how fast the perturbations of scalar field propagate. In cosmology usually,
0 ≤ cs ≤ 1. However superluminal cases (cs ≥ 1) are also considered in the literature
[10, 12]. However, we will show that the Laplacian term does not regularize enough to avoid
the finite time blowup: It just shifts the blowup time to a later epoch. Perhaps, not seeing the
instability in the realistic cosmological N -body simulations might be due to the short time
period, or some other phenomena which are present in cosmological setups.

In the paper [24], employing the cosmological N -body code k-evolution, it was found
that the PDE for the EFT of dark energy (in particular, k-essence models†), for some set of
parameters leads to an instability in finite time. It was shown in [33] that the main source of
finite-time instability is due to the presence of the non-linear term in

∂2u(x, t)

∂t2
= α · (∂u(x, t)

∂x
)2 , (1.1)

which appears naturally in EFT theories (in cosmological studies u(x, t) is called π(x, t)).
Here, we consider only fixed α > 0 but for general theories α can be time dependent. This
time dependence appears in k-essence theories through the Hubble parameter H(t) [24] and
we have checked that the divergence persists when taking into account the time dependence
ofH.

Using a contraction-mapping fixed point argument, one can easily check that the (local
in time) Cauchy problem for equation (1.1) can be solved in the space consisting of Fourier
transforms of compactly supported functions. Beyond this setting, it is easy to see that (1.1)
has solutions which diverge in finite time [24]: In fact, for some initial conditions we can
consider u of the form u(x, t) = f(t)x2. This leads to f ′′(t) = 4α · f(t)2. When the initial

† These are a general class of theories in which the action contains at most one temporal and one spatial
derivative acting on the field [7]. The k-essence models have been proposed as a possible explanation for the late
time cosmic acceleration. In the k-evolution code, the k-essence field and other cosmological components, such
as dark matter and baryonic matter, are implemented. The “k” in “k-essence” stands for “kinetic,” which refers
to the kinetic energy of the theory. The idea behind k-essence is that the negative pressure of its fluid description
is caused by its kinetic energy.
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condition is f(0) = 3
2αt20

and f ′(0) = 9
αt40

, then we have

f(t) =
3

2α(t0 − t)2
, (1.2)

which diverges as t ↑ t0, when α > 0. As discussed in [35, 34, 33], this divergence is of a
local type and the curvature of the minima increases to infinity in a finite time. Here we call
this divergence the “V” type as shown in Fig. 1. We give a general divergence proof in Sect. 2.
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Figure 1: The V-type divergence: The solution profile u(x, t) is shown at different times
(different colours), up to the blowup time. The curvature at the minimum diverges in finite
time. The initial conditions are: u(x, 0) = 0 and ∂tu(x, 0) = − exp(−120π2x2) on [−π, π].

Consider now the equation

∂2u(x, t)

∂t2
= α · (∂u(x, t)

∂x
)2 + β

∂2u(x, t)

∂x2
. (1.3)

When β = 0 this is (1.1). We next consider the case when β > 0 (and α > 0 is fixed). The
local in time Cauchy problem for this equation can be solved in W 1,∞ × L∞(R) (see [8] for
a similar strategy). From the finite speed of propagation, for given initial data at t = 0, two
cases appear for the domain of definition of the solution:
- either it is {(x, t) | t ≥ 0} and the solution is said to be global;
- or it can be expressed as

D = {(x, t); | 0 ≤ t < T (x)}
for some Lipschitz function x 7→ T (x) (with Lipschitz constant 1/

√
β), where the solution

is said to ”blow up” in finite time. (see Appendix B for details). In this paper, we deal with
blow-up solutions.

As for the blow-up behaviour, there are two scenarios: When β is very small, the solution
will be of V-type but when β is larger, then it will be of a shape we call M-type, as illustrated
in Fig. 2.
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Figure 2: The M-type divergence: As time advances, the support of the function spreads,
and the function at the edge gets steeper, until the derivative will diverge at some time T∗.
The simulation is for the equation (1.3), with α = 0.15 and β = 0.05 and initial conditions
∂tu(x, 0) = − exp(−120π2x2), u(x, 0) = 0 on [−π, π].

It was seen in simulations presented in [24], that the instability seems to vanish when one
adds a Laplace term with large enough coefficient β.

However, this is not the whole story: In fact, whenever α > 0 this system is always
unstable and even large β cannot cure the instability forever, (this holds rigorously for a
large class of initial conditions, and seems to hold in numerics, for any initial condition
with compact support). However, increasing β does increase the blowup time. Actually, the
blowup now happens at the “ends” of the “M” shape in the profile, whose walls get steeper
and steeper, until the derivative becomes infinity. This phenomenon was known for some
time in the literature [29, 26], and it is quite generic. In simulations, perhaps one does not
wait long enough, or the M gets too wide in the numerically allocated spatial direction, before
the divergence happens.

In the following sections, we will study in more detail the domains in the α, β plane for
which “V” and “M” divergences will happen and the time it takes for blowup to occur. This
will tell us for which physical parameters the singularity is so far in the future that it can be
neglected, or that it is of a form which can easily be damped by adding additional terms to
(1.3). However, such terms do not seem to occur naturally in the case of cosmological models
for dark energy, especially within the weak-field approximation [20]. For the convenience of
the reader, we repeat in two appendices some details about the V type divergence, and we also
repeat—with small variations—a proof of the persistence of divergence for all β > 0 (when
α > 0). These appendices are based on [34] and [29, 28].



Instabilities in effective field theories 5

2. Blowup time as a function of α when β = 0

Before we can study the dependence on β, we need to study the divergence time for the case
α > 0. The following is a slight adaptation of the results of [34, 33].

We consider the equation utt = α(ux)
2 on the real line. We start by writing the solution

in the form

u(x, t) = f(x) + g(x)t+ α

∫
t

0

dτ

∫
τ

0

dτ ′(ux(x, τ
′))2 . (2.1)

This corresponds to the initial conditions

u(x, 0) = f(x) , ut(x, 0) = g(x) .

We will consider the case where f ′(0) = g′(0) = 0, and we ask how the solution behaves near
x = 0. Depending on the curvatures f ′′(0) and g′′(0), the second derivative uxx(x, t) will, or
will not diverge at x = 0. Of course, if the functions f and g have vanishing derivatives at
some other point(s) x0, the same discussion will apply at those points, and there can be one of
these points where uxx(x0, t) diverges before the one at x = 0. In the following proposition,
we will neglect this aspect.

Proposition 2.1. Assume f ′(0) = g′(0) = 0. Define

c = 1
2
g′′(0)2 − 2

3
αf ′′(0)3 . (2.2)

Then the following cases appear:
(i) If g′′(0) > 0 then uxx(0, t) diverges in finite time t+ given by

t+ =

∫ ∞
f ′′(0)

db√
4
3
αb3 + 2c

=

∫ ∞
f ′′(0)

db√
α(4

3
(b3 − f ′′(0)3) + g′′(0)2

. (2.3)

(ii) If g′′(0) < 0 then uxx(0, t) will converge to b∗ in a finite time t−, where

2
3
αb3∗ = −c , and t− =

∫
f
′′
(0)

b∗

db√
4
3
αb3 + 2c

. (2.4)

At this point in time, we will have ut(0, t−) = 0 which corresponds to (iii) and the solution
will diverge after another finite time t+ (unless c = 0).
(iii) If g′′(0) = 0, and f ′′(0) 6= 0 then uxx(0, t) diverges in finite time t+ given again by (2.3).
(iv) If g′′(0) = 0 and f ′′(0) = 0 then uxx(0, t) stays constant.

Remark 2.2. When g′′(0) > 0 and f ′′(0) = 0, then the elliptic integral can be evaluated
explicitly and one gets

t+(α, g
′′(0)) =

A

α1/3g′′(0)1/3
,

with A ≈ 2.5479.
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Remark 2.3. Assume that u(x, 0) = 0 and ut(x, 0) is a smooth, bounded function with several
well-separated extrema. Such initial conditions are typical for questions in cosmology. In this
case, the blowup will happen first in that point x0 for which C ≡ αutxx(x0, 0) is maximal
(and utx(x0, 0) = 0). In that case, the formula of Remark. 2.2 leads to t+ ∼ 2.547/C1/3.

Remark 2.4. Note that t+ + t− is the total time for an initial condition g′′(0) < 0 to
diverge (only when c 6= 0, with c defined in (2.2)). And then, the divergence time is
t−(f

′′(0), g′′(0)) + t+(b
∗).

The proof of these statements is given in Appendix A.

3. Crossover
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Figure 3: Distance of singularity at divergence time as a function of α and β1/2: In the
region marked “V” the numerics does not allow to distinguish between V-type and M-type
divergence, since the distance of the (two) singularities is too small to distinguish M and V.
The other white region is the set of parameters where the simulation hits the boundary before
divergence (see Appendix C for an explanation). The initial condition is u(x, 0) = 0 and
ut(x, 0) = − exp(−120π2x2). The colour coded part shows the distance of the maximum of
|uxx| at blowup time.
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Figure 4: Divergence time as a function of α and β : The x axis is β. The initial condition
is u(x, 0) = 0 and ut(x, 0) = +exp(−120π2x2). The white region contains those parameters
(α and β) for which the solution hits the boundary before divergence, as in Fig. 3. Each colour
corresponds to a different divergence time. Note that in this case, since the initial condition
satisfies the condition of Theorem B.1 (we made the support finite), we know that the solution
must blow up in finite time, for all α > 0 and β ≥ 0.

The equation (1.3) can be rescaled in space and time, to eliminate either α or β. This
rescaling will be used in Appendix B, when we show that blowup is unavoidable in many
cases. Here, we ask a different question as in cosmological studies it is important to know the
blowup as a function of α and β for a fixed initial perturbation. And then, the scaling cannot
be used.

As we have indicated in the introduction, for a fixed α > 0 there will be a crossover
between the V-type and the M-type divergence as one varies β. This crossover is important
in general, because the nature of the divergence is different in the two cases: For the V-type
divergence, we see a localised blow-up of the second derivative in a minimum, as shown in
Fig. 1. In the second, M-type case, the divergence happens at some distance from the critical
point of the initial condition (see Fig. 2). A vertical wall forms, and this wall moves outward
from the centre, basically with the propagation speed of the wave (which is

√
β for (1.3)).

The divergences in the EFT framework are mainly important, because they are either
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Figure 5: Distance of singularity at divergence time as function of α and β1/2: Because
the initial condition is now u(x, 0) = 0 and ut(x, 0) = +exp(−120π2x2), all divergences
seem to be of M-type (see Theorem B.1, which only asserts divergence in finite type, but
the proof suggests divergence at near the advancing front). Note that for all α and β > 10−6

considered in this graph, the distance of the singularity from x = 0 at blowup is at least 0.1795
(in the interval [−π, π]). For this initial condition and the α, β, considered, blowup always
happens before the wave hits the boundary.

a hint for entering the strong field regime (where the perturbative expansion is not valid
anymore) or a breakdown of the underlying fundamental theory [24]. The divergence type
should correspond to physical phenomena happening at high energy/small scales. Especially it
may help to introduce appropriate mechanisms to remove such instabilities. As an example the
V-type divergence is localized, and in cosmological studies (as suggested in [24]) can be used
as an origin of super massive black holes. On the other hand the M-type blowup resembles
caustics formation in the Universe [11, 9]. These two cases have different signatures in
cosmological observables [31]. And therefore it is useful to distinguish them.

We illustrate the various possibilities in Figs. 3–5. In Fig. 3 we consider initial conditions
with a minimum, namely − exp(−120π2x2). In this case, depending on α and β we can see
a V-type divergence or an M-type divergence. When α is large and β > 0 not too small, we
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detect clearly an M-type divergence. But when β is too close to 0, the numerics breaks down,
and one sees something like a V-type divergence in the region “V” of Fig. 3. However, it
is also possible that in fact for all β > 0 one has M-type divergence, with the two walls of
the M so close together that the numerics gets unreliable. With our current understanding we
conjecture that it is always M-type when β > 0. Note that, in any case Theorem B.1 shows
that for all β > 0 there is finite time divergence (the proof only applies to initial conditions
of a certain positivity type—the function M of Appendix B, but we have seen the M-type
divergence for general non-trivial initial conditions with compact support).

Indeed, when α is large and β > 0 is small, then the minimum will get more and more
pointy as in Fig. 1, until the second derivative diverges. This happens in the white region “V”
in Fig. 3. In the coloured parameter regions, the negative initial conditions get more pointy,
until the Laplacian term regularises the central part, which then grows, becomes positive and
then diverges away from the centre, as in Fig. 2.

When the initial condition is positive, with a local maximum, then the situation is
somewhat simpler, because the transition from negative to positive is absent. No V singularity
can form. Note that this is consistent with the discussion of the cases (i) and (ii) in
Proposition 2.1. The divergence time as function of α and β is shown in Fig. 4 for the
divergence time, and in Fig. 5 for the divergence distance, by which we mean the distance
of the singularity from the coordinate origin. We can not offer a formula for the curves in
either of the figures.

4. Conclusions and discussion

In this article we discussed the equation ∂2t u(x, t) = α(∂xu(x, t))
2 + β∂2xu(x, t). These

types of PDEs appear naturally in the effective field theory descriptions of physical systems,
where one approximates the equations assuming weak fields. We specifically discuss the
two divergence types arise from these equations, namely the “V” and the “M” type. We
discuss how and when these instabilities are generated. In some cosmological studies [22]
it is suggested that the term β∂2xu(x, t) stabilises the system so that the instability caused by
α(∂xu(x, t))

2 vanishes. This stabilisation is especially motivated by realistic cosmological
studies. While our results are in agreement with [24, 33, 22] regarding the V-type blowup
which happens for small β, our results show that even for large β the instability is unavoidable,
however it is always of the new M-type. The reasons that this instability is not seen in the
realistic cosmological simulations for large β (or c2s in cosmology) could probably be due to
1) the role of gravity which is neglected in our study 2) the difference in boundary conditions
or 3) the instability exists but will appear beyond the times considered in a study. Preliminary
studies show that the results carry over to the 3+1 dimensional situation.†

† In the 3 + 1 dimensional case with spherical symmetry, the equation (1.3) is simply replaced by utt(r, t) =
α(ur(r, t))

2+β
(
urr(r, t) +

2
rur
)
, where r is the radial coordinate. We have done the corresponding numerical

experiments for this case.
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Appendices

A. Divergence time when β = 0

Here we prove Proposition 2.1.

Proof. Define

a(t) = ux(0, t) , b(t) = uxx(0, t) .

Then (2.1) leads to

a(t) = f ′(0) + g′(0)t+ 2α

∫
t

0

dτ

∫
τ

0

dτ ′ux(0, τ
′)uxx(0, τ

′) ,

and therefore

ä(t) = 2αa(t) b(t) . (A.1)

Similarly,

b(t) = f ′′(0) + g′′(0)t+ 2α

∫
t

0

dτ

∫
τ

0

dτ ′ ((uxx(0, τ
′))2 + ux(0, τ

′)uxxx(0, τ
′)) .

From this, we deduce

b̈(t) = 2α(uxx(0, t))
2 + 2αux(0, t)uxxx(0, t)

= 2αb(t)2 + 2αa(t)uxxx(0, t) .
(A.2)

Since we assume f ′(0) = g′(0) = 0 we find from (A.1) that a(t) = 0 for all t for which b(t)
is finite. Therefore, (A.2) reduces to

b̈(t) = 2α(b(t))2 . (A.3)

We will discuss this equation. For computing the divergence time, it is useful to transform the
equation as follows: Multiplying by ḃ leads to

1
2

d

dt
(ḃ(t))2 = 2

3
α
d

dt
b(t)3 ,

or, for some c,

1
2
(ḃ(t))2 = 2

3
α(b(t))3 + c . (A.4)

Note that looking at t = 0 we find

c = 1
2
ḃ(0)2 − 2

3
αb(0)3 = 1

2
g′′(0)2 − 2

3
αf ′′(0)3 , (A.5)

which is the definition in the proposition. Note that

b(0) = f ′′(0) , and ḃ(0) = g′′(0) .
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We consider first the case where g′′(0) > 0. Then ḃ(0) > 0 and from (A.4) we find that

ḃ(t) =
√

4
3
α(b(t))3 + 2c , (A.6)

which means b is increasing and the quantity below the square root is always positive. Using
standard techniques, we get

dt =
db√

4
3
αb3 + 2c

.

From (A.6) we deduce the divergence time t+,

t+ =

∫ ∞
b(0)

db√
4
3
αb3 + 2c

. (A.7)

This proves (2.3).
The case g′′(0) < 0 is handled similarly, but now (A.6) is replaced by

ḃ(t) = −
√

4
3
αb(t)3 + 2c . (A.8)

This means that b is decreasing until the square root in (A.8) vanishes. This defines b∗, and
then (A.7) is replaced by

t− =

∫
b(0)

b∗

db√
4
3
αb3 + 2c

.

This leads to (2.4).
The assertions under (iii) are a simple variant of (i) and (ii). The difference is that because

g′′(0) = 0, we find now that c = −2
3
αf ′′(0)3, and c 6= 0 by the assumption f ′′(0) 6= 0. Note

that in this case, the positivity of ḃ(t) follows from the second order ODE (A.3), given that
b(0) = f ′′(0) 6= 0 and ḃ(0) = g′′(0) = 0. The only remaining case is (iv), g′′(0) = f ′′(0) = 0,
which implies that b(0) = ḃ(0) = 0, hence, directly leads to b(t) = b(0) = 0 by (A.3).

B. Finite time divergence

We adapt here the proof of [29] to the 1+ 1 dimensional context. The proof actually works in
the same way in higher dimensions, for which it was already spelled out in [29, 28]. Since we
deal here only with the fact that the equation will diverge in finite time, it suffices to consider
instead of α > 0, β > 0, the simpler form

utt − uxx = u2x . (B.1)

Indeed, if v(x, t) solves vtt = α(vx)
2 + βvxx, then u(x, t) = β

α
v(β−1/2x, t) satisfies (B.1).

Note that we work in R, and not, as happens in some simulations, in periodic boundary
conditions. Assume the initial conditions are

u(x, 0) = f(x) , ut(x, 0) = g(x) ,
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with f , g having support in |x| < X . We may assume (f, g) ∈ H for some functional space,
for example H = W 1,∞(R)× L∞(R).
Using a standard fixed point technique, we can find a local in time solution u(t) ∈
C([0, t0], H) for some small t0 > 0. From the finite speed of propagation, using a cut-off
technique, this global (in space) existence result extends to some local in time existence result
in slices of backward cones of slope 1. This way, we can see that our solution is defined
beyond the above-mentioned strip R × [0, t0], and extends to a larger domain of definition,
which happens to be a union of backward light cones, with different heights. From elementary
considerations, one of the following cases occurs:

(i) Either the union is the half-space R× [0,∞). We say in that case that the solution is
“global” (for forward time).

(ii) Or, the union writes as

{(x, t) | 0 ≤ t < T (x)}

for some 1-Lipschitz function T : R → R. In that case, we say that u “blows up in finite
time.” Note that by construction, we have a local blow-up time for each x ∈ R, namely T (x).
For more details on the construction of the domain of definition, see [5] and also [8].

Define now, see [29], for x > 0,

M(x) = 1
2
f(x) + 1

2

∫
X

x

g(ξ)dξ .

Theorem B.1. Assume there is an X0 ∈ (0, X) for which M(x) ≥ 0 for all x ∈ (X0, X), and
also ∫

X

X0

M(ξ)dξ ≡ ε > 0 .

Then, the solution blows up in finite time, in the sense of the definitions above.

Remark B.2. Note that the theorem is shown under the assumption that M(x) > 0. This
covers cases where u(x, 0) and/or ut(x, 0) are positive (or positive near the edge of their
support). The case of negative M is not covered by the literature, nor by our proof. However,
we have studied many cases with negative initial M . For example, the case u(x, 0) = 0 and
ut(x, 0) = −exp(−C · x2) of Fig. 3. In all these cases we seem to see “M-type” divergence.
We can consider the solution u(x, t), ut(x, t) as a new initial condition for any t. Then, we
have observed that M starts out negative, decreases, and finally crosses 0. From that point
on, we are again in the domain of validity of Theorem B.1, and, indeed, the solution diverges.
(This is reminiscent of the two cases in Appendix A.)

Proof. It suffices to consider the situation where u(x, 0) and ut(x, 0) have support in |x| ≤ X ,
but we will consider only the side of positive x in the sequel. Clearly, u(x, t) = 0 for x ≥ t+X

due to the finite propagation speed. One estimates now the function

H(t) =

∫
t

X1

(t− τ)
∫

τ+X

τ+X0

u(ξ, τ)dξ dτ .
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Here, X1 = (X −X0)/2. From the definition, we get

H ′′(t) =

∫
t+X

t+X0

u(ξ, t)dξ . (B.2)

One has the explicit formula

u(x, t) = u0(x, t) +
1
2

∫
t

0

∫
x+t−τ

x−t+τ
ux(ξ, τ)

2dτ dξ , (B.3)

with the “free evolution”

u0(x, t) =
1
2
(f(x− t) + f(x+ t)) + 1

2

∫
x+t

x−t
g(ξ)dξ .

When x ≥ t+X0 and X ≥ t ≥ X1, then x+ t ≥ X and therefore f(x+ t) = 0 and therefore,
in this region,

u0(x, t) =
1
2
f(x− t) + 1

2

∫
x+t

x−t
g(ξ)dξ .

We get from (B.3) and (B.2),

H ′′(t) = G0(t) +G1(t) ,

with

G0(t) =

∫
t+X

t+X0

u0(x, t)dx =

∫
t+X

t+X0

M(x− t)dx =

∫
X

X0

M(x)dx = ε ,

by the definition of ε in Theorem B.1. The nonlinearity leads to

G1(t) =

∫
t+X

t+X0

dx

∫
t

0

dτ

∫
x+t−τ

x−t+τ
dξ ux(ξ, τ)

2 .

In Lemma B.3 below, we show that for t > X1 ≡ (X −X0)/2 one has

G1(t) ≥
1

t+X

∫
t

0

dτ

∫
τ+X

τ+X0

dξ (t− τ) (ξ − τ −X0)ux(ξ, τ)
2 . (B.4)

We use now the Schwarz inequality in the form∫
ϕψ =

∫
ϕ1/2(ϕ1/2ψ) ≤

(∫
ϕψ2

)1/2 (∫
ϕ

)1/2

,

with ϕ = (t− τ)(ξ − τ −X0) and ψ = ux. This leads to

G1(t) ≥ F 2(t)/J(t) ,

with

F (t) =

∫
t

0

∫
τ+X

τ+X0

(t− τ)(ξ − τ −X0)ux(ξ, τ)dξ dτ
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and

J(t) =

∫
t

0

∫
τ+X

τ+X0

(t− τ)(ξ − τ −X0)dτ dξ =
(X −X0)

2t2

4
.

If we integrate the expression for F by parts (in ξ), we get

F (t) = −
∫

t

0

∫
τ+X

τ+X0

(t− τ)u(ξ, τ)dξ dτ = −H(t) .

Therefore, we find finally

H ′′(t) ≥ G0(t) +
H(t)2

J(t)
. (B.5)

Fix now T and we will show that the solution cannot exist for T > T∗, where T∗ will
be computed in the proof: We use here Lemma 1 from [28] adapted to the 1d case. The
ingredients are that

H ′′(t) ≥ G0(t) = ε > 0 , (B.6)

for all t ≥ 0 and

H ′′(t) ≥ G1(t) ≥ 4
H(t)2

(X −X0)
2 t2

, (B.7)

for t > X1 (as long as the solution exists). Furthermore, H(X1) = H ′(X1) = 0.
Fix now T1 = 2(X1 + 1). Then, for t > T1, we have t > 1

2
(t + 1), and we replace from

now on (B.7) by the simpler

H ′′(t) ≥ K1

H(t)2

(t+ 1)2
, for t > T1 , (B.8)

with K1 = 16/(X −X0)
2.

The idea is now to deduce from (B.6) and (B.8) an inequality of the form

H ′(t) ≥ CH1+δ(t) for t > T1 with δ > 0 . (B.9)

This implies divergence in finite time, when H(T0) > 0. Indeed, if H(T0) = c−1/δ > 0, then

H(t) =
1

(c− Cδ(t− T0))1/δ
. (B.10)

One can reformulate this as follows: If H(T0) = A and A ≤ 1/e, the optimising δ in (B.10)
is ≤ 1 and therefore we find that the divergence time is proportional to − log(A). Note that,
if, for example, the leading edge of the support (at x = 0) is like |x|2 for x < 0, then this will
lead to earlier divergence compared to |x|3.

We now begin the proof proper. If B > 0, we will use repeatedly the inequality

x

x+B
≥ 1

2
, for all x ≥ B . (B.11)

From (B.6) we find
H(t) ≥ K2εt

2 , for all t > 0 , (B.12)
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with K2 =
1
2
.

Substituting (B.12) into (B.8), we get

H ′′(t) ≥ K1K2εH(t)
t2

(t+ 1)2
≥ K3εH(t) , when t > T2 , (B.13)

for some large enough T2 = const.T1 , not depending on ε. Since H ′(t) > 0, we can multiply
(B.13) by H ′ and write it as

d

dt
(H ′(t)2) ≥ K3ε

d

dt
(H(t)2) when t > T2 .

We integrate from T2 to t and obtain

H ′(t)2 ≥ K3ε (H(t)2 +H ′(T2)
2 −H(T2)

2) = K3εH(t)2 +K4ε when t > T2 ,

for some K4. From (B.6), we conclude that for large enough T3, one has

K3εH(t)2 +K4ε ≥ K5εH(t)2 , when t > T3 .

Combining the last two equations we find

H ′(t) ≥ K
1/2
5 ε1/2H(t), when t > T3 .

Integrating from T3 to t leads to

H(t) ≥ H(T3) exp
(
K6ε

1/2(t− T3)
)
≥ H(T3) exp

(
1
2
K6ε

1/2t
)
, when t > 2T3, (B.14)

with K6 = K
1/2
5 . Substituting again into (B.8), we get

H ′′(t) ≥ K7H(t)1+δ , for any δ > 0 ,

since the exponential in (B.14) (to the power δ > 0) will dominate the factor (t + 1)−2 of
(B.8), only if t is sufficiently large. (Note that K7 and this new minimal time T4 will depend
on δ.) We now multiply the last equation by H ′ and we obtain

d

dt
(H ′(t)2) ≥ 2K7

2 + δ

d

dt

(
H(t)2+δ

)
, for t > T4 .

Integrating from T4 to t we find

H ′(t)2 ≥ 2K1

2 + δ

(
H(t)2+δ −H(T4)

2+δ
)
+H ′(T4)

2 .

Taking square roots on both sides and choosing T∗ sufficiently larger than T4, we finally arrive
at (B.9) from which we see that there is a divergence in finite time, as in (B.10).

We still need to show the inequality (B.4).
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Lemma B.3. Let

G1(t) =

∫
t+X

t+X0

dx

∫
t

0

dτ

∫
x+t−τ

x−t+τ
dξ ux(ξ, τ)

2 .

Let X > X0 > 0, and assume ux(x, t) = 0 for all |x| ≥ t+X , 0 ≤ t ≤ T . Then one has for
all t ≥ X1 ≡ (X −X0)/2 the inequality

G1(t) ≥
1

t+X

∫
t

0

dτ

∫
τ+X

τ+X0

dξ (t− τ) (ξ − τ −X0)ux(ξ, τ)
2 . (B.15)

Proof. We first decompose the triple integration into 3 pieces: The original integration is over
the domain

X0 + t ≤ x≤X + t ,

0 ≤ τ ≤ t ,
x− t+ τ ≤ ξ ≤x+ t− τ .

(B.16)

Also note that the integrand has support in ξ ≤ τ +X . The three pieces are

0 ≤ τ ≤ t−X0 ,

τ +X0 ≤ ξ ≤ τ +X ,

t+X0 ≤ x≤ ξ + t− τ ,
(B.17)

and

t−X0 ≤ τ ≤ t ,
τ +X0 ≤ ξ ≤ 2t− τ +X0 ,

t+X0 ≤ x≤ ξ + t− τ ,
(B.18)

and

t−X0 ≤ τ ≤ t ,
2t− τ +X0 ≤ ξ ≤ τ + x ,

ξ − t+ τ ≤ x≤ ξ + t− τ .
(B.19)

One can show that (B.17)–(B.19) defines a domain which coincides with that of (B.16), and
that the 3 regions are disjoint.

We now give lower bounds for the 3 regions. For (B.17) we get∫
t−X1

0

dτ

∫
τ+X

τ+X0

dξ ux(ξ, τ)
2

∫
ξ+t−τ

t+X0

dx ,∫
t−X1

0

dτ

∫
τ+X

τ+X0

dξ ux(ξ, τ)
2 (ξ − τ −X0) .

We bound the last factor from below by

(ξ − τ −X0) ≥
t− τ
t+X

(ξ − τ −X0) .
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Similarly, for (B.18), the x integration is bounded from below in exactly the same way.
Finally, for (B.19), using the support property ξ ≤ τ+X , we find (since t > X1 andX1 < X),

ξ − τ −X0 ≤ X −X0 = 2X1 < t+X1 < t+X .

This leads to a bound for the x integral of the form∫
ξ+t−τ

ξ−t+τ
dx = 2(t− τ) ≥ (t− τ)ξ − τ −X0

t+X
.

Collecting terms, we finally find that

G1(t) ≥
1

t+X

∫
t

0

dτ

∫
τ+X

τ+X0

dξ (t− τ) (ξ − τ −X0)ux(ξ, τ)
2 .

C. Numerics

We integrate all the equations by using the Dorman-Prince [19] Runge-Kutta integrator. The
functions are discretised in 213 equidistant points. Derivatives are computed by using 5-point
stencils. Divergence is defined by max(|uxx|) > 106. Special care has been given to assert
the quality of the results: We compute with a tolerance (if achievable) of 10−11. There are two
situations where the integration can fail: The time steps gets too short (this happens sometimes
when α is large and β is small). The other problem is the size of the domain in x: We take
periodic boundary conditions on [−π, π], and initial data which vanish at these boundaries. If,
during time evolution, the value of |u(±π, t)| exceeds 10−4, we consider that the wave-part
of the evolution has “hit” the boundary, and we stop the calculation. This happens especially
if β is large and α is small, because in this case, the wave moves with speed

√
β, and may hit

the boundary before α can lead to a divergence.

Conjecture C.1. We believe that this phenomenon might account for the idea that large β
regularises the PDE in cosmological simulations as discussed in [22]. But, as we show in
Sect. B the mathematical fact is that all solutions diverge in a finite time (unless they are 0).
However, this will require a detailed study in a cosmological context.
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