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We theoretically study the frictional damping of a small probe object on a coated planar surface,
analyzing the resulting phonon modes via a theory of viscoelasticity. Three different types of exci-
tations are found to contribute to friction in distinct ways: traveling (3D) spherical waves, traveling
(2D) surface waves, and evanescent waves. While traveling waves transport energy away from the
probe, determined by long range elastic properties (wavelength), evanescent waves transform energy
into heat in a near-field range, characterized by the size of the probe. Thus, fundamentally different
behaviors are predicted, depending on coating thickness and material properties.

Sliding friction is a complex phenomenon, involving
surface mechanics [1–8] and production of heat in the
surrounding media. In the latter process, the relevant de-
grees of freedom have been found to include electronic [9–
13] and phononic ones [8, 11–23]. The role of phonon
modes can be isolated by tuning them while keeping
the surface properties and contact mechanics unchanged.
This has been achieved by inducing a phase transition
in the solid [13, 19], or by changing an external electric
field [20].

Studying friction on layers of different thickness is
another way of achieving this goal; it is especially in-
sightful as it not only allows material properties to be
tailored while limiting changes in the contact surface,
it also reveals how deep friction feels into the mate-
rial. Many numerical and nanoscale experimental stud-
ies have been done on the effect of layers [24–36], with
a variety of interesting behaviors. For example, while
adding graphene layers between sliding bodies can sub-
stantially reduce friction [33], both increases [24–26] and
decreases [27, 30–32] in friction have been observed as
the number of graphene layers is increased. Friction has
also been observed to decrease with thickness for other
layered materials, such as molybdenum disulfide and nio-
bium diselenide, when they are weakly anchored to the
substrate [32]. A numerical study, in contrast, found that
friction increases with thickness, when the bottom layer
absorbs incoming phonons [34]. Additionally, it has been
reported that friction is smaller for strongly anchored
samples compared to weakly anchored ones, suggesting
that the changes in friction could be results of changes
in local deformations [28, 29, 36]. The complexity of the
observed behavior calls for a theoretical analysis that sys-
tematically addresses the dependence of phononic damp-
ing on layer thickness, boundary conditions, and material
properties.

In this manuscript, we analyze friction of a nanoscopic
object on a 3D planar coated substrate, treating phonon
modes via a field theory of viscoelasticity that includes
phonon attenuation. We find that friction arises due to
traveling spherical waves, cylindrical surface waves, or
evanescent waves, each dominating in different regimes of

FIG. 1. Investigated system: a probe is coupled to the surface
of a coated substrate, and oscillates parallel to it. The cou-
pling interaction carries an interaction radius l. The coating
of thickness d and the substrate are characterized by mass
density ρ and transverse (cT) and longitudinal (cL) speeds of
sound, as indicated.

material properties and coating thickness. A finite viscos-
ity thus not only results in phonon attenuation, but also,
here more importantly, in losses from evanescent waves.
Consequently, friction shows drastically different depen-
dencies on coating thickness ranging from short range to
long range behavior, and can increase or decrease with
coating thickness. These regimes are determined by the
phonon attenuation coefficients and the refractive index.

Consider a probe coupled to an isotropic solid filling
the space z ≤ 0 (see Fig. 1). The probe oscillates par-
allel to the surface, so that its x coordinate is X(t) =
Re
{
X0e

iωt
}
. The coupling with the surface causes a

force acting on the probe, whose x-coordinate is F (t) =
Re
{
F0e

iωt
}
. The damping coefficient or friction coeffi-

cient of the probe Γ is defined as Γ = ω−1 Im{F0/X0}
[37]

The specific form of coupling is not important for the
conclusions of this manuscript, as detailed in the Supple-
mental Material (SM). We thus use a simple linear one,
which allows us to find analytic expressions,

F (t) =nAκ

∫∫ ∞

−∞
d2r∥ (−X(t) + ux(r∥, t))e

−
r2
∥

l2 , (1)

where r∥ = (x, y, 0) marks a position on the surface, and
ux(r∥, t) is the x-component of the phonon field at z = 0
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(introduced below). nA is the particle number per unit
area [38], and κ is the coupling strength. Equation (1)
contains a Gaussian envelope of width l, introducing a
length scale of the interaction range or probe size.

The first term in Eq. (1) is the force in absence of
phonon excitations; it is in phase with X(t) and does
not contribute to the damping coefficient Γ. The second
term is the force due to excitations of the phonon field
u, treated via a theory of viscoelasticity, i.e., using a
Kelvin-Voigt model [39–42],
(
c2L − c2T

)
∇∇·u(r, ω)+c2T∇2u(r, ω) = −ω2u(r, ω). (2)

The coupling to the probe enters Eq. (2) via a time de-
pendent boundary condition. The resulting solution for
ux contains a part that is phase shifted with respect to
X(t), yielding the damping coefficient Γ [16, 17]. The
oscillating probe excites phonons, whereby its motion is
damped. The solution of this problem proceeds via the
Green’s function of Eq. (2) (SM).

Equation (2) is a widely applicable model of phonon
dynamics [39–41], and related models have been in-
fluential in understanding friction [16, 18]. It con-
tains two fundamental modes with longitudinal, cL(ω) =√

3K+4µ−iω(3ξ+4η)
3ρ , and transverse, cT(ω) =

√
µ−iωη

ρ ,
speeds of sound. K and µ (ξ and η) are the bulk and
shear elastic (viscous) moduli, respectively, and ρ the
mass density. cT and cL are complex due to finite viscous
moduli, i.e., Eq. (2) contains phonon attenuation. Micro-
scopically, such attenuation may be caused by phonon-
phonon, phonon-electron, or phonon-defect scattering.
For simplicity, we assume cL(ω)/cT(ω) =

√
3, indepen-

dent of ω, a good approximation for solids [16, 43–45].
cL thus drops out of the discussion.

The bulk situation, where the coating thickness d in
Fig. 1 is infinite, was extensively studied previously [16,
17, 42, 46]. In this case, the probe excites spherical waves
∼ eiωr∥/cT0/r∥ (SM), and the damping coefficient reads

Γ∞ =
κ2n2

Al
4

c′3T0ρ0

(
ζela +

ζvisη0
c′T0ρ0l

+O
(

1

Q2
,
l2

λ2

))
, (3)

with ζela ≈ 1.29, ζvis ≈ 1.72, and c′T0 the real part of
cT0. Eq. (3) is valid for l ≪ λ, with phonon wave-
length λ = 2πc′T0/ω. For typical speeds of sound and
l in the nanometer range, the corrections to Eq. (3)
are small for ω ≲ 109 Hz. This number, 109 Hz, is
large compared to typical frequencies excited by the
probe, since they are expected to be in the range ω ∼
102 . . . 105 Hz [11, 14, 15, 19, 20, 30–32]. Additionally,
Eq. (3) assumes the quality factor Q(ω) = µ0

ωη0(ω) , the
ratio between phonon decay length and phonon wave
length, to be large compared to unity. This seems a justi-
fied assumption as well, as seen in estimates of the order
of Q ∼ 104 [47, 48] (see Table I for experimental pa-
rameters). Despite Q being large, phonon attenuation is

essential for friction since, as shown below, it dominates
the behavior in certain regimes.

The two leading terms in Eq. (3) have fundamentally
different physical origins. The first, called the elastic
contribution, corresponds to transport of energy by trav-
eling waves, and it persists without phonon attenua-
tion [16, 42]. The second, called the viscous contribution,
is proportional to viscosity η0. We discuss its physical
origin below. Their relative weight is the dimensionless
viscosity,

η̃ =
η0

c′T0ρ0l
=

λ

2πQl
, (4)

which depends on material properties and probe size l.
The numbers of Table I for typical AFM conditions im-
ply η̃ ∼ 105. We thus first discuss the case of η̃ ≫ 1,
where the bulk case of Eq. (3) is dominated by the vis-
cous contribution (using c′T0 =

√
µ0/ρ0 +O

(
Q−2

)
)

lim
η̃≫1

Γ∞ =
ζvisκ2n2

Al
3η0

µ2
0

. (5)

For finite values of d, we note that the boundary condi-
tion at the interface between coating (labeled with the
subscript 0) and substrate (subscript 1) is determined
by the refractive index n(ω) = cT0(ω)/cT1(ω) and ρ0/ρ1
[50]. It is insightful to start with the limit n = 0 [51],
which yields a Dirichlet boundary condition (DBC) of
u(r∥,−d, ω) = 0 [40, 50]. In this case the substrate is
much stiffer than the coating, and phonons are totally
reflected at the interface, with phase shift π.

Figure 2 (a) shows Γ as a function of d for n = 0 and
η̃ ≫ 1, growing linearly in d, and saturating to the bulk
value of Eq. (5) for large d, with a cross-over length scale
around d ≈ l. Indeed, we find that, for small d, the
leading order of Γ is linear in d,

Γ =
πκ2n2

Al
2η0d

2µ2
0

+O
(
d3
) η̃≫1

=
πΓ∞

2ζvis
d

l
+O

(
d3
)

(DBC).

(6)
Γ vanishes as d → 0, because the coating, when placed
on a stiff substrate, supports fewer phonons as d → 0.
In the second step in Eq. (6), we used Eq. (5) to replace
Γ∞, making apparent the mentioned saturation to Γ∞ at
d ≈ l. The dependence of Γ on d is short range, set by
probe size l of Eq. (1).

l a ω b ρ c µ c

1 nm 103 1
s

10−23 kg
nm3 10 kg

nm s2

a Refs. [19, 27, 32]. b Refs. [19, 20, 30–32]. c Ref. [49].

TABLE I. Parameters typical for AFM experiments on
solids: radius of contact l, frequency ω, mass density ρ,
and shear elastic modulus µ.
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FIG. 2. Damping coefficient Γ for (a) n = 0 and (b) n → ∞
as a function of (scaled) distance d, in the viscous limit η̃ ≫ 1.
The solid line shows numerical evaluation, dashed lines give
the asymptotes of Eqs. (5), (6) and (7), respectively. Sketches
give the fundamental wave solutions in the corresponding
regimes.

How is this short range decay possible over distances
much smaller than the wavelength? The motion of the
probe excites not only (attenuated) traveling waves, but
also evanescent waves that decay within a range of l. In
the presence of finite viscosity, they contribute to energy
absorption, and thus to the damping coefficient Γ. In
Fig. 2, this mechanism outweighs the energy transported
by traveling waves, which is why Eqs. (5) and (6) carry
η0 as a factor.

The opposite limit of boundary conditions, n → ∞,
corresponds to a freestanding coating or a much more
compliant substrate, and the waves obey a Neumann BC
(NBC), êz ·σ(r∥,−d, ω) = 0 with stress tensor σ and sur-
face normal êz [50]. Phonons are totally reflected with-
out phase shift. This renders Γ fundamentally different
from the case of n = 0 as shown in Fig. 2 (b); Γ diverges
for small d and converges to the bulk value on a scale of
d ≈ Ql. Expanding this case for small d yields

Γ =
11π2κ2n2

Al
4

64µ0|ω|d
+O(d)

η̃≫1
=

11π2Γ∞

64ζvis
Ql

d
+O(d) (NBC).

(7)
In this case, the probe excites traveling surface waves,
∼ eiωr∥/cT0/

√
r∥, i.e., the coating oscillates like a free-

standing 2D sheet. Energy is transported along the sur-
face, rather than absorbed; Eq. (7) is independent of vis-
cosity η0. As the sheet gets more compliant with d → 0,
amplitudes of excitations get larger, and formally diverge
as d → 0. The second equality of Eq. (7) implies the men-
tioned saturation length of d ≈ Ql. With l on the scale
of nanometers, this length is of the order of microns. It
will be interesting to compare these surface modes to so-
called puckering [32, 36] or ploughing [28, 35] identified
in previous work.
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FIG. 3. Damping coefficient Γ for various refractive indices
n, using η̃ = 105 and Q = 104, only considering transverse
waves. Marks on the y axis are (analytic) values of limd→0 Γ
for the corresponding n. The gray dashed lines are the purely
elastic and viscous contributions at n = 100.

The cases of n = 0 and n → ∞ provide a reference for
the discussion of an arbitrary refractive index n. For sim-
plicity, we assume that the quality factors of the coating
and substrate are identical, making n(ω) real, and use
ρ0 = ρ1 [52]. For finite values of n, we note a numerical
challenge in evaluating the longitudinal modes, so that
we restrict the shown data to transverse waves (SM).

Figure 3 shows Γ as a function of d for various n, at
η̃ = 105 and Q = 104; Γ is monotonic in d, and stays
within the bounds of the limiting cases of n = 0 and
n → ∞. Importantly, for a thin coating, d → 0, Γ ap-
proaches the bulk value of the substrate, indicated as
bars on the y-axis. These are obtained by Eq. (3) with
the material parameters of the substrate [53] [54]. Γ thus
varies between the bulk results of the substrate (d → 0)
and of the coating (d → ∞).

The curves of Fig. 3 up to n = 23 can be under-
stood by these two limiting cases, and a transition on the
length scale l. These cases are thus dominated by evanes-
cent waves. The dimensionless viscosity of the substrate
equals η̃/n, and goes down for large values of n. The
damping coefficient of the bulk substrate, i.e., the be-
havior at small d, is thus dominated by traveling waves
at large n. Indeed, for n → ∞, the behavior of Fig. 2
b) is approached. For intermediate values of n (n = 102

in the graph), a two-step decay occurs, with evanescent
waves for d ≲ l and d ≳ Ql, and traveling surface waves
for l ≲ d ≲ Ql.

What about the case of η̃ ≪ 1 where the limit d → ∞ is
dominated by traveling waves? Despite less experimental
relevance to AFM experiments, we include this insight-
ful case in Fig. 4 for completeness, focusing on n = 0
(see SM for n → ∞). As seen in the Figure, for d ≪ λ
the curves are similar to Fig. 2 (a). This is because, for
n = 0, the coating does not support traveling waves for
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FIG. 4. Damping coefficient Γ as a function of (scaled) dis-
tance for n = 0, for three values of η̃. The black dashed lines
represent the asymptotes of Eqs. (3), (5) and (6). For the
chosen parameters, the first peak is at d/l = λ/4l ≈ 50.

d ≲ λ (SM). For d ≳ λ, traveling waves are excited, yield-
ing a sharp transition between evanescent and traveling
waves at d ≈ λ/4, followed by peaks. These are due to
interference effects between outgoing and reflected trav-
eling waves (SM). For d ≫ λ, the bulk value of Eq. (3) is
approached.

This discussion allows identification of mechanism
regimes, depicted in Fig. 5. The limit of d → ∞ is dom-
inated by evanescent waves for η̃ ≫ 1, and by traveling
waves for η̃ ≪ 1. This is indicated in Fig. 5 by using
different colors in the inset graphs. The line n = η̃ sep-
arates the same for d → 0, i.e., curves that begin with
blue or red. This limit can be found from [55],

lim
d→0

Γ = Γ∞n3 ζ
ela + ζvis η̃n
ζela + ζvisη̃

. (8)

Another separator is n = 1, dividing curves where Γ∞ is
larger than the limit of d → 0 from the opposite. The
last curve, n = 3

√
η̃, together with n = η̃, bounds two

regimes with multiple transitions between traveling and
evanescent waves. The latter occur because of the differ-
ent d-dependence of traveling and evanescent waves.

This framework identifies the main phononic mecha-
nisms for damping between a probe and a coated planar
surface, with vastly different behaviors. These regimes
are expected to occur in experiments and simulations,
whenever the thickness of coatings can be changed with-
out changing contact mechanics. Fig. 5 illustrates that
pronounced dependence on layer thickness is expected,
e.g., if the two materials show a refractive index very
different from unity. The discussed isolated frequencies
apply in non-contact measurements, where narrow fre-
quency bands are excited [11, 13–15]. In sliding experi-
ments, one expects a spectrum of frequencies, so that the
results reported here need to be averaged accordingly. It
is important to note that the contributions by evanes-
cent waves are frequency independent within the range
given below Eq. (3), making this average trivial. Friction
from traveling waves has frequency dependent features,
see Eq. (7), manifested as the peaks in Fig. 4.

Traveling
waves

Evanescent
waves

FIG. 5. Friction map. Depending on η̃ and n, Γ is dominated
by evanescent modes (red) and decays to bulk on a scale d ≈ l,
or by traveling waves (blue), which decay on scales of Ql or
λ. The lines separating the regimes are deduced from Eq. (8).
Gray dashed lines show the limit d → ∞ of Eq. (3).

The presented model is simple and provides analyti-
cal results, which we expect to improve understanding
of friction phenomena. The quantitative translation to
the case of sliding motion needs to be investigated in fu-
ture work [56]. We note however qualitative agreement
with studies on graphene. Experiments [32] and simula-
tions [27] reported friction on freely standing graphene
flakes, i.e., n ≫ 1, finding a decrease with increas-
ing number of layers. The same trend is observed for
mounted graphene layers (or flakes) [27, 30–32]; graphene
is much stiffer (µ ∼ 1TPa [45, 57, 58]) than metal sub-
strates (µ ∼ 10GPa [49, 59]), so that the case of n ≫ 1
applies too. Previous work attributed this behavior to
the enhanced rigidity for thicker samples [27, 32], lead-
ing to the suppression of surface waves, in agreement with
our findings.

The framework of Eq. (2) naturally includes Hertzian
contact theory [40, 60] in the limit of small frequencies.
It is interesting to remark that the identified evanes-
cent waves can equally be found from the slowly moving
distortion field of contact theory. Moving this distor-
tion field dissipates energy due to viscosity (SM). This
way, this approach can be linked to a variety of other
approaches based on contact theory [4, 7, 18, 56] and
local deformations [28, 29, 36]. Natural extensions in-
clude nonlinear systems, where, e.g., deeper indentations
[28, 29, 36] can be studied. Lateral confinement was also
found to be of importance [8], and it provides an inter-
esting additional possibility to identify involved phonon
modes. This can be address in the presented framework
in future work.
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DAMPING COEFFICIENT

The damping coefficient can be calculated from a Green-Kubo relation [1–4],

Γ =
1

2kBT

∫ ∞

−∞

dω′

2π
⟨F (X,ω);F (X,ω′)⟩ , (1)

where ⟨A;B⟩ = ⟨(A− ⟨A⟩)(B − ⟨B⟩)⟩ is an ensemble average of the covariance. With the force defined in [Eq. (1)] in
the main text, the damping coefficient can be rewritten as

Γ =
κ2n2

A

2kBT

∫ ∞

−∞
d2r∥

∫ ∞

−∞
d2r′∥

∫ ∞

−∞

dω′

2π
e−

r2
∥

l2

〈
ux(r∥, ω)ux(r

′
∥, ω

′)
〉
e−

r′2
∥
l2

=
κ2n2

A

ω

∫ ∞

−∞
d2r∥

∫ ∞

−∞
d2r′∥ e

−
r2
∥

l2 Im{G(r∥, r
′
∥, ω)}e−

r′2
∥
l2

=
κ2n2

A

ω
Im

{∫ ∞

−∞
d2r∥

∫ ∞

−∞
d2r′∥ e

−
r2
∥

l2 G(r∥, r
′
∥, ω)e

−
r′2
∥
l2

}
(2)

Note that in the second equality, we make use of the FDT [4–9],
∫ ∞

−∞

dω′

2π
⟨ux(r, ω)ux(r

′, ω′)⟩ = 2kBT

ω
Im{G(r, r′, ω)}. (3)

It is more convenient to obtain the Green’s function in k∥ = (kx, ky) space, since the Kelvin-Voigt model ([Eq. (2)]
in the main text) becomes an ordinary differential equation. Let us change the spatial integral to an integral over k∥
space,

Γ =
κ2n2

A

ω
Im

{∫ ∞

−∞
d2r∥

∫ ∞

−∞
d2r′∥ e

−
r2
∥

l2 G(r∥, r
′
∥, ω)e

−
r′2
∥
l2

}

=
κ2n2

A

ω
Im

{∫
d2r∥

∫
d2r′∥

∫ ∞

−∞

d2k∥
(2π)2

∫ ∞

−∞

d2k′
∥

(2π)2
e−

r2
∥

l2 G(k∥, z = 0,k′
∥, z

′ = 0, ω)e−
r′2
∥
l2 eik∥·r∥eik

′
∥·r′

∥

}

=
κ2n2

Al
4π2

ω
Im

{∫ ∞

−∞

d2k∥
(2π)2

∫ ∞

−∞

d2k′
∥

(2π)2
e−

k2
∥l2

4 G(k∥, 0,k
′
∥, 0, ω)e

−
k′2
∥ l2

4

}
.

(4)

The above expression for the damping coefficient can be further simplified if the homogeneity of the Green’s function
is assumed, i.e., G(r + r0, r

′ + r0, ω) = G(r, r′, ω) [10],

G(k,k′, ω) =
∫ ∞

−∞
d3r

∫ ∞

−∞
d3r′ G(r + r0, r

′ + r0, ω)e
−ik·(r+r0)e−ik′·(r′+r0)

=

∫ ∞

−∞
d3r

∫ ∞

−∞
d3r′ G(r, r′, ω)e−ik·re−ik′·r′

e−ir0·(k+k′)

= G(k,k′, ω)e−ir0·(k+k′).

(5)

The homogeneity thus entails k = −k′, i.e.,

G(k,k′, ω) = (2π)3G(k, ω)δ(k + k′). (6)

Or,

G(k∥, z,k
′
∥, z

′, ω) = (2π)2G(k∥, z − z′, ω)δ(k∥ + k′
∥). (7)
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Plugging it into Eq. (4), one arrives at

Γ =
κ2n2

Al
4π2

ω
Im

{∫ ∞

−∞

d2k∥
(2π)2

G(k∥, 0, ω)e
− 1

2k
2
∥l

2

}
, (8)

which we use to evaluate the damping coefficient both numerically and analytically.

BOUNDARY CONDITIONS

Regarding the geometry of the system, it has the surface at z = 0 in the xy plane, while extending infinitely in the
x and y directions. For z > 0, it is a vacuum, i.e., no phonon can exist. The boundary conditions (BC) at z = 0 are
given by [11–14]

σxz(r∥, ω) = κX(ω)e−
r2
∥

l2 , (9)

while other components are zero. Here, σ(r, ω) is the Cauchy stress tensor, which is defined as

σ = ρ(c2L − 2c2T)∇ · u+ ρc2T(∇u+ (∇u)T ). (10)

Note that the BC on the surface suggest that the displacement field ux(r, ω) is linearly proportional to the position
of the probe X(ω), containing the phase information with respect to X(ω), which, in turn, yields a finite damping
coefficient.

For −d < z ≤ 0, we have the first layer (the coating) of the solid whose properties are characterized by cL0(ω),
cT0(ω), and ρ0. The second layer (the substrate) expands for −∞ < z < −d with cL1(ω), cT1(ω), and ρ1. The BC at
z = −d require that the displacement field and traction are continuous [15],

lim
z→−d+

u(r, ω) = lim
z→−d−

u(r, ω),

lim
z→−d+

êz · σ(r, ω) = lim
z→−d−

êz · σ(r, ω),
(11)

where êz is the unit vector in the z direction. The Dirichlet and Neumann BC in the main text are the special cases
of the above BC.

TRAVELING VS. EVANESCENT WAVE

Here, we show that traveling waves yield the elastic contribution, and evanescent waves the viscous contribution.
Since any wave can be expressed by a superposition of plane waves, an ansatz of the transverse motion of the solid
([Eq. (2)] in the main text) can be written as

GT(k∥, z − z′, d, ω) = C0(k∥, d, ω)e
qT(z−z′) + C1(k∥, d, ω)e

−qT(z−z′), (12)

where qT = (k2∥ − ω2/c2T)
1/2, and C0(k∥, d, ω) (C1(k∥, d, ω)) is an amplitude of outgoing (incoming) wave. The

longitudinal counterpart can be similarly written with qL = (k2∥ − ω2/c2L)
1/2, which then gives us the full solution

G = GT+GL. From the ansatz, it follows that if k∥ ≤ ω/cT, the solution represents a traveling wave in the z direction.
Contrarily, if k∥ ≥ ω/cT, then it decays exponentially in the z coordinate, i.e., an evanescent wave, resulting from an
adiabatic deformation (see below).

Notice also that the integral in Eq. (8) runs in k∥ space, along which there may exist branches or singularities.
Consequently, the integral can be divided into many parts according to the branch or/and singular points,

Γ =
κ2n2

Al
4

4ω
Im

{∫ 2π

0

dθ

[ ∫ ks,1

0

dk∥ k∥G(k∥, 0, d, ω)e
− 1

2k
2
∥l

2

+

∫ ks,2

ks,1

dk∥ k∥G(k∥, 0, d, ω)e
− 1

2k
2
∥l

2

+

∫ ks,3

ks,2

dk∥ k∥G(k∥, 0, d, ω)e
− 1

2k
2
∥l

2

+ · · ·+
∫ ∞

ks,N

dk∥ k∥G(k∥, 0, d, ω)e
− 1

2k
2
∥l

2

]} (13)
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where ks,n n ∈ {1, 2, . . . , N} are the branch and singular points of the Green’s function. In what follows, we show
that the terms running up to ks,N integrate traveling waves resulting in the elastic contribution, and the last term
evanescent waves resulting in the viscous contribution.

Let us exemplarily consider the transverse mode. The Green’s function at z = z′ (the argument is henceforth
omitted) at the limit of d ≫ λ reads,

GT(k∥, ω) =
sin2 θ

ρ0c2T0qT0
. (14)

The branch point is located at ks = ω/cT0. Note that this branch point coincides with the singularity. The integration
is thus divided into two parts. The first part integrates traveling waves,

κ2n2
Al

4

4ω

∫ 2π

0

dθ

∫ ω/cT0

0

dk∥ k∥
sin2 θ

ρ0c2T0qT0
e−

1
2k

2
∥l

2

= −π3/2κ2n2
Al

3e−l2ω2/(2c2T0)

25/2c2T0ρ0ω
erf

( −ilω√
2cT0

)
, (15)

where erf(x) is the error function. Expanding it at a small ω and taking the imaginary part, one arrives at

Im

{
−π3/2κ2n2

Al
3e−l2ω2/(2c2T0)

25/2c2T0ρ0ω
erf

( −ilω√
2cT0

)}
=

πκ2n2
Al

4

4

√
ρ0
µ3
0

+O
(

1

Q2
,
l2

λ2

)
. (16)

Note that one should perform the integral first and then the expansion, since the singularity renders these operations
non-commute. Note also that the leading order of this contribution is independent of viscosity η0.

The second part, on the contrary, takes care of the evanescent wave solution

κ2n2
Al

4

4ω

∫ 2π

0

dθ

∫ ∞

ω/cT0

dk∥ k∥
sin2 θ

ρ0c2T0qT0
e−

1
2k

2
∥l

2

=
πκ2n2

Al
4

4ω

∫ 2π

0

dθ

∫ ∞

0

dk∥ k∥ sin
2 θ

[
1

k∥µ0
+

iωη0
k∥µ2

0

]
e−

1
2k

2
∥l

2

+O
(

1

Q2

)
.

(17)

Here, we expanded the integrand for small ω first, since the integral over k∥ and the limit of ω → 0 commute [4].
Performing the integration leads us to

πκ2n2
Al

4

4ω

∫ 2π

0

dθ

∫ ∞

0

dk∥ k∥ sin
2 θ

[
1

k∥µ0
+

iωη0
k∥µ2

0

]
e−

1
2k

2
∥l

2

=
π3/2κ2n2

Al
3

25/2ω

[
1

µ0
+

iωη0
µ2
0

]
. (18)

Taking the imaginary part, one finds the friction contribution from evansecent waves

π3/2κ2n2
Al

3η0
25/2µ2

0

+O
(

1

Q2

)
. (19)

Unlike the elastic contribution from traveling waves, the leading order is linearly proportional to the viscosity η0.
Putting them together, we find

Γ∞
T =

πκ2n2
Al

4

4

√
ρ0
µ3
0

+
π3/2κ2n2

Al
3η0

25/2µ2
0

+O
(

1

Q2
,
l2

λ2

)

=
πκ2n2

Al
4

4ρc′3T0

(
1 +

√
π

2

η0
ρ0c′T0l

)
+O

(
1

Q2
,
l2

λ2

)
.

(20)

It is noteworthy that the existence of a branch point or a singularity at a finite value of k∥ directly indicates the
existence of a traveling wave. If the Green’s function exhibits no such point, then the corresponding wave is purely
evanescent.

EVANESCENT WAVES AND LOCAL DEFORMATION

In this section, we show that evanescent waves represent the adiabatic local deformation due to the probe-sample
interaction F , i.e., the Hertzian contact. The adiabatic local deformation can be obtained when the inertial term
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in [Eq. (2)] in the main text vanishes [11, 13, 14]. Exemplarily, let us consider the semi-infinite solid. The Green’s
function for the transverse mode reads

GT(k∥) = sin2 θ

[
1

k∥µ0
+

iωη0
k∥µ2

0

]
. (21)

This expression is precisely the Green’s function in the rhs of Eq. (17). Note that since the probe-sample interaction
acts parallel to the surface, this deformation represents the local shearing (e.g., puckering). Importantly, the local
deformation contributes to the friction if and only if the solid is viscoelastic. This is because it is the imaginary part
of the Green’s function that gives rise to the damping coefficient, which is non-zero only for viscoelastic solids.

FUNDAMENTAL SOLUTIONS

For the Dirichlet BC, the Green’s function at the surface (z = z′ = 0), for d being the smallest length scale, is given
by

G(k∥, d, ω) =
d

c2T0ρ0
+O

(
d3
)
. (22)

The leading order has no branch or singular point, meaning that it is evanescent. Since it is constant in k∥ space, the
above expression becomes a delta function in r∥ space,

G(r∥ − r′∥, d, ω) =
d

c2T0ρ0
δ(2)(r∥ − r′∥) +O

(
d3
)
. (23)

For the Neumann BC, the Green’s function reads

G(k∥, d, ω) =
c2L0

(
k2∥ − q2L0

) (
k2y + q2T0

)
− 2c2T0k

2
y

(
k2∥ − 2q2L0 + q2T0

)

dc2T0ρ0q
2
T0

(
c2L0

(
k2∥ − q2L0

)(
k2∥ + q2T0

)
− 2c2T0k

2
∥

(
k2∥ − 2q2L0 + q2T0

)) +O(d). (24)

One can easily tell it can be either a traveling or evanescent wave due to the existence of the singular point. By finding
the real space counterpart, one can easily identify the dimensional nature of the solution. Assuming cT0 =

√
3cL0, it

is

G(r∥ − r′∥, d, ω) =
8(y − y′)2K0

(
− i|r∥−r′

∥|ω
cT0

)
+ 3(x− x′)2K0

(
− i

√
3|r∥−r′

∥|ω
2
√
2cT0

)

16πρ0c2T0|r∥ − r′∥|2d
+O(d), (25)

where K0 is the Bessel function of the second kind of the zeroth order, a form of surface (2D) waves.
At a large d ≫ λ on the other hand, the Green’s function is given by

G(k∥, ω) =
c2L0

(
k2∥ − q2L0

) (
k2y + q2T0

)
− 2c2T0k

2
y

(
k2∥ − 2qL0qT0 + q2T0

)

c2T0ρ0qT0

(
c2L0

(
k2∥ − q2L0

)(
k2∥ + q2T0

)
− 2c2T0k

2
∥

(
k2∥ − 2qL0qT0 + q2T0

)) . (26)

This, again, can be either a traveling or evanescent wave, however, finding the exact expression of the real space
counterpart seems difficult. A simpler way to see the dimensionality of the fundamental solution is to only consider
the transverse mode, i.e., Eq. (14). In real space, it is given by

GT(r∥ − r′∥, ω) = − (y − y′)2e
i|r∥−r′

∥|ω
cT0

2πρ0c2T0|r∥ − r′∥|3
, (27)

which is a spherical (3D) wave solution.
Upon arriving at these fundamental wave solutions, no assumption on η̃ is made. In fact, η̃ can only be defined

after obtaining Eq. (26). This means, mathematically, that [Eqs. (6) and (7)] in the main text are valid for all η̃.
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THE DAMPING COEFFICIENT FOR AN ARBITRARY INTERACTION AT THE LIMITING CASES

Let us consider a general way to formulate the probe-sample interaction F . Such an interaction arises from the
underlying pairwise probe-atom interaction g(X, r∥, ω) (it can easily be generalized for vectors as well),

F (X,ω) = nA

∫ ∞

−∞
d2r∥ g(X, r∥, ω). (28)

Expanding the pairwise interaction in ux, one finds

g(X, r∥, ω) = g(X, r∥) +
∂

∂x
g(X, r∥) · ux(r∥, ω) + · · · . (29)

If
√〈

u2
x(r∥, ω)

〉
≪
∣∣r∥ −X

∣∣ is assumed, the first term can be seen as the pairwise interaction in phase with the
motion of X, and the second term out of phase. Now one can calculate the damping coefficient similarly as Eq. (2).

Let us consider the case of small d. For the Dirichlet BC, we use Eq. (22) for the Green’s function and perform
the integral. Because the Green’s function is independent of k∥ for the leading order of d, the damping coefficient is
given simply by the integration of the interaction,

Γ =
n2
Aη0d

µ2
0

∫ ∞

−∞

d2k∥
(2π)2

∣∣∣∣
∂

∂x
g(X,k∥)

∣∣∣∣
2

. (30)

The linear dependence of the damping coefficient on the coating thickness d is thus universal to any type of interaction.
For the Neumann BC, the Green’s function is given by Eq. (24), which, for cT0 =

√
3cL0, reduces to

G′(k∥, ω) =
∫ 2π

0

dθ G(k∥, ω) =
π(11c2T0k

2
∥ − 6ω2)

dρ0(c2T0k
2
∥ − ω2)(8c2T0k

2
∥ − 3ω2)

. (31)

Note that g(X,k∥) is azimuthally symmetric, so that it can be factored out of the integral over θ. The integral over
k∥ can be done by means of the residue theorem due to the singularities at

k∥ =
ω

cT0(ω)
, k∥ =

√
3

8

ω

cT0(ω)
, (32)

yielding the elastic contribution from traveling waves. The remaining integrals that are associated with the residue
theorem contributes to higher order terms in ω (i.e., O(d/λ), see Ref. [4] for the detailed calculation).

The resulting damping coefficient for the leading order of ω and d is

Γ =
11

64µ0|ω|d
⟨F (X)⟩2 . (33)

The above expression is universal to any types of interaction for the leading order of ω. In fact, the elastic contribution
is agnostic to the form of interaction, the characteristic of which we named universality in Ref. [4]. To see this, let
us consider the locations of the singularities at ω → 0; the singularities are approaching to k∥ = 0 as ω → 0.
This means the Green’s function behaves like a delta function, and therefore the interaction has to be evaluated at
k∥ = 0. By Eq. (28), g(X,k∥ = 0) = F (X) can be found; the damping coefficient does not depend on the form of
the interaction. For detailed discussions and derivations of the universality of the elastic contribution, we refer the
readers to Ref. [4].

TRANSVERSE VS. FULL SOLUTIONS

In the main text, the cases for arbitrary n are calculated with only the transverse waves considered. In Fig. 1, we
present, for a few selected n values, a comparison between the full (transverse and longitudinal) and the transverse
wave solutions. Note that in the plot, the damping coefficients calculated from the transverse solution are scaled by
a factor

Γ∞

Γ∞
T

=
6.88

√
2

π
√
π

, (34)

which is nothing but the ratio of [Eq. (5)] in the main text to the viscous contribution in Eq. (20). From Fig. 1, it is
clear that the transverse waves can capture the essential physics when it comes to the friction calculation.
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5.×10
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1.×10
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5.×10
-7

1.×10
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Full

Transverse

FIG. 1. Comparison between the full (transverse and longitudinal) and transverse solution calculations. Γ’s obtained from the
transverse solution are scaled by the factor in Eq. (34).

FINDING THE PEAKS

For η̃ ≪ 1, the damping coefficient Γ exhibits peaks at d ≈ λ, resulting from resonances of the excited waves. We
identify that there are two types of resonances: body waves and surface waves. The former is due to interference
of outgoing and reflected waves. The surface wave resonance, on the other hand, is related to the singularity of the
Green’s function in Fourier space (k∥, ω) [16–18].

Let us begin with the peak of the surface wave. From Eq. (26), one finds that the position of singularity is at

ks(ω) =

√
3 +

√
3

2

ω

cT0(ω)
. (35)

The peak position of surface wave is thus

dsurface(ω) =
1

2
Re

{
2π

ks(ω)

}
. (36)

The peaks of body waves can be found by considering the plane waves, i.e., evaluating the Green’s function at k∥ = 0,

G(0, d, ω) =





1
ρ0cT0

tan
(

dω
cT0

)
n = 0

− 1
ρ0cT0

cot
(

dω
cT0

)
n → ∞,

(37)

from which the peak positions are obtained,

dbodym (ω) =

{
πc′T0

ω

(
1
2 +m

)
n = 0

πc′T0

ω (1 +m) n → ∞,
m ∈ {0, 1, 2, · · · } (38)

Figures 2 (a) and (b) show the peak positions for n = 0 and n → ∞, respectively. The detected peak positions agree
with our predictions as shown in the subsequent plots. Note that in Fig. 2 (b) we do not observe the plateau from
the viscous contribution before the peaks. This is because η̃ and Q are inversely related to each other, resulting in
lQ ≈ λ; the peaks occur before the first plateau of the viscous contribution fully establishes.

DEFINING THE REGIMES IN [FIG. 5] IN THE MAIN TEXT

The scaling behavior of Γ can be understood by studying limd→0 Γ and Γ∞,

limd→0 Γ

Γ∞ =
n3ζela + n2ζvisη̃

ζela + ζvisη̃
. (39)
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FIG. 2. (a) and (b): The damping coefficient Γ as a function of the depth of the first layer d for n = 0 (a) and n → ∞ (b).
The solid lines are numerical evaluations of the friction, whereas the black dashed lines are the asymptotes. The parameters
are κ = 1, l = 1, ω = 0.1, nA = 1, ρ = 1, and µ = 10, resulting in λ/l ≈ 200. (c) and (d): A closer look of the damping
coefficient near the peak positions with different values of ω at η̃ = 0.31. (e) and (f): The first few peak positions as a function
of ω at η̃ = 0.31. The points are the detected peak positions from the numerical evaluations, and the lines are the exact peak
positions.

Keep in mind that ζela/ζvis ≈ 1. The numerator is the damping coefficient of the substrate and the denominator that
of the coating. To begin with, let us consider the numerator, from which a separating line

n = η̃ (40)

can be defined. If n ≫ η̃, the elastic contribution of the substrate is much larger than the viscous contribution of the
substrate.

Another line can be found when comparing the elastic contribution of the substrate with the viscous contribution
of the coating,

n = 3
√

η̃. (41)

If 3
√
η̃ ≲ n ≲ η̃, one finds ζvisη̃ ≲ ζelan3; the viscous contribution of the coating is smaller than the elastic contribution

of the substrate. Because the latter decays at a slow rate d ≈ Ql, it is visible as shown in [Fig. 3] for n = 100 in the
main text. Another case is when 3

√
η̃ ≲ n ≲ 1. The elastic contribution of the substrate is larger than the viscous

contribution of the coating. In this case, the damping coefficient remains constant until d ≈ λ.
Comparing the viscous contribution of the substrate to the elastic contribution of the coating defines yet another

line,

n =
√

η̃−1. (42)

A case of interest would be 1 ≲ η̃ ≲ n−2, where the viscous contribution of the substrate is much larger than the
elastic contribution of the coating. This should result in two plateaus, one from the viscous contribution of the coating
at d ≈ Ql, the other from the elastic contribution at d ≈ λ similar to those seen in Fig. 2 (a). However, this regime
is inaccessible since Q becomes inevitably large for small η̃ so that Ql becomes comparable to or larger than λ as
discussed above. The line defined by Eq. (42) is thus not shown in [Fig. 5] in the main text.
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GENERALIZING [EQ. (8)] IN THE MAIN TEXT

Even if the assumptions of n being real and ρ0 = ρ1 are relaxed, one can still gain useful insights into the scaling
behavior of friction by constructing an equation similar to [Eq. (8)] in the main text (or Eq. (39) here in SM). This
can be done by finding and comparing the bulk damping coefficients of the substrate and the coating from [Eq. (3)]
in the main text,

limd→0 Γ

Γ∞ = n′3 ρ0
ρ1

(
ζela + n′ζvis η1

c′T0ρ1l

ζela + ζvis η0

c′T0ρ0l

)
(43)

with Re{n} = n′ +O
(
ω3
)
= c′T0/c

′
T1 +O

(
ω3
)
.
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