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Abstract 

There has been a long debate on the stable phase of iron under the Earth’s inner core conditions. 

Because of the solid-liquid coexistence at the inner core boundary, the thermodynamic stability of 

solid phases directly relates to their melting temperatures, which remains considerable uncertainty. 

In the present study, we utilized a semi-empirical potential fitted to high-temperature ab initio data 

to perform a thermodynamic integration from classical systems described by this potential to ab 

initio systems. This method provides a smooth path for thermodynamic integration and 

significantly reduces the uncertainty caused by the finite-size effect. Our results suggest the hcp 

phase is the stable phase of pure iron under the inner core conditions, while the free energy 

difference between the hcp and bcc phases is tiny, on the order of 10s meV/atom near the melting 

temperature. 
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1 Introduction 

Earth contains a solid inner core and a liquid outer core, both dominated by iron. The solid iron is 

generally believed to have the hexagonal close-packed (hcp) structure under the inner core 

conditions, while the body-centered cubic (bcc) structure is also suggested to be stable, especially 

when alloying with light elements (Belonoshko et al., 2017; Dubrovinsky et al., 2007; Kádas et al., 

2009; Matsui and Anderson, 1997; Ross et al., 1990; Vočadlo et al., 2003). The competition 

between the hcp and bcc polymorphs mainly depends on their Gibbs free energy near the melting 

temperatures (Tm) under inner-core pressures. Because of the solid-liquid coexistence at the inner-

core boundary, knowledge of the Tm of competing crystal phases is crucial for understanding the 

thermodynamical stability of the inner core’s structure (Alfè, 2009; Alfè et al., 2002b; Belonoshko 

et al., 2000; Laio et al., 2000; Sola and Alfè, 2009; Sun et al., 2018, 2022; Zhang and Lin, 2022). 

A solid phase with the highest melting temperatures is the stable phase, while other solid phases 

are metastable around Tm. However, the hcp and bcc iron’s melting temperatures under Earth's 

core pressures are not well constrained. Experimental measurement of this quantity is challenging 

due to the difficulties in generating extreme conditions and detecting melts, which has caused 

different Tm results ranging from 4,850 K to 7,600 K (Fischer, 2016). Most recent experiments 

have better constraints on melting temperatures but still have an uncertainty of ~500 K, which can 

be even more significant than the Tm difference between the bcc and hcp phases (Anzellini et al., 

2013; Hou et al., 2021; Kraus et al., 2022; Li et al., 2020; Sinmyo et al., 2019; Turneaure et al., 

2020). Besides, differentiation between bcc and hcp structure in high P-T experiments is non-

trivial, so bcc iron has rarely been reported at core pressures and temperature (Hrubiak et al., 2018). 

      Computer simulation provides an alternative way to access extreme P-T conditions and 

measure the properties of iron in the Earth's interiors. Depending on the description of atomic 

interaction, these simulations can be classified as classical or ab initio simulations. The classical 

molecular dynamics (CMD) simulations utilize semi-empirical potentials of the interatomic 

interaction. They can simulate large length-scale atomic structures for a relatively long time (e.g., 

million atoms for microseconds). This ability allows the implementation of the solid-liquid 

coexistence (SLC) approach to measure the melting temperature (Morris et al., 1994). The melting 

temperature calculated with this approach does not involve any approximations (other than the 

potential itself) and can be easily determined with uncertainty not larger than 0.0005Tm (Wilson et 

al., 2015). However, the limitation of this method is that the Tm highly depends on the accuracy of 
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the employed semi-empirical potential. CMD simulations with different EAM potentials have 

reported significantly different Tm for the bcc phase at inner core pressures, e.g., 7197 K in 

(Belonoshko et al., 2021) while 5974 K in (Sun et al., 2022) at 360 GPa. On the contrary, ab initio 

simulations provide accurate descriptions of the atomic interaction based on the electronic 

structure calculations with density functional theory (DFT). However, due to the time and length 

scale limitations of DFT, SLC simulations with ab initio calculations are usually computationally 

expensive and involve large uncertainty. For instance, previous SLC simulations with 256 Fe 

atoms lead to an uncertainty of ~ 500 K, which makes bcc and hcp’s Tm indistinguishable (Bouchet 

et al., 2013). The lowest uncertainty of iron’s Tm from ab initio SLC was ~100 K, achieved by Alfè 

using 980 atoms for hcp phases (Alfè, 2009). Unfortunately, the bcc phase was not studied. 

      Compared to SLC, the free energy approach is more widely used to measure the melting 

temperature from ab initio simulations. It is based on explicit calculations of the Gibbs free energy 

of solid and liquid phases, usually involving thermodynamic integration (TI). TI provides the free 

energy difference between the target and reference systems for which the absolute free energy is 

known a priori. The harmonic crystal and the ideal gas or simple liquids are popular choices as 

the reference states for solids and liquids, respectively (Frenkel and Ladd, 1984; Menon et al., 

2021). While TI provides a decent estimate for absolute free energies, a relatively small inaccuracy 

in the solid-liquid free energy difference can significantly affect Tm (Gunawardana et al., 2014). It 

was estimated that an uncertainty of 10 meV/atom in the free energy difference could lead to an 

uncertainty in Tm of ~100 K (Alfè et al., 2001). So far, the free energy calculations and 

corresponding Tm were available for hcp Fe, with uncertainties of 100-200 K (Alfè et al., 2002b; 

Sun et al., 2018). The Helmholtz free energy of bcc phase was demonstrated to be higher than hcp 

(Vočadlo et al., 2003), while bcc’s Tm has not been computed by TI yet.  

      In principle, one does not need the absolute free energy value to obtain the melting temperature. 

It is the free energy difference between the liquid and solid, ∆𝐺!"# , that defines the melting 

temperature. This quantity can be very accurately determined for a classical system (noted as 𝒞), 

and then the corresponding value in the ab initio system (𝒜) can be obtained using TI. To realize 

this approach, one needs a reasonably accurate semi-empirical potential under which the solid 

phase of interest is at least metastable, and a liquid structure is close to the ab initio one. Then 

accurate latent heat and the melting temperature can be obtained from classical MD simulation 

with the chosen semi-empirical potential and sufficiently large simulation cell and time. These 
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results allow us to get the free energy difference between the solid and liquid phases, ∆𝐺𝒞!"# , 

associated with melting for the classical system from the Gibbs-Helmholtz equation. Finally, one 

can perform the TI from this classical system to the ab initio system to transform the classical 

∆𝐺𝒞!"# into the ab initio ∆𝐺𝒜!"#. The whole process does not involve any approximations, so the 

computed ∆𝐺𝒜!"#  should be exact. Moreover, since, by design, the classical potential already 

provides a close description of the solid and liquid phases compared to the ab initio models, 

minimal structural changes are expected during the TI. Harmonic and anharmonic contributions 

are inherently included in the SLC simulations, so this should provide very accurate results. 

Similar idea was first proposed by (Alfè et al., 2002a) to correct the melting properties obtained 

by classical coexistence simulations. In this study, we derived the formula for this approach and 

use it to compute the melting temperatures for the bcc and hcp iron under Earth's inner core 

pressures. 

 

2 Methods 

2.1 Formulas 

Assuming the melting temperature 𝑇𝒞& is known for the classical system, one can compute ∆𝐺𝒞!"# 

at 𝑇 using the Gibbs-Helmholtz equations  

∆𝐺𝒞!"#(𝑇) = −𝑇∫ ∆(𝒞
)"
𝑑𝑇)

)𝒞
# ,     (1) 

where ∆𝐻𝒞 is the latent heat of system 𝒞, which can be directly determined from classical NPT 

MD simulations. The transformation from ∆𝐺𝒞!"#(𝑇)to ∆𝐺𝒜!"#(𝑇) can be obtained (see Supporting 

Information Text S1) as 

∆𝐺𝒜!"#(𝑇) = ∆𝐺𝒞!"#(𝑇) + 𝑓*+(𝑇) + 𝑓),(𝑇).    (2) 

where 𝑓*+(𝑇) is the contribution from the equation of state (EoS) difference between 𝒜 and 𝒞 

systems, defined as  

𝑓*+(𝑇) = /𝑃(𝑉𝒜! − 𝑉𝒜#) − 𝑃2𝑉𝒞! − 𝑉𝒞#34 − 5∫ 𝑃𝒞!(𝑉)𝑑𝑉
+𝒜
%

+𝒞
% − ∫ 𝑃𝒞#(𝑉)𝑑𝑉

+𝒜
&

+𝒞
& 6, (3) 

where 𝑉𝒜! (or 𝑉𝒜#) and 𝑉𝒞! (or 𝑉𝒞#) are equilibrium volumes of liquid (or solid) at 𝑃 for system 𝒜 

and 𝒞, respectively, 𝑃𝒞!(𝑉) and 𝑃𝒞#(𝑉) are equation of states of liquid and solid for system 𝒞, 

respectively. 𝑓),(𝑇) term accounts for the TI difference between liquid and solid, which is defined 

as 
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 𝑓),(𝑇) = ∫ ⟨𝑈𝒜! − 𝑈𝒞!⟩-,/+)𝑑𝜆
0
1 − ∫ ;𝑈𝒜# − 𝑈𝒞#<-,/+)𝑑𝜆

0
1 ,   (4) 

where 𝑈𝒜!  (or 𝑈𝒜# ) and 𝑈𝒞! (or 𝑈𝒞#) are the internal energy of liquid (or solid) for systems 𝒜 and 𝒞, 

respectively. ⟨∙⟩-,/+) is the ensemble average of internal energy over configurations sampled in 

the canonical ensemble with the force field 𝑈 = (1 − 𝜆)𝑈𝒜 + 𝜆𝑈𝒞. The subscript NVT means the 

constant conditions of (𝑉𝒜! , 	𝑇) and (𝑉𝒜#, 	𝑇) in liquid and solid simulations, respectively. 

2.2 Simulation details 

      The classical MD simulations were performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) code (Thompson et al., 2022). The interatomic 

interaction was modeled using the semi-empirical potentials based on the embedded atom method 

(EAM)(Daw and Baskes, 1984). The system 𝒞 was simulated using the semi-empirical potential 

developed in (Sun et al., 2022) and the system 𝒞′ was simulated using the semi-empirical potential 

developed in the present study. In the NVT (constant number of atoms, volume, and temperature) 

simulations, the Nosé-Hoover thermostat (Nosé, 1984) was applied. In the NPT simulations, the 

Nosé-Hoover thermostat and barostat were applied. The damping time in the Nose-Hoover 

thermostat was set to 𝜏 = 0.01	𝑝𝑠. The time step of the simulation was 1.0 fs. 

      Ab initio calculations were performed with the Vienna ab initio simulation package (VASP) 

(Kresse and Furthmüller, 1996). The projected augmented-wave (PAW) method was used to 

describe the electron-ion interaction, and the generalized gradient approximation (GGA) in the 

Perdew-Burke-Ernzerhof (PBE) form was employed for the exchange-correlation energy 

functional. The electronic entropy at the high temperature was described by the Mermin functional 

(Mermin, 1965; Wentzcovitch et al., 1992). The electronic temperature in the Mermin functional 

is kept the same as the ionic temperature. In TI-MD from classical to ab initio systems, the force 

acting on each atom was 𝑓 = (1 − 𝜆)𝑓𝓐 + 𝜆𝑓𝒞, where 𝑓𝓐 and 𝑓𝒞 were the forces generated by ab 

initio calculation and EAM potential, respectively. The ab initio forces computed from the VASP 

code were passed to the LAMMPS code on-the-fly with MD simulation. The Nosé-Hoover 

thermostat was employed to control the temperature, and a time step of 2.0 fs was used to integrate 

Newton’s equations of motion in the TI-MD. 

      Two PAW-PBE potentials, namely PAW8 and PAW16, were employed to balance the 

efficiency and accuracy of ab initio free energy calculations. PAW8 potential with 8 valence 

electrons (3d74s1) was used for AIMD and TI-MD simulations. PAW16 potential with 16 valence 
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electrons (3s23p63d74s1) was used to improve the DFT accuracy with free energy perturbation 

(FEP). The plane-wave cutoff was 400 eV for PAW8 and 750 eV for PAW16. Supercells with 240, 

250, and 250 atoms were used to simulate hcp, bcc, and liquid, respectively. The Γ point was used 

with PAW8 to sample the Brillouin zone in AIMD and TI-MD. A dense Monkhorst-Pack 

(Monkhorst and Pack, 1976) k-point mesh of 2 × 2 × 2 was adopted for all hcp, bcc, and liquid 

phases to achieve a high DFT accuracy in the FEP calculations.  
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Figure 1. Melting temperature from 𝒞 → 𝒞′ calculations and size effect. (a) Gibbs free energy 
difference between the liquid and solid for bcc and hcp as a function of temperature in system 𝒞 
at 323GPa. (b) The integrand of TI along the thermodynamic path from 𝒞 to 𝒞′. The error bars are 
computed by repeating the simulation three times. The dotted line is a polynomial interpolation. 
(c) Equation of state in system 𝒞 for liquid, bcc, and hcp at T=6000 K. The symbols are raw data 
obtained from MD simulations with 4000 atoms. The lines are the fitting of 3rd order Birch-
Murnaghan EoS. (d) ∆𝐺𝒞3!"# computed from ∆𝐺𝒞!"# with the contribution of PV difference term 
and TI term, for bcc at 323 GPa using 4000 atoms. (e) The Gibbs free energy difference ∆𝐺𝒞3 for 
bcc and hcp at 323 GPa. The solid line is an interpolation with 3rd polynomial fitting. (f) Size effect 
on the melting temperature measurement with TI simulations. The circles are melting temperatures 
measured from the TI with different numbers of atoms (𝑁4) in the simulations.  
 

3 Results and Discussion 

3.1 𝒞 → 𝒞′ validation 

Eqn. (2) is formally exact for sufficiently large simulation cells. However, such a condition is 

never satisfied for AIMD simulations. Since the size and time restrictions of MD simulations are 

not specific to the type of interatomic interaction (ab initio or classical), we can estimate the order 

of uncertainty by applying the approach to compute the melting temperature for another classical 

system 𝒞′ where one can test from small to large simulation sizes. In this 𝒞 → 𝒞′ test, the starting 

system 𝒞 is described by the Fe semi-empirical potential developed with EAM in (Sun et al., 2022), 

where the bcc and hcp Fe melting temperatures have been determined via large-scale SLC 

simulations as 𝑇𝒞&(bcc)=5,793 K and 𝑇𝒞&(hcp)= 5,858 K at P=323GPa. To build system 𝒞′, we 

developed another Fe EAM potential in the same way as (Sun et al., 2022) except that we 

intentionally changed target melting temperatures. In 𝒞′  system, the bcc and hcp melting 

temperatures measured from SLC simulations are 𝑇𝒞3&(bcc)=6,172 K and 𝑇𝒞3&(hcp)=6,135 K at 323 

GPa. Note that the bcc phase has a higher Tm than the hcp phase in the system 𝒞′ while it is the 

opposite in the system 𝒞. The melting temperature difference between bcc and hcp in the system 

𝒞′ is within 50 K, which is much smaller than the uncertainty of usual ab initio TI with small sizes 

using harmonic crystal and simple liquid as references. Therefore, this is a challenging testbed to 

examine the accuracy of the TI scheme. 

      To obtain ∆𝐺𝒞3!"# we first computed the ∆𝐺𝒞!"#(𝑇) using the Gibbs-Helmholtz equation shown 

in Eqn. (1). The latent heat results are obtained from NPT-MD simulation with ~2,000 atoms. The 

results at 323 GPa are shown in Fig. 1(a). To compute the 𝑓),(𝑇) term in Eqn. (4), we performed 

TI-MD simulations for the system described by the hybrid Hamiltonian, 𝐻 = (1 − 𝜆)𝐻𝒞3 + 𝜆𝐻𝒞, 
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where 𝐻𝒞3 and 𝐻𝒞 are the Hamiltonians of 𝒞′ and 𝒞 systems, respectively. The NVT ensemble was 

applied in the TI-MD simulation. The averaged internal energy differences between 𝒞′ and 𝒞 

systems are shown as a function of 𝜆 in Fig. 1(b), which defines the thermodynamic path from 𝒞′ 

to 𝒞. The path is smooth and almost linear, mainly because of the similarity between the two 

systems. The integrals are computed along the thermodynamic path via Gaussian quadrature. In 

order to evaluate the size effect, we compare the thermodynamic path using the simulation cells 

containing 250 and 4,000 atoms. It shows a systematic deviation between the two simulations. 

This size effect leads to an error of 0.7 meV/atom in the 𝑓),(𝑇). We will show later how this energy 

difference affects the calculated Tm. In addition, the error bar of the data from the 250-atom 

simulation is naturally much larger than the one obtained from the 4,000-atom simulation. 

      To compute 𝑓*+, the first term in Eqn. (3) was directly obtained by measuring the equilibrated 

volumes of liquid and solids at 323 GPa for systems 𝒞′ and 𝒞. The second integral term in Eqn. (3) 

was obtained by measuring the equation of states systems 𝒞 . In Fig. 1(c), classical NVT-MD 

simulations are performed with large simulation cells (4032 atoms for hcp, 4394 atoms for bcc, 

4000 atoms for liquid) and a serial of cell volumes to obtain 𝑃𝒞(𝑉) near the pressure of the interest. 

These results were fitted to the 3rd order Birch-Murnaghan EoS so that the integral term in Eqn. 

(3) can be obtained.  

      Putting the ∆𝐺𝒞!"#(𝑇) , 𝑓),(𝑇) , and 𝑓*+(𝑇)  together via Eqn. (2), we computed the 

temperature-dependent Gibbs free energy ∆𝐺𝒞3!"#(𝑇) for system 𝒞′. The contributions from 𝑓),(𝑇) 

and 𝑓*+(𝑇) are shown in Fig. 1(d). The 𝑓*+(𝑇) term is almost zero. The main factor in determining 

the ∆𝐺𝒞3!"#(𝑇) is the 𝑓),(𝑇) term. This term is almost independent of the temperature. The ∆𝐺𝒞3(𝑇) 

for the bcc and hcp phases are shown in Fig. 1(e). We obtained 𝑇𝒞3&(hcp, 𝑇𝐼) = 6131.6	𝐾 and 

𝑇𝒞3&(𝑏𝑐𝑐, 𝑇𝐼) = 6169.1	𝐾. Therefore, we could reproduce the fact that the bcc is the most stable 

crystal phase in the system 𝒞′ using the TI scheme. Moreover, the obtained values are very close 

to the melting temperatures measured by the SLC simulations, with differences of only 3.4	𝐾 for 

the hcp phase and 2.8	𝐾 for the bcc phase. 

      The size effect on the melting temperatures was examined in the 𝒞 → 𝒞′ case by performing 

the TI simulations using different numbers of atoms (𝑁4). Because the limit of the simulation size 

in the AIMD simulations only affects the measurement of 𝑓),(𝑇) term, the ∆𝐺𝒞!"#(𝑇) and 𝑓*+(𝑇) 

terms are kept the same in this test. The Tm values calculated from different simulations size are 

shown in Fig. 1(f), together with the Tm data from SLC simulation for comparison. When the 
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simulation size is larger than 1,000 atoms, the melting temperatures are almost independent of the 

simulation size and only show a deviation from the SLC results within 5 K. When the simulation 

size is reduced to ~ 250 atoms, which is the typical cell size of AIMD simulations, the uncertainty 

in Tm increases to ~ 15 K. This is the consequence of 0.7 meV/atom difference in the 𝑓),(𝑇) 

between 250-atom and 4000-atom simulations, shown in Fig. 1(b). Compared to the TI calculation 

using harmonic crystal as the reference, the inaccuracy caused by the size effect is significantly 

reduced by the current TI scheme. This can be rationalized as follows. The size effect is associated 

with the cutting off longwave phonons in a small simulation cell of crystal phases (the size effect 

is much less important for liquid models). When a TI is performed from a system described by a 

semi-empirical potential to the ab initio system, the effect of the simulation cell on the TI results 

is only associated with the difference in the phonon distributions between the classical and ab 

initio systems, which is supposed to be small if the semi-empirical potential was well fitted to ab 

initio results. The major contribution of longwave phonons to the free energy difference between 

the solid and liquid phases is incorporated in reference systems via large-scale SLC simulations. 

On the contrary, when the TI is performed from a harmonic crystal to the ab initio system with a 

small simulation size, the effect of longwave phonons is ignored because the reference harmonic 

crystal does not contain the longwave phonon contribution. 

 
Figure 2. 𝒞 → 𝒜 TI calculations at P=323 GPa. (a)-(c) show the averaged energy differences 
between ab initio system 𝒜 and classical system 𝒞 in TI-MD simulations for liquid, bcc, and hcp, 
respectively. The solid lines are the polynomial interpolations. 
 
3.2 Classical to ab initio transformation (𝒞 → 𝒜) 
      We now compute ab initio melting temperatures for hcp and bcc. It requires ∆𝐺𝒞!"#(𝑇), 𝑓),(𝑇), 

and 𝑓*+(𝑇) to obtain the ∆𝐺𝒜!"#(𝑇) via Eqn. (2). ∆𝐺𝒞!"#(𝑇) is the same as the one computed in the 
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𝒞 → 𝒞′ case. The main task is to compute the 𝑓),(𝑇) from classical system 𝒞 to ab initio system 

𝒜.  

      The ab initio TI-MD was performed for liquid, hcp, and bcc in the temperature range from 

5,400K to 6,000K. The energy differences between ab initio system 𝒜 and classical system 𝒞, i.e., 

∆𝑈 = ⟨𝑈𝒜 − 𝑈𝒞⟩, are averaged from TI-MD over 20 ps and shown for three phases in Fig. 2. Just 

like in the 𝒞 → 𝒞′ case, all the ∆𝑈 show smooth transitions from the classical system (𝜆 = 0) to 

the ab initio system (𝜆 = 1). These thermodynamic paths are almost linear, similar to the 𝒞 → 𝒞′ 

results in Fig. 1(b). The 𝑓*+(𝑇) terms are computed with the ab initio equilibrium volumes of hcp, 

bcc, and liquid and the classical equation of states 𝑃𝒞(𝑉). The 𝑓*+(𝑇) terms is also almost zero, 

similar to the one in 𝒞 → 𝒞′  calculations. With these quantities, ∆𝐺𝒜!"#(𝑇)  was obtained and 

shown in Fig. 3. The ab initio melting temperatures were obtained from the conditions 

∆𝐺𝒜!"#(𝑇&) = 0. The 𝑇&  results are 5848 ± 15 K for hcp and 5632 ± 15 for bcc at 323GPa, 

while 6094 ± 15 K for hcp and 5850 ± 15 K for bcc at 360 GPa. The uncertainty of 15 K was 

estimated based on the 𝒞 → 𝒞′ test of the finite size effect shown in Fig. 1(f). These results suggest 

the hcp always has a high melting temperature than bcc from 323 GPa to 360 GPa. The free energy 

differences between the bcc and hcp phases are quite small, ~13 meV/atom at the hcp melting 

point. This is almost the uncertainty of the conventional TI method (Alfè et al., 2001). Therefore, 

the present TI with classical potential is a necessity to distinguish the free energy difference 

between hcp and bcc iron under core conditions. 

3.3 DFT accuracy 
While we have addressed the size effect with the TI from classical to ab initio system, there still 

exists uncertainty within ab initio calculations. So far, the ab initio calculations in the TI were 

performed at the PAW8 potential level (8 valence electrons). However, Fe’s semi-core electron 

orbitals can contribute to the metallic bonding and affect the melting properties under the Earth’s 

core pressures (Alfè et al., 2002b). This effect can be evaluated by PAW potentials with more 

semi-core electrons treated as valence electrons, such as PAW16 potential (16 valence electrons) 

(Sun et al., 2018). However, due to the intrinsic cubic scaling of electron number in the DFT, 

PAW16 increases the computational cost by a factor of ~10, such that it is difficult to implement 

PAW16 in the present TI scheme. Recently, the FEP method was demonstrated to be an efficient 

approach for transforming the free energy data from Fe’s PAW8 to PAW16 (Sun et al., 2018). 

Therefore, we employed the FEP method to improve the DFT accuracy (see Supporting 
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Information) at three temperatures for both 323 GPa and 360 GPa. The free energy changes 

associated with replacing PAW8 with PAW16 are shown for both hcp and bcc in Supporting 

Information Fig. S1. It leads to the stabilization of the hcp and bcc phases with respect to the liquid 

phase by 30-50 meV/atom. Therefore, the melting temperatures of the hcp and bcc phases are 

increased compared to the PAW8 results, as shown in Fig. 3. The error of the FEP method was 

estimated as 3 meV/atom (Sun et al., 2018). This error propagates to the melting temperatures and 

results in a larger uncertainty compared to the original TI results. The melting temperatures 

obtained with the PAW16 potential are 6357 ± 45 K for hcp and 6168 ± 80 K for bcc at 323GPa, 

while 6692 ± 45 K for hcp and 6519 ± 80 K for bcc at 360 GPa. Within the uncertainty, the hcp 

phase still shows a higher melting temperature than the bcc phases. The free energy differences 

between the bcc and hcp phases are ~8 meV/atom at the hcp melting point. Therefore, the relative 

stability between hcp and bcc is qualitatively similar for the PAW8 and PAW16 potentials. We 

note that the effect of semi-core states on PAW8 can also be corrected by pair potential, as 

demonstrated by (Alfè et al., 2002b). 

 

Figure 3. The ab initio Gibbs free energy difference ∆𝐺𝒜!"# for bcc and hcp. (a) 323GPa and (b) 
360GPa. The lines are linear interpolations of the data points. The intersection with the dotted line 
(∆𝐺𝒜!"# = 0) defines the melting temperature. 

 
3.4 Geophysical impact 
      The obtained ab initio melting temperatures are compared with the data from the literature in 

Fig. 4. While it shows rich melting temperature data for the hcp phase, the bcc data are very limited. 

The only ab initio datum of bcc melting point is from (Bouchet et al., 2013). The calculation was 
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performed by 256-atom SLC simulations, which led to large uncertainties in both pressure and 

temperature. Nevertheless, the results are consistent with the present PAW16 results for bcc. For 

ab initio hcp data, the only PAW8 result is from (Sun et al., 2018), which is consistent with our 

PAW8 data within the uncertainty. Our PAW16 data of hcp is also consistent with 980-atom SLC 

simulations (Alfè, 2009). The results are close to Alfè et al.’s TI calculations (Alfè et al., 2002b) 

and Monte Carlo results (Sola and Alfè, 2009). The data also agrees with recent experimental 

results within their uncertainty (one of them (Li et al., 2020) shown in Fig. 4). Overall, the present 

calculations are consistent with previous results for the hcp phase with the same PAW potentials, 

which validates our TI methods. Moreover, it provides a clear distinction between the hcp and bcc 

phases under the same DFT accuracy.  

 

 

Figure 4. Melting temperatures of bcc and hcp phases. The literature data includes Alfè 2002 by 
TI (Alfè et al., 2002b), Alfè 2009 by ab initio SLC simulations (Alfè, 2009), Sola & Alfè 2009 by 
Monte Carlo (Sola and Alfè, 2009), Bouchet 2013 by ab initio SLC simulations (Bouchet et al., 
2013), Sun 2018 by TI, phonon quasiparticle and FEP (Sun et al., 2018), Davies 2019 by classical 
MD (Davies et al., 2019), Belonoshko 2021 & Belonoshko 2022 by classical MD (Belonoshko et 
al., 2022a, 2021) and Zhang 2021 by classical MD with a machine-learning potential (Zhang et al., 
2020). The experimental curve is from Li 2020 (Li et al., 2020) with the extrapolation of shock 
wave data. 
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      Another group of data is from the classical MD with EAM (Belonoshko et al., 2022a, 2021; 

Davies et al., 2019) and machine-learning potentials (Zhang et al., 2020). While these results 

depend on the employed potentials, they mostly show decent consistency with present PAW16 

data on the hcp melting temperatures. The largest deviation is on the bcc phase from (Belonoshko 

et al., 2022a, 2021). It leads to bcc’s melting temperature of ~780 K higher than our PAW16 value 

at 360 GPa; more importantly, it indicates that the hcp melting temperature is much lower than 

that for the bcc phase. Such deviation should be due to the employed semi-empirical potential, 

which was fitted to 0 K DFT results, and the calculated free energy contained an ad hoc correction 

of the electronic entropy effect (Belonoshko et al., 2022a, 2021).  

       According to the present TI and FEP calculations, the hcp phase has higher melting 

temperatures than the bcc phase under both pressures of the inner core boundary and the inner core 

center. Therefore, the hcp phase should be the stable phase for pure Fe at inner-core conditions. 

While there are increasing evidence of the bcc phase in the inner core (Belonoshko et al., 2022b; 

Ghosh and Zhang, 2022), our ab initio calculations, regardless of the PAW potential employed, 

suggest that the stability of the bcc phase should not be due to Fe itself. The free energy difference 

between bcc and hcp is tiny, ~10 meV/atom at 323 GPa. Such a small free energy difference could 

be altered by alloying with other elements, especially if the alloy’s configuration entropy becomes 

significant. For instance, a recent experimental work reported the hcp-B2 coexistence in Fe-Ni-Si 

alloy under core conditions (Ikuta et al., 2021). Therefore, the effect of nickel and light elements 

must be taken into account to get a complete picture of the crystalline structure of the solid inner 

core phase.  

 

4. Conclusion 

We developed a TI scheme to compute the free energy difference between solid and liquid. This 

scheme uses the empirical potential as the reference system, providing a smooth TI calculations 

transition. The Tm of the target system can be computed without calculating the absolute free 

energy. The test between two classical systems (𝒞 → 𝒞′) shows that the obtained Tm is consistent 

with that from large-scale SLC simulations, which provides a good validation for the method. The 

size effect in the current TI scheme is small, on the order of ~15 K difference between a 250-atom 

cell and a 4,000-atom cell. Based on this scheme, the ab initio melting temperatures of hcp and 

bcc iron are calculated at the inner core boundary and the core center pressures. The hcp always 
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displays a higher Tm than the bcc. Thus, hcp should be the stable phase of pure iron at the inner 

core conditions. However, the free energy difference between the two phases is only of the order 

of 10s meV/atom. Future work should include the effect of nickel and light elements on the free 

energy, which is necessary to simulate the inner core structure. 
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Introduction 

This Supporting Information provides the derivation of thermodynamic intergration formula in 

Text S1, details of free energy perturbation in Text S2, and the data of free energy perturbation in 

Fig. S1.  

 

Text S1. Formulas for 𝓒 → 𝓐 thermodynamic intergration  

In this section, we provide the derivation of formulas transforming classical Tm and solid-liquid 

free energy difference to ab initio ones. Let's consider two systems 𝒜 and 𝒞, described by ab initio 

and classical force fields, respectively. We assume the melting temperature 𝑇𝒞& are known for the 

classical system (calculated by large solid-liquid coexistence simulations in practice). In the 

following, we derive the equation to obtain the free energy difference and Tm for system 𝒜, i.e. 

∆𝐺𝒜!"# and 𝑇𝒜&. We start with the definition:  

∆𝐺𝒜!"#(𝑇) = 𝐹𝒜!(𝑉𝒜! , 	𝑇) − 𝐹𝒜#(𝑉𝒜#, 	𝑇) + 𝑃(𝑉𝒜! − 𝑉𝒜#),  (S1) 

where P and T are pressure and temperature, 𝑉𝒜! and 𝑉𝒜# are equilibrium volumes and 𝐹𝒜!(𝑇) and 

𝐹𝒜#(𝑇)  are Helmholtz free energies of liquid and solid in system 𝒜  at (𝑃, 𝑇) , respectively. 

Performing the thermodynamic intergration (TI) from the classical system 𝒞 for liquid and solid, 

one can compute the Helmholtz free energies as 

!𝒜
" "#𝒜

" ,	&'(!𝒞
""#𝒜

" ,	&')∫ +,𝒜
"(,𝒞

"-$,&'(./
)
*

!𝒜
+"#𝒜

+ ,	&'(!𝒞
+"#𝒜

+ ,	&')∫ +,𝒜
+(,𝒞

+-$,&'(./
)
*

,   (S2) 

where ⟨∙⟩-,/+)  is the ensemble average of internal energy over configurations sampled in the 

canonical ensemble with the force field 𝑈 = (1 − 𝜆)𝑈𝒜 + 𝜆𝑈𝒞 . The subscript NVT means the 

constant conditions of (𝑉𝒜! , 	𝑇) and (𝑉𝒜#, 	𝑇) in liquid and solid simulations, respectively. We note 

the ab initio internal energy, 𝑈𝒜 , includes the electronic entropy contribution. For simplicity’s 

sake, we denote the integral terms in Eqn. (2) as 𝐹),! (𝑉𝒜! , 	𝑇) = ∫ ⟨𝑈𝒜! − 𝑈𝒞!⟩-,/+)𝑑𝜆
0
1  and 

𝐹),# (𝑉𝒜#, 	𝑇) = ∫ ;𝑈𝒜# − 𝑈𝒞#<-,/+)𝑑𝜆
0
1 . Then Eqn. (2) can be rewritten as 

𝐹𝒜!(𝑉𝒜! , 	𝑇) − 𝐹𝒜#(𝑉𝒜#, 	𝑇) = 𝐹),! (𝑉𝒜! , 	𝑇) − 𝐹),# (𝑉𝒜#, 	𝑇) + 𝐹𝒞!(𝑉𝒜! , 	𝑇) − 𝐹𝒞#(𝑉𝒜#, 	𝑇). (S3) 

      The last two terms in Eqn. (3) require the free energy of the classical system 𝒞. Given the 

calculated melting temperature 𝑇𝒞&, one can accurately compute the Gibbs free energy difference 

between liquid and solid ∆𝐺𝒞!"# at 𝑇 using the Gibbs-Helmholtz equations  
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∆𝐺𝒞!"#(𝑇) = −𝑇 ∫ ∆(𝒞
)"
𝑑𝑇)

)𝒞
# ,     (S4) 

where ∆𝐻𝒞 is the latent heat of system 𝒞, which can be directly determined from classical NPT 

MD simulations. As ∆𝐺𝒞!"#(𝑇) = 𝐺𝒞!(𝑇) − 𝐺𝒞#(𝑇), one can write it as 

∆𝐺𝒞!"#(𝑇) = 𝐹𝒞!(𝑉𝒞! , 	𝑇) − 𝐹𝒞#2𝑉𝒞#, 𝑇3 + 𝑃(𝑉𝒞! − 𝑉𝒞#),  (S5) 

where 𝑉𝒞! and 𝑉𝒞# are the equilibrium volumes of classical liquid and solid under the condition of 

(𝑃, 𝑇). Note 𝑉𝒞! and 𝑉𝒞# are not necessarily the same as 𝑉𝒜! and 𝑉𝒜# owing to the difference between 

classical and ab initio force fields. Since 𝑃 = − 56
5+
|), we can write 
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,    (S6) 

where 𝑃𝒞!(𝑉) and 𝑃𝒞#(𝑉) are the equation of states of liquid and solid in the classical system at 𝑇. 

Combining both Eqns. (6) we obtain 

𝐹𝒞!(𝑉𝒜! , 𝑇) − 𝐹𝒞#(𝑉𝒜#, 	𝑇) = 𝐹𝒞!(𝑉𝒞! , 	𝑇) − 𝐹𝒞#2𝑉𝒞#, 	𝑇3 − 5∫ 𝑃𝒞!(𝑉)𝑑𝑉
+𝒜
%

+𝒞
% − ∫ 𝑃𝒞#(𝑉)𝑑𝑉

+𝒜
&

+𝒞
& 6. (S7) 

      Now combining Eqn. (3), (5), and (7), we can write Eqn. (1) as 

∆𝐺𝒜!"#(𝑇) = ∆𝐺𝒞!"#(𝑇) + 𝐹),! (𝑉𝒜! , 	𝑇) − 𝐹),# (𝑉𝒜#, 	𝑇) + /𝑃1(𝑉𝒜! − 𝑉𝒜#) − 𝑃12𝑉𝒞! − 𝑉𝒞#34 −

5∫ 𝑃𝒞!(𝑉)𝑑𝑉
+𝒜
%

+𝒞
% − ∫ 𝑃𝒞#(𝑉)𝑑𝑉
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&

+𝒞
& 6.                (S8) 

      We define the TI term 𝑓),(𝑇) and the PV difference term 𝑓*+(𝑇) as  

𝑓),(𝑇) = 𝐹),! (𝑉𝒜! , 	𝑇) − 𝐹),# (𝑉𝒜#, 	𝑇),    (S9) 

 𝑓*+(𝑇) = /𝑃(𝑉𝒜! − 𝑉𝒜#) − 𝑃2𝑉𝒞! − 𝑉𝒞#34 − 5∫ 𝑃𝒞!(𝑉)𝑑𝑉
+𝒜
%

+𝒞
% − ∫ 𝑃𝒞#(𝑉)𝑑𝑉

+𝒜
&

+𝒞
& 6. (S10) 

      Now Eqn. (8) can be simplified as  

∆𝐺𝒜!"#(𝑇) = ∆𝐺𝒞!"#(𝑇) + 𝑓),(𝑇) + 𝑓*+(𝑇).     (S11) 

      Using ∆𝐺𝒜!"#(𝑇)  one can compute the melting temperature under the condition of 

∆𝐺𝒜!"#(𝑇𝒜&) = 0. To this end, the 𝑓),(𝑇) term requires TI simulation from system 𝒞 to system 𝒜. 

The 𝑓*+(𝑇) term requires equilibrium volume 𝑉𝒜! and 𝑉𝒜# at 𝑃 for system 𝒜 and equation of state 

𝑃𝒞!(𝑉) and 𝑃𝒞#(𝑉), which can all be directly computed from ab initio and classical MD simulations.  
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Figure S1 Free energy difference between high-accuracy calculations (PAW16 potential and 

2 × 2 × 2 k-point mesh) and high-efficiency calculations (PAW8 potential and Γ point). 

 

Text S2. Free energy perturbation 

The intensive ab initio calculations involved in the TI require a high-efficiency setup of density 

functional theory (DFT) calculations. The obtained free energy data from TI can further be 

improved to a higher DFT accuracy with the free energy perturbation (FEP) method (Zwanzig, 

2004). In the FEP method, the free energy difference between system A and system B can be 

computed by the Zwanzig equation, 

𝐹? − 𝐹@ = −𝑘@𝑇 ln 〈exp d−
A("A)
B))

e〉@,    (S12) 

where 𝑈?  and 𝑈@  are the energy of the same atomic configuration computed with A and B 

interactions, respectively. ⟨∙⟩@ is the ensemble average of system B. Equation (S12) is formally 

exact, while the convergence of the ensemble average depends on the similarity between A and B 

systems. In practice, one can use the trajectory from ab initio molecular dynamics of a high-

efficiency setup and recompute the energy of random snapshots with the high-accuracy DFT setup. 

Equation (S12) is applicable if the fluctuation of (𝑈? − 𝑈@) is much smaller than 𝑘@𝑇. In our study, 

50 MD snapshots were used to perform the ensemble average. The fluctuations of the energy 

difference between PAW8 and PAW16 calculations are in the range of 3-8 meV/atom for hcp, bcc, 
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and liquid phases, which is much smaller than the 𝑘@𝑇 of ~ 500 meV/atom at ~ 6000 K. Therefore, 

FEP method is applicable for the present system.  
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