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Abstract. Closed formulas in terms of double sums of Clebsch-Gordan coefficients

are computed for the evaluation of bra-ket spherical harmonic overlap integrals

of a wide class of trigonometric functions. These analytical expressions can find

useful application in problems involving non-separable wave equations, e.g. general-

relativistic perturbation theory, electromagnetism, quantum theory, etc, wherein the

overlap integrals arise from the coupling among different angular modes. We provide

some examples related to linear perturbations of spinning black holes in General

Relativity and modified gravity, in which the analytical formulas for the overlap

integrals are particularly useful to compute the black-hole spectrum.

1. Introduction

The spherical harmonic decomposition is a widely used tool in perturbation theory.

Applications are countless and include any linear theory (e.g., electromagnetism [1],

quantum mechanics [2], Newtonian gravity [3]), and any perturbative scheme of

nonlinear theory (e.g., black-hole perturbation theory within and beyond General

Relativity (GR) [4]). The spherical harmonic decomposition finds its main advantage

for spherically symmetric systems in order to separate the radial and angular part of

the perturbation equations, but it can also be applied to less symmetric configurations.

While the angular modes decouple from each other in spherical symmetry – leading to

lower-dimensional differential equations – they typically mix when spherical symmetry

is broken. This mode-mixing gives rise to bra-ket integrals that must be explicitly

evaluated [4].

A relevant class of these braket integrals involves trigonometric functions:

〈l1, m1| eikφ cos(nθ) |l2, m2〉 = (1)
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=

2π
∫

0

dφ

π
∫

0

dθ sin θY ∗
l1,m1

(θ, φ)eikφ cos(nθ)Yl2,m2
(θ, φ) ,

〈l1, m1| eikφ sin(nθ) |l2, m2〉 = (2)

=

2π
∫

0

dφ

π
∫

0

dθ sin θY ∗
l1,m1

(θ, φ)eikφ sin(nθ)Yl2,m2
(θ, φ) ,

Due to the fact that eikφ cos(nθ) and eikφ sin(nθ) form a complete Fourier basis for

(θ, φ) ∈ [0, π] × [0, 2π), from the general solutions of Eqs. (1) and (2) in principle one

can directly compute the bra-kets of any trigonometric function regular in such interval §.
Overlap integrals of this type naturally arise from the spherical harmonic decomposition

of wave equations, such as those coming from GR perturbation theory [4]. Important

examples are bosonic perturbations of spinning black holes [5,6], or the linear dynamics

of “dirty” black holes in GR [7] and in extended theories of gravity [8–10]. In the easiest

cases having the analytical results helps in understanding the type of couplings involved:

for example from the result of 〈l1, m1| cos2 θ |l2, m2〉, one can easily deduce that scalar

perturbations of a Kerr black hole have couplings between l and l± 2 modes [5]. In the

most cumbersome cases, instead, the number of different couplings can be much higher

and/or show involved expressions [4,6], thus closed-form solutions can greatly speed up

computations.

To the best of our knowledge, in the literature there is no general, analytical,

solution to the bra-ket trigonometric integrals (1) and (2). In this short note we provide

a closed-form general solution by exploiting the properties of ultraspherical polynomials

and their relationships with trigonometric functions and spherical harmonics.

Before deriving the full expression for the bra-ket trigonometric integrals (1) and (2)

in Sec. 3, in Sec. 2 we give some specific examples wherein these integrals naturally

emerge. The appendices are devoted to an alternative derivation of the same integrals.

2. Some examples

Two notable examples in which the integrals (1) and (2) emerge are massive bosonic

perturbations of Kerr black holes [11] and the linearized dynamics of Kerr black holes

in scalar-tensor theories interacting with matter [10]. We briefly discuss these examples

in the next subsections.

2.1. Massive spin-1 perturbations of a Kerr black hole

Massive bosonic perturbations of a spinning black hole play an important role for the

stability analysis of the Kerr metric and in the context of superradiant instabilities

§ In principle, through a Fourier expansion, one could also apply the general solutions to angular

functions which are not strictly trigonometric. However, the feasibility of such approach clearly depends

on how easily the Fourier expansions can be computed for the problem at hand.
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triggered by ultralight bosonic fields [12–19] While the spin-0 case is directly separable

in terms of spheroidal harmonics, only a few years ago was the spin-1 case shown to

be separable [20]. Here, to highlight the use the overlap integrals we will not exploit

the separability, also because the latter can be used only in the frequency domain (see

Ref. [21] for a similar discussion in the scalar case).

Massive vector perturbations of the Kerr metric are described by the Proca field

equations in a Ricci-flat‖ spacetime background,

�Aν − µ2Aν = 0 , ∇νAν = 0 , (3)

where Aν is the vector perturbation, µ is proportional to its mass. By following [6], we

can perform a spherical harmonic decomposition of field equations (3), thus getting an

infinite cascade of coupled radial equations. The coupling terms are bra-ket integrals of

rational functions X arising from the metric and its Christoffel symbols, functions whose

dependence on θ is through trigonometric functions cos θ and sin θ while they depend

on φ through some phase functions. Using Boyer-Lindquist coordinates (t, r, θ, φ),

we can generically label such functions as X(r, θ, eiφ; a,M), where a < M is the

black hole spin parameter, M is the black hole mass. For a = 0 these functions

are linear combinations of trigonometric functions in θ, while for a 6= 0 they are

cumbersome rational functions involving cos θ and sin θ. Brute force computation of

all the integrals 〈l1, m1|X(r, θ, eiφ; a,M) |l2, m2〉 is very time consuming and must be

performed by fixing the parameters of the system, which implies that any change in the

parameters requires recomputing those integrals from scratch. Furthermore, the number

of relevant overlapping integrals can be very high, especially for highly spinning black

holes. Indeed, if we truncate our spherical harmonic expansion such that l1, l2 ≤ L for

some value L > 0, the number of overlap integrals to be computed will be proportional

to L2(L+ 2)2¶.
A way to bypass such problems is to Fourier-expand X(r, θ, eiφ; a,M), in which case

the problem is reduced to computing integrals (1) and (2):

〈l1, m1|X(r, θ, eiφ; a,M) |l2, m2〉 = (4)

=

∞
∑

n=0,k

X̃n,k(M, a; r) 〈l1, m1| eikφ cos(nθ) |l2, m2〉+

+

∞
∑

n=1,k

X̃−n,k(M, a; r) 〈l1, m1| eikφ sin(nθ) |l2, m2〉

In order to compute the Fourier coefficients X̃n,k without carrying any integration, one

can resort to a Taylor expansion of X(r, θ, eiφ; a,M) in the black-hole spin parameter at

arbitrarily high order+. Due to how the spin parameter is coupled to the trigonometric

‖ Note that the described method is generic and does not rely on the special symmetries of the Kerr

metric, so it can be applied also in different situations.

¶ If we just consider |l,m〉 for 0 ≤ l ≤ L, we have
L
∑

l=0

(2l+ 1) = L(L+ 2) possible spherical harmonics.

Each integral involves two spherical harmonics, thus the number of integrals is proportional to L2(L+2)2
+ For accurate results, one needs at least order equal to 2L in the spin expansion.
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functions, once the integrals (1) and (2) are computed analytically it is possible to derive

analytical expressions for X̃n,k at arbitrarily high order in the black-hole spin.

At least in spirit, this approach can be extended also to massive spin-2

perturbations, whose case shows even more cumbersome X(r, θ, eiφ; a,M) functions and

consequently the computation time for their brute force evaluation would be much

higher [22]. Indeed, at the moment the massive spin-2 case is not separable and hence

one has to resort to more sophisticated numerical approaches [22].

2.2. Perturbations of a Kerr black hole in scalar-tensor theories with matter

interactions

A wide class of scalar-tensor theories with one scalar field can be described by the

following general action in the Einstein frame [10, 23, 24]:

S =

∫

d4x
√
−g

[

R

16π
− 1

2
gµν∂

µΦ∂νΦ− V (Φ)

16π

]

+ S(ψm,A(Φ)2gµν) . (5)

where gµν is the metric tensor, R is its Ricci scalar curvature, Φ a scalar field and V (Φ)

some self-interaction for Φ, while the last term describes the presence of some matter

fields ψm. The function A(Φ) models the non-minimal coupling of the scalar field to

matter: in the Einstein frame the scalar is minimally coupled to the gravity sector,

while matter is coupled to the effective metric A(Φ)2gµν . If we expand the scalar field

equations for ϕ ≡ Φ − Φ(0) ≪ 1, where Φ0 is a GR solution, on a Kerr background we

get a Klein-Gordon equation with an effective mass squared term [9, 10, 25]

[�− µ2
eff(r, θ)]ϕ = 0 . (6)

where µ2
eff(r, θ) depends on the specific model for the matter fields. For example, Ref. [10]

studies the case of accretion disks around a Kerr black hole. In this case it is convenient

to parametrize [10, 24]

µ2
eff(r, θ) = µ2

r(r) sin
2q θ + µ2

0(r) (7)

for some positive integer q and radial functions µr(r) and µ0(r). The higher the q

parameter is, the thinner the accretion disk around the equatorial plane. Such type

of functions generate overlap bra-ket integrals which can easily be written as linear

combinations of the integrals (1). More involved models for µ2
eff(r, θ) might be treated

like the massive spin-1 case, but the feasibility of computing the associated Fourier

expansions should be estimated on a case-by-case basis.

3. Evaluation of the bra-ket integrals

Having presented some relevant examples in which the bra-ket integrals (1) and (2)

naturally appear, we can now derive their expression in a closed form.

We recall that spherical harmonics are defined as [26]

Yl,m(θ, φ) =

√

(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)eimφ , (8)
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where Pm
l are the Legendre associated functions, and consequently their complex

conjugate is Y ∗
l,m = (−1)mYl,−m. Moreover, we can express their products in the following

way [26]:

Yl1,m1
Yl2,m2

=

l1+l2
∑

l=|l1−l2|

√

(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1, 0, l2, 0| l, 0〉 (9)

× 〈l1, m1, l2, m2| l, m1 +m2〉Yl,m1+m2
,

where 〈l1, m1, l2, m2| l, m〉 are the Clebsch-Gordan coefficients.

By exploiting these properties, bra-kets (1) and (2) can be written as

〈l1, m1| eikφ cos(nθ) |l2, m2〉 = (10)

=

l1+l2
∑

l=|l1−l2|

√

(

l1 +
1
2

) (

l2 +
1
2

)

(l + k)!

(l − k)!
(−1)m1 〈l1, 0, l2, 0| l, 0〉

× 〈l1,−m1, l2, m2| l,−k〉
∫ π

0

dθ sin θ cos(nθ)P−k
l (cos θ) ,

〈l1, m1| eikφ sin(nθ) |l2, m2〉 = (11)

=

l1+l2
∑

l=|l1−l2|

√

(

l1 +
1
2

) (

l2 +
1
2

)

(l + k)!

(l − k)!
(−1)m1 〈l1, 0, l2, 0| l, 0〉

× 〈l1,−m1, l2, m2| l,−k〉
∫ π

0

dθ sin θ sin(nθ)P−k
l (cos θ) .

Functions cos(nθ) and sin(nθ) can be expressed as finite linear combinations of

associated Legendre functions:

cos(nθ) =

n
∑

l=0

anl P
0
l (cos θ) , sin(nθ) =

n
∑

l=0

bnl P
1
l (cos θ) . (12)

From the definition of the associated Legendre functions [27], we have P 0
l (cos θ) =

Pl(cos θ) and P
1
l (cos θ) =

d
dθ
[Pl(cos θ)], where Pl are the Legendre polynomials. Thus,

by taking the derivative of the first equation in (12) with respect to θ and comparing it

with the second equation, we get

bnl = −1

n
anl . (13)

One can therefore focus only on the first equation in (12). Functions cos(nθ) are Čebyšëv

polynomials Tn(cos θ) = cos(nθ) [28], hence we can exploit this property for finding the

anl coefficients. Functions Tn(x) and Pl(x) are in fact special cases of ultraspherical

polynomials Cγ
n(x) [28]:

Tn(x) = lim
γ→0

n+ 2γ

2γ
Cγ

n(x) , Pl(x) = C
1/2
l (x) , (14)
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Different types of ultraspherical polynomials can be related through the following

expression [28], which is a special case of the connection relation for Jacobi polynomials∗:

Cγ
n(x) =

⌊n/2⌋
∑

j=0

(γ − β)j (γ)n−j

j! (β + 1)n−j

(

β + n− 2j

β

)

Cβ
n−2j(x) , (15)

where (x)y =
Γ(x+ y)

Γ(x)
is the Pochhammer’s symbol for x, y ∈ C and Γ(x) is

Euler’s gamma function. From Eqs. (14) and (15) we get the expressions for Čebyšëv

polynomials as linear combinations of Legendre polynomials

Tn(x) = −
⌊n/2⌋
∑

j=0

nΓ (j − 1/2) Γ (n− j)

8j!Γ (3/2 + n− j)
(1 + 2n− 4j)Pn−2j(x) , (16)

and consequently, by using Eq. (13), we can rewrite Eq. (12) as

cos(nθ) = −
⌊n/2⌋
∑

j=0

nΓ (j − 1/2) Γ (n− j)

8j!Γ (3/2 + n− j)
(1 + 2n− 4j)P 0

n−2j(cos θ) , (17)

sin(nθ) =

⌊n/2⌋
∑

j=0

Γ (j − 1/2) Γ (n− j)

8j!Γ (3/2 + n− j)
(1 + 2n− 4j)P 1

n−2j(cos θ). (18)

By using these last results, we can write the general parametric expressions for the

bra-kets (10) and (11) in closed form:

〈l1, m1| eikφ cos(nθ) |l2, m2〉 = (19)

=

l1+l2
∑

l=|l1−l2|

⌊n/2⌋
∑

j=0

(−1)m1+1

2

nΓ (j − 1/2)Γ (n− j)

8j!Γ (3/2 + n− j)

√

(2l1 + 1)(2l2 + 1)(l + k)!

(l − k)!

× (1 + 2n− 4j) 〈l1,−m1, l2, m2| l,−k〉 〈l1, 0, l2, 0| l, 0〉 I(n− 2j, 0, l,−k) ,

〈l1, m1| eikφ sin(nθ) |l2, m2〉 = (20)

=

l1+l2
∑

l=|l1−l2|

⌊n/2⌋
∑

j=0

(−1)m1

2

Γ (j − 1/2) Γ (n− j)

8j!Γ (3/2 + n− j)

√

(2l1 + 1)(2l2 + 1)(l + k)!

(l − k)!

× (1 + 2n− 4j) 〈l1,−m1, l2, m2| l,−k〉 〈l1, 0, l2, 0| l, 0〉 I(n− 2j, 1, l,−k) ,

where we have I(l, m, l′, m′) =

∫ 1

−1

dxPm
l (x)Pm′

l′ (x). This last integral can be explicitly

performed [29]:

I(l, m, l′, m′) =

√

(l +m)!(l′ +m′)!

(l −m)!(l′ −m′)!

l+l′
∑

j=|l−l′|

√

(j −m−m′)!

(j +m+m′)!

× 〈l, m, l′, m′| j,m+m′〉 〈l, 0, l′, 0| j, 0〉 I0(j,m+m′) ,

∗ Ultraspherical polynomials are a special case of Jacobi polynomials [28].
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where for m > 0 we have

I0(l, m) =

∫ 1

−1

dxPm
l (x) =

[(−1)m + (−1)l]2m−2mΓ (l/2) Γ ((l +m+ 1)/2)

((l −m)/2)!Γ ((l + 3)/2)
.

Because of P 0
0 (cos θ) = 1, for l, m = 0 we have I0(l, m) = 2, while for m < 0 we can

exploit I0(l, m) = (−1)m
(l +m)!

(l −m)!
I0(l,−m) from the properties of Pm

l . Expression (19)

gives an indeterminate result for n = 0, therefore, by taking into account that

cos(0θ) = 1 = P 0
0 (cos θ), for this case we need to use the following expression:

〈l1, m1| eikφ |l2, m2〉 =
l1+l2
∑

l=|l1−l2|

(−1)m1

2

√

(2l1 + 1)(2l2 + 1)(l + k)!

(l − k)!
(21)

× 〈l1,−m1, l2, m2| l,−k〉 〈l1, 0, l2, 0| l, 0〉 I0(l,−k) .

4. Conclusions

We derived the general analytical expressions for the spherical harmonic overlap

integrals (1) and (2) of a wide class of trigonometric functions, from which solutions for

all continuous trigonometric functions can be easily derived. We expressed the results

in closed form in terms of double sums of Clebsch-Gordan coefficients. These results

can be useful in the computational study of wave equations for non-separable systems,

e.g. in perturbed quantum mechanical problems or in the context of spherical harmonic

decompositions within black-hole perturbation theory.

Appendix A. Alternative derivation

An anonymous referee, to whom we express our gratitude, suggested the following

alternative derivation for integrals (1) and (2). Legendre polynomials can be expanded as

linear combinations of Čebyšëv polynomials via a Fourier transform, whose coefficients

can be found in Example 15.1.2 of [30]:

Pl(cos θ) =

⌊l/2⌋
∑

j=0

al,jTl−2j(cos θ), al,j =
2(2l − 2j − 1)!!(2j − 1)!!

(1 + δl−2j,0)(2l − 2j)!!(2j)!!
.(A.1)

Thus, by exploiting the properties of the product of Čebyšëv polynomials [28] and using

the fact that
∫ 1

−1

dxTn(x) =

∫ π

0

dθ sin θ cos(nθ) = (A.2)

=

∫ π

0

dθ
sin((n+ 1)θ)− sin((n− 1)θ)

2
=

(−1)n + 1

1− n2
(1− δn,1) ,

we can solve the following integral:

In,l =

∫ π

0

dθ sin θ cos(nθ)Pl(cos θ) = (A.3)
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=

⌊l/2⌋
∑

j=0

al,j

∫ 1

−1

dxTn(x)Tl−2j(x) =

=

⌊l/2⌋
∑

j=0

al,j
2

∫ 1

−1

dx
[

Tn+l−2j(x) + T|n−l+2j|(x)
]

=

=

⌊l/2⌋
∑

j=0

al,j

[

1

1− (n+ l − 2j)2
+

1

1− (n− l + 2j)2

]

δ((n+l) mod 2),0.

Because of the orthogonality of Legendre polynomials [28],
∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δl,l′ , (A.4)

the coefficients bnl and anl appearing in Eq. (12) can be written in terms of the integrals

(A.3) as follows

bnl =

(

l +
1

2

)

In,l , anl = −1

n

(

l +
1

2

)

In,l (A.5)

Therefore, we get the following alternative expressions for the bra-ket integrals:

〈l1, m1| eikφ cos(nθ) |l2, m2〉 = (A.6)

=

l1+l2
∑

l=|l1−l2|

⌊n/2⌋
∑

j=0

(−1)m1

2

(

n− 2j +
1

2

)

In,n−2j

√

(2l1 + 1)(2l2 + 1)(l + k)!

(l − k)!

×〈l1,−m1, l2, m2| l,−k〉 〈l1, 0, l2, 0| l, 0〉 I(n− 2j, 0, l,−k) ,

〈l1, m1| eikφ sin(nθ) |l2, m2〉 = (A.7)

=

l1+l2
∑

l=|l1−l2|

⌊n/2⌋
∑

j=0

(−1)m1+1

2n

(

n− 2j +
1

2

)

In,n−2j

√

(2l1 + 1)(2l2 + 1)(l + k)!

(l − k)!

×〈l1,−m1, l2, m2| l,−k〉 〈l1, 0, l2, 0| l, 0〉 I(n− 2j, 1, l,−k) .

This alternative derivation is more straightforward than the one we found, but it gives

less compact expressions involving double factorials and an additional sum instead of

the gamma functions appearing in our solutions. With these alternative formulas we

observe a slightly higher computation time with respect to the expressions we found,

which can become relevant when there are many integrals of the type (1) and (2) to be

computed.
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Appendix B. Solutions for the axisymmetric case (k = 0)

The formulas appearing in the alternative derivation described in Appendix A can

be used also for finding simplified expressions in the axisymmetric case (k = 0). In

this simplified case, the key integrals appearing in Eq. (10) involve just Legendre

polynomials instead of Legendre associated functions, thus coinciding with integrals

A.3. Consequently, Eq. (10) for k = 0 can be reduced to

〈l1, m1| cos(nθ) |l2, m2〉 =
l1+l2
∑

l=|l1−l2|

√

(

l1 +
1

2

)(

l2 +
1

2

)

(−1)m1 (B.1)

×〈l1, 0, l2, 0| l, 0〉 〈l1,−m1, l2, m2| l, 0〉 In,l .

We can find a similar procedure also for the sine case, shown in Eq. (11). From the

trigonometric product-to-sum formulas we have

sin θ sin(nθ) =
1

2
[cos((n− 1)θ)− cos((n+ 1)θ)] = (B.2)

=
Tn−1(cos θ)− Tn+1(cos θ)

2

and, therefore, the key integrals appearing in (11) become
∫ π

0

dθ sin θ sin(nθ)Pl(cos θ) = (B.3)

=

⌊l/2⌋
∑

j=0

al,j
2

∫ π

0

dθ [Tn−1(cos θ)− Tn+1(cos θ)]Tl−2j(x) =

=

⌊l/2⌋
∑

j=0

al,j
4

∫ π

0

dθ
[

Tn−1+l−2j(cos θ)− T|n−1−l+2j|(cos θ)

− Tn+1+l−2j(cos θ) + T|n+1−l+2j|(cos θ)
]

= 0 .

Hence, equation (11) in this case reduces to

〈l1, m1| sin(nθ) |l2, m2〉 = 0 , (B.4)

which can also be deduced by considering the parity of the functions involved.
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