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Abstract. We analyze the case of a dense modified Korteweg de Vries (mKdV) soliton gas and its large
time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in
terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the
solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a
soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics.
Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we
can trace the location of the soliton peak as the dynamics evolves. Finally we show that the soliton peak,
while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies
the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El.
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1. Introduction

Solitons are fundamental, localized solutions of nonlinear evolution equations. They can appear as single
entities; traveling wave solutions that propagate without deformation. They can also appear as ensembles,
evolving as a collective and asymptotically decomposing into isolated solitons and (possibly) sub-ensembles
of solitons. Since the discovery of ensembles of solitons, the interpretation of them as particles has been
a source of novel investigations.

This paper concerns the interaction of a single soliton with a dense “gas” of solitons in the setting of the
(focusing) modified KdV equation. The mKdV equation,

qt + 6q2qx + qxxx = 0 , x ∈ R, t ∈ R+,(1.1)

has a soliton solution of the form

(1.2) q(x, t) = ±2κ sech[2κ(x− 4κ2t− x0)]

where the quantity 4κ2 is the wave velocity, κ ∈ R+, and x0 is a phase shift. The solution with the positive
hump is the standard soliton, while the negative amplitude solution is called an anti-soliton.

For general solutions on the line which decay sufficiently quickly at infinity, it is well known that q solves
the mKdV equation if and only if there is a simultaneous solution Φ = Φ(k;x, t), k ∈ C, to the following
Lax pair equations:

(1.3)

Φx =

(
−ik q(x, t)
−q(x, t) ik

)
Φ,

Φt =

(
−4ik3 + 2ikq2 4k2q + 2ikqx − 2q3 − qxx

−4k2q + 2ikqx + 2q3 + qxx 4ik3 − 2ikq2

)
Φ .

The spectral data associated to (1.3) is comprised of the continuous spectrum and its reflection coeffi-
cient r(k) for k ∈ R and the discrete spectrum. Generic solitons and breathers correspond to simple
eigenvalues, ±iκj , κj > 0 and ±κj , ±κj ,, Imκj > 0, respectively. In this manuscript we consider only
the case of discrete spectrum associated to solitons ±iκj , κj > 0, j = 1, . . . , N , which, together with
the associated norming constants χj ∈ R\{0} (one for each eigenvalue) and reflection coefficient r(k),
completely determines the function q.

A one soliton solution with velocity 4κ2 is reflectionless with a discrete spectrum consisting of a single
eigenvalue iκ. The norming constant χ and eigenvalue iκ determine the phase shift x0 in (1.2) via the
formula

(1.4) x0 =
1

2κ
ln

2κ

|χ|
∈ R.

The sign of χ determines whether the solution is a soliton (χ > 0) or an anti-soliton (χ < 0).

Finally, as q(x, t) evolves according to the mKdV equation, the spectral data have a simple and integrable
evolution. The problem of reconstructing the solution q(x, t) to the mKdV equation at any time t > 0,
from the evolved spectral data, is referred to as the inverse problem.

The characterization of the spectral data and the formulation of the inverse problem are achieved via
a detailed consideration of fundamental sets of solutions to equation (1.3). This has been described in
[Wad72; BC84; IN86] for initial data decaying at infinity and in [GM20] for step-like initial data. The
inverse problem can be formulated as a Riemann–Hilbert (RH) problem.

The solution of the mKdV equation that represents an ensemble of N solitons (without radiative compo-
nent) can be written in terms of a Fredholm determinant

(1.5) qN (x, t) = i
∂

∂x
ln det

(
IdL2(−∞,x) +KN

)
− i ∂

∂x
ln det

(
IdL2(−∞,x)−KN

)
,
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where KN is an integral operator of finite rank, with kernel

FN (s, t) = −i
N∑
j=1

χje
−iθj(s,t) , θj(s, t) = xκj − 4tκ3

j .

Here, each soliton is characterized by the norming constant χj and the point spectrum iκj , for j =
1, . . . , N . The above formula is derived in Section 3 formulæ (3.11)–(3.12) from the work of Wadati
[Wad72].

Convergence to a soliton gas. In the present paper we are interested in purely solitonic solutions
where the number of solitons N goes to infinity, while (x, t) lies in (arbitrarily large) compact sets of
R × R+, and their spectrum is confined in an interval [iη1, iη2]: we call such types of solution a dense
soliton gas.

Once the limit is taken, we consider the soliton gas on the whole real line x ∈ R. Similarly to the analysis
conducted in [Gir+21], at fixed values of t ∈ R+, such a soliton gas converges slowly to an elliptic wave
as x→ +∞, while it converges rapidly to zero as x→ −∞.

The analysis establishing the existence of a solution in the N → ∞ limit is fairly straightforward and
could be carried out in a manner entirely similar to what was done for the case of the KdV equation
in [Gir+21]. Here we take a different approach, and characterize the N -soliton solution in terms of
Fredholm determinants, for which the N →∞ limit can be established. The additional characterization
of the solution in terms of a RH problem follows from techniques from [BC12].

Our main goals in this paper are: (1) to prove that the kinetic theory applies to our soliton gas; and (2)
to provide a very detailed description of the highly oscillatory interaction between a large trial soliton
travelling through a soliton gas from which the averaged velocity of the trial soliton can be determined.
These two results were not considered in [Gir+21].

Although we do not consider any randomness in the initial configuration of solitons, it is certainly possible
to introduce randomness into the N -soliton data, in such a way that the average behaviour of the soliton
gas is captured by our analysis.

The concept of an infinite ensemble of solitons was already analysed by Zaitsev [Zai83] and Boyd [Boy84].
In these papers, it is shown that the sum of an infinite number of equally spaced and identical solitons
coincides with the elliptic solution of the KdV equation. Furthermore, Gesztesy, Karwowski and Zhao
showed the existence of the infinite soliton limit for KdV when the point spectrum is bounded and the
norming constants have sufficient decay [GKZ92].

The notion of a soliton gas was first put forth by Zakharov in 1971, for the case of the KdV equation,

qt + qqx + qxxx = 0.(1.6)

The fundamental calculation is to prepare a two-soliton solution so that for t→ −∞, one has

q(x, t) ≈ 12κ2
1 sech2

(
κ1(x− 4κ2

1t)
)

+ 12κ2
2 sech2

(
κ2(x− 4κ2

2t)
)
,

with κ1 < κ2, and there are two isolated peaks, a taller one at (roughly) x = 4κ2
2t and a smaller one at

x = 4κ2
1t, with the taller one significantly further to the left of the smaller one. Then, for t → +∞, one

finds

q(x, t) ≈ 12κ2
1 sech2

[
κ1

(
x− 4κ2

1t+
1

κ1
ln

∣∣∣∣κ2 + κ1

κ2 − κ1

∣∣∣∣)]+

+12κ2
2 sech2

[
κ2

(
x− 4κ2

2t−
1

κ2
ln

∣∣∣∣κ2 + κ1

κ2 − κ1

∣∣∣∣)] ,
and one sees that the two peaks are again isolated, and travelling to the right, but now the taller peak
has overtaken the smaller one, with both peaks having received a shift in the position of their centers
(manifested by the logarithmic terms appearing above).
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Figure 1. A two soliton solution to the mKdV equation, determined by RH problem
(3.1), with N = 2, κ1 = 1/4, κ2 = 1, χ2 = 2, and χ1 = 25

21/432e5
. The left plot is at

t = 2.358, and the right plot is at t = 7.073. Note that the smallest peak emerges shifted
to the left, though the solitons themselves, if they were each propagating independent of
the other, would move to the right with constant velocities.

Zakharov considered “the propagation of an individual soliton in a ‘gas’ ” [Zak71, p.540]. Presuming the
soliton gas to be dilute, the trial soliton interacts with each member of the gas in sequence, and continually
accumulates shifts in its position, which effectively alter its velocity. He extracted the kinetic equation
for the trial soliton velocity, v = v(κ;x, t), where the soliton’s initial speed (before interaction with the
gas) was 4κ2.

v(κ) = 4κ2 +
1

κ

∫ ∞
0

ln

∣∣∣∣s+ κ

s− κ

∣∣∣∣ (κ2 − s2
)
f(s) ds .(1.7)

The quantity f = f(κ;x, t) is the distribution function for the soliton gas at time t, with respect to the
spectral parameter κ and the spatial coordinate x, i.e. it is the density in the phase space, giving the
number of solitons per unit interval of the spectrum and per unit interval of space. Equation (1.7) was
derived under the assumption that f is small (i.e. the gas is dilute) relative to the characteristic value of
s.

The interaction of a trial soliton with a dense soliton gas. In 2003 [El03], El derived an integral
equation for the velocity v = v(κ;x, t) of the trial soliton with point spectrum κ propagating in a dense
KdV soliton gas:

(1.8) v(κ) = 4κ2 +
1

κ

∫ ∞
0

ln

∣∣∣∣s+ κ

s− κ

∣∣∣∣ (v(κ)− v(s)) f(s) ds ,

where the soliton density f = f(κ;x, t) satisfies the continuity equation

(1.9) ft + (v f)x = 0.

Analytical developments concerning the small dispersion limit of the KdV equation in the ’80s, as it
turns out, are connected to the same velocity equations (1.8)–(1.9). In [LL83a; LL83b; LL83c], Lax and
Levermore considered the behaviour of solutions of the KdV equation in the small dispersion limit,

qt − 6qqx + ε2qxxx = 0, q(x, 0) = q0(x) ,

in which ε→ 0, while the initial data is assumed to be independent of ε. They showed that the (infinite)
solitonic component of the spectral data associated to the initial data drives the dynamics, both before and
after the formation of a shock in the underlying Hopf equation, which suggests that the small dispersion
limit of the KdV equation is an instance of a regular soliton gas. Indeed, the methods presented in this
paper can be used to show that the Lax–Levermore minimizer yields densities that encode all aspects of
the kinetic theory.

The kinetic theory for solitons has been extended to the cases of focusing NLS equation [EK05], defocusing
and resonant NLS equations [CER21], and to the case of breather gasses in the NLS equation [ET20].
Such configurations have been shown to exist and their properties studied in experimental and theoretical
investigations in [LH13; LHE14; Mai+20]. From these considerations, a soliton gas is thought of as a
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continuum accumulation of large numbers of solitons that are in some sense random, and the kinetic
equations provide a description of the velocity of a trial soliton (averaged over realizations of the soliton
gas).

Computational simulations for ensembles of well-separated solitons in the KdV equation were carried out
in [PS06; SPT11; DP14], and in the mKdV equation in [SP16]. In these works, asymptotic methods and
Monte Carlo simulations were used to study statistical properties of solutions beyond the mean behaviour.
In particular in [SP16] for the case of “bipolar soliton fields” for the modified KdV equation, the likelihood
of large-amplitude waves increases during the dynamical evolution.

The above mentioned computational works are stochastic in nature. In our work, once the N → ∞
limit is taken, the entire evolution is completely determined by a spectral function r(k), so there is no
randomness in the soliton gas. Nonetheless, surprisingly, our analysis proves that the same Zakharov–El
kinetic equations are satisfied. More precisely, we explicitly describe the oscillations of the soliton while
interacting with the gas and the phase shift effect on the gas, and we show that the soliton velocity
averaged over one period satisfies such kinetic equations. Incidentally, our gas appears to be in the same
class of solutions considered in [ET20] as condensate gasses.

Looking to the near future, our methods should permit the introduction of randomness into the finite-N
soliton setup. The analysis as N →∞ to prove that the average behavior of the soliton gas is as described
in this paper, would be very interesting. Of course, an analytical description of the statistical fluctuations
is a major challenge, which (to the best of our knowledge) has not been rigorously considered in the
literature.

At this stage it is useful to provide some precision to the notion of what constitutes a soliton gas. A natural
definition (it seems to us) is that a solution to a nonlinear wave equation should be considered a regular
soliton gas if (1) it arises as the N →∞ limit of a solution containing N solitons (or other collections of
soliton-like solutions naturally indexed by N), and (2) the averaged velocity of a trial soliton interacting
with the background solution satisfies the above kinetic equation (1.8). Although it may appear to be a
“fait accompli”, by this definition our solution constructed as N →∞ is indeed a soliton gas.

Interpretation as the interaction of a particle with a complex medium. In this paper we also
prove that the soliton itself has a nontrivial effect on the (background) soliton gas solution, and this
provides an interesting connection to the interaction between a particle and a complex medium. Indeed,
one may interpret the soliton gas (the background into which the trial soliton evolves and interacts) as
a prepared complex medium. As the trial soliton (interpreted as a particle) interacts with this medium,
it’s own velocity becomes highly oscillatory, providing an effective acceleration. Meanwhile, as the trial
soliton passes through the soliton gas (which is also highly oscillatory), it leaves in its wake a phase shift
in the medium’s oscillations, which we explicitly calculate (see Figure 4, and formula (2.15) below).

In this light, it is interesting to compare our work to the Toda shock problem as considered by [VDO91]
(motivated by numerical simulations in [HFM81]), and further studied in [BK94], [BK92], and very
recently in [EMT18]. In the Toda shock problem, the complex medium is a quiescent Toda lattice excited
by a single particle driven with fixed velocity into the lattice. The dynamics reveals the generation of
a two-periodic solution near the driven particle, and an evolving elliptic wave region further into the
medium. By contrast, in our work the trial soliton (particle) is not driven with fixed velocity and hence,
while it affects the medium, the medium as well affects its evolution. For the Toda shock problem, this
would correspond to giving to one particle a large initial velocity and let it interact with the quiescent
medium.

The interactions between solitons and a dispersive shock wave or rarefaction wave can be treated via
inverse scattering, or also on a more physical approach via soliton-mean field interactions. In particular,
the interaction between solitons, breathers and a dispersive shock wave was considered in the present
context of the mKdV equation in [GM20] and on a physical level in [SEH21]. Similar settings have been
considered at the physical level for the defocusing NLS in [SHE18] and for the focusing NLS equation in
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[BL19] and on a mathematical level in [BLM21]. A detailed account of the available literature can be
found in [Abl+22].

2. Statement of the results

In this paper we consider the mKdV equation (1.1) for a collection of solutions analogous to those
constructed for the KdV equation in [DZZ16] and analyzed in [Gir+21]. The “gas” of solitons is produced
from a continuum of poles accumulating on the intervals (−iη2,−iη1) ∪ (iη1, iη2), with 0 < η1 < η2, and
with positive norming constants. We study the behaviour of this soliton gas while it interacts with a
single soliton with spectral data ±iκ0 with κ0 > η2, so that the trial soliton’s velocity is greater than the
velocity of any member of the gas of solitons. Our main results are the following.

• The derivation of an expression for the solution of the soliton gas plus the trial soliton in terms
of a Fredholm determinant (Theorem 2.1 and Corollary 2.2).

• The asymptotic analysis of the behaviour of the solution q(x, t) for large times (Theorem 2.4).

• The derivation of the dynamical properties of the trial soliton (Theorem 2.7 or Theorem 6.2).
In particular we determine the peak position xpeak(t) of the trial soliton and we show that its
velocity ẋpeak has an oscillatory behaviour while it interacts with the soliton gas. The leading
order average velocity v̄sol(κ0) of the soliton peak satisfies the kinetic equation

v̄sol(κ0) = 4κ2
0 +

1

κ0

∫ α

η1

ln

∣∣∣∣κ0 − s
κ0 + s

∣∣∣∣(vgroup(s)− v̄sol(κ0)) ∂xρ(is) ds ,

where the density ρ is defined below in (2.19) and the group velocity vgroup := − ρt
ρx

is defined in

(2.22). Here the parameter α with η1 < α ≤ η2 depends on x and t and it is defined in equation
(2.13) and (2.14).

We note that this last equation is the kinetic velocity equation for the mKdV equation analogous to
the one posited by El and co-authors in [El03; EK05; ET20], thus showing that the solution (2.3)–(2.5)
represents indeed a soliton gas. In this case, the continuity equation (1.9) is automatically satisfied for
v = vgroup = − ρt

ρx
and f = ρx. However, we emphasize that the true peak velocity ẋpeak does not satisfy

Zakharov–El’s kinetic equation, due to the presence of the oscillatory terms.

In order to derive the soliton gas solution, rather than repeating the RH construction employed in [Gir+21,
Section 2], in which an N -soliton solution is characterized by the meromorphic RH problem and then
the singular limit N → ∞ is taken through Riemann–Hilbert gymnastics, we start from the equivalent
representation in terms of Fredholm determinants (1.5).

We want to consider the limit N →∞ under the additional assumptions:

• The poles {iκ(N)
j }Nj=1 are sampled from a smooth positive density function %(k) so that

∫ κj
η1
%(η) dη =

j/N , for j = 1, . . . , N .

• The coefficients {χj}Nj=1 are real and positive, such that N%(κj)χj are discretizations of a given
function:

N%(κj)χj =
r(iκj)

2π
j = 1, . . . , N,(2.1)

where r(k) is a real-valued, continuous, non-vanishing function of k for k ∈ (iη1, iη2).

Theorem 2.1. Let Σ1 = (iη1, iη2), η2 > η1, be the interval where the solitons accumulate and let r(k)
be a real-valued positive and continuous function on Σ1 whose discretization gives the norming constants
χj of the finite N -soliton solution according to (2.1). Let K : L2(Σ1) → L2(Σ1) be the integral operator
K[f ](k) =

∫
Σ1
K(k, y)f(y)dy with kernel

K(k, y) =

√
r(k)e−i θ(k;x,t)

√
r(z)e−i θ(z;x,t)

2πi(k + z)
, k, z ∈ Σ1(2.2)
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where θ(k;x, t) = 4tk3 + xk. Then the function

(2.3) q(x, t) = i
∂

∂x
ln det

(
IdL2(Σ1) +K

)
− i ∂

∂x
ln det

(
IdL2(Σ1)−K

)
,

is the soliton gas solution of the mKdV equation (1.1).

The expression (2.3) for the mKdV soliton gas solution is strikingly similar to the Tracy–Widom Fredholm
determinant formula [TW96] for the solution of the integrated version of the defocusing mKdV: qt−qxxx+
6q2qx = 0. This expression is also similar to the one considered in [BB20] and in [KLD21] for solving
the weak noise theory of the Kardar–Parisi–Zhang equation and more generally in the study of Fredholm
determinants of a class of Hankel composition operators [Bot22]. For example

(2.4) (q(x, t))2 = − ∂

∂x
ln det

(
IdL2(Σ1)−K2

)
,

for t = 0 corresponds to the square of a Hankel operator.

In addition to the gas of solitons, the potentials we will consider in this paper also have an additional
soliton that will interact with the gas. The Fredholm determinant derivation is analogous: the spectral
parameters iκj ’s will accumulate within the interval Σ1 except for one point (iκ0, with corresponding
norming constant χ ∈ R\{0}), which will lie on the imaginary axis, outside Σ1.

Corollary 2.2. The function

(2.5) q(x, t) = i
∂

∂x
ln det

(
IdL2(C) +K

)
− i ∂

∂x
ln det

(
IdL2(C)−K

)
is the solution of the mKdV equation representing a soliton gas plus a regular soliton, where C = Σ1 ∪ C0,
C0 being a small circle around the pole iκ0, not intersecting the real line, nor Σ1; the operator K has
kernel

K(k, z) =

√
r̃(k)e−i θ(k;x,t)

√
r̃(z)e−i θ(z;x,t)

2πi(k + z)
, k, z ∈ C ,

with r̃(k) is defined as r̃(k) = r(k) for k ∈ Σ1 and r̃(k) = χ
k−iκ0 for k ∈ C0 and χ ∈ R\{0}.

From the Fredholm determinant formula, we can derive the following meromorphic RH problem, where
in addition to jumps across the intervals Σ1 and Σ2 := −Σ1 = (−iη2,−iη1) oriented upwards (the gas),
we are accounting for the presence of an extra pair of poles, at ±iκ0 (the soliton).

Riemann–Hilbert problem 1 (Soliton + gas). Let r(k) be a positive real valued function defined on
Σ1. Find a 2× 2 matrix valued function X( · ;x, t) with the following properties:

1. X(k;x, t) is analytic for k ∈ C \ (Σ1 ∪ Σ2) ∪ {±iκ0}.

2. X(k;x, t) = I +O
(
k−1

)
as k →∞, where I is the 2× 2 matrix identity.

3. For k ∈ Σ1 ∪ Σ2, the boundary values X±(k;x, t) = X(k ∓ 0;x, t) satisfy the jump relation

X+(k) = X−(k)


[

1 0

ir(k)e−2iθ(k;x,t) 1

]
, k ∈ Σ1,[

1 i r(k̄)e2iθ(k;x,t)

0 1

]
, k ∈ Σ2,

(2.6)

where

θ(k;x, t) = 4tk3 + xk.(2.7)
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Figure 2. Four plots showing a soliton interacting with a soliton gas at different times.
The blue curve is the leading order asymptotic behavior of the potential q(x, t) determined
by RH problem 1, and the dashed red line is the position of the global maximum of the same
soliton if there were no soliton gas to interact with. Here r ≡ 1, η1 = 0.25, η2 = 1, κ0 = 2,
and χ = 4e−800.

4. X(k;x, t) has simple poles at k = ±iκ0, with κ0 > η2, satisfying

(2.8)

Res
k=iκ0

X(k;x, t) = lim
k→iκ0

X(k;x, t)

[
0 0

−iχe−2iθ(k;x,t) 0

]
,

Res
k=−iκ0

X(k;x, t) = lim
k→−iκ0

X(k;x, t)

[
0 −iχe2iθ(k;x,t)

0 0

]
.

The solution (2.5) to the mKdV equation can be extracted via

(2.9) q(x, t) = 2i lim
k→∞

kX(k;x, t)12.

Proposition 2.3. Given a real function r ∈ L2(Σ1), the Riemann–Hilbert problem 1 is uniquely solvable
for all (x, t) ∈ R2. Moreover, the function q(x, t) defined in (2.9) is a classical solution to the mKdV
equation (1.1), which belongs to the class C∞(Rx × Rt). At time t = 0 the initial data q(x, 0) has the
following properties:

• q(x, 0) = O(e−c|x|) as x→ −∞ with c > 0.

• q(x, 0) = (η2 + η1) dn
(
(η2 + η1)(x− 2(η2

1 + η2
2)t− x0),m1

)
+O(x−1), as x→∞, where dn(z,m1)

is the Jacobi elliptic function with modulus m1 = 4η2η1
(η2+η1)2

and the phase x0 depends explicitly on

r(k).

The proof of the first part of the above theorem is given in the Appendix A. The second part of the
theorem about the asymptotic properties of the initial data as x→ ±∞, follows the steps in [Gir+21] and
for this reason we omit it. We remark that for η1 → 0 the initial data becomes asymptotically step-like
since q(x, 0)→ η2 +O(x−1) as x→∞.

Next we analyse the asymptotic behaviour of the solution q(x, t) that depends on which direction in the
(x, t) plane one looks at: there is a region with exponential decay (when x < 4η2

1t), a rarefaction wave
region and a periodic travelling wave region (when x > 4η2

1t) up to terms of order O(1/t). To distinguish
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Figure 3. Space-time plots of the position and velocity of the soliton peak. The first
plot shows the numerically computed location of the peak of the leading order asymptotic
description. The middle plot shows the difference xmax(t) − xfree(t), where xfree is the
position of the same soliton propagating in the vacuum (i.e. in the absence of the gas).
The third plot shows the velocity of the peak as a function of time. The effective velocity of
the soliton is the asymptotic average of this highly oscillatory velocity profile. These plots
were created in Mathematica using the leading order asymptotic behavior of the potential
determined by the RH problem 1, with r ≡ 1, η1 = 0.25, η2 = 1, κ0 = 2, and χ = 4e−800.

the latter two regions we need to introduce the speed v2 of the leading front of the rarefaction region and
one of the speeds of the Whitham modulation equations that describe the rarefraction wave connecting
the zero solution to the elliptic solution

(2.10) v2 = η2
2W

(
η21
η22

)
, W (m) =

4(1−m)K(m)

E(m)
+ 2(1 +m),

where K(m) =
∫ π

2
0

dθ√
1−m sin2 θ

and E(m) =
∫ π

2
0

√
1−m sin2 θ dθ are the complete integral of the first and

second kind respectively.

Theorem 2.4. Suppose that r : Σ1 → R is a continuous, positive function on Σ1 with analytic extension
to a neighbourhood of Σ1 (cf. Assumption 4.8). Then the large-time asymptotics of the soliton gas mKdV
solution with spectrum in the interval [iη1, iη2] and with a larger soliton with point spectrum iκ0 > iη2

(RH problem 1) is given by

(2.11) q(x, t) = qbg(x, t) + qsol(x, t) +O(t−1) ,

for x
t > 4η2

1. The background gas qbg is equal, at leading order, to the periodic travelling wave solution of
the mKdV equation, namely

(2.12) qbg(x, t) = (α+ η1) dn
(

(α+ η1)(x− 2(η2
1 + α2)t− x(±)

),m1

)
,

where dn(z,m1) is the Jacobi elliptic function with modulus m1 = 4αη1
(α+η1)2

, the phase shifts x
(±)

are

explicitly determined according to the position of the soliton (see (5.30)), and α = α(x/t) is such that

• for x
t ∈ (4η2

1, v2), α(x/t) ∈ (η1, η2) and satisfies the Whitham modulation equation

(2.13)
x

t
= α2W (η2

1/α
2),

with v2 and W (m) as in (2.10). The above equation in uniquely solvable for α = α(x/t);

• for x
t ≥ v2,

(2.14) α(x/t) ≡ η2.

The expression of the soliton qsol on the elliptic background is given in (5.24). When κ0 � η2, qsol agrees
at leading order with the soliton solution (1.2) on the zero background.
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A separate fact that emerges from our analysis is that the phase shifts, x
(±)

, in the background wave (2.12)

are different if the soliton is behind (x
(+)

) or in front of the wave (x
(−)

) when looking at a fixed direction
x/t. The phase shift that the periodic background qbg(x, t) experiences from the soliton interaction is
(see Proposition 5.1 and Figure 4)

(2.15)
x

(+) − x(−)
=

2K(m)

α

(
1 +

∫ iκ0

iα

α

iK(m)

dk

R(k)

)
,

m =
η2

1

α2
, R(k) =

√
(k2 + α2)(k2 + η2

1) .

Remark 2.5. Theorem 2.4 is proven under the assumption that r(k) is positive, bounded, and nonvan-
ishing on Σ1, and it admits an analytic extension to a lens-shaped neighborhood of Σ1. If instead, one
assumes that r(k) = |z − iηk|±1/2r̃(k), k = 1, 2 with r̃ positive, bounded and non-vanishing such that r
has analytic extension to an open neighborhood of Σ1 except for square root branch cuts of the extension
(cf. Assumption 4.10) then the error rate for x/t > v2 is much improved

q(x, t) = qbg(x, t) + qsol(x, t) +O(e−ct)

for some fixed c > 0.

Remark 2.6. The Whitham modulation equations are the modulation equations for the wave parameters
β3 > β2 > β1 of the elliptic solution of the mKdV equation

qell(x, t) = −β1 − β2 − β3 +

+
2(β2 + β3)(β1 + β3)

β2 + β3 − (β2 − β1)cn2(
√
β2

3 − β2
1(x− 2(β2

1 + β2
2 + β2

3)t) + x0 | m)
,

where cn(u | m) is the Jacobi elliptic cosine function. The expression of qell(x, t) can be reduced to qbg(x, t)
in (2.12) performing the Landen transformation as in (5.27) and (5.29).
The Whitham modulation equations take the form

∂

∂t
βj +Wj(β1, β2, β3)

∂

∂x
βj = 0, j = 1, 2, 3,

where the speeds Wj = Wj(β1, β2, β3) are

Wj(β1, β2, β3) = 2(β2
1 + β2

2 + β2
3) + 4

∏
k 6=j(β

2
j − β2

k)

β2
j + γ

,(2.16)

γ = −β2
3 + (β2

3 − β2
1)
E(m)

K(m)
, m =

β2
2 − β2

1

β2
3 − β2

1

.(2.17)

In the case considered in Theorem 2.4, one has β1 = 0, β2 = η1 and β3 = α and one is looking for
a self-similar solution in the form α = α(xt ), which gives the equation x

t = W3(0, η1, α) that coincides
with (2.13). This modulation problem is different from the Gurevich and Pitaevsky problem [GP74] or
the rarefaction wave problem [Lea13] that connect two constant backgrounds of different amplitude. It is
a generalization of the Riemann problem with a zero background for x < 0 and an elliptic background for
x > 0. When η1 = 0, then the initial data is step-like, namely q(x, 0) = η2 +O(x−1) as x→ +∞ and one

recovers the standard rarefaction wave q(x, t) '
√
x/t.

The first stage of our analysis is quite similar to the asymptotic analysis in [Gir+21], relying on the
construction of a g-function to control the exponentially large off-diagonal factors appearing in the jump
relationships for k ∈ Σ1∪Σ2. The function g is determined uniquely by a suitable collection of conditions,
and there are a number of different representations [Gra01; GT02] of such a function that are useful for
different purposes. In connection with the kinetic theory, a representation of the g function in terms of a
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logarithmic transform is important. One represents g in terms of a measure supported on an evolving set
Σ1,α ∪ Σ2,α := (iη1, iα(x/t)) ∪ (−iα(x/t),−iη1) as follows:

g(k;x, t) =

∫
Σ1,α∪Σ2,α

ln (k − s)ρ+(s;x, t) ds .(2.18)

The measure ρ(s) ds is given explicitly by

ρ(s;x, t) = − 1

πi

{
12t

s4 + 1
2(η2

1 + α2)s2 + c2

R(s)
+ x

s2 + c0

R(s)

}
,(2.19)

where the quantity R(s) =
√

(s2 + α2)(s2 + η2
1) is analytic in C \ {Σ1,α ∪Σ2,α} and the constants c0 and

c2 depend on x and t, and are uniquely determined by∫ iη1

−iη1
ρ(s;x, t)ds = 0.

In the definition of g(k;x, t), the quantity ρ+(s;x, t) refers to the left boundary value R+(s) of the function
R(s) on the oriented contour Σ1,α ∪ Σ2,α.

The quantity qsol(x, t) in (2.11) above represents the contribution to the solution q(x, t) from the poles
in the Riemann-Hilbert problem 1 (the soliton component). To describe the dynamical evolution of the
trial soliton and its interaction with the gas, we take the poles of the soliton to be located at ±iκ0

with κ0 > η2, so that the trial soliton’s velocity is greater than the velocity of any member of the gas
of solitons. Additionally, we initiate the trial soliton’s location x0 to be in the quiescent region of the
soliton gas solution, separated from the modulated cnoidal wave region by a large distance, so that x0 is
essentially the asymptotic parameter. This scenario can be visualized in Figures 2 and 4.

Within this setting, at large times, we are able to compute a collection of quantities to better understand
the dynamics. From the g-function and the corresponding wave phase ϕ(k;x, t) := g(k;x, t) + kx+ 4k3t
(see formula (4.6)), we introduce

κ(k) :=
∂ϕ(k)

∂x
(wave number) , ω(k) := −∂ϕ(k)

∂t
(frequency) ,

following an analogy with the classical theory of the wave equation solved with the help of the Fourier
transform. We then define the phase velocity of the wave

vphase(k) :=
ω(k)

κ(k)
= −ϕt(k)

ϕx(k)
,(2.20)

which will allow us to calculate the velocity of the background elliptic wave qbg (i.e. the velocity of the
envelope)

vbg = vphase(iη1) = 2(η2
1 + α2) ,(2.21)

and we define the group velocity of the wave packet as

vgroup(k) = − ρt(k)

ρx(k)
= −12

k4 + 1
2(η2

1 + α2)k2 + c2

k2 + c0
.(2.22)

We consider the region of space-time such that

(2.23)
4η2

1 + ε <
x

t
< v2 − ε,

4η2
1 + ε <

x0

t
+ 4κ2

0,

for some ε > 0, where we recall that v2 is the velocity of the leading front of the rarefaction region defined
in (2.10) and x0 is the phase of the trial soliton. As discussed in detail in Section 6, the first condition
defines the region of space-time in which the gas behaves as a modulated elliptic wave, while the second
ensures that enough time has passed so that the soliton initially at position x0 � −1 has traversed the
quiescent region and has entered the modulated wave region of the soliton gas. Then we identify two times
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t1 and t2 characterized by the soliton peak entering and leaving the modulated wave region respectively.
The first time, t1, is explicit:

(2.24) t1 :=
−x0

4(κ2
0 − η2

1)
,

while t2 is quite implicit (see Section 6.2).

In Theorem 6.2 we establish a number of dynamical properties regarding the location xpeak(t) of the peak
of the soliton, which we summarize here.

In Theorem 2.7 we establish a number of dynamical properties regarding the location xpeak(t) of the peak
of the soliton.

Theorem 2.7 (Dynamical properties of the soliton peak). For χ > 0 and x0 � −1, there exists
a κ̃ > κcrit (see (6.13)) , such that for all κ0 > κ̃ there exists a unique global maximum xpeak(t) of the
mKdV solution q(x, t) which identifies the position of the soliton peak for all t > 0.

Moreover, xpeak(t) is strictly increasing, and satisfies (for some small positive ε):

(i) for t ∈ (0, t1(1− ε)) with t1 as in (2.24), xpeak(t) = x0 + 4κ2
0t;

(ii) for t > t1(1 + ε),

(2.25) ẋpeak(t) = − 2ϕt(iκ0)− ∂t ln Ψ(x, t;κ0, η1)

2ϕx(iκ0)− ∂x ln Ψ(x, t;κ0, η1)

∣∣∣
x=xpeak(t)

+O
(
t−1
)
,

where Ψ is defined by (6.23), and is an oscillatory function.

For (x, t) such that x > 4η2
1t and t > t1(1 + ε), the average velocity of the trial soliton’s position xpeak(t)

as it traverses one period T of the background oscillatory wave is

xpeak(t+ T )− xpeak(t)

T
= v̄sol(κ0) +O

(
t−1
)
,

where

v̄sol(κ0) = −ϕt(iκ0)

ϕx(iκ0)
= vphase(iκ0) = 4κ2

0

K
(
η21
α2

)
Π
(
η21
κ20
,
η21
α2

) + 2(η2
1 + α2)(2.26)

where Π(n,m) =
∫ π

2
0

dθ

(1−n sin2 θ)
√

1−m sin2 θ
is the complete elliptic integrals of third kind.

Moreover, this average soliton velocity v̄sol(κ0) satisfies the integral equation

v̄sol(κ0) = 4κ2
0 +

1

κ0

∫ α

η1

ln

∣∣∣∣κ0 − s
κ0 + s

∣∣∣∣(vgroup(s)− v̄sol(κ0)) ∂xρ(is) ds .

where vgroup is defined in (2.22) and ρ is the density in (2.19).

In Figure 5 the velocity v̄sol(κ0) and the actual peak velocity ẋpeak of the soliton are plotted. One
consequence of our analysis is to clarify that the solution of the Zakharov–El kinetic equations represents
the leading order average velocity of the soliton peak.

Outline of the paper. In Section 3 we present the soliton gas solution in terms of the Fredholm de-
terminant, also in the presence of a trial soliton, and derive its corresponding RH problem and we prove
Theorem 2.1 The large t and x asymptotic analysis of the RH problem 1 is carried out in the subsequent
sections: in Section 4 we introduce the g-function and perform the necessary preparations in order to
perform a steepest descent analysis, which is then presented in Section 5 with the introduction of the
model problem and the proof of Theorem 2.4. The study of the interaction dynamics is conducted in
Section 6 where we prove Theorem 2.7. The solvability of the RH problem 1 is proved in Appendix A, thus
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Figure 4. Color map plotting the leading order behavior of a trial soliton traveling
through a soliton gas. Color indicates the amplitude of the solution q(x, t) at a given
point (x, t). The soliton is accelerated by interaction; the dashed green line shows the
position the trial soliton in a vacuum. The zoomed in region is included to show the affect
of the soliton on the gas. Interaction with the trial soliton induces a phase shift in the
soliton gas. This shift is given by (2.15). For this plot r ≡ 1, η1 = 0.25, η2 = 1, κ0 = 2,
and χ = 4e−800.
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Figure 5. Comparison between v̄sol(t) (black curve) and ẋpeak(t) (blue) as the soliton
traverses the soliton gas. The parameters are with r ≡ 1, η1 = 0.25, η2 = 1, κ0 = 2, and
χ = 4e−800.

guaranteeing that the Fredholm determinant representation of the solution is well defined. In Appendix
B we provide the analogous formula for the KdV Fredholm determinant solution of the soliton gas.

3. Soliton gas limit using Fredholm determinants and proof of Theorem 2.1

In this section we will derive the (free) soliton gas solution as a continuum limit of a finite number
of solitons, in terms of Fredholm determinant, thus proving Theorem 2.1. We will also briefly explain
how to extend the procedure to a more general setting where a gas and a finite number of solitons
are simultaneously considered so that we prove Corollary 2.2. Then we explain the derivation of the
Riemann–Hilbert problem 1 from the Fredholm determinant solution.

The mKdV N-soliton solution. We recall here the RH problem for an mKdV N -soliton solution: find
a 2× 2 matrix M(k;x, t) such that
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1. M is meromorphic in C, with simple poles at {iκj}Nj=1 in iR+, and at the corresponding conjugate

points {−iκj}Nj=1 in iR−;

2. M satisfies the residue conditions

(3.1)

Res
k=iκj

M(k) = lim
k→iκj

M(k)

[
0 0

−iχje−2iθ(k;x,t) 0

]
Res

k=−iκj
M(k) = lim

k→−iκj
M(k)

[
0 −iχje2iθ(k;x,t)

0 0

]
,

where θ(k, x, t) = 4tk3 + xk and χj are nonzero real constants;

3. M(k) = I +O
(

1

k

)
as k →∞.

The N -soliton potential qN (x, t) is determined from M via

(3.2) qN (x, t) = 2i lim
k→∞

kM(k;x, t)12,

or alternatively

(3.3) (qN (x, t))2 = 2i ∂x

(
lim
k→∞

k(M(k;x, t)11 − 1)

)
.

We are looking for a solution in the form

M(k;x, t) =

(
1 +

∑N
`=1

iα`(x,t)
k−iκ`

∑N
`=1

iβ`(x,t)
k+iκ`∑N

`=1
iβ`(x,t)
k−iκ` 1−

∑N
`=1

iα`(x,t)
k+iκ`

)
,(3.4)

that respects the symmetry

M(k) = M(−k) =

(
0 −1
1 0

)
M(−k)

(
0 1
−1 0

)
.

Plugging the above ansatz into the residue conditions gives the system of equations

(3.5)

(
IN A
−A IN

)[
α̃

β̃

]
=

[
0
−χ̃

]
where IN is the N ×N dimensional matrix and

(3.6) Aj` = sgn(χj)

√
|χj |
√
|χ`|

κj + κ`
e−i(θj(x,t)+θ`(x,t)), α̃j =

αj√
|χj |

ei θj(x,t),

and

β̃j =
βj√
|χj |

ei θj(x,t), χ̃j = sgn(χj)
√
|χj |e−i θj(x,t) ,

with θj(x, t) := θ(iκj ;x, t), ∀ j = 1, . . . , N .

Note 3.1. Notice that sgn(χj) < 0 for the anti-soliton while sgn(χj) > 0 for the soliton. The case
where there are only anti-solitons can be recovered from the case with only solitons by sending the matrix
A→ −A and χ→ −χ.

From the solvability of the RH problem for M (see [Wad72]) we can conclude that the matrix IN +A2

is invertible, and we can recover the solution of mKdV by solving the above linear system of equations
(3.5): [

α̃

β̃

]
=

(
IN −A(IN +A2)−1A −A(IN +A2)−1

(IN +A2)−1A (IN +A2)−1

)[
0
−χ̃

]
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that implies

αj =

N∑
`=1

(A(IN +A2)−1)j` sgn(χ`)
√
|χ`|
√
|χj |e−i(θ`(x,t)+θj(x,t)),

βj = −
N∑
`=1

(IN +A2)−1
j` sgn(χ`)

√
|χ`|
√
|χj |e−i(θ`(x,t)+θj(x,t)).

From the expression of M(k;x, t) in formula (3.3) we have

(3.7) qN (x, t) = −2
N∑
j=1

βj(x, t), (qN (x, t))2 = −2 ∂x

 N∑
j=1

αj(x, t)

 .

When there are only solitons, namely χj > 0 for j = 1, . . . , N we can write the solution (3.7) in terms of
logarithmic derivatives of matrix determinants.

Proposition 3.2. The N -soliton solution of the mKdV equation takes the form

(3.8) qN (x, t) = i
∂

∂x
ln det (IN − iA)− i ∂

∂x
ln det (IN + iA)

or alternatively

(3.9) (qN (x, t))2 = − ∂2

∂x2
ln det

(
IN +A2

)
,

where the matrix A is defined in (3.6) with χj > 0 for j = 1, . . . , N .

Proof. Using the relations

∂

∂x
A`j =

√
χ`
√
χje
−i(θ`(x,t)+θj(x,t)) ,

∂

∂x
A2 = A

(
∂

∂x
A

)
+

(
∂

∂x
A

)
A ,

we can write
∑N

j=1 αj in the form

N∑
j=1

αj = Tr

(
A(IN +A2)−1 ∂

∂x
A

)
=

1

2

∂

∂x
ln det

(
IN +A2

)
,

where we used the identity
∂

∂x
ln detM = Tr

(
M−1 ∂

∂x
M

)
, valid for any invertible matrix M and the

fact that A is symmetric. Therefore, from (3.7) we obtain

(3.10) (qN (x, t))2 = − ∂2

∂x2
ln det

(
IN +A2

)
.

Regarding the expression for qN (x, t), we have

qN (x, t) = 2 Tr

(
(IN +A2)−1 ∂

∂x
A

)
and noticing that

(IN +A2)−1 = (IN + iA)−1(IN − iA)−1 = (IN + iA)−1 + i(IN + iA)−1(IN − iA)−1A ,

where we used the identity (IN − iA)−1 = IN + i(IN − iA)−1A, we can obtain

Tr

(
(IN +A2)−1 ∂

∂x
A

)
= Tr

(
(IN + iA)−1 ∂

∂x
A

)
+

+iTr

(
(IN + iA)−1(IN − iA)−1A

∂

∂x
A

)
.
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In conclusion, we can write qN (x, t) in the following way

qN (x, t) = −2i
∂

∂x
ln det (IN + iA) + i

∂

∂x
ln det

(
IN +A2

)
= i

∂

∂x
ln det (IN − iA)− i ∂

∂x
ln det (IN + iA) .

�

We can now recast the matrix −iA : CN → CN as the composition of two operators AN : L2(−∞, x)→
CN and BN : CN → L2(−∞, x), where

(
AN [f ]

)
j

=

∫ x

−∞

√
χje
−i θj(s,t)f(s) ds, BN [v](s, t) = −i

N∑
j=1

√
χjvje

−i θj(s,t)

so that

(AN ◦ BN )j` =

√
χj
√
χ`e
−i(θj(x,t)+θ`(x,t))

i(κj + κ`)
.

Using the identity det (IN ±AN ◦ BN ) = det
(
IdL2(−∞,x)±BN ◦ AN

)
, we obtain that the pure N -soliton

solution of the mKdV equation is equal to

(3.11) qN (x, t) = i
∂

∂x
ln det

(
IdL2(−∞,x) +KN

)
− i ∂

∂x
ln det

(
IdL2(−∞,x)−KN

)
where KN := BN ◦ AN is an integral operator

(3.12) KN [f ](y, t) =

∫ x

−∞
FN (y + s, 2t)f(s) ds, with kernel FN (s, t) = −i

N∑
j=1

χje
−i θj(s,t).

The infinite soliton limit with positive χj’s. We want to consider the limit N → ∞ under the
additional assumptions:

• The poles {iκ(N)
j }Nj=1 are sampled from a smooth positive density function %(k) so that

∫ κj
η1
%(η) dη =

j/N , for j = 1, . . . , N .

• The coefficients {χj}Nj=1 are real and positive, such that N%(κj)χj are discretizations of a given
function:

N%(κj)χj =
r(iκj)

2π
j = 1, . . . , N,(3.13)

where r(k) is a real-valued, continuous, non-vanishing function of k for k ∈ Σ1 = (iη1, iη2).

Proposition 3.3. The following limit holds uniformly for (s, t) in compact subsets of R× R+:

lim
N→+∞

N∑
j=1

χje
−i θj(s,2t) = lim

N→+∞

1

N

N∑
j=1

r(iκj)e
−i θ(iκj ;s,2t)κj − κj−1

2π

=

∫
Σ1

r(ζ)e−i θ(ζ;s,2t)
dζ

2πi
.

Proof. Using the relation (3.13), the claim follows easily from the convergence of the Riemann sums to
the Riemann integral. �

Remark 3.4. The anti-soliton gas case can be analyzed following the same arguments as above (up to a
sign change, see Note 3.1). The mixed (or bipolar) case is more involved and we do not consider it here.
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Therefore, in the limit we obtain an integral operator K : L2(−∞, x)→ L2(−∞, x)

K[g](y, t) =

∫ x

−∞
F (y + s, 2t)g(s) ds, with kernel F (s, t) := −i

∫
Σ1

r(ζ)e−i θ(ζ;s,t)
dζ

2πi
.(3.14)

Proposition 3.5. The finite-N Fredholm determinant (and its derivatives w.r.t. x) converge in the limit:

det
(
IdL2(−∞,x)±KN

)
→ det

(
IdL2(−∞,x)±K

)
, as N →∞.

Proof. Note that both the finite kernel KN and the infinite kernel K are trace class, as they are products
of two Hilbert-Schmidt operators, and that the finite kernel FN (and its x-derivative) converges uniformly
to the limiting kernel F . Then standard results on the convergence of operators in trace-class norm
and continuity of the Fredholm determinant with respect to the trace-class norm topology (see [Sim05,
Chapter 2]) imply the convergence of the respective Fredholm determinants as N →∞. �

As in the N -soliton case, we notice that K can be written as composition of two operators K = B ◦ A,
where A : L2(−∞, x)→ L2(Σ1) and B : L2(Σ1)→ L2(−∞, x),

A[g](ζ) =
√
r(ζ)

∫ x

−∞
e−i θ(ζ;s,t)g(s) ds, B[f ](x, t) = −

∫
Σ1

√
r(k)e−i θ(k;x,t)f(k)

dk

2π
.

Via the same identity det
(
IdL2(−∞,x)±B ◦ A

)
= det

(
IdL2(Σ1)±A ◦ B

)
, the infinite-soliton solution can be

written as in Theorem 2.1 (with abuse of notation we denoted by K also the resulting operatorA◦B).

Remark 3.6. It is evident that the operator defined in (3.6) is the discretized version of (2.2). However,
convergence as N → ∞ is not so straightforward, as the two operators are acting on different Hilbert
spaces; we bypassed this difficulty by shifting the setting into integral operators acting on the same Hilbert
space L2(−∞, x).

It remains to show that such expression still satisfies the mKdV equation. For the purpose we use the
Riemann-Hilbert formulation of the problem. We recognize in (2.2)–(2.3) the same setting as the one
thoroughly analysed in [BC12] and we will closely follow their arguments. It is possible to associate to
the operators K and K2 the following two RH problems, with the same jump matrix J , but different
asymptotic behaviour at infinity.

Riemann–Hilbert problem 2 (Integral operator K2). Find a meromorphic matrix-valued function
Ξ : C \ {Σ1 ∪ Σ2} → R2×2 such that

Ξ+(k) = Ξ−(z)J(k) k ∈ Σ1 ∪ Σ2

Ξ(k) = I +
Ξ1

k
+O

(
1

k2

)
k →∞

with Σ1 and Σ2 both oriented upwards.

The jump matrix reads

J(k) =

[
1 −r(k)e−2i θ(k;x,t)

1Σ1(k)

r(−k)e2i θ(k;x,t)
1Σ2(k) 1

]
(3.15)

and satisfies the symmetry J(−k) = σ1J(k)σ1, with σ1 =

[
0 1
1 0

]
. Here 1A is the characteristic function

of the set A. We notice that r(−k) = r(k̄).

Riemann–Hilbert problem 3 (Integral operator K). Find a meromorphic matrix-valued function
Γ : C \ {Σ1 ∪ Σ2} → R2×2 such that

Γ+(k) = Γ−(k)J(k) k ∈ Σ1 ∪ Σ2
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Γ(k) =

[
1 1
−ik ik

] [
I +

Γ1

k
+O

(
1

k2

)]
k →∞

Γ1 =

[
a1 0
0 −a1

]
Γ(−k) = Γ(k)

[
0 1
1 0

]

Furthermore, the following relationship holds between Γ and Ξ:

Γ(k) =

[
1 1

−ik + 2iΞ1,12 ik + 2iΞ1,12

]
Ξ(k) ,

which implies

(3.16) a1 = Ξ1,11 −Ξ1,12.

The log-derivative of the respective Fredholm determinants for K and K2 can be written as (Theorem 4.1
and 4.2 in [BC12])

∂

∂x
ln det

(
IdL2(Σ1)−K2

)
=

∫
Σ1∪Σ2

Tr
(
Ξ−1
− Ξ′−∂xJJ

−1
) dk

2πi

∂

∂x
ln det

(
IdL2(Σ1) +K

)
=

1

2

∫
Σ1∪Σ2

Tr
(
Γ−1
− Γ′−∂xJJ

−1
) dk

2πi
,

thus yielding

q(x, t) = i Res
k=∞

Tr
(
Ξ−1(k)Ξ′(k)∂xT (k)

)
dk − i Res

k=∞
Tr
(
Γ−1(k)Γ′(k)∂xT (k)

)
dk

where T (k) = i θ(k;x, t)σ3. Straightforward calculations show that

Res
k=∞

Tr
(
Γ−1(k)Γ′(k)∂xT (k)

)
dk = 2ia1

and similarly

Res
k=∞

Tr
(
Ξ−1(k)Ξ′(k)∂xT (k)

)
dk = 2iΞ1,11

so that according to (3.16) we obtain

(3.17) q(x, t) = i (2iΞ1,11 − 2ia1) = −2Ξ1,12

By setting

X =

[
0 ei

π
4

e−i
π
4 0

]
Ξ

[
0 ei

π
4

e−i
π
4 0

]
,(3.18)

we can recognize the RH problem 1 (without the extra poles at ±iκ0) with r(−k) = r(k̄). The solution to
the RH problem 1 exists for any x ∈ R and positive time t > 0, thanks to Proposition 2.3. We conclude
that the soliton-gas solution of the mKdV equation can be calculated via

q(x, t) = 2i lim
k→∞

kX12 = i
∂

∂x
ln det

(
IdL2(Σ1) +K

)
− i ∂

∂x
ln det

(
IdL2(Σ1)−K

)
,

thus we have concluded the proof of Theorem 2.1. We also remark that the formula (2.4) can be easily
obtained with the same reasoning from the expression (3.10) for finite solitons.
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Extension to the soliton+gas setting. The limiting procedure can be easily extended to the case of
N + M solitons, where N of them are suitably rescaled to become a soliton gas and the remaining M
are not rescaled. The linear algebra manipulations will still be the same, while the limiting operator
K : L2(−∞, x)→ L2(−∞, x) will have the expression

K[f ](y, t) =

∫ x

−∞
F (y + s, 2t)f(s) ds, with kernel F (s, t) = −i

∫
C
r̃(ζ)e−iθ(ζ;s,t)

dζ

2πi
,

where C = Σ1∪
⋃N+M
j=N+1 Cj , with Cj small disjoint circles (oriented counterclockwise), each one surrounding

the poles {iκj}N+M
j=N+1 and not intersecting the real line nor Σ1, and the function r̃(ζ) is defined as

r̃(ζ) = r1(ζ) for ζ ∈ Σ1 (described in (3.13)) and r̃(ζ) =
χj

ζ−iκj for ζ ∈ Cj (∀ j = N + 1, . . . , N +M). The

rest of the calculations remain almost unchanged. When deriving the limiting RH problem, the jumps on
the Cj ’s can be easily converted back to residue conditions as in the RH problem 1 (case M = 1).

4. Setup of the asymptotic problem

As previewed in Section 1, we consider here a gas of mKdV solitons with positive velocity initially sup-
ported on a right half-line interacting with a distinguished soliton traveling faster than the gas. Spectrally,
the gas is described by a jump across a contour Σ1 and its complex conjugate Σ2. We choose to orient
both contours upward. To the gas spectrum we add a pair of discrete spectral points ±iκ0, where the
condition κ0 > η2 ensures the distinguished soliton travels faster than the gas. The solution of this
problem is encoded into RH problem 1 which will be our principle object of interest.

To see that RH problem 1 initially encodes data supported on a right half-line, notice that when t = 0, the
phase function θ(k;x, t) reduces to θ(k;x, 0) = xk, and clearly for x� −1 we have e−2iθ(k;x,0) = O

(
e2η1x

)
for k ∈ Σ1. As the jumps are exponentially near identity for x� −1, the solution of the Riemann-Hilbert
problem, up to exponential corrections, is the one encoded by only the residues conditions at ±iκ0 (the
distinguished soliton component). This justifies the claim that the gas is initially supported on a right
half-line.

Remark 4.1. Without the poles, this problem is similar to that previously studied in [Gir+21]. In
[Gir+21] a soliton gas for the KdV equation was studied supported on a left half-line, whereas in this
paper we study the modified KdV equation, and have constructed a soliton gas supported on a right half-
line. It is straightforward in either the KdV or modified KdV equation to construct a soliton gas solution
which is supported on “the other” half-line. The end result of those manipulations is that the signs of x
and t in the phase function θ(k;x, t) appearing in the Riemann–Hilbert problem are flipped. This explains
why the signs in the exponential factors containing θ(k;x, t) in the present paper are different from those
in [Gir+21]. The fact that we can freely change the signs of x and t takes advantage of the fact that if
q(x, t) is a solution of mKdV (resp. KdV) then ±q(−x,−t) (resp. q(−x,−t)) generates a second solution.
Note, however, that the dynamics of the KdV equation for t > 0 with initial data q0(−x) will be markedly
different from q0(x).

On its own, the discrete spectral data (iκ0, χ) ∈ C+ × R \ {0} encodes a soliton solution (1.2) of (1.1)
with phase shift (1.4). In order to use asymptotic methods to study the interaction of the distinguished
soliton and the soliton gas we choose x0 � −1, and use this initial position as our large parameter in
subsequent calculations. At the level of the scattering data that means we take

(4.1) χ = χ(x0, κ0) = 2κ0ςe
−2κ0x0 ς = sgn(χ) ∈ {−1,+1}.

In what follows we assume that r(k) is real and non-vanishing on Σ1. Note also that in contrast with
analogous RH problems that appear in the long-time asymptotics for step-like problems [KM10; GM20],
where the behavior of a function analogous to r(k) at the edge points is of square-root type, here we do
not have that restriction, and r(k) might have any type of edge behavior.
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4.1. Steepest descent preparations. The first step in the asymptotic analysis of the RH problem 1
is to construct a scalar function g(k) = g(k;x, t) which controls the terms with exponential growth in
the jumps (2.6). Given t ≥ 0, if x < 4η2

1t, then Im θ(k;x, t) < 0 for k ∈ iR+; therefore, the jumps
are exponentially close to the identity matrix and the small norm theory guarantees that the solution is
quiescent in this domain (unless the soliton is scaled to be present here). Our analysis is inspired from
the analysis in [GM20], [Ego+13].

For x > 4η2
1t, two growing bands (iη1, iα)∪(−iα,−iη1) emerge from the endpoints ±iη1, subsets of Σ1 and

Σ2 respectively, on which the exponential terms are asymptotically large. In this setting, we introduce a
suitable scalar function g(k;x, t) through the transformation:

(4.2) T (k) = X(k)e−ig(k;x,t)σ3f(k)σ3 .

Such a g-function will need to satisfy the following conditions:

(i) g is analytic in C \ [−iα, iα].

(ii) g+(k) + g−(k) + 8k3t+ 2kx = 0, within each band k ∈ Σ1,α ∪ Σ2,α.

(iii) g+(k)− g−(k) = −Ω(x, t), in the gap k ∈ (−iη1, iη1).

(iv) g(k) = g0(x, t) +O
(
k−1

)
as k →∞.

(v) near the endpoints k = ±iη (where η is either η1, α or η2),

g(k) + 4k3t+ kx = O
(

(z ∓ iη)p/2
)
, k → ±iη,

with p = 1 if the endpoint is stationary (i.e., for η = ηj or j = 1, 2) and p = 3 if the endpoint is
allowed to vary with (x, t) (i.e., for η = α).

For now we will not specify the function f(z) in (4.2), except to remark that we assume it satisfies some
jump conditions, to be chosen later, along the same contour [−iα, iα].

With such a g-function, the transformation (4.2) results in a new RH problem for T (k) with jumps given
by

(4.3)

T+(k) = T−(k)JT (k),

JT (k) =



[
e−i(g+(k)−g−(k)) f+(k)

f−(k) 0

ir(k)f+(k)f−(k) ei(g+(k)−g−(k)) f−(k)
f+(k)

]
, k ∈ Σ1,α,e−i(g+(k)−g−(k)) f+(k)

f−(k) i r(k̄)
f+(k)f−(k)

0 ei(g+(k)−g−(k)) f−(k)
f+(k)

 , k ∈ Σ2,α,

eiΩ(x,t)σ3

(
f+(k)

f−(k)

)σ3
, k ∈ i[−η1, η1].

With the following theorem we identify the exact value of the endpoints of the bands ±iα and we prove
the existence and explicit expression of the g function.

Theorem 4.2. Let η1, η2 be the endpoints of the jump contour defining RH problem 1. These values
determine a unique positive quantity v2 > 4η2

1 satisfying the equation

v2 = η2
2 W

(
η2

1/η
2
2

)
, W (m) =

4(1−m)K(m)

E(m)
+ 2(1 +m),(4.4)

where K(m) and E(m) are the complete elliptic integrals of the first and second kind respectively. Then for
every x > 4η2

1t there exists a function g(k) satisfying conditions (i)-(v) above, with α = α(x/t) ∈ (η1, η2],
such that:
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v < 0 0 < v < 4η2
1 v = 4η2

1

4η2
1 < v < v2 4η2

1 < v < v2 v > v2

Figure 6. The signature table for Imϕ. White (resp. shaded) regions show where
Imϕ > 0 (resp. Imϕ < 0). As v = x

t increases past 4η2
1, a band of non-analyticity (iη1, iα)

emerges from η1; the bands grow until v reaches v2 where α = η2. For v > v2, the band
(iη1, iη2) is fixed.

• For x
t ∈ (4η2

1, v2), α(x/t) ∈ (η1, η2) and it satisfies the self-similar Whitham evolution equation

(4.5)
x

t
= α2W (η2

1/α
2).

Moreover, the evolution of α(v) is hyperbolic: dα
dv > 0, limv→4η21

α(v) = η1 and limv→v2 α(v) = η2.

• For x
t ≥ v2, α(x/t) ≡ η2, i.e., the jump of the function g is supported along the entire length of

the original jump contour Σ1 ∪ Σ2.

Finally, let

(4.6) ϕ(k;x, t) := g(k;x, t) + kx+ 4k3t;

then, for any x > 4η2
1t, we have

(4.7) ϕ(k;x, t) = R(k)

4tk − Ω

2πi

iη1∫
−iη1

ds

R(s)(s− k)

 ,
where

(4.8) Ω = Ω(x, t) =
πα

K(m)
(x− 2(η2

1 + α2)t), m =
η2

1

α2

and the function

(4.9) R(k) =
√

(k2 + η2
1)(k2 + α2)

is analytic away from Σ1,α ∪ Σ2,α and normalized such that R(k) = k2 +O (1) as k →∞.

Remark 4.3. For x < 4η2
1t, we have no need for a g-function (g(k;x, t) ≡ 0), so we set

ϕ(k;x, t) = θ(k;x, t) for x < 4η2
1t .

This allows us to use the same notation, ϕ(k;x, t), for the phase function in all regions of spacetime.
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Proof of Theorem 4.2. Using the Sokhotski–Plemelj formula we can write g as

(4.10) g(k) =
R(k)

2πi

 ∫
Σ1,α∪Σ2,α

−2xs− 8ts3

R+(s)

ds

s− k
−

iη1∫
−iη1

Ω

R(s)

ds

s− k

 ,
which satisfies conditions (i)-(iii) for any choice of Ω and α. The asymptotic expansion of g(k;x, t) at ∞
gives

(4.11)

g(k) = g1k + g0 +O
(
k−1

)
, k →∞,

g1 =
1

2πi

∫
Σ1,α∪Σ2,α

2xs+ 8ts3

R+(s)
ds+

Ω

2πi

iη1∫
−iη1

ds

R(s)
,

g0 =
1

2πi

∫
Σ1,α∪Σ2,α

s(2xs+ 8ts3)

R+(s)
ds+

Ω

2πi

∫ iη1

−iη1

s

R(s)
ds ≡ 0 (by symmetry).

We now require that g satisfies (iv), i.e. g1 ≡ 0. This yields one real equation which determines Ω as

(4.12) Ω =
x− 2(η2

1 + α2)t
1

2πi

∫ iη1
−iη1

ds
R(s)

,

which is equivalent to (4.8).

If α is stationary, then the description is complete. In the modulation zone (i.e. α 6= η1, η2), condition
(v) determines the motion of the moving branch points ±iα. Fix s0 > max{|k|, α}. Using the residue
theorem we can write

(4.13) g(k) + xk + 4tk3 =
R(k)

2πi

 ∮
|s|=s0

xs+ 4ts3

R(s)

ds

s− k
−

iη1∫
−iη1

Ω

R(s)

ds

s− k

 ,
where the loop integral is positively oriented. A necessary and sufficient condition for g to satisfy (v) is
then

1

2πi

∮
|s|=s0

xs+ 4ts3

R(s)

ds

s− iα
− 1

2πi

iη1∫
−iη1

Ω

R(s)

ds

s− iα
= 0 ;

the integrals can be evaluated exactly, giving

4tiα− Ω · iη1

2πiη1α · (−iα)

∫ 1

−1

du√
(1− u2)(1−mu2)(1−

√
mu)

= 0,

that simplifies to

(4.14) 4tα− Ω

πα2

E(m)

1−m
= 0

where m = η2
1/α

2 and E(m) is the complete elliptic integral of second kind:

E(m) :=

∫ 1

0

√
1−ms2

√
1− s2

ds .

Using (4.8), equation (4.14) is equivalent to (4.5), which gives the modulation equations determining the
motion of the branch point α as a function of v = x/t. We note that (4.5) is equivalent to the condition
that

x− 2(η2
1 + α2)t =

4t(α2 − η2
1)K(m)

E(m)
> 0

which is strictly positive since α > η1 (and thus 0 < m < 1 and Ω ∈ R+).
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Notice that (4.5) reduces to
x

t
= 4η2

1 as α→ η1,

which is consistent with our initial assumption that the bands emerge out of the points ±iη1 for x > 4η2
1t.

We can implicitly differentiate the Whitham equation (4.5) with respect to v = x
t to get

2ααv =
[
W (m)−mW ′(m)

]−1
.

Since α > 0 by construction, this is enough to show that αv > 0: indeed, W (m) > 0 for 0 < m < 1 and

W ′(m) = −2
(K(m)− E(m))((1 +m)E(m)− (1−m)K(m))

mE(m)2
< 0 ,

where the last inequality follows from the known inequality K(m)
E(m) <

1√
1−m [Dlm, §19.9.8].

Therefore, there exists a critical value v2, with v2 > 4η2
1, such that

v2 = η2
2 W (η1/η2), i.e., α(v2) = η2.

�

4.2. The g-function in terms of abelian integrals. The g-function defined above can also be expressed
in terms of abelian integrals associated to the two-sheeted genus-one Riemann surface

(4.15) X = {(k, η) ∈ C2 : η2 = R(k)2 = (k2 + η2
1)(k2 + α2)},

where the first sheet of X is identified by the fact that R(k) > 0 for Im k = 0. Denote by ∞+ (∞−) the
pre-image of k =∞ on the first (second) sheet of X. We fix a canonical homology basis on X by choosing
B to encircle Σ1 clockwise on the first sheet, and A to pass from the positive side of Σ2 to Σ1 on sheet 1
and from the negative side of Σ1 to Σ2 on sheet 2. See Figure 7.

∞+

×

∞−×

iη1

iη1

iη2

iη2

iα

iα

−iη1

−iη1

−iη2

−iη2

−iα

−iα

A B

Figure 7. The homology basis for the Riemann surface X associated with R(k) =
√

(k2 + η2
1)(k2 + α2).

Using the representation (4.13) of g(k;x, t), we have that

(4.16) ϕ(k;x, t) = g(k;x, t) + xk + 4tk3 =
R(k)

2πi

 ∮
|s|=s0

xs+ 4ts3

R(s)

ds

s− k
−

iη1∫
−iη1

Ω

R(s)

ds

s− k


satisfies the relations ϕ+(k) +ϕ−(k) = 0 for k ∈ Σ1,α ∪Σ2,α, ϕ+(k)−ϕ−(k) = −Ω < 0 for k ∈ [−iη1, iη1],
and ϕ(k) = 4tk3 +xk+O

(
k−1

)
as k →∞. These relations show that ϕ can also be represented in terms

of abelian integrals
ϕ(k;x, t) = tϕ2(k) + xϕ0(k).

Here ϕ0 and ϕ2 are given by

ϕ0(k) =

∫ k

iα
dϕ0, ϕ2 =

∫ k

iα
dϕ2(k),
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where

dϕ0(ζ) =
ζ2 + c0

R(ζ)
dζ =

[
1 +O

(
ζ−2
)]

dζ,

dϕ2(ζ) = 12
ζ4 + 1

2(η2
1 + α2)ζ2 + c2

R(ζ)
dζ =

[
12ζ2 +O

(
ζ−2
)]

dζ,

as ζ →∞+, and the constants c0 and c2 are chosen to ensure that
∮
A dϕj = 0, k = 0, 2. This gives

(4.17)

c0 = −
(∫ iη1

0

dζ

R(ζ)

)−1(∫ iη1

0

ζ2

R(ζ)
dζ

)
= α2

(
1− E(m)

K(m)

)
c2 = −12

(∫ iη1

0

dζ

R(ζ)

)−1
(∫ iη1

0

ζ4 + 1
2(η2

1 + α2)ζ2

R(ζ)
dζ

)
=
α4

6

(
(1 +m)

E(m)

K(m)
− (1−m)

)
Therefore ϕ(k;x, t) can be alternatively represented as

ϕ(k;x, t) = tϕ2(k) + xϕ0(k) =

∫ k

iα

12t(ζ4 + 1
2(η2

1 + α2)ζ2 + c2) + x(ζ2 + c0)

R(ζ)
dζ,(4.18)

=

∫ k

iα

(ζ2 + α2)(12t(ζ2 − 1
2(α2 − η2

1)) + x)

R(ζ)
dζ .(4.19)

Remark 4.4. Note that (4.5) is equivalent to the condition that ζ2 + α2 is a factor of the numerator of
the integrand in (4.18); this additionally implies that ∂αϕ(k;x, t) ≡ 0.

For k ∈ [−iη1, iη1] we have

(4.20) ϕ+(k)− ϕ−(k) =

(
−
∮
B

dϕ0

)
x+

(
−
∮
B

dϕ2

)
t = −Ω ,

therefore ∮
B

dϕ0 =
πα

K(m)
,

∮
B

dϕ2 = − 2πα

K(m)
(η2

1 + α2) ,

by comparison with (4.8).

4.3. Preparing the problem to open lenses. The structure of the g-function described in Theorem 4.2
separates the (x, t) half-plane into three sectors

(4.21)

SL =
{

(x, t) ∈ R× R+ :
x

t
< 4η2

1

}
,

SM =
{

(x, t) ∈ R× R+ : 4η2
1 <

x

t
< v2

}
,

SR =
{

(x, t) ∈ R× R+ :
x

t
> v2

}
.

We further subdivide these sectors by writing

S(+)

j =

{
(x, t) ∈ Sj : ln

∣∣∣∣ χ2κ0

∣∣∣∣+ 2 Imϕ(iκ0;x, t) > 0

}
,

S(−)

j =

{
(x, t) ∈ Sj : ln

∣∣∣∣ χ2κ0

∣∣∣∣+ 2 Imϕ(iκ0;x, t) < 0

}
,

j ∈ {L,M,R},(4.22)

and

S(±)
= S(±)

L ∪ S(±)

M ∪ S(±)

R ,(4.23)

which captures whether the coefficients χeiϕ(iκ0;x,t), which will appear in the residue condition (4.30),

are asymptotically large or small respectively. Physically, the set S(+)
is the set of points in front of the

soliton or before the soliton passes by, while S(−)
corresponds to points in spacetime behind the soliton

or after the soliton has passed by.
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Our next step is to properly define the function f(k) in the definition (4.2) of T (k;x, t). Motivated by
the jump conditions (4.3) we choose f as follows:

(4.24a) f(k;x, t) =



1, (x, t) ∈ S(−)

L ,

k−iκ0
k+iκ0

, (x, t) ∈ S(+)

L ,

f
(−)

(k;x, t), (x, t) ∈ S(−)

M ∪ S(−)

R ,

f
(+)

(k;x, t), (x, t) ∈ S(+)

M ∪ S(+)

R ,

where

f
(−)

(k;x, t) = exp

{
R(k)

2πi

[∫
Σ1,α

− ln r(s)

R+(s)(s− k)
ds+

∫
Σ2,α

ln r(s̄)

R+(s)(s− k)
ds

+

∫ iη1

−iη1

i∆(−)

R(s)(s− z)
ds

]}
,

f
(+)

(k;x, t) =

(
k − iκ0

k + iκ0

)
exp

R(k)

2πi

∫
Σ1,α

− ln r(s)− 2 ln
(
iκ0−s
iκ0+s

)
R+(s)(s− k)

ds

+

∫
Σ2,α

ln r(s̄)− 2 ln
(
iκ0−s
iκ0+s

)
R+(s)(s− k)

ds+

∫ iη1

−iη1

i∆(+)

R(s)(s− z)
ds

 ,

(4.24b)

and

(4.25) ∆ =



0, (x, t) ∈ SL,

∆
(−)

= −i
(∫ iη1

0

ds

R(s)

)−1
(∫

Σ1,α

log r(s)

R+(s)
ds

)
, (x, t) ∈ S(−)

M ∪ S(−)

R ,

∆
(+)

= −i
(∫ iη1

0

ds

R(s)

)−1
∫

Σ1,α

log r(s) + 2 log
(
iκ0−s
iκ0+s

)
R+(s)

ds

 , (x, t) ∈ S(+)

M ∪ S(+)

R .

The following proposition is an immediate consequence of the Sokhotski-Plemelj formula.

Proposition 4.5. For any (x, t) ∈ SM ∪ SR the scalar function f(k;x, t) defined by (4.24) satisfies the
following properties:

(1) f(k;x, t) is meromorphic for k ∈ C \ [−iα, iα].

(2) f(k;x, t) satisfies the jump relations

f+(k;x, t)f−(k;x, t) =

{ 1
r(k) , k ∈ Σ1,α,

r(k̄), k ∈ Σ2,α,
(4.26)

f+(k;x, t)

f−(k;x, t)
= ei∆, k ∈ (−iη1, iη1),(4.27)

where ∆ = ∆(x, t) given by (4.25) is real-valued.

(3) f(k;x, t) = 1 +O
(
k−1

)
as k →∞.

(4) f(k;x, t) is bounded and nonzero in k ∈ C \ [−iα, iα].

(5) For (x, t) ∈ S(−)

L ∪ S(−)

R , f(k;x, t) is holomorphic and nonzero in k ∈ C \ [−iα, iα]. For (x, t) ∈
S(+)

L ∪ S(+)

R , f(k;x, t) has a simple zero at k = iκ0, a simple pole at −iκ0, and is otherwise
holomorphic and nonzero for k ∈ C \ [−iα, iα].
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(6) The behavior of f(k;x, t) at each endpoint of the jump contour is determined by the local behavior

of r(k). As k → ∂Σ1,α, f(k;x, t)2r(k) is bounded and nonzero; the same is true of f(k;x, t)2r(k̄)
−1

as k → ∂Σ2,α.

(7) For all k, f satisfies the symmetries f(k̄;x, t) = f(k)−1 and f(−k;x, t) = f(k;x, t)−1. In partic-
ular f(k;x, t) is real-valued for any k ∈ iR \ [−iα, iα].

Remark 4.6. Locally, the functions f and ∆ depend on x and t through the slowly evolving parameter
x/t, i.e. f(k;x, t) = f(k;x/t) and ∆(x, t) = ∆(x/t). Globally they depend on x and t independently, as

their values change along the boundaries between regions S(±)

j , j ∈ {L,M,R}.

Collecting the properties of the g-function (i)–(v) and of the function f (1)–(7), the resulting RH problem
for T (k;x, t) is given by

Riemann–Hilbert problem 4. Find a 2× 2 matrix-valued function T (k;x, t) with the following prop-
erties

1. T (k;x, t) is meromorphic for k ∈ C \ [−iη2, iη2].

2. For k ∈ i[−η2, η2], the boundary values T±(k;x, t) = T (k ∓ 0;x, t) satisfy the jump relation

T+(k) = T−(k)JT (k;x, t),(4.28)

JT (k;x, t) =



[
1 0

ir(k)f(k)2e−2iϕ(k;x,t) 1

]
, k ∈ (iα, iη2),[

r(k)−1f−(k)−2e2iϕ−(k;x,t) 0

i r(k)−1f+(k)−2e2iϕ+(k;x,t)

]
, k ∈ Σ1,α,

ei(Ω+∆)σ3 , k ∈ [−iη1, iη1],[
r(k̄)

−1
f+(k)2e−2iϕ+(k;x,t) i

0 r(k̄)
−1
f−(k)2e−2iϕ−(k;x,t)

]
, k ∈ Σ2,α,[

1 ir(k̄)f(k)−2e2iϕ(k;x,t)

0 1

]
k ∈ (−iη2,−iα).

(4.29)

3. T (k;x, t) has simple poles at k = ±iκ0, with κ0 > η2, satisfying

• For (x, t) ∈ S(−)
:

(4.30a)

Res
k=iκ0

T (k;x, t) = lim
k→iκ0

T (k;x, t)

[
0 0

−iχf(iκ0;x, t)2e−2iϕ(k;x,t) 0

]
,

Res
k=−iκ0

T (k;x, t) = lim
k→−iκ0

T (k;x, t)

[
0 −iχf(iκ0;x, t)2e2iϕ(k;x,t)

0 0

]
.

• For (x, t) ∈ S(+)
:

(4.30b)

Res
k=iκ0

T (k;x, t) = lim
k→iκ0

T (k;x, t)

[
0 iχ−1f ′(iκ0;x, t)−2e2iϕ(k;x,t)

0 0

]
,

Res
k=−iκ0

T (k;x, t) = lim
k→−iκ0

T (k;x, t)

[
0 0

iχ−1f ′(iκ0;x, t)−2e−2iϕ(k;x,t) 0

]
.
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4.4. Reduction to model problems. The transformation X(k;x, t) 7→ T (k;x, t) results in a RH prob-
lem which has jumps that are exponentially near identity on the intervals (iα, iη2) and (−iη2,−iα),
oscillatory jumps on the bands Σ1,α ∪ Σ2,α and a constant (in k) diagonal jump on the gap interval
(−iη1, iη1) between the two bands. Whenever the bands Σ1,α∪Σ2,α are non-empty intervals we introduce
one further transformation which ‘opens lenses’ away from the Σ1,α and Σ2,α, which have the effect of
deforming the oscillatory jumps onto new contours where they are exponentially decaying.

4.4.1. Quiescent background. For (x, t) ∈ SL (i.e. v := x
t < 4η2

1), we have that g ≡ 0 in this sector of
space-time (see Remark 4.3). Effectively, α ≡ η1 here, so Σ1,α = Σ2,α = ∅ and Ω = ∆ = 0. The remaining
jumps satisfy the following estimate:

Proposition 4.7. For (x, t) ∈ SL the jump matrix JT (k) satisfy the estimate

(4.31) ‖JT (k;x, t)− I‖ = O
(
e−2tη1(4η21−v)

)
, (x, t) ∈ SL, k ∈ Σ1 ∪ Σ2,

where the implicit constant is bounded and independent of (x, t) ∈ SL.

From the uniform estimate above and standard estimates for Cauchy singular integrals, we can conclude
that the solution T (k;x, t) of the RH problem 4 takes the form

(4.32) T (k;x, t) =
[
I +O

(
e−2tη1(4η21−v)

)]
Xsol(k;x, t), (x, t) ∈ SL,

and Xsol(k;x, t) is the solution of the RH problem 1 with r ≡ 0 and N = 1, given by (3.4). As a
consequence, the solution of the original RH problem 1 satisfies

(4.33) X(k;x, t) =
[
I +O

(
e−2tη1(4η21−v)

)]
Xsol(k;x, t), as t→∞ with (x, t) ∈ SL .

4.4.2. Opening lenses in the support of the soliton gas for x > 4η2
1t: r(k) bounded and nonzero. For

(x, t) ∈ SM ∪ SR the bands Σ1,α and Σ2,α are non-empty. The oscillatory jumps JT (k;x, t) for k ∈
Σ1,α ∪ Σ2,α admit the following factorizations:

(4.34) JT (k;x, t) =

[
r(k)−1f−(k)−2e2iϕ−(k;x,t) 0

i r(k)−1f+(k)−2e2iϕ+(k;x,t)

]
=

[
1 −ir(k)−1f−(k)−2e2iϕ−(k;x,t)

0 1

] [
0 i
i 0

] [
1 −ir(k)−1f+(k)−2e2iϕ+(k;x,t)

0 1

]
, k ∈ Σ1,α,

(4.35) JT (k, x, t) =

[
r(k̄)

−1
f+(k)2e−2iϕ+(k;x,t) i

0 r(k̄)
−1
f−(k)2e−2iϕ−(k;x,t)

]

=

[
1 0

−ir(k̄)
−1
f−(k)2e−2iϕ−(k;x,t) 1

] [
0 i
i 0

][
1 0

−ir(k̄)
−1
f+(k)2e−2iϕ+(k;x,t) 1

]
, k ∈ Σ2,α.

To deform these jumps off the imaginary axis we make the following assumption on the function r(k) :

Assumption 4.8. Assume that the function r(k) admits an analytic continuation off the imaginary axis:

r̂(k) analytic in Ωβ,r ∪ Ωβ,l, r̂(k)
∣∣
k∈[iη1,iη2]

= r(k),(4.36)

where Ωβ,r is defined as

Ωβ,r :=

{
k ∈ C : Re k ≥ 0 and

∣∣∣∣Im k − η1 + η2

2

∣∣∣∣ ≤
√

(η2 − η1)2

4
− cosβ

sinβ
(η2 − η1) Re k − (Re k)2

}
,

(4.37)

with some 0 < β < π
2 and where Ωβ,l is defined by symmetry, Ωβ,l =

{
k : −k ∈ Ωβ,r

}
(see Figure 8).
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iη2

β

iη1

β

Ωβ,rΩβ,l

(a) r bounded, nonzero at η1, η2

h

iη1

iη2

Ωh,rΩh,l

(b) r(k)(k − iηk)±1/2 = O (1)

Figure 8. The domain of the analytic extension of r(k) away from Σ1 depends on the
behavior of r(k) near the endpoints of Σ1.

Moreover, this extension should preserve the symmetries of the RH problem, i.e, r̂(−k) = r̂(k). We
therefore open lens by introducing a pair of contours, together labeled C1, both starting at −iη1 and
ending at iα to the left and right of Σ1,α respectively, such that C1 lies entirely in the domain Ωβ,r ∪Ωβ,l

where r̂(k) is analytic. We also introduce lens contours C2 on Σ2,α by symmetry. See Figure 9.

Using the factorizations in (4.34)–(4.35), we then define

(4.38) S(k;x, t) =



T (k;x, t)

[
1 −ir̂(k)−1f(k)−2e2iϕ(k;x,t)

0 1

]
, k ∈ lens right of Σ1,α,

T (k;x, t)

[
1 ir̂(k)−1f(k)−2e2iϕ(k;x,t)

0 1

]
, k ∈ lens left of Σ1,α,

T (k;x, t)

[
1 0

−if(k)2e−2iϕ(k;x,t)

r̂(k)
1

]
, k ∈ lens right of Σ2,α,

T (k;x, t)

[
1 0

if(k)2e−2iϕ(k;x,t)

r̂(k)
1

]
, k ∈ lens left of Σ2,α,

T (k;x, t), elsewhere .

It follows easily that S satisfies the following RH problem

Riemann–Hilbert problem 5. Find a 2× 2 matrix-valued function S(k;x, t) such that

1. S(k;x, t) is meromorphic for k ∈ C \ ΓS , ΓS = [−iη2, iη2] ∪ C1 ∪ C2.

2. S(k;x, t) = I +O
(
k−1

)
as k →∞.

3. For k ∈ ΓS the boundary values S±(k;x, t) satisfy the jump relation S+(k;x, t) = S−(k;x, t)JS(k;x, t),
where the values of JS(k;x, t) are shown for k ∈ ΓS in Figure 9.

4. S(k;x, t) has simple poles at k = ±iκ0 and no other poles. The poles satisfy the same residue
conditions (4.30) as T (k;x, t).

We finally need the following lemma, which will guarantee that the off-diagonal entries in the jumps along
the lenses C1 ∪ C2 are exponentially small:

Lemma 4.9. For any (x, t) with x > 4η2
1t the following inequalities are satisfied

(4.39)
Imϕ(k;x, t) < −ct, k ∈ K a compact subset of (iα, iη2],

Imϕ(k;x, t) > ct, k ∈ K̂ a compact subset of C1 \ {iη1, iα},
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[
1 0

ir(k)f(k)2e−2iϕ(k,x,t) 1

]
[
0 i
i 0

]

[
0 i
i 0

]

[
ei(Ω+∆) 0

0 e−i(Ω+∆)

]

[
1 ir(k̄)f(k)−2e2iϕ(k,x,t)

0 1

]

C1

[
1 −ir̂(k)−1f(k)−2e2iϕ(k,x,t)

0 1

]
C1

C2

[
1 0

−i r̂(k̄)−1f(k)2e−2iϕ(k,x,t) 1

]
C2

iη2

iη1

iα

−iη2

−iη1

−iα

Figure 9. The system of contours ΓS defining the lens opening transformation T 7→ S
and the resulting jump matrix JS on these contours. The entries shown in gray in the
jump matrices are all exponentially small.

for some constant c ∈ R+. By the symmetry ϕ(k̄;x, t) = ϕ(k;x, t), the reverse inequalities hold on compact
subsets of C2 \ {−iη1,−iα} and [−iη2,−iα).

Proof. The representation of ϕ(k;x, t) in (4.19) and the fact that
∮
A dϕ = 2

∫ iη1
−iη1 ϕ

′ dk = 0 imply that

(4.40) ϕ′(k;x, t) =
12t(k2 + α2)(k2 + p2)

R(k)

for some p = p(x, t) ∈ (0, η1). It follows immediately that

ϕ′(k) < 0, k ∈ (iα, i∞),

iϕ′+(k) = −iϕ′−(k) > 0, k ∈ Σ1,α.

These two conditions imply the first and second inequalities in (4.39) respectively. �

4.4.3. Opening lenses in the support of the soliton gas for x > 4η2
1t: square root behavior in r(k) at

endpoints. Thus far we have restricted our attention to the situation in which r(k) is strictly positive
and bounded on Σ1. It’s reasonable, however, to admit mild zeros or singular behaviour at the endpoints
iη1 and iη2. Specifically, one can consider r(k) = |k − iηj |β r̃(k) for |β| < 1 (j = 1, 2), and the analysis
goes through essentially unchanged except that the local Bessel parametrices at the fixed endpoints (cf.
Section 5.2.2) have to be slightly adjusted.

The special case when r(k) = |z − iηj |±1/2r̃(k) for r̃ locally bounded and non-zero is of particular inter-
est. In this setting, the lens opening factorizations can be slightly adjusted so that local parametrices
near the fixed end points ±iη1 and α = iη2 for x/t > v2 are not needed. This has the effect that for
x/t > v2, the outer model is uniformly accurate and, as a result, the error bounds improve from poly-
nomial to exponential decay in t. In this case the potential falls into a class of potentials considered in
[EGG16].

First, we need to modify Assumption 4.8 on the analytic extension of r(k) away from Σ1.

Assumption 4.10. When r(k)|k − iηj |±1/2 is bounded and nonzero on Σ1, we assume that r admits an
analytic continuation off of Σ1:

r̂(k) analytic in Ωh,r ∪ Ωh,l, r̂(k)
∣∣
k∈[iη1,iη2]

= r(k),(4.41)
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[
0 i
i 0

]

[
0 i
i 0

]

[
ei(Ω+∆) 0

0 e−i(Ω+∆)

]

C1

[
1 −ir̂(k)−1f(k)−2e2iϕ(k,x,t)

0 1

]
C1

C2

[
1 0

−i r̂(k̄)−1f(k)2e−2iϕ(k,x,t) 1

]

C2

iη2

iη1

−iη2

−iη1

Figure 10. The modified system of contours ΓS defining the lens opening transfor-
mation T 7→ S and the resulting jump matrix JS for (x, t) ∈ SR (so α = η2) when

r(k)|k − iηk|±1/2 = O (1). The entries shown in gray in the jump matrices are all expo-
nentially small.

r̂+(k) + r̂−(k) = 0, k ∈ [iη2, iη2 + h] ∪ [iη1 − h, iη1](4.42)

where Ωh,r is defined as

Ωh,r :=
{
k ∈ C : Re k ∈ (0, h] and η1 −

√
h2 − Re k2 ≤ Im k ≤ η2 +

√
h2 − Re k2

}
,(4.43)

with some 0 < h < η1 and where Ωh,l is defined by symmetry, Ωh,l =
{
k : −k ∈ Ωh,r

}
(see Figure 8).

In the modified setting, the factorizations of the jump matrix JT (k;x, t) defined by (4.34)–(4.35) remain
valid. Note in particular, that property (6) in Proposition 4.5 guarantees that the off-diagonal entries of
each triangular factor are bounded at the endpoints ±iηj , j = 1, 2. As before, we open a lens C1 away
from Σ1 (and its symmetric pair C2 away from Σ2) with the modification that the lens detaches from
iη1 and fully encloses the endpoint. What happens at iα depends on whether it is modulating or fixed
at α = iη2. When (x, t) ∈ SR, α = η2 and the lens C1 detaches at both endpoints and becomes a loop
(see Figure 10). For (x, t) ∈ SM , α ∈ (η1, η2) and the lens returns to α as usual. We then pick a fixed
point in the interval [iα, η2] and open a lens C3 from this point enclosing iη2. Define C4 by symmetry
(see Figure 11). For (x, t) ∈ SR we use the (4.38) to again define the transformation T 7→ S modulo the
change in the shape of the lenses. For (x, t) ∈ SM we again use (4.38) but append the following extra
factorizations inside C3 and C4.

(4.44) S(k;x, t) =



T (k;x, t)

[
1 0

ir̂(k)f(k)2e−2iϕ(k;x,t) 1

]
k ∈ int(C3) ∩ {Re k < 0} ,

T (k;x, t)

[
1 0

−ir̂(k)f(k)2e−2iϕ(k;x,t) 1

]
k ∈ int(C3) ∩ {Re k > 0} ,

T (k;x, t)

[
1 ir̂(k̄)f(k)−2e2iϕ(k;x,t)

0 1

]
k ∈ int(C4) ∩ {Re k > 0} ,

T (k;x, t)

[
1 −ir̂(k̄)f(k)−2e2iϕ(k;x,t)

0 1

]
k ∈ int(C4) ∩ {Re k < 0} ,

defined by (4.38) elsewhere.

The key observation is that, due to the half-integer power behaviour of r(k) at the endpoint we can define
the extension r̂ to satisfy (4.42) so that the transformation T 7→ S does not introduce new jumps on the
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[
1 0

ir(k)f(k)2e−2iϕ(k,x,t) 1

]
[
0 i
i 0

]

[
0 i
i 0

]

[
ei(Ω+∆) 0

0 e−i(Ω+∆)

]

[
1 ir(k̄)f(k)−2e2iϕ(k,x,t)

0 1

]

C1 [
1 −ir̂(k)−1f(k)−2e2iϕ(k,x,t)

0 1

]C1

C2

[
1 0

−i r̂(k̄)
−1
f(k)2e−2iϕ(k,x,t) 1

]
C2

[
1 0

i
2 r̂(k)f(k)2e−2iϕ(k,x,t) 1

]
C3C3

C4 [
1 i

2 r̂(k̄)f(k)−2e2iϕ(k,x,t)

0 1

]C4

iη2

iη1

iα

−iη2

−iη1

−iα

Figure 11. The modified system of contours ΓS defining the lens opening transformation
T 7→ S and the resulting jump matrix JS for (x, t) ∈ SM when r(k)|k − iηj |±1/2 = O (1).
The entries shown in gray in the jump matrices are all exponentially small.

intervals [i(η1 − ε), iη1] and [iη2, i(η2 + ε)] . For example, when (x, t) ∈ SR we have

S−1
− (k)S+(k) =

[
1 i(r̂−(k)−1 + r̂+(k)−1)f(k)−2e2iϕ(k;x,t)

0 1

]
= I

for k ∈ [iη2, i(η2 + ε)],

S−1
− (k)S+(k) =

[
ei(Ω+∆) i (r̂+(k) + r−(k)) f+(k)−2eiϕ+(k)ei(Ω+∆)

0 e−i(Ω+∆)

]
= ei(Ω+∆)σ3

for k ∈ [i(η1 − ε), iη1]. The calculation to check the jump on the other boundaries are similar and left to
the reader.

5. The model problems and proof of Theorem 2.4

In this section we complete the proof of Theorem 2.4. In Theorem 4.2 we derived the behaviour of the
endpoint α = α(x/t) according to the Whitham modulation equations. In this section we derive the
solution of the mKdV equation given in (2.11) and (2.12) of Theorem 2.4. The leading order behaviour of
those expressions is obtained by solving the outer model RH problem 6 (see below) while the error term
is obtained by constructing the Airy parametrix at the points ±iα and Bessel parametrix at the points
±iη1.

We start the section by constructing the outer model RH problem 6. Lemma 4.9 shows that the jump
matrix JS(k) is exponentially near identity away from [−iα, iα] as t→∞. Moreover, the convergence is
uniform away from the four endpoints k = ±iη1, ±iα where the lens contours return to imaginary axis. In
order to construct a complete asymptotic description of the solution in the large time limit we introduce
a set of model problems: an outer model to control the jumps which remain in the large-time limit, and
four local models to account for the locally non-uniform behavior at each of the endpoints.

We are particularly interested in the outer model, as its solution will generate the leading order asymptotic
behavior of the dynamics. The local models will produce sub-leading corrections to the dynamics which
we are less interested in here, but could be computed fully in principle.

5.1. The outer model problem. Removing the jumps from the RH problem 5 which are near-identity
as t→∞ results in the following model problem.

Riemann–Hilbert problem 6. Find a 2 × 2 matrix-valued function W (k;x, t) with the following
properties
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1. W (k;x, t) is meromorphic for k ∈ C \ [−iα, iα].

2. W (k;x, t) = I +O
(
k−1

)
as k →∞.

3. For k ∈ i(−α, α), the boundary values of W±(k;x, t) satisfy the jump relation

W+(k;x, t) = W−(k;x, t)JW (k;x, t),(5.1)

JW (k;x, t) =

{[
0 i
i 0

]
, k ∈ Σ1,α ∪ Σ2,α,

ei(Ω+∆)σ3 , k ∈ (−iη1, iη1),
(5.2)

4. For any endpoint p ∈ {±iη1,±iα}, W (k;x, t) = O
(
(k − p)−1/4

)
, as k → p.

5. W (k;x, t) has simple poles at ±iκ0 and no other poles. The poles satisfy the same residue
conditions (4.30) as T (k;x, t).

The first four conditions above – temporarily ignoring the poles at ±iκ0 – define a well-known RH
problem characterizing a finite-gap solution of mKdV, whose solution will be described below. If we let
W (0) denote the solution of the pole-free problem, then the solution of the RH problem 6 can by computed
by introducing a Darboux transformation in the form

W (k;x, t) =(
I +

i

k − iκ0

[
a(x, t) c(x, t)
b(x, t) −d(x, t)

]
+

i

k + iκ0

[
d(x, t) b(x, t)
c(x, t) −a(x, t)

])
W (0)(k;x, t) ,(5.3)

where the coefficients in the pre-factor can be computed directly in terms of entries of W (0)(iκ0;x, t) and

from the residue conditions (4.30). Before we describe this computation, let us first consider W (0).

The explicit expression of the sectionally holomorphic functionW (0) which satisfies conditions 1.–4. in the
RH problem 6 is well known. On the genus-one Riemann surface X defined by (4.15) (see also Figure 7)
let

(5.4) ω =

(
4

∫ iη1

0

dk

R(k)

)−1
dk

R(k)
=

α

4iK(m)

dk

R(k)
,

so that
∮
A ω = 1 and define the period

(5.5) τ :=

∮
B
ω =

iK(1−m)

2K(m)
.

Using ω, define the integral

(5.6) A(k) =

∫ k

iα
ω, k ∈ C \ [−iα, iα],

where the path of integration is on any simple arc from iα to k which does not intersect [−iα, iα]. We
observe that

(5.7) A(∞) = −1

4
, A+(iη1) = −τ

2
, A+(−iη1) = −1

2
− τ

2
, A+(−iα) = −1

2
,

and

(5.8)
A+(k) +A−(k) = 0, k ∈ Σ1,α, A+(k)−A−(k) = −τ, k ∈ [−iη1, iη1],

A+(k) +A−(k) = −1, k ∈ Σ2,α.

Next, we introduce the Jacobi elliptic function

(5.9) θ3(z; τ) =
∑
n∈Z

e2πinz+πn2iτ , z ∈ C,

which is an even function of z, satisfies the periodicity relations

(5.10) θ3(z + h+ kτ ; τ) = e−πik
2τ−2πikzθ3(z; τ), k, h ∈ Z,
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and has a simple zero at the half period 1
2 + τ

2 . Finally, define a function γ analytic in C \ {Σ1,α ∪ Σ2,α}
by

(5.11) γ(k) =

(
k − iα
k − iη1

)1/4(k + iη1

k + iα

)1/4

,

and normalized such that γ(k)→ 1 as k →∞, so that

γ+(k) = iγ−(k), k ∈ Σ1,α ∪ Σ2,α.(5.12)

Then the function W (0) is given by the following formulæ

(5.13)

W
(0)
11 (k;x, t) =

1

2

(
γ(k) +

1

γ(k)

)
θ3(A(k) + 1

4 + Ω+∆
2π ; τ)

θ3(A(k) + 1
4 ; τ)

θ3(0; τ)

θ3(Ω+∆
2π ; τ)

,

W
(0)
12 (k;x, t) =

1

2

(
γ(k)− 1

γ(k)

)
θ3(−A(k) + 1

4 + Ω+∆
2π ; τ)

θ3(−A(k) + 1
4 ; τ)

θ3(0; τ)

θ3(Ω+∆
2π ; τ)

,

W
(0)
21 (k;x, t) =

1

2

(
γ(k)− 1

γ(k)

)
θ3(A(k)− 1

4 + Ω+∆
2π ; τ)

θ3(A(k)− 1
4 ; τ)

θ3(0; τ)

θ3(Ω+∆
2π ; τ)

,

W
(0)
22 (k;x, t) =

1

2

(
γ(k) +

1

γ(k)

)
θ3(−A(k)− 1

4 + Ω+∆
2π ; τ)

θ3(−A(k)− 1
4 ; τ)

θ3(0; τ)

θ3(Ω+∆
2π ; τ)

,

with Ω and ∆ as in (4.8) and 4.25 respectively.

We’re now ready to compute the coefficients in the Darboux transformation (5.1). Let

(5.14) W (0)(iκ0;x, t) =

[
w11(x, t) w12(x, t)
w21(x, t) w22(x, t)

]
=

[
w11 w12

w21 w22

]
,

where we have suppressed the (x, t) dependence of the coefficients in the last equality for brevity in what
follows.

Suppose that (x, t) ∈ S(−)

M ∪ S(−)

R . For W (k;x, t) given by (5.1) to satisfy the residue conditions (4.30a)
requires that

(5.15)

[
a c
b −d

] [
w11 w12

w21 w22

] [
0 0
1 0

]
= 0, implying c = −w12

w22
a, d =

w12

w22
b

so that the limit on the right hand side exists. Defining

(5.16) Q(−)
(x, t) :=

W
(0)
12 (iκ0;x, t)

W
(0)
22 (iκ0;x, t)

=
w12(x, t)

w22(x, t)
, Q(−)

κ0 (x, t) :=
d

dκ0

W
(0)
12 (iκ0;x, t)

W
(0)
22 (iκ0;x, t)

and observing that det(W (0)) ≡ 1, the remaining conditions are then equivalent to the system of equa-
tions

(5.17)

aX
(−)

+ bY
(−)

+Q(−)
(x, t) = 0,

−aY (−)
+ bX

(−)
+ 1 = 0,

where

(5.18)

X
(−)

(x, t) =
1

f(iκ0)2w22(x, t)2χe−2iϕ(iκ0;x,t)
+Q(−)

κ0 (x, t),

Y
(−)

(x, t) =
1

2κ0

[
1 +

(
Q(−)

(x, t)
)2
]
.

For (x, t) ∈ S(+)

M ∪ S(+)

R the expansion (5.1) must instead satisfy (4.30b), and through a similar series of

calculations one finds that α and β satisfy a system of the same form as (5.17) but with Q(−)
, X

(−)
, Y

(−)
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replaced by

Q(+)
(x, t) :=

w11(x, t)

w21(x, t)
, Q(+)

κ0 (x, t) :=
d

dκ0

W
(0)
11 (iκ0;x, t)

W
(0)
21 (iκ0;x, t)

, c = −aQ(+)
, d = bQ(+)

,(5.19)

X
(+)

(x, t) =
f ′(iκ0)2χe−2iϕ(iκ0;x,t)

w21(x, t)2
+Q(+)

κ0 (x, t), Y
(+)

(x, t) =
1

2κ0

[
1 +

(
Q(+)

(x, t)
)2
]
.(5.20)

Solving the system (5.17) yields

(5.21) a(x, t) =
Y

(±) −Q(±)
X

(±)(
X

(±)
)2

+
(
Y

(±)
)2 , b(x, t) = − X

(±)
+Q(±)

Y
(±)(

X
(±)
)2

+
(
Y

(±)
)2 ,

for (x, t) ∈ S(±)

M ∪ S(±)

R .

5.2. The local models at the endpoints. The global model problemW is a good approximation of the
original RH problem S everywhere in the complex plane, except at the endpoints ±iη1,±α, where we will
need to construct local parametrices. We will see that the local parametrix near iη1 can be constructed in
terms of the modified Bessel functions of index 0, and as for the point iα, we need to distinguish between
the cases α < η2 and α = η2: in the case α = η2, the parametrix is described in terms of the modified
Bessel functions of index 0, and in the case α < η2 the parametrix is described in terms of Airy functions.
The construction of the parametrices at −iη1 and −iα will follow from the symmetric properties of the
RH problem.

5.2.1. Local parametrix at k = iα, case α < η2.
Inspection of the local behavior of the function ϕ(k;x, t) (4.19), prompts to introduce a local variable
λ = λ(k;x/t) in a disk Uδ(iα) (centered at iα, of a sufficiently small radius δ > 0) as follows:

2iϕ(k;x, t) =:
4

3
tλ3/2,

so that

λ =
k − iα
i
·

(
12(α2 − µ2)

√
2α√

α2 − η2
1

) 2
3

(1 +O(k − iα)) , as k → iα,

and the branch cut for λ3/2, i.e., the half-line λ < 0, corresponds to k ∈ (iη1, iα).

Similarly as in, for example, [Dei99; Dei+99], we construct a function that solves exactly the same jump
as T does in a small neighborhood of the point iα. Define

ΨAi(λ) =



(
v1(λ) iv−1(λ)

v′1(λ) iv′−1(λ)

)
arg λ ∈ (2π

3 , π),(
v1(λ) −v0(λ)

v′1(λ) −v′0(λ)

)
arg λ ∈ (0, 2π

3 ),(
v−1(λ) −iv1(λ)

v′−1(λ) −iv′1(λ)

)
arg λ ∈ (−π, 2π

3 ),(
v−1(λ) −v0(λ)

v′−1(λ) −v′0(λ)

)
arg λ ∈ (−2π

3 , 0),
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where we denoted v0(λ) =
√

2πAi(λ), vj =
√

2πe
−πji

6 Ai(λe−
2πji
3 ), j = ±1, and ′ means derivative with

respect to λ. The function ΨAi satisfies the jump conditions

ΨAi,+(λ) = ΨAi,−(λ)



[
0 i
i 0

]
λ ∈ (−∞, 0),[

1 −i
0 1

]
λ ∈ (∞e±

2πi
3 , 0),[

1 0
i 1

]
, λ ∈ (0,+∞),

where the orientation of the segments is from the first mentioned point to the second one, and where
(∞eiβ, 0) denotes a ray coming from infinity to 0 at an angle β ∈ R (see Figure 12, left). Besides, the
function ΨAi satisfies the asymptotics

ΨAi(λ) = λ−σ3/4
1√
2

[
1 −1
1 1

]
EAi(λ)e

2
3
λ3/2σ3 , EAi(λ) = I +O

(
λ−

3
2

)
, λ→∞.

uniformly in arg λ ∈ [−π, π].

Finally, define

PAi(k;x, t) = BAi(k;x, t)ΨAi

(
t
2
3λ(k;x/t)

)
e−iϕ(k;x,t)σ3

(
f(k)

√
r̂(k)

)σ3
,

for |k − iα| < δ, where

BAi(k;x, t) = W (k;x, t)
(
f(k)

√
r̂(k)

)−σ3 1√
2

[
1 1
−1 1

](
t
2
3λ
)σ3

4

and BAi is analytic in Uδ(iα) (i.e., it does not have jumps across (iα − iδ, iα + iδ)). The function PAi

satisfies exactly the same jumps inside Uδ(iα) as T does, and on the boundary ∂Uδ(iα) we have the
following matching condition:

T (k;x, t)P−1
Ai (k;x, t) = W (k;x, t)

(
f(k)

√
r̂(k)

)−σ3
EAi(t

2
3λ(k;x/t))

(
f(k)

√
r̂(k)

)σ3
W (k;x, t)−1

= I +O
(
t−1
)

as t→∞.Here we used the fact that α is not close to η2 and η1, and henceW is bounded on ∂Uδ(iα).

[
1 −ie

4
3
λ3/2

0 1

]

[
1 −ie

4
3
λ3/2

0 1

]

[
1 0

ie−
4
3
λ3/2

1

]
[
0 i
i 0

]

[
1 ie−2

√
µ

0 1

]

[
1 ie−2

√
µ

0 1

]

[
0 −i
−i 0

]

[
1 −ie

4
3
λ3/2

0 1

]

[
1 −ie

4
3
λ3/2

0 1

]

[
0 i
i 0

]

Figure 12. Left: Jumps for ΨAi(λ)e−
2
3
λ3/2σ3 . Middle: Jumps for ΨBes(µ)e

√
µσ3 . Right:

Jumps for (−i)σ3ΨBes(
4
9λ

3)e
2
3
λ3/2σ3iσ3 .

5.2.2. Local parametrix at k = iη1.
Introduce a local variable µ = µ(k;x/t) in a disk Uδ(iη1) by formula

ϕ∓(k;x, t) =: ±1

2
Ω + it

√
µ,
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so that

µ(k;x/t) =
576(η2

1 − µ2)2(α2 − η2
1)

2η1
· k − iη1

−i
(1 +O(k − iη1)) , k → iη1,

and the branch cut of
√
µ corresponds to k ∈ (iη1, iα).

Define

ΨBes(µ) =



(
1√
π
K0(
√
µ) −i√

π
K0(e−πi

√
µ)

1√
π

d
dµK0(

√
µ) −i√

π
d

dµK0(e−πi
√
µ)

)
argµ ∈ (θ, π),

(
1√
π
K0(
√
µ) i√

π
K0(eπi

√
µ)

1√
π

d
dµK0(

√
µ) i√

π
d

dµK0(eπi
√
µ)

)
argµ ∈ (−π,−θ),

(
1√
π
K0(
√
µ)

√
πI0(
√
µ)

1√
π

d
dµK0(

√
µ)
√
π d

dµI0(
√
µ)

)
argµ ∈ (−θ, θ),

where I0,K0 are the modified Bessel functions of index 0, and θ ∈ (0, π). The function ΨBes has
jumps

ΨBes,+(µ) = ΨBes,−(µ)


(

1 i
0 1

)
µ ∈ (∞e±iθ, 0),(

0 i
i 0

)
µ ∈ (−∞, 0).

(see Figure 12, middle). As µ→∞, the function ΨBes satisfies the asymptotics

ΨBes(µ) = µ−σ3/4
1√
2

[
1 1
−1 1

]
EBes(µ)e−

√
µσ3 , EBes(µ) = I +O(µ−1/2), µ→∞.

uniformly in arg µ ∈ [−π, π]. Finally, define

PBes,η1(k;x, t) = BBes,η1(k;x, t)ΨBes(t
2µ(k;x/t))e−iϕ(k;x,t)σ3

(√
r̂(k)f(k)

)σ3
, |k − iη1| < δ,

where

BBes,η1(k;x, t) = W (k;x, t)
(√

r̂(k)f(k)e−i/2 Ω Re k
)−σ3 1√

2

[
1 −1
1 1

]
(t2µ(k;x/t))σ3/4

is analytic in Uδ(iη1). The function PBes,η1 has exactly the same jumps as T in Uδ(iη1), and on the
boundary ∂Uδ(iη1) it matches with T as follows:

T (k;x, t)P−1
Bes,η1

(k;x, t) = W (k;x, t)
(√

r̂(k)f(k)e−i/2 Ω Re k
)−σ3

EBes(t
2µ(k;x/t))×

×
(√

r̂(k)f(k)e−i/2 Ω Re k
)σ3

W−1(k;x, t) = I +O(t−1),

where we again used boundedness of W on ∂Uδ(iη1), and the fact that iη1 is not close to iα.

5.2.3. Local parametrix at k = iα, the case α = η2.
Here we introduce the local variable λ = λ(k;x/t) as in Section 5.2.1, and use the function ΨBes from the
Section 5.2.2, but with θ ∈ (π/2, 2π/3) (see also Figure 12, right), and define a function that satisfies the
same jumps as T in a disk Uδ(iη2) as follows:

PBes,η2(k;x, t) = BBes,η2(k;x, t)e−πi/2σ3ΨBes

(
4

9
t2λ3(k;x/t)

)
eπi/2σ3eiϕ(k;x,t)σ3

(√
r̂(k)f(k)

)σ3
,

|k − iη2| < σ3,

where

BBes,η2(k;x, t) = W (k;x, t)
(√

r̂(k)f(k)
)−σ3 1√

2

[
1 −1
1 1

](
4

9
λ(k;x/t)3

)σ3/4
.
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Then PBes,η2 satisfies the same jumps as T inside the disk Uδ(iη2), and the matching between them on
∂Uδ(iη2) is as follows: for k ∈ ∂Uδ(iη2) as t→∞,

PBes,η2(k;x, t)T−1(k;x, t) = W (k;x, t)
(√

r̂(k)f(k)
)−σ3

(−i)σ3EBes

(
4

9
t2λ3

)
iσ3
(√

r̂(k)f(k)
)σ3
×

×W−1(k;x, t) = I +O(t−1).

5.2.4. Local models when α = iη2 and r(k)|k − iηk|±1/2 = O (1). When Assumption 4.10 is satisfied and
α = η2, then the jumps of T (k) are as given in Figure 10. Because in this setting we can deform the
lens counts away from all the endpoints the outer model W (k;x, t) is an exponentially accurate model
uniformly in C. So local parametrices are not needed in this case.

In the modulated elliptic region, that is, when α ∈ (η1, η2), the jumps of T are as given in Figure 11.
Here, a Bessel parametrix is not needed at iη1 as the lens C1 remains bounded away from iη1, but the
lens must return to Σ1 at iα. As such, a local Airy parametrix is required in Uδ(iα). Consequently, there
is no improvement to error estimates in the modulated region.

5.3. Error analysis and conclusion of the proof of Theorem 2.4. Define P (k;x, t) to be equal
PBes,η1(k;x, t) inside the disk Uδ(iη1), to be equal PAi(k;x, t) inside the disk Uδ(iα) in the case α < η2

and PBes,η2(k;x, t) inside the disk Uδ(iα) in the case α = η2. Furthermore, in the corresponding disks
|k + iη1| < δ, |k + iα| < δ in the lower half plane, we define

P (k) :=

[
0 1
−1 0

]
P (k;x, t)

[
0 −1
1 0

]
,

and define P (k;x, t) to be equal to W (k;x, t) elsewhere. Next, define the error function

R(k;x, t) = S(k;x, t)P (k;x, t)−1.

Lemma 4.9, Proposition 4.7 and the matching properties of PAi, PBes,η1 , PBes,η2 allow to conclude
that

R(k;x, t) = I +O(t−1)

uniformly in k as t → ∞. Tracing back the chain of transformations from the remainder problem R to
the original RH problem 1 for X, we find that

q(x, t) = lim
k→∞

2ikX12(k;x, t) = lim
k→∞

2ikT12(k;x, t) = lim
k→∞

2ikW12(k;x, t) + lim
k→∞

2ikR12(k;x, t) .

The second term here is of the order O(t−1) in view of smallness of R, and the first term decomposes
further into a background part and a solitonic part,

(5.22) q(x, t) = lim
k→∞

2ikW12(k;x, t) +O(t−1) = qbg(x, t) + qsol(x, t) +O(t−1),

where

qbg(x, t) = lim
k→∞

2ikW
(0)
12 (k;x, t) ,(5.23)

qsol(x, t) = −2(c+ b) = 2(aQ(±) − b) =

2

[
1−

(
Q(±)

)2
]
X

(±)
+ 4Q(±)

Y
(±)

(
X

(±)
)2

+
(
Y

(±)
)2 .(5.24)

Observe that A(iκ0) ∈ R, implying that Q(±) ∈ R and thus Y
(±)

> 0. Similarly, X
(±) ∈ R, so that a(x, t)

and b(x, t) are well-defined for any value of (x, t) ∈ SL ∪ SR. Note also that the sets S(+)
and S(−)

in

(4.23) are defined such that X
(±) → ∞ as (x, t) → ∞ in S(±)

– non-tangentially to the boundary – due

to the exponential growth/decay of the term χe2iϕ(iκ0;x,t) while Q(±)
and Y

(±)
remain bounded as they

have no dependence on the residue coefficients, therefore

(5.25) qsol(x, t)→ 0 as (x, t)→∞ in any relatively compact subset of S(±)
.
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This justifies the interpretation of the term qbg(x, t) as the background solution through which the localized
soliton solution qsol(x, t) is passing.

In order to complete the proof of Theorem 2.4, we simplify the expression in (5.23) of the background
term qbg.
Simplifying the formulæ for qbg. We will resort to the following identities:

(5.26)
θ3(0; τ)θ4(z; τ) = θ4(z; 2τ)2 + θ1(z; 2τ)2,

θ4(0; τ)θ3(z; τ) = θ4(z; 2τ)2 − θ1(z; 2τ)2.

Using the large k expansion of (5.11), the first equality in (5.7), and (5.13), we have that (5.23) takes the
form

qbg(x, t) = (α− η1)
θ3(0; τ)

θ3(1
2 ; τ)

θ3(1
2 + Ω+∆

2π ; τ)

θ3(Ω+∆
2π ; τ)

= (α− η1)
θ3(0; τ)

θ4(0; τ)

θ4(Ω+∆
2π ; τ)

θ3(Ω+∆
2π ; τ)

= (α− η1)
θ4(Ω+∆

2π ; 2τ)2 + θ1(Ω+∆
2π ; 2τ)2

θ4(Ω+∆
2π ; 2τ)2 − θ1(Ω+∆

2π ; 2τ)2

= (α− η1)
1 +
√
m sn2

(
K(m)
π (Ω + ∆),m

)
1−
√
m sn2

(
K(m)
π (Ω + ∆),m

)
= (α− η1) nd

(
K(m1)

π
(Ω + ∆),m1

)
= (α− η1)

1 +
√
m

1−
√
m

dn

(
K(m1)

π
(Ω + ∆ + π),m1

)
= (α+ η1) dn

(
K(m1)

π
(Ω + ∆ + π),m1

)
,

(5.27)

so that

qbg(x, t) = (α+ η1) dn
(

(α+ η1)(x− 2(η2
1 + α2)t− x(±)

),m1

)
, (x, t) ∈ S(±)

M ∪ S(±)

R ,(5.28)

where we’ve used the Landen transformation [Akh88] to simplify the above expressions:

(5.29) m1 =
4
√
m

(1 +
√
m)2

=
4αη1

(α+ η1)2
, (1 +

√
m)K(m) = K(m1)

and

(5.30) x
(±)

=
K(m)(∆

(±) − π)

απ
=

K(m1)

(
∆

(±)

π
− 1

)
α+ η1

.

It’s clear from the above formulae that the effect of the soliton passing through the background elliptic
wave solution is to induce a phase change in the background solution which we can compute in terms of
simple objects on the Riemann surface X (4.15) which defines qbg.

Proposition 5.1. Fix x/t > 4η2
1, then the phase shift in the soliton gas induced by interaction with the

trial soliton travelling with initial velocity 4κ2
0 is given by

x
(−) − x(+)

= −2K(m)

α
(1 + 4A(iκ0)) ∈

(
−2K(m1)

α+ η1
, 0

)
,

where A(k) is the Abel map on the Riemann surface given by (5.6).
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Proof. By fixing x/t > 4η2
1, we consider a line in space-time where the background solution is an elliptic

wave with fixed parameter α = α(x/t). Starting from (5.30) we have

x
(−) − x(+)

=
(∆

(−) −∆
(+)

)K(m)

απ
=
K(m)

απ
h(iκ0),

where, using (4.25), the function h(k) is given by

(5.31) h(k) = −4i

∫
Σ1,α∪Σ2,α

ln

(
k − s
k + s

)
ω(s),

where ω(k) is the normalized holomorphic differential on the genus one Riemann surface X introduced in
(5.4). By differentiating in k, and evaluating the resulting integral using residues, one finds that

h′(k) = −8π
dω

dk
= −8πA′(k) , i.e. h(k) = h(∞) + 8π (A(∞)−A(k)) .

The result is completed by observing that h(∞) = 0 from (5.31) and that A(∞) = −1
4 from (5.7). �

We conclude the proof of Theorem 2.4 by calculating the behaviour of the soliton qsol for κ0 � η2.
Simplifying qsol in the limit as κ0 →∞. The expression for qsol can be greatly simplified if we assume
that κ0 � η2. In order to get something nontrivial when κ0 → ∞ we use (1.4) to write the norming
constant in the form χ = 2 sgn(χ)κ0e

−2κ0x0 . Then using (4.6) we have

(5.32) χe−2iϕ(iκ0;x,t) = 2 sgn(χ)κ0e
2κ0(x−x0−4κ20t)

[
1− 2g−1

κ0
+O

(
κ−2

0

)]
,

where

(5.33)

g−1 =
1

2πi

∫
Σ1,α∪Σ2,α

s2(2xs+ 8ts3)

R+(s)
ds+

Ω

2πi

∫ iη1

−iη1

s2

R(s)
ds

=
α2 + η2

1

2

(
x+ 2(α2 + η2

1)2t
)

+
(α2 − η2

1)2

2
t+

Ωα

π
(E(m)−K(m))

= −α
2 − η2

1

2

(
x− 3(3α2 + η2

1)t
)
,

where in the last equality we used (4.8) and (4.14).

From the expansions,

(5.34)

A(iκ0) = −1

4
+

1

4K(m)

α

κ0
+O

(
κ−3

0

)
,

γ2(iκ0) = 1− α− η1

κ0
+O

(
κ−2

0

)
,

it follows that Q(−)
(x, t) and Y

(−)
(x, t) in (5.16) and (5.18) simplify to

(5.35)

Q(−)
(x, t) = −α− η1

2κ0

θ3(0; τ)

θ3(1
2 ; τ)

θ3(1
2 + Ω+∆

2π ; τ)

θ3(Ω+∆
2π ; τ)

+O
(
κ−2

0

)
= − 1

2κ0
qbg(x, t) +O

(
κ−2

0

)
,

Y
(−)

(x, t) =
1

2κ0

[
1 +

qbg(x, t)2

4κ2
0

+O
(
κ−3

0

)]
.
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Similarly,

(5.36)

Q(−)

κ0 (x, t) =
(α− η1)

κ2
0

θ3(0; τ)

θ3(1
2 ; τ)

θ3(1
2 + Ω+∆

2π ; τ)

θ3(Ω+∆
2π ; τ)

+O
(
κ−3

0

)
=
qbg(x, t)

κ2
0

+O
(
κ−3

0

)
,

w22(x, t) = 1 +
1

4K(m)

[
θ′3(Ω+∆

2π ; τ)

θ3(Ω+∆
2π ; τ)

− θ′3(0; τ)

θ3(0; τ)

]
α

κ0
+O

(
κ−2

0

)
imply

(5.37) X
(−)

(x, t) =
sgn(χ)e−2κ0(x−x0−4κ0t)

2κ0

[
1 +

X(1)

κ0

]
+
qbg(x, t)

κ2
0

+O
(
κ−3

0

)
,

where X(1) contains the corrections of order O
(
κ−1

0

)
coming from f(iκ0)2, w2

22, and eiϕ(iκ0).

Including all terms at leading order we find that as κ0 →∞

(5.38)
qsol(x, t) =

4 sgn(χ)κ0e
−2κ0(x−x0−4κ20t)

1 + e−4κ0(x−x0−4κ20t)
+O (1)

= 2 sgn(χ)κ0 sech(2κ0(x− x0 − 4κ2
0t)) +O (1) ,

where generically the O (1) term is a complicated non-vanishing expression.

6. Asymptotic description of the interaction dynamics and proof of Theorem 2.7

After establishing the asymptotic expansion of the soliton+gas solution in (5.22) for large times, we now
focus on better understanding the interaction dynamics taking place between the soliton gas and the large
soliton passing through it. We will determine the speed of the soliton on an elliptic background and then
we will identify the location of the soliton peak up to corrections of order O(t−1).

6.1. The speed of a soliton on a genus-1 background. Once a large parameter is introduced –be it
large time or large |χ|– the soliton must lie along a spacetime curve (x(t), t) satisfying

ϕ(iκ0;x(t), t) = constant (of order 1);

an analogous argument holds for the soliton gas. Indeed, if this is the case, implicit differentiation
automatically gives the value of the phase velocity of the soliton (resp. soliton gas)

vphase := x′(t) = −
dϕ
dt
dϕ
dx

.

Using the representation (4.16), ϕ(iκ0;x, t) can be expressed in terms of elliptic integrals as

(6.1) ϕ(iκ0;x, t) = R(iκ0)

4tiκ0 +
1

iκ0

Π
(
η21
κ20
,
η21
α2

)
K
(
η21
α2

) (
x− 2(η2

1 + α2)t
) .

So, the average soliton velocity is given by

v̄sol(κ0) = − ∂tϕ(iκ0;x, t) + αt ∂αϕ(iκ0;x, t)

∂xϕ(iκ0;x, t) + αx ∂αϕ(iκ0;x, t)
= −ϕ2(iκ0;x, t)

ϕ0(iκ0;x, t)
(6.2)

since ∂αϕ(k;x, t) ≡ 0 for any α satisfying the Whitham evolution equation (see Remark 4.4); thus, from
(6.1), we have

v̄sol(κ0) = 4κ2
0

K
(
η21
α2

)
Π
(
η21
κ20
,
η21
α2

) + 2(η2
1 + α2) , for all x > 4η2

1t ,(6.3)

where we can recognize the velocity of the elliptic background solution vbg = 2(η2
1 + α2).
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We also recall the expression of the function ϕ in terms of the g-function (see formula (4.19)):

ϕ(k;x, t) = g(k;x, t) + xk + 4tk3 =

∫
Σ1,α∪Σ2,α

ln(k − s) ρ(s;x, t) ds+ xk + 4tk3

where

ρ(k;x, t) =
1

2πi

(k2 + α2)
(
x− 6t(α2 − η2

1 − 2k2)
)

R(k)
.

By enforcing d
dtϕ(k;x(t), t)|k=iκ0 = 0 (and recalling that the density ρ vanishes at the end points), we

obtain ∫
Σ1,α∪Σ2,α

ln(iκ0 − s)
(
ρt(s) + ρx(s)x′(t)

)
ds+ iκ0x

′(t) + 4(iκ0)3 = 0 ,

which, solving for v̄sol(κ0) = x′(t)|k=iκ0 , yields

v̄sol(κ0) = 4κ2
0 +

1

iκ0

∫
Σ1,α

ln

∣∣∣∣ iκ0 − s
iκ0 + s

∣∣∣∣ (vgroup(s)− v̄sol(κ0)) ρx(s) ds ,(6.4)

where vgroup := − ρt
ρx

is the group velocity of the genus-1 background wave and the integral term is real,

as ρx ∈ iR.

Furthermore, for k ∈ Σ1,α, we also have

g+(k) + g−(k) = 2

∫
Σ1,α

ln

∣∣∣∣k − sk + s

∣∣∣∣ ρ(s) ds = −8k3t− 2kx .

By taking the derivative of the g function with respect to t and x separately,∫
Σ1,α

ln

∣∣∣∣k − sk + s

∣∣∣∣ ρt(s) ds = −4k3 ,

∫
Σ1,α

ln

∣∣∣∣k − sk + s

∣∣∣∣ ρx(s) ds = −k

and by simple algebra manipulations, we obtain that

vgroup(k) = −4k2 +
1

k

∫
Σ1,α

ln

∣∣∣∣k − sk + s

∣∣∣∣ (vgroup(s)− vgroup(k)) ρx(s) ds ,(6.5)

where we notice that since k ∈ iR+ the term −4k2 > 0 and the second term in the expression above is
real (ρx ∈ iR).

6.2. Locating the soliton peak. For simplicity, we will consider here the case of a trial soliton (χ > 0).
The case of a trial anti-soliton (χ < 0) is analogous, but the roles of the critical points X1, X2 defined by
(6.17) below are reversed. Suppose xpeak(t) is a function tracking the position of the (peak of the) trial
soliton as it evolves in time. Before the soliton enters the modulated elliptic region, we have xpeak(t) =
x0 + 4κ2

0t, which coincides with the position of a trial soliton moving in the vacuum (i.e. without the
presence of a gas). As we want to analyze the situation where the trial soliton is interacting with the
modulated elliptic wave, we consider the region of space-time such that

(6.6)
4η2

1 + ε <
x

t
< v2 − ε,

4η2
1 + ε <

x0

t
+ 4κ2

0,

The first condition defines the region of space time in which the gas behaves as a modulated elliptic
wave (here ε is a positive constant ensuring that we do not encounter any delicate transitory phenomena
occurring at the boundary of the modulated elliptic region) while the second ensures that enough time has
passed that the soliton initially at position x0 � −1 has traversed the quiescent region and has entered
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the modulated wave region of the soliton gas. Then we identify two times t1 and t2 characterized by the
soliton peak entering and leaving the modulated wave region respectively:(

t1 :=
−x0

4(κ2
0 − η2

1)
, x1 := 4η2

1t1

)
and

(
t2, xpeak( t2 )

)
for some t2 > t1 such that

xpeak( t2 )

t2
= v2 ,

where v2 is the solution of the Whitham equation for α = η2
2 (see (4.4)). For t > t2, the soliton enters

the constant elliptic wave region. The same arguments that will be explained below still hold, but the
quantity α will be constant for all values of x/t > v2.

Computing the position of the soliton peak as it travels through the elliptic background is complicated by
the existence of the many local extrema of the background; computing the maximum as a roots of qx = 0 is
inefficient as this also characterizes the (infinitely many) local extrema of the background. To account for
this, we introduce the following change of coordinates which put us into a slowly varying reference frame,
following the characteristic lines of the phase of the background wave. Evolving along these characteristics
the background wave is slowly varying. This will allow us to identify the unique global maximum (i.e.
the soliton peak) via straightforward calculations. For x and t satisfying inequalities (6.6), we introduce
the following coordinate system:

(6.7)
s(x, t) = s := Ω(x, t) + ∆(x/t) ,

τ(t) = τ := t.

Lemma 6.1. The mapping (6.7) is well defined for (x, t) satisfying (6.6), and it is invertible:

det
∂(s, τ)

∂(x, t)
=
∂s

∂x
6= 0 .

Proof. The inequalities (6.6) guarantee that Ω is well defined, therefore the change of coordinates makes
sense. From (4.20) and the fact that ∂αϕ(k;x, t) ≡ 0 for α satisfying the Whitham equation, we have
∂αΩ = 0, therefore

(6.8)

∂s

∂x
=

∂

∂x
[tΩ2(α(v)) + xΩ0(α(v)) + ∆(v)]

= Ω0(α(v)) +
1

t
∆′(v) =

πα(v)

K(m)
+

1

t
∆′(v) .

where ′ refers to the derivative with respect to the variable v := x/t. Notice now that Ω0 = πα
K(m) > 0 for

m ∈ [0, 1) (see (4.8)) and ∆(v) is bounded, therefore ∂s
∂x > 0, for large enough t and α > η1. �

At t = t1 and for any x > x1, we can identify a corresponding value of s = s(x, t1) and follow the
characteristic line s = constant. By keeping the value of s fixed, we then seek the maximizer τ(s) for
the leading order behavior (5.22) for the solution q(s, τ). It is clear that as we change τ , the quantity
x, as well as α = α(x(s, τ)/τ), deform so as to hold s fixed, therefore in the physical coordinates (x, t),
this setting will account for the background gas qbg to be slowly varying, while the soliton qsol is passing
through it.

The change of coordinates (6.7) gives

(6.9)

∂x

∂s
=

1

Ωx + t−1∆′
,

∂t

∂s
= 0

∂

∂s
=

1

Ωx + t−1∆′
∂

∂x
,

∂x

∂τ
= −Ωt − t−1v∆′

Ωx + t−1∆′
,

∂t

∂τ
= 1

∂

∂τ
=

∂

∂t
+
∂x

∂τ

∂

∂x

In particular, ∂τv = τ−1 (−v + xτ ) = O
(
τ−1

)
.
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From the explicit formula of qbg (5.23) and qsol (5.24) and the RH problem 6, it is clear that the background
and soliton components of (5.22) can be written as

(6.10) qbg(x, t) = Fbg(s, α(v)) , qsol(x, t) = Fsol(s, α(v), χ̂(x, t)) ,

where χ̂(x, t) := χf−(iκ0;α(v))2e−2iϕ(iκ0;x,t).

Following similar calculations as in the Section above, we can simplify the expression (5.16) of Q(−)
(x, t)

appearing in the definition of qsol:

Q(−)
(x, t) =

(γ(iκ0)2 − 1)

(γ(iκ0)2 + 1)

θ3(A(iκ0)− 1
4 −

Ω+∆
2π ; τ)

θ4(A(iκ0)− 1
4 −

Ω+∆
2π ; τ)

θ3(A(iκ0) + 1
4 ; τ)

θ4(A(iκ0) + 1
4 ; τ)

=
(γ(iκ0)2 − 1)

(γ(iκ0)2 + 1)

θ3(0; τ)2

θ4(0; τ)2

1−
√
m sn2

(
2K(m)(A(iκ0)− 1

4 −
Ω+∆

2π ),m
)

1 +
√
m sn2

(
2K(m)(A(iκ0)− 1

4 −
Ω+∆

2π ),m
) 1−

√
m sn2

(
2K(m)(A(iκ0) + 1

4),m
)

1 +
√
m sn2

(
2K(m)(A(iκ0) + 1

4),m
)

which simplifies to

Q(−)
(x, t) =

(γ(iκ0)2 − 1)

(γ(iκ0)2 + 1)

(α+ η1)

(α− η1)
dn
(

2K(m1)(A(iκ0) + 1
4),m1

)
dn
(
2K(m1)(A(iκ0)− 1

4 −
Ω+∆

2π ),m1

)
.

(6.11)

The first elliptic function dn in the expression above is a slowly evolving envelope oscillation and since
−1

4 < A(iκ0) ≤ 0, dn
(
2K(m1)(A(iκ0) + 1

4),m1

)
∈
(
(1−m1)1/4, 1

)
. The second dn has a period of

O (1), therefore dn
(
2K(m1)(A(iκ0)− 1

4 −
Ω+∆

2π ),m1

)
∈
[√

1−m1, 1
]
. Since 0 < γ(iκ0) < 1 and α > η1,

it follows that Q(−)
(x, t) is strictly negative; more precisely,

(6.12) Q(−)
(x, t) ∈

(
−1− γ(iκ0)2

1 + γ(iκ0)2

(
α+ η1

α− η1

)
,−1− γ(iκ0)2

1 + γ(iκ0)2

√
α− η1

α+ η1

)
.

Furthermore, we notice that while the right endpoint of the range of Q(−)
is bounded within the interval

(−1, 0) for κ0 > α and α ∈ (η1, η2], the left endpoint is a strictly decreasing function of κ0 for κ0 > α,
with absolute minimum −α+η1

α−η1 < −1 for κ0 → α. Therefore, there exists a unique value κcrit such that

for any κ0 < κcrit, the equation

Q(−)
(x, t) = −1

will have two solutions per period. Such a value can be computed explicitly:

(6.13) κcrit = α

[
1 +m+

√
(1 +m)2 + 4

√
m(1 +

√
m)2

2(1 +
√
m)

]
.

From now on we will assume κ0 > κcrit. Applying the change of variables (6.7) to (6.10), we have

(6.14)

∂qbg

∂τ
= ∂τv

∂α

∂v

∂Fbg

∂α
= O

(
τ−1

)
,

∂qsol

∂τ
= ∂τv

∂α

∂v

∂Fsol

∂α
+
∂χ̂

∂τ

∂Fsol

∂χ̂
=
∂χ̂

∂τ

∂Fsol

∂χ̂
+O

(
τ−1

)
,

and

∂χ̂

∂τ
= ∂τv 2χf−(iκ0;α(v))e−2iϕ(iκ0;x,t)∂α

∂v

∂f−
∂α
− 2iχ̂

(
ϕt −

Ωt − t−1v∆′

Ωx + t−1∆′
ϕx

)
= −2iχ̂

(
ϕt −

Ωt

Ωx
ϕx

)
+O

(
τ−1

)
= −8κ0R(iκ0;x(s, τ), τ)χ̂+O

(
τ−1

)
,(6.15)
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where we have used (4.8) and (6.1)–(6.3) to simplify the expression. Therefore, for all sufficiently large
τ , we have

(6.16)

∂q

∂τ
= −8κ0R(iκ0;x(s, τ), τ)χ̂

∂Fsol

∂χ̂
+O

(
τ−1

)
= −8κ0R(iκ0;x(s, τ), τ)

w22(x(s, τ), τ)2χ̂

2
[
1− (Q(−)

)2
]

(X
(−) −X1)(X

(−) −X2)(
(X

(−)
)2 + (Y

(−)
)2
)2 +O

(
τ−1

)
,

where

(6.17) X1 =
1−Q(−)

1 +Q(−)
Y

(−)
, X2 = −1 +Q(−)

1−Q(−)
Y

(−)
,

and X
(−)

and Y
(−)

are given in (5.18). Thus, up to O(τ−1) terms, we found two critical points of q, given

by the implicit equations X
(−)

= X1 and X
(−)

= X2.

By a similar calculation, the second derivative of q(s, τ) evaluated at X1 and X2 is

(6.18)

∂2q

∂τ2

∣∣∣∣
X(−)=X`

= (−1)`
(

8κ0R(iκ0;x(s, τ), τ)

w22(x(s, τ), τ)2χ̂

)2 2
[
1− (Q(−)

)2
]

(X1 −X2)

(X2
` + Y (−)2

)2
+O

(
τ−1

)
= (−1)`

(
8κ0R(iκ0;x(s, τ), τ)

w22(x(s, τ), τ)2χ̂

)2 8κ0(Y
(−)

)2(
X2
` + (Y

(−)
)2
)2 +O

(
τ−1

)
,

` = 1, 2, which is strictly nonzero. Thus q has an (approximate) maximum at X1 and minimum at X2.

Such solutions X1, X2 are still expressed in terms of the dependent variable Q(−)
and in the moving

frame (s, τ), however existence of a global maximum in the physical (x, t)-coordinates is established in
Theorem 2.7 that we are going to prove. For our convenience, we state and prove below Theorem 6.2 that
is a more extended version of Theorem 2.7.

Theorem 6.2. For χ > 0 and x0 � −1, there exists a κ̃ > κcrit (see (6.13)) , such that for all κ0 > κ̃
there exists a unique, continuous, global maximum xpeak(t) of the solution q which identifies the position
of the soliton peak for all t > 0. For any (x, t) satisfying the inequalities (6.6), xpeak(t) = x∗(t) +O

(
t−1
)

where x∗(t) is implicitly defined as the solution of

(6.19) X
(−)

(x∗(t), t) =
1−Q(−)

(x∗(t), t)

1 +Q(−)
(x∗(t), t)

1 +Q(−)
(x∗(t), t)2

2κ0
.

where Q(−)
is given in (6.11). The amplitude of the solution at the maximum is given by

q(xpeak(t), t) = qbg(x∗(t), t) + 2κ0

[
1 +

2Q(−)
(x∗(t), t)

1 +Q(−)
(x∗(t), t)2

]
+O

(
t−1
)
.

This global maximum, xpeak(t), is strictly increasing, and satisfies:

(i) for t ∈ (0, t1), xpeak(t) = x0 + 4κ2
0t;

(ii) for t > (1 + ε)t1 (for some small positive ε),

(6.20) ẋpeak(t) = − 2ϕ2(iκ0)− ∂t ln Ψ(x, t;κ0, η1)

2ϕ0(iκ0)− ∂x ln Ψ(x, t;κ0, η1)

∣∣∣
x=xpeak(t)

+O
(

1

t

)
.

Here Ψ is defined by (6.23).

Finally, for t > (1 + ε)t1, let T be the time it takes the soliton peak xpeak(t) to traverse one period
of the elliptic background wave qbg(x, t). Then the average velocity of the soliton peak over the
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period satisfies

(6.21)
1

T

∫ t+T

t
ẋpeak(s) ds =

xpeak(t+ T )− xpeak(t)

T
= v̄sol(κ0) +O

(
t−1
)
, v̄sol(κ0) := −ϕ2(iκ0)

ϕ0(iκ0)
.

Moreover, the leading order term for the averaged soliton velocity satisfies

v̄sol(κ0) = 4κ2
0 +

1

κ0

∫ α

η1

ln

∣∣∣∣κ0 − s
κ0 + s

∣∣∣∣(vgroup(s)− v̄sol(κ0)) ∂xρ(is) ds .

which we recognize as the kinetic equation for the average velocity of an mKdV soliton analogous
to those described in [El03; EK05; ET20] for other evolution equations.

Remark 6.3. The condition χ > 0, in the above theorem is strictly for convenience. Physically, this
means we are tracking the position of a trial soliton as it interacts with the soliton gas. The cases χ < 0,
corresponds to an anti-soliton of mKdV, and an analogous result can be proved where the equation for the
global minimum; specifically one can show xmin(t) = x∗(t) +O

(
t−1
)

where x∗(t) is implicitly encoded in

the condition X
(−)

(x∗(t), t) = X2(x∗(t), t) (c.f. (6.17)).

Remark 6.4. The condition that κ0 be sufficiently large in Theorem 6.2 is not merely a technical condi-
tion. For iκ0 ≈ iη2, we see numerically that the position of the global maximum xpeak(t) is not continuous.
One observes, that as the soliton attempts to crest a peak of background wave it loses amplitude while the
incident peak of the background peak grows; if κ0 is sufficiently small, then there exists a critical time at
which two amplitudes—of the soliton and the incident peak of the background—are equal. Evolving past
the critical time, the global maximum jumps forward emerging out of the incident peak, while the former
maximum settles into the background wave. See Figure 13. This phenomenon was already foreseen and
analysed by Lax in [Lax68], for a simple two-soliton interaction.

Proof of Theorem 6.2. The behavior of the peak for x < t1 − ε is trivial since q(x, t) = 2κ0 sech(2κ0(x−
x0−4κ2

0t))+O
(
e−ct

)
for some constant c > 0. For (x, t) in the modulation region we use (4.1) and (5.18),

to rewrite the equation X
(−)

= X1 in the new (s, τ) coordinates as

P (s, τ) := 2iϕ(iκ0;x(s, τ), τ) + 2κ0x0 − ln Ψ(x(s, τ), τ ;κ0, η1) = 0,(6.22)

where

(6.23) Ψ(x, t) := f(iκ0)2w22(x, t)2

[
1−Q(−)

(x, t)

1 +Q(−)
(x, t)

[
1 +Q(−)

(x, t)2
]
− 2κ0Q

(−)

κ0 (x, t)

]
Using (6.1), we can expand

(6.24) P (s, τ) = 2τ
√

(κ2
0 − α2)(κ2

0 − η2
1)

4κ0 −
1

κ0

Π
(
η21
κ20
,m
)

K(m)

(
x(s, τ)

τ
− 2(η2

1 + α2)

)
+ 2κ0x0 − ln Ψ(s, τ ;κ0, η1)

Here the reason for the change of variables (x, t) 7→ (s, τ) reveals itself: it’s straightforward to check that
∂τΨ(s, τ) = O

(
τ−1

)
. Furthemore from Remark 4.4 we have ∂αϕ = 0 so that a short computation shows

that

∂xϕ = −Ωx

Ωt
(4iκ0R(iκ0)− ϕt)

and (6.9) and (4.8) imply ∂x
∂τ = −Ωt/Ωx +O

(
t−1
)

so that

∂τP (s, τ) = 2i[∂xϕ∂τx+ ∂tϕ]− ∂τΨ

Ψ
= 8κ0

√
(κ2

0 − α2)(κ2
0 − η2

1) +O
(
t−1
)
> 0.

As the first bracketed term in (6.24) is linear in τ , while the remaining terms are bounded ensures that
the equation P (s, τ) = 0 has a unique solution τ∗(s) for each fixed s in the modulation region.
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Figure 13. Demonstration of discontinuities in the location of xpeak(t) when the soliton
eigenvalue iκ0 is near the soliton gas spectral band [iη1, iη2]. Left : Evolution of q(x, t) at
times t∗ + ∆t around a time t∗ = 503.17 at which the global max becomes multivalued.
Right : Computation of xpeak(t) as a function of time. In both figures we have η1 =
0.25, η2 = 0.75, κ = 0.8 and χ = 1.6e−320.

Now differentiating with respect to s one finds that

∂sP = −2

√
(κ2

0 − α)(κ2
0 − η2

1)

πακ0
Π

(
η2

1

κ2
0

,
η2

1

α2

)
+ ∂s ln Ψ(x(s, τ), τ ;κ0, η1)

where ∂sΨ is quite complicated but bounded. The first term in ∂sP is an increasing, asymptotically linear,
function of κ0, while the second term is a bounded function of κ0. In fact, the calculation in Section 5.3
show that ∂s ln Ψ = O

(
κ−1

0

)
as κ0 →∞. So for all sufficiently large κ we have ∂sP 6= 0, so we can invert

the unique solution τ∗(s) to get s∗(τ). The function x∗(t) is then given by x∗(t) = x(s∗(t), t)). This
establishes the existence of the solution x∗(t) of (6.19). The existence of the global maximum xpeak(t) for

q(x, t) then follows from the Implicit Function Theorem, as ∂2
τ q does not vanish at X

(−)
= X1.

We then compute an expansion for ẋpeak by first observing that ẋpeak = ẋ∗ + O
(
t−1
)
, and ẋ∗ can be

computed by differentiating the condition P (x∗(t), t) = 0 with respect to t:

ẋ∗(2iϕx − ∂x ln Ψ) + 2iϕt − ∂t ln Ψ = 0.

Solving for ẋ∗ gives the desired result.

To complete the proof we consider, for t > t1 + ε, the average of the soliton velocity ẋpeak(t) over a period
of the background wave qbg(x, t). First we observe that as xpeak(t) = x∗(t) + O

(
t−1
)
, the leading order

term v̄sol(κ0) in (6.21) can be computed from the difference of x∗(t) over a period of the background.
From (6.22) we have

(6.25) 2iϕ(iκ0;x∗(t), t) = −2κ0x0 + ln Ψ(x∗(t), t;κ0, η1)

for all t > t1 + ε. When t > t2, the right hand side of this equation is periodic. This implies that
ϕ(iκ0;x∗(t+ T ), t+ T ) = ϕ(iκ0;x∗(t), t) or equivalently

(t+ T )ϕ2(iκ0) + x∗(t+ T )ϕ0(iκ0) = tϕ2(iκ0) + x∗(t)ϕ0(iκ0)

solving this for the difference x∗(t + T ) − x∗(t) gives the result. For t ∈ (t1 + ε, t2], x∗(t) still satisfies
(6.25), but the right hand side is only quasi-periodic due to the slow modulation of the wave parameters
as α(x∗(t)/t) varies for t ∈ (t1, t2). However, the evolution of Ψ with respect to the slow parameters
only introduces changes of order O

(
t−1
)

since ∂τΨ = O
(
t−1
)
. So treating Ψ as exactly periodic in the

modulation domain only introduces errors at the level of the first correction O
(
t−1
)
. �

Appendix A. Solvability of the Riemann–Hilbert problem for X

Theorem A.1. Given a function r ∈ L2(Σ1) Riemann–Hilbert problem 1 is uniquely solvable for all
(x, t) ∈ R2. Moreover, the function q(x, t) defined in (2.9) is a classical solution to the mKdV equation
(1.1), which belongs to the class C∞(Rx × Rt).
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Proof. First we prove the existence of solutions to RHP 1. Let Σ̂1 and Ciκ0 be non-intersecting, simple

closed closed in C+ enclosing Σ1 and k = iκ0 respectively. Orient the contours positively. Let Σ̂2 and

C−iκ0 be complex conjugate contours (with negative orientation) so that ΓY := Σ̂1 ∪ Σ̂2 ∪ Ciκ0 ∪ C−iκ0 is
Schwarz symmetric, ΓY = ΓY .

Given a function r : Σ1 → R in L2(Σ1) define the analytic function

(A.1) F (k) =
1

2πi

∫
Σ1

ir(ξ)

ξ − k
dξ, k ∈ C \ Σ1.

For k ∈ Σ1, it follows from the Sokhotski–Plamelj formula that F+(k)− F−(k) = r(k). Morover, since r
is real-valued we have

(A.2) F (k̄) = − 1

2πi

∫
Σ2

ir(ξ̄)

ξ − k
dξ, k ∈ C \ Σ2,

where the minus sign comes from the fact that Σ2 = Σ1 as a set but has opposite orientation.

Using F , make the following transformation X 7→ Y , which deforms the jumps of X onto the closed
contour ΓY where the jump matrices are analytic. Define

(A.3) Y (k;x, t) =



X(k;x, t)

[
1 0

−F (k)e−2iθ(k;x,t) 1

]
k ∈ int

(
Σ̂1

)
X(k;x, t)

[
1 0

iχ
k−iκ0 e

−2iθ(k;x,t) 1

]
k ∈ int (Ciκ0)

X(k;x, t)

[
1 F (k̄)e2iθ(k;x,t)

0 1

]
k ∈ int

(
Σ̂1

)
X(k;x, t)

[
1 iχ

k−iκ0 e
2iθ(k;x,t)

0 1

]
k ∈ int (Ciκ0)

X(k;x, t) elsewhere

A straight forward calculation shows that the new unknown Y satisfies the following problem

Riemann–Hilbert problem 7. Find a 2× 2 matrix-valued function Y ( · ;x, t) with the following prop-
erties:

1. Y (k;x, t) is holomorphic for k ∈ C \ ΓY .

2. Y (k;x, t) = I +O
(
k−1

)
as k →∞,

3. For k ∈ ΓY , the boundary values Y±(k;x, t) satisfy Y+(k) = Y−(k)JY (k;x, t), where

JY (k;x, t) =



[
1 0

F (k)e−2iθ(k;x,t) 1

]
, k ∈ Σ̂1,[

1 F (k̄)e2iθ(k;x,t)

0 1

]
, k ∈ Σ̂1,[

1 0

− iχ
k−iκ0 e

−2iθ(k;x,t) 1

]
k ∈ Ciκ0[

1 iχ
k−iκ0 e

2iθ(k;x,t)

0 1

]
k ∈ Ciκ0

(A.4)

The jump matrix JY (k;x, t) is analytic for k ∈ ΓY , and the symmetries ΓY = ΓY and JY (k;x, t) =
J(k̄;x, t)† are clearly satisfied, so Zhou’s vanishing lemma [Zho89, Theorem 9.3] can be applied to conclude
that a unique solution of RH problem 7 exists. Inverting the transformation from X to Y it follows that
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there exists a unique solution X(k;x, t) of RH problem 1 as well. Uniqueness of the solution follows from
a standard Liouville type argument.

To see that the solution Y (k;x, t) has derivatives of all orders in x and t one can differentiate the jump
relation (A.4) to derive non-homogenous RH problems for the derivatives (DnY )(k;x, t) where D denotes
either ∂

∂t or ∂
∂x . The resulting RH problem takes the from:

Riemann–Hilbert problem 8. Given n ∈ N, find a 2× 2 matrix-valued function DnY ( · ;x, t) with the
following properties:

1. (DnY ) (k;x, t) is holomorphic for k ∈ C \ ΓY .

2. (DnY ) (k;x, t) = O
(
k−1

)
, as k →∞

3. For k ∈ ΓY , the boundary values of (DnY ) (k;x, t) satisfy the jump relation

(A.5)

(DnY )+ (k;x, t) = (DnY )− (k;x, t)JY (k, ;x, t) + Fn(k;x, t),

Fn(k;x, t) :=

n∑
`=1

(
n

`

)(
Dn−jY

)
(k;x, t)

(
DjJY

)
(k;x, t)

It is a well-known result in the theory of RH problems that the inhomogenous problem M+(k) =
M−(k)J(k) + F (k), k ∈ Γ, with M(k) → 0 as k → ∞ has a unique solution in Lp(Γ), 1 < p < ∞
whenever F ∈ Lp(Γ) and there exists a unique solution of the associated homogenous problem M̃+(k) =

M̃−(k)J(k), k ∈ Γ, with M̃(k) → I as k → ∞. In our setting, the associated homogenous problem is
precisely the RH problem for Y for which we know a unique solution exists. Observing that DnJY (k, x, t)

is analytic for k ∈ ΓY , a simple induction argument shows F (n)(k;x, t) is analytic for any n. Since ΓY is
compact, analyticity of Fn implies it is in Lp. It follows that Y has derivatives of all orders in x and t.
Finally since Y (k) = X(k) for all sufficiently large k, it follows that

q(x, t) = lim
k→∞

kY1,2(k;x, t)

lies in C∞(Rx×Rt). Finally, one shows that q(x, t) solves the mKdV equation (1.1) by a standard Lax-pair
argument. See for example step 4 of the proof in [GM20, Theorem 2.7]. �

Appendix B. Fredholm determinant expression for the the KdV soliton + soliton gas

The KdV soliton gas, with the possible presence of a separate soliton, is very similar to the mKdV case
analyzed in the main body of this paper. The pure N -soliton solution of the KdV equation ([GT09]) is
defined in terms of a 2-dimensional row vector m such that

1. m(k;x, t) is meromorphic in C, with simple poles at {iκj}Nj=1 ⊂ iR+ and at the corresponding

conjugate points {−iκj}Nj=1 ⊂ iR−;

2. m satisfies the residue conditions

(B.1)

Res
k=iκj

m(k) = lim
k→iκj

m(k)

[
0 0

iχje
2i θ(k;x,t) 0

]
,

Res
k=−iκj

m(k) = lim
k→−iκj

m(k)

[
0 −iχje−2i θ(k;x,t)

0 0

]
,

where θ(k, x, t) = kx− 4tk3 and the norming constants χj ∈ R+;

3. m(k) =
[
1 1

]
+O

(
1

k

)
as k →∞,

4. m satisfies the symmetry

m(−k) = m(k)

[
0 1
1 0

]
.
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The KdV solution then reads

qN (x, t) = 2∂x

(
lim
k→∞

k

i
(m(k;x, t)1 − 1)

)
= 2 ∂x

(
N∑
k=1

αk(x, t)

)
,(B.2)

where the second identity follows from the ansatz

m(k;x, t) =

1 +
N∑
j=1

iαj(x, t)

k − iκj
, 1−

N∑
j=1

iαj(x, t)

k + iκj

 .(B.3)

Plugging the ansatz into the residue conditions gives a system of equations that yields

N∑
k=1

αk(x, t) = −Tr

(
(IN +A)−1 ∂

∂x
A

)
= − ∂

∂x
ln det (IN +A)(B.4)

where the matrix A has entries

Aj` =

√
χj
√
χ`e

i(θj(x,t)+θ`(x,t))

κj + κ`
,

with θj = θ(iκj ;x, t). Thus,

qN (x, t) = −2
∂2

∂x2
ln det (IN +A) .(B.5)

As in the mKdV case, by rescaling χj 7→ χj
N and taking the limit N → ∞ (under the same assump-

tions on the norming constants χj ’s), we obtain that the matrix determinant converges to a Fredholm
determinant

q(x, t) = −2
∂2

∂x2
ln det

(
IdL2(Σ1) +K

)
with integral operator

K [f ] (k) =

∫
Σ1

√
r(k)

√
r(ξ)

ei(θ(k;x,t)+θ(ξ;x,t))

k + ξ
f(ξ)

dξ

2π
(B.6)

where Σ1 = i(η1, η2). Finally, it is straightforward to verify that (see again [BC12])

q(x, t) = −2∂x

(
1

2

∫
Σ1∪Σ2

Tr
(
Γ−1
− Γ′−∂xJJ

−1
) dk

2πi

)
= 2 ∂xΓ1;11

where Γ is the RH problem solution of the KdV soliton gas found in [Gir+21].

In the presence of an extra soliton, the solution can also be written as a Fredholm determinant.

Theorem B.1. The function

q(x, t) = −2
∂2

∂x2
ln det

(
IdL2(C) +K

)
(B.7)

is the soliton + soliton gas solution of the KdV equation, where the integral operator K has kernel

K(k, z) :=

√
r̃(k)ei θ(k;x,t)

√
r̃(z)eiθ(z;x,t)

2π(k + z)
, k, z ∈ C .(B.8)

where C = Σ1∪C0, with C0 being a small loop (oriented counterclockwise) circling the extra pole iκ0 ∈ iR+

and not intersecting the real line nor Σ1, and the function r̃(k) is defined as r̃(k) = r(k) for k ∈ Σ1

(described in (3.13)) and r̃(k) = χ0

k−iκ0 for k ∈ C0.
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