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HEAT FLOW IN A PERIODICALLY FORCED,

THERMOSTATTED CHAIN

TOMASZ KOMOROWSKI, JOEL L. LEBOWITZ, AND STEFANO OLLA

Abstract. We investigate the properties of a harmonic chain in contact with
a thermal bath at one end and subjected, at its other end, to a periodic force.
The particles also undergo a random velocity reversal action, which results
in a finite heat conductivity of the system. We prove the approach of the
system to a time periodic state and compute the heat current, equal to the
time averaged work done on the system, in that state. This work approaches
a finite positive value as the length of the chain increases. Rescaling space,
the strength and/or the period of the force leads to a macroscopic temperature
profile corresponding to the stationary solution of a continuum heat equation
with Dirichlet-Neumann boundary conditions.

1. Introduction

The conversion of mechanical energy to heat, accompanied by the production
of entropy, is a very common phenomenon in nature. It occurs on all scales of
space and time: from ocean tides to the movement of a charged particle in a
fluid under the influence of an electric field. It happens each time we rub our
hands or scratch our head. A fully microscopic description of the phenomenon is
desirable but very complicated. Here we study an example of this phenomenon in
a very simple microscopic model system. In particular, we consider a linear chain
(system) of n + 1 particles, labelled by x = 0, . . . , n, in contact with a thermal
reservoir at one end and acted upon by a periodic force at its other end.

The interaction of the system with the reservoir is stochastic, modeled as usual
by an Ornstein-Uhlenbeck process (the Langevin force). The action of the ex-
ternal force on the other hand, is deterministic described by a time periodic
Hamiltonian. There is also a stochastic velocity flip acting on the particles of
the system to model non linear interactions, inducing a diffusive behaviour of the
energy and producing a finite heat conductivity.
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We prove the existence of a unique periodic state approached, as t → +∞,
from any initial state. The average work done on the system over a period
is equal to the time averaged heat flux, Jn, going into the reservoir. This is
computed explicitly for all n. The diffusive behaviour of the energy implies that
the heat flux Jn is proportional to the microscopic gradient ot the temperature.
To maintain a spatially constant time averaged macroscopic current J in the limit
n→∞ one needs to have a spatially constant time averaged temperature gradient
proportional to J . This can be achieved by appropriately scaling the force and/or
period θn as a function of n. This leads to a macroscopic spatial temperature
profile T (u), where u = x/n ∈ [0,1] is the scaled spatial coordinate, given by the
stationary solution of the heat equation with a fixed temperature T (0) = T− (the
temperature of the heat reservoir that is placed at the left endpoint of the chain)
and a fixed energy current J entering the system on the right, u = 1 (where the
periodic force is applied). The thermal conductivity κ in the heat equation can
be computed explicitly by the Kubo formula for this system (see [2] as well as the
comments in Section 10). It is independent of the temperature, so, as a result,
T (u) is linear in u, with κT ′(u) = −J . As already mentioned above, it is the
presence of the stochastic flip in the bulk that is responsible for the conversion
of the work done by the periodic force into heat that is diffusively transported
through the system. Detailed study of the thermalization in the bulk for such
stochastic dynamics has been studied in [14].

We note that our setting differs from the typical setup, in which the stationary
macroscopic energy transport has been studied. E.g. in [16, 11, 5, 3] the chain is
placed between heat baths at different temperatures. The stationary temperature
profile depends then on the boundary temperatures. As far as we know, the
present article is the first to derive a rigorous macroscopic limit for a system in
a periodic state induced by a periodic external force. Periodic states of a system
under external periodic forcing have been previously considered in [13].

1.1. Description of the model. The configuration of particle positions and
momenta are described by

(q,p) = (q0, . . . , qn, p0, . . . , pn) ∈ Rn+1
×R

n+1. (1.1)

We should think of the positions qx as relative displacement from a point, say x
in a finite lattice {0,1, . . . , n}. The total energy of the chain is defined by the
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Hamiltonian: Hn(q,p) ∶=∑n
x=0 Ex(q,p), where the microscopic energy is given by

Ex(q,p) ∶= p2x
2
+
1

2
(qx − qx−1)2 + ω2

0q
2
x

2
, x = 0, . . . , n, (1.2)

with the pinning constant ω0 > 0. We adopt the convention that q−1 ∶= q0.
The microscopic dynamics of the process {(q(t),p(t))}t⩾0 describing the total

chain is given in the bulk by

9qx(t) = px(t), x ∈ {0, . . . , n},
dpx(t) = (∆Nqx − ω

2
0qx)dt − 2px(t−)dNx(γt), x ∈ {1, . . . , n − 1}, (1.3)

and at the boundaries by

dp0(t) = (q1(t) − q0(t) − ω2
0q0)dt − 2γp0(t)dt +√4γT−dw̃−(t) (1.4)

dpn(t) = (qn−1(t) − qn(t) − ω2
0qn(t))dt +Fn(t)dt − 2pn(t−)dNn(γt).

Here ∆N is the Neumann discrete laplacian, corresponding to the choice qn+1 ∶= qn
and q−1 = q0. We assume that the forcing Fn(t) is θn-periodic, with the period
θn = nbθ, and the amplitude na, i.e.

Fn(t) = naF ( t
θn
) . (1.5)

Here θ > 0 and the scaling exponents a ∈ R, b ⩾ 0 are to be adjusted later. We
assume F(t) is a smooth 1-periodic function such that

∫ 1

0
F(t)dt = 0, ∫ 1

0
F(t)2dt > 0. (1.6)

Processes {Nx(t)}, x = 1, . . . , n are independent, Poisson of intensity 1, while
w̃−(t) is a standard one dimensional Wiener process, independent of the Poisson
processes. The parameter γ > 0 regulates the intensity of the random perturba-
tions and the Langevin thermostat. We have choosen the same parameter in order
to simplify notations, it does not affect the results concerning the macroscopic
properties of the dynamics.

The generator of the dynamics is given by

Gt = At + γSflip + 2γS−, (1.7)

where

At =

n∑
x=0

pxBqx +

n∑
x=0

(∆Nqx − ω
2
0qx)Bpx +Fn(t)Bpn , (1.8)

3
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and

SflipF (p,q) = n∑
x=1

(F (px,q) − F (p,q)), (1.9)

where F ∶ R2(n+1) → R is a bounded and measurable function, px is the velocity
configuration with sign flipped at the x component, i.e. px = (p′0, . . . , p′n), with
p′y = py, y /= x and p′x = −px. Furthermore,

S− = T−B
2
p0
− p0Bp0. (1.10)

The energy currents are given by

GtEx = jx−1,x − jx,x+1, (1.11)

with
jx,x+1 ∶= −px(qx+1 − qx), if x ∈ {0, ..., n − 1}

and at the boundaries

j−1,0 ∶= 2γ (T− − p20), jn,n+1 ∶= −Fn (t)pn. (1.12)

1.2. Main results. Our first result concerns the existence and uniqueness of a
periodic stationary state for the system. Fix n ⩾ 1. Following [8] Section 3.2,
we define a periodic stationary probability measure {µP

t , t ∈ [0,+∞)} as a solution
of the forward equation Btµ

P
t = G∗t µP

t such that µP
t+θn
= µP

t . This condition is
equivalent to

∫ θn

0
ds∫

R2(1+n)
GsF (r,p)µP

s (dq,dp) = 0, (1.13)

for any smooth test function F ∶ R2(n+1) → R.
Suppose that {(q(t),p(t))}t⩾0 is the solution of (1.3)-(1.4) initially distributed

according to µP
0 . Given a measurable function F ∶ R2(n+1) → R integrable w.r.t.

each measure {µP
s , s ∈ [0,+∞)} we denote

F (t) ∶= EF(q(t),p(t)) = ∫
R2(n+1)

F (q,p)µP
t (dq,dp), t ⩾ 0, (1.14)

where E is the expectation w.r.t. P - the probability measure corresponding to the
noises and with initial data distributed by µP

0 . The function F (t) is θn-periodic.
We denote its time average by

⟨⟨F ⟩⟩n ∶= 1

θn
∫ θn

0
F (t)dt. (1.15)

The subscript n in the notation of the average ⟨⟨⋅⟩⟩n will be sometimes omitted,
when it is obvious from the context.
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Theorem 1.1. For a fixed n ⩾ 1 there exists a unique periodic stationary state{µP
s , s ∈ [0,+∞)} for the system (1.3)-(1.4). The measures µP

s are absolutely con-
tinuous with respect to the Lebesgue measure dqdp and the density µP

s (dq,dp) =
fP
s (q,p)dqdp is strictly positive. Furthermore minx⟨⟨p2x⟩⟩n ⩾ T−.
The proof of the result is contained in Appendix A.
From (1.11) we conclude that the time averaged energy current ⟨⟨jx,x+1⟩⟩ is

constant for x = −1, . . . , n. Denote therefore

Ja,b
n ∶= ⟨⟨jx,x+1⟩⟩, x = −1, . . . , n. (1.16)

In particular

Ja,b
n = −

na

θn
∫ θn

0
F ( s

θn
)pn(s)ds = 2γ(T− − ⟨⟨p20⟩⟩). (1.17)

We prove, see Theorem 3.1 below, that if b − a = 1/2, a ⩽ 0 and b ⩾ 0 (recall that
θn = nbθ), then

nJa,b
n = J

a,b
+ o(1), as n → +∞, (1.18)

where Ja,b < 0 is a constant given by an explicit formula, see (3.3).
In our first main result, see Theorem 3.4 below, we prove the convergence of

the time averaged energy functional ⟨⟨Ex⟩⟩ to a linear macroscopic profile

T (u) = T− − 4γJu

D
, u ∈ [0,1],

where the constant D > 0 is given by formula (3.10).
Our second result, see Theorem 9.1 below, deals with the question of the van-

ishing of the fluctuations of the kinetic energy functional in the case when the
period of the force is of a fixed microscopic size. More precisely, supposing that
b = 0 and a = −1/2, we prove that there exists a constant C > 0 such that

n∑
x=0
∫ θ

0
(p2x(t) − ⟨⟨p2x⟩⟩)2 dt ⩽ Cn2

, n = 1,2, . . . (1.19)

1.3. About the proof. The macroscopic equation for the energy transport
emerges from an exact fluctuation-dissipation decomposition of the energy current

jx,x+1 = Gtfx − 1

4γ
∇Fx, (1.20)

5
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where Fx and fx are local second order polynomials in the variables {qx+j , px+j, j =
−1,0,1} (see (5.1), (5.2) and (5.3) for the precise definitions, valid also at the
boundaries). After taking the time average we obtain

⟨⟨jx,x+1⟩⟩ = − 1

4γ
∇⟨⟨Fx⟩⟩. (1.21)

Then we establish first (1.18), that takes care of the left hand side of (1.21), i.e.
n⟨⟨jx,x+1⟩⟩ → Ja,b. The explicit calculation involved in computing Ja,b rely only
on the first moments of the periodic states.

Note that the equilibrium average at temperature T of Fx equals DT (with
D > 0 given by (3.10)). Thus, all we need to prove is a kind of a local equilibrium
that allows to conclude that ⟨⟨F[nu]⟩⟩ ∼ DT (u), u ∈ [0,1]. This is the main part
of the work. It involves proving the convergence of the second moments of the
positions and momenta. The most difficult part is to establish an a priori upper
bound for the time average of the total energy that proves it does not grow faster
than the size of the system n (cf. (7.10)).

In Section 6 we derive a closed system of equations for the time averages of the
covariance matrix (6.17) that involves the discrete Neumann laplacian ∆N . After
performing some manipulations with these equation we obtain that the time ager-
aged position covariances are given by the Green’s function (ω2

0 −∆N)−1 (x,x′)
plus an error that is proportional to the averaged current, that is small (of order
O(1/n)). In the bulk we have that

(ω2
0 −∆N)−1 (x,x′) Ð→

n→∞
(ω2

0 −∆)−1 (x − x′). (1.22)

Here ∆ is the discrete laplacian on Z, that gives the covariance matrix of the
positions of the system in equilibrium. But in order to obtain the correct bounds
on the total energy we need a careful control the behavior of the Green’s function
at the boundaries, cf Lemma B.2 in Appendix B.

Once the energy bound is established, the next step is to prove local equilib-
rium, which is contained in Proposition 8.2. After this step the proof of the main
result follows directly, see Theorem 8.1.

In Appendix A we prove the existence of the periodic measure. The manip-
ulations done with the equations for the covariance matrix use some ideas from
[5]. The harmonic dynamics with self-consistent Langevin reservoirs considered
in that article has a similar covariance equations of the corresponding stationary
state, see Section 10.
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Section 9 contains the proof of the result concerning the vanishing size of time
variance of the kinetic energy, see Theorem 9.1. Appendix C is devoted to the
presentation of the proofs of auxiliary facts formulated in Section 9.

1.4. Acknowledgements. We warmly thank David Huse for very stimulating
discussions on the subject. The work of J.L.L. was supported in part by the
A.F.O.S.R. He thanks the Institute for Advanced Studies for its hospitality. T.K.
acknowledges the support of the NCN grant 2020/37/B/ST1/00426. S.O. has
been partially supported by the ANR-15-CE40-0020-01 grant LSD.

2. Some preliminaries and notation

2.1. The dynamics of periodic means. Define the averages in the periodic
state:

px(s) ∶= ∫
R2(n+1)

pxµ
P
s (dq,dp),

qx(s) ∶= ∫
R2(n+1)

qxµ
P
s (dq,dp), x = 0, . . . , n.

(2.1)

They satisfy

9qx = px,

9px = (∆N − ω
2
0)qx − 2γpx + δx,nFn (t) , x ∈ {0, . . . , n}. (2.2)

Here ∆N is the Neumann discrete laplacian, subject to the boundary condition
q−1 = q0, qn = qn+1. We can rewrite the above system using a matrix notation. Let

q(t) = ⎛⎜⎝
q0(t)
⋮

qn(t)
⎞⎟⎠ , p(t) = ⎛⎜⎝

p0(t)
⋮

pn(t)
⎞⎟⎠ .

and (q,p) be the vector of initial data. We can write that

( q(t)
p(t) ) = e−At ( q

p
) +∫ t

0
e−A(t−s) Fn (s) ep,n+1ds.

Here A is a 2 × 2 block matrix made of (n + 1) × (n + 1) matrices of the form

A = ( 0 −Idn+1

−∆N + ω
2
0 2γIdn+1

) (2.3)

7
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where Idn+1 is the (n + 1) × (n + 1) identity matrix. We also let eq,ℓ and ep,ℓ,
ℓ = 1, . . . , n+1 be the 1×2(n+1) column vectors whose components are given by

eq,ℓ,ℓ′ = δℓ,ℓ′ and ep,ℓ,ℓ′ = δn+1+ℓ,ℓ′ , ℓ′ = 1, . . . ,2n + 2. (2.4)

Proposition 2.1. The spectrum of matrix A is contained in the half plane Reλ >
0. Thus, there exists c > 0 such that

(λ +A)−1 = ∫ +∞

0
e−(λ+A)tdt (2.5)

is well defined in the half-plane Reλ > −c, with the integral on the right hand side
of (2.5) absolutely convergent.

The proof of the result can be found in Appendix A of [5].

2.2. Time harmonics of the periodic means. Consider the Fourier coeffi-
cients of the periodic means

p̃x(ℓ) = 1

θn
∫ θn

0
e−2πiℓt/θnpx(t)dt,

q̃x(ℓ) = 1

θn
∫ θn

0
e−2πiℓt/θnqx(t)dt, ℓ ∈ Z.

(2.6)

They satisfy

2πiℓ

θn
q̃x(ℓ) = p̃x(ℓ),

2πiℓ

θn
p̃x(ℓ) = (∆N − ω

2
0)q̃x(ℓ) − 2γp̃x(ℓ) + naF̃(ℓ)δx,n, x ∈ {0, . . . , n}. (2.7)

Here F̃(ℓ) = ∫ 1

0
e−2πiℓtF(t)dt. (2.8)

In the particular case when ℓ = 0 we have

⟨⟨qx⟩⟩n = q̃x(0) and ⟨⟨px⟩⟩n = p̃x(0) = 0, x = 0, . . . , n. (2.9)

The last equality follows from the first equation of (2.2). Combining the first and
the second equations of (2.7) we get

0 = −Ln
ω0,θn,ℓ

q̃x(ℓ) + naF̃(ℓ)δx,n, x = 0, . . . , n. (2.10)

Here

Ln
ω0,θ,ℓ

∶= [ω2
0 − (2πℓθ )

2

+ i
4πℓγ

θ
] −∆ (2.11)

8
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with the Neumann boundary conditions q̃−1(ℓ) = q̃0(ℓ), q̃n(ℓ) = q̃n+1(ℓ).
2.3. Green’s function corresponding to Ln

ω0,θ,ℓ
. Denote by Gn

ω0,θ,ℓ
(x, y) the

Green’s functions corresponding to Ln
ω0,θ,ℓ

. It is defined as the solution of

δx,y = L
n
ω0,θ,ℓ

Gn
ω0,θ,ℓ
(x, y), x, y = 0, . . . , n. (2.12)

This function is given explicitly by

Gn
ω0,θ,ℓ
(x, y) = n∑

j=0

ψj(x)ψj(y)
λj + ω

2
0 − (2πℓθ−1)2 + 4γπiℓθ−1 (2.13)

where λj and ψj are the respective eigenvalues and eigenfunctions for the discrete
Neumann laplacian −∆N. They are given by

λj = 4 sin
2 ( πj

2(n + 1)) , ψj(x) = (2 − δ0,j
n + 1

)1/2 cos(πj(2x + 1)
2(n + 1) ) , x, j = 0, . . . , n.

(2.14)

If ℓ = 0, then (2.13) defined the Green’s function of ω2
0 −∆N. We will denote it

by Gn
ω0
(x, y).

2.4. Green’s function of the lattice laplacian. Recall that the lattice gra-
dient and laplacian of any f ∶ Z → R are defined as ∇fx = fx+1 − fx and ∆fx =
fx+1 + fx−1 − 2fx, x ∈ Z, respectively.

Suppose that ω0 > 0. Consider the Green’s function of −∆ + ω2
0. It is given by,

see e.g. [12, (27)],

Gω0
(x) = (−∆ + ω2

0)−1 (x) = ∫ 1

0
{4 sin2(πu) + ω2

0}−1 cos(2πux)du (2.15)

=
1

ω0

√
ω2
0 + 4

⎧⎪⎪⎨⎪⎪⎩1 +
ω2
0

2
+ ω0

√
1 +

ω2
0

4

⎫⎪⎪⎬⎪⎪⎭
−∣x∣

, x ∈ Z.

2.5. Some notation. We adopt the following convention. For two sequences(an) and (bn) of real positive numbers we denote an ≈ bn, n ⩾ 1 if there exists
C > 1 such that C−1an ⩽ bb ⩽ Can, for all n ⩾ 1.

9
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3. Periodic stationary energy transport

3.1. Asymptotics of the time average of the mean current. Our first result
gives an explicit formula for the asymptotics of the time average of the mean
current. In what follows we shall also be concerned with the functional

Ia,bn ∶=
na

θn
∫ θn

0
qn(t)F(t/θn)dt, (3.1)

therefore we give its exact asymptotics, as n→ +∞.

Theorem 3.1. Suppose that ∑ℓ ℓ
2∣F̃(ℓ)∣2 < +∞ and

b − a =
1

2
, a ⩽ 0 and b ⩾ 0. (3.2)

Then,

lim
n→+∞

nJa,b
n = J

a,b
∶= −(2π

θ
)2∑

ℓ∈Z

ℓ2Qa,b(ℓ), (3.3)

with Qa,b(ℓ) given by, cf (2.8),

Q−1/2,0(ℓ) = 4γ∣F̃(ℓ)∣2 ∫ 1

0
cos2 (πz

2
)⎧⎪⎪⎨⎪⎪⎩[4 sin

2 (πz
2
) + ω2

0 − (2πℓθ )
2]2 + (4γπℓ

θ
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz

(3.4)
and

Qb−1/2,b(ℓ) = 4γ∣F̃(ℓ)∣2∫ 1

0
cos2 (πz

2
) [4 sin2 (πz

2
) + ω2

0]−2 dz, when b > 0. (3.5)

Furthermore, we have

I
a,a−1/2
n = Ia,a−1/2n2a

+ o(n2a), (3.6)

where

I0,−1/2
∶= 2∑

ℓ

∣F̃(ℓ)∣2 ∫ 1

0
cos2 (πz

2
){4 sin2 (πz) + [ω2

0 − (2πℓθ )
2]}

×

⎧⎪⎪⎨⎪⎪⎩[4 sin
2 (πz

2
) + ω2

0 − (2πℓθ )
2]2 + (4γπℓ

θ
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz

and for b > 0

Ib−1/2,b
∶= 2∑

ℓ

∣F̃(ℓ)∣2∫ 1

0
cos2 (πz

2
){4 sin2 (πz) + ω2

0}{4 sin2 (πz
2
) + ω2

0}−2 dz.
10
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The proof of the results is given in Section 4.1.

Remark 3.2. Calculations made in Appendix D show that

Q−1/2,0(ℓ) = θ∣F̃(ℓ)∣2
2πℓ

Im
⎛⎝
⎧⎪⎪⎨⎪⎪⎩

2

λ(ω0)√1 + 4/λ(ω0) +
1

2

⎫⎪⎪⎬⎪⎪⎭{1 +
λ(ω0)
2
(1 +√1 +

4

λ(ω0))}
−1⎞⎠ ,

with

λ(ω0) ∶= ω2
0 − (2πℓθ )

2

+ i(4γπℓ
θ
) .

Furthermore,

Qb−1/2,b(ℓ) = 2γ∣F̃(ℓ)∣2(4 + ω2
0)(ω4

0 + 4ω
2
0 + 8)3/2 .

From Theorem 3.1 and the definition of j−1,0, see (1.12), we immediately con-
clude the following.

Corollary 3.3. We have

T− − ⟨⟨p20⟩⟩n = Ja,b

2γn
+ o(1

n
) (3.7)

3.2. Asymptotic profile of the periodic averages of the means of the

energy function. The following result holds.

Theorem 3.4. Under the assumptions of Theorem 3.1 we have

lim
n→∞

1

n
∑
x

ϕ(x
n
) ⟨⟨p2x⟩⟩= lim

n→∞

1

n
∑
x

ϕ(x
n
) ⟨⟨Ex⟩⟩ = ∫ 1

0
ϕ(u)T (u)du, (3.8)

with

T (u) = T− − 4γJu

D
, u ∈ [0,1], (3.9)

for any ϕ ∈ C[0,1]. Here J is given by (3.3) and D is defined by, cf (2.15),

D = 1 − ω2
0(Gω0

(0) +Gω0
(1)). (3.10)

We present the proof of the theorem in Section 8.
A simple calculation, using (2.15), yields an explicit formula for the coefficient

D, cf [5, (4.18)],

D =
2

2 + ω2
0 + ω0

√
ω2
0 + 4

. (3.11)

11
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Therefore,
lim

ω0→+∞
D(ω0) = 0, lim

ω0→0+
D(ω0) = 1.

In the case a = −1/2, b = 0 and θ constant, we can improve the statement of the
theorem (3.4) as we do not neet the time average over the period, more precisely
we prove in Section 9 that

lim
n→∞

1

n
∑
x

ϕ(x
n
)∫ θ

0
(p2x(t) − T (xn))

2

dt = 0. (3.12)

4. The first moments of positions and momenta

4.1. Proof of Theorem 3.1. We only show (3.3). The proof of (3.6) follows
from analogous calculations. Using (1.17), the Plancherel identity and then the
first equation of (2.7) we get

Ja,b
n = −n

a∑
ℓ

F̃(ℓ)p̃n(ℓ)∗
=
2πina

θn
∑
ℓ

F̃(ℓ)ℓq̃n(ℓ)∗ = 2πina

θn
∑
ℓ

∑
x

δx,nF̃(ℓ)ℓq̃x(ℓ)∗. (4.1)

Thanks to (2.10) we can further write

Ja,b
n =

2πi

θn
∑
ℓ

∑
x

ℓq̃x(ℓ)∗Ln
ω0,θn,ℓ

q̃x(ℓ)
=
2πi

θn
∑
ℓ

ℓ∑
x

{∣∇q̃x(ℓ)∣2 + [ω2
0 − (2πℓθn )

2] ∣q̃x(ℓ)∣2} − 2γ (2π
θn
)2∑

ℓ

ℓ2∑
x

∣q̃x(ℓ)∣2.
(4.2)

Using the parity of ∣∇q̃x(ℓ)∣2 + [ω2
0 − (2πℓθn

)2] ∣q̃x(ℓ)∣2 we get

Ja,b
n = −2γ (2πθn )

2∑
ℓ

ℓ2∑
x

∣q̃x(ℓ)∣2. (4.3)

From (2.10) we have

naF̃(ℓ)δx,n = Ln
ω0,θn,ℓ

q̃x(ℓ), x = 0, . . . , n. (4.4)

Hence, by (2.12),

naF̃(ℓ)Gn
ω0,θn,ℓ

(x,n) = q̃x(ℓ), x = 0, . . . , n. (4.5)

12
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It follows, by (2.13),

n∑
x=0

∣q̃x(ℓ)∣2 = n2a∣F̃(ℓ)∣2 n∑
x=0

[Gn
ω0,θn,ℓ

(x,n)]2 = n∑
j=0

n2a∣F̃(ℓ)∣2ψ2
j (n)[λj + ω2

0 − (2πℓθ−1n )2]2 + (4γπℓθ−1n )2 .
(4.6)

A straightforward calculation, using formula (2.13), yields

Gn
ω0,θn,ℓ

(0, n) = 2

n + 1

n∑
l=1

(−1)k cos2 ( πk

2(n + 1)){4 sin2 ( πk

2(n + 1)) + ω2
0 − (2πℓθn )

2

+
4γπiℓ

θn
}−1

+O ( 1

n + 1
) = o(1).

Therefore, we conclude that

∑
x

∣q̃x(ℓ)∣2 = 2∣F̃(ℓ)∣2n2a∫ 1

0
cos2 (πz

2
)

×

⎧⎪⎪⎨⎪⎪⎩[4 sin
2 (πz

2
) + ω2

0 − (2πℓθn )
2]2 + (4γπℓ

θn
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz + o (n2a) . (4.7)

From (4.3) and (4.7) we get that for a, b satisfying (3.2)

Ja,b
n = −

4γ

n
(2π
θ
)2∑

ℓ

ℓ2∣F̃(ℓ)∣2∫ 1

0
cos2 (πz

2
)

×

⎧⎪⎪⎨⎪⎪⎩[4 sin
2 (πz

2
) + ω2

0 − (2πℓθn )
2]2 + (4γπℓ

θn
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz + o(1
n
)

and Theorem 3.1 follows. �

4.2. L2 norms of the position and momentum averages. Denote

⟨⟨q2x⟩⟩ ∶= 1

θn
∫ θn

0
q2x(s)ds =∑

ℓ

∣q̃x(ℓ)∣2,
⟨⟨p2x⟩⟩ ∶= 1

θn
∫ θn

0
p2x(s)ds =∑

ℓ

∣p̃x(ℓ)∣2. (4.8)

Using (2.7) we get

∑
x

∣p̃x(ℓ)∣2 = (2πℓ
θn
)2∑

x

∣q̃x(ℓ)∣2. (4.9)

13
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By virtue of (4.7) we get

∑
x

∣p̃x(ℓ)∣2 = 2

n
(2πℓ∣F̃(ℓ)∣

θ
)2∫ 1

0
cos2 (πz

2
)

×

⎧⎪⎪⎨⎪⎪⎩[4 sin
2 (πz

2
) + ω2

0 − (2πℓθn )
2]2 + (4γπℓ

θn
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz + o(1
n
) .

(4.10)

We have shown therefore the following.

Proposition 4.1. Under the assumptions of Theorem 3.1 we have

n∑
x=0

⟨⟨q2x⟩⟩ ≈ n2a and
n∑

x=0

⟨⟨p2x⟩⟩ ≈ 1

n
, n ⩾ 1. (4.11)

5. The second moments for the momentum and position variables

5.1. Fluctuation-dissipation relations. Define

fx ∶=
1

4γ
(qx+1 − qx) (px + px+1) + 1

4
(qx+1 − qx)2 , x = 0, . . . , n − 1,

Fx = p
2
x + (qx+1 − qx) (qx − qx−1) − ω2

0q
2
x, x = 0, . . . , n,

(5.1)

with the convention that q−1 = q0, qn = qn+1. Then

Gtfx = 1

4γ
∇Fx + jx,x+1 +

δx,n−1

4γ
naF(t/θn) (qn − qn−1) , x = 0, . . . , n − 1. (5.2)

After performing the expectation and time averaging we get

⟨⟨Fx⟩⟩ = ⟨⟨F0⟩⟩ + x−1∑
y=0

⟨⟨∇Fy⟩⟩ = ⟨⟨F0⟩⟩ − 4γJnx (5.3)

+
δx,nna

θn
∫ θn

0
F(t/θn) (qn−1(t) − qn(t))dt, x = 1, . . . , n.

Remark 5.1. Note that the expectation of Fx with respect to the Gibbs Gaussian
measure on the lattice Z, with the Hamiltonian ∑x∈Z Ex and the inverse temper-
ature T −1, is given by

T [1 −Gω0
(1) −Gω0

(0) + 2Gω0
(1) − ω2

0Gω0
(0)]. (5.4)

14



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Since Gω0
is the Green’s function for ω2

0 −∆, where ∆ is the free lattice laplacian,
we have

1 −Gω0
(2) −Gω0

(0) + 2Gω0
(1) − ω2

0Gω0
(0) = 1 − ω2

0(Gω0
(0) +Gω0

(1)) =D (5.5)

and the expression in (5.4) equals DT .

6. The covariance matrix of the periodic state

6.1. Dynamics of fluctuations. Denote

q′x(t) ∶= qx(t) − qx(t) and p′x(t) ∶= px(t) − px(t) (6.1)

for x = 0, . . . , n. From (1.3)-(1.4) and (2.2) we get

9q′x(t) = p′x(t), x ∈ {0, . . . , n},
dp′x(t) = (∆q′x − ω2

0q
′
x)dt − 2γp′x(t)dt − 2px(t−)dÑx(γt), x ∈ {1, . . . , n}, (6.2)

and at the left boundary

dp′0(t) = (∆q′0 − ω2
0q
′
0)dt − 2γp′0(t)dt +√4γT−dw̃−(t). (6.3)

Here Ñx(t) ∶= Nx(t) − t. Let
X(t) = ( q(t)

p(t) ) , X(t) = ( q(t)
p(t) ) ,

and X′(t) =X(t) −X(t). Furthermore, we define

Σ(p) = [ 0n+1 0n+1
0n+1 D(p) ] , with D(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
4γT− 0 0 . . . 0
0 −2p1 0 . . . 0
0 0 −2p2 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . −2pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.4)

The symbol 0n denotes the null n×n matrix. The solution of (6.2)–(6.3) satisfies

X′(t) = e−AtX′(0) + ∫ t

0
e−A(t−s)Σ(p(s−))dM(s), t ⩾ 0. (6.5)

15
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Here A is defined by (2.3) and (M(t))t⩾0 is 2(n+1)-dimensional vector martingale

dM(s) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
⋮

0
dw̃(s)

dÑ1(γs)
⋮

dÑn(γs)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Suppose that X is a random vector that is independent of the noise and dis-
tributed according to µP

0 . Denote by X the vector of its means and by X′ =X−X.
For any ℓ ⩾ 0 define Xℓ(t), t ⩾ −ℓθ - the solution of (6.2)–(6.3) that satisfies
Xℓ(−ℓθ) =X. We call such solutions θ-periodic. Note that

X′ℓ(t) = e−A(t+ℓθ)X′ + ∫ t

−ℓθ
e−A(t−s)Σ(pℓ(s−))dM(s), t ⩾ −ℓθ. (6.6)

Obviously, (Xℓ(t + θ))
t⩾−ℓθ

has the same law as (Xℓ(t))
t⩾−ℓθ

.

6.2. The covariance matrix. Suppose that X(t) is a θ-periodic solution of
(1.3)-(1.4). Define the vector valued function

p2(t) = ⎛⎜⎝
Ep20(t)
⋮

Ep2n(t)
⎞⎟⎠

and the covariance matrix

S(t) = [ S(q)(t) S(q,p)(t)
S(p,q)(t) S(p)(t) ] , (6.7)

where

S(q)(t) = [E[q′x(t)q′y(t)]]
x,y=0,...,n

, S(q,p)(t) = [E[q′x(t)p′y(t)]]
x,y=0,...,n

,

(6.8)

S(p)(t) = [E[p′x(t)p′y(t)]]
x,y=0,...,n

and S(p,q)(t) = [S(q,p)(t)]T .
Obviously both p2(t), S(q)(t), S(p)(t) are θ-periodic and the matrices are sym-
metric.
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We shall also consider ⟨⟨p2⟩⟩ and ⟨⟨S(α)⟩⟩, α ∈ {q, p, (p, q), (q, p)} the respecive
vector and matrices of time averages.

Given a vector y = (y0, y1, . . . , yn), define also the matrix valued function

D2(y) = 4γ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T− 0 0 . . . 0
0 y1 0 . . . 0
0 0 y2 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.9)

Let Σ2(y) be the 2 × 2 block matrix

Σ2(y) = [ 0n+1 0n+1
0n+1 D2(y) ] . (6.10)

Proposition 6.1. The following identities hold

S(t) = ∫ +∞

0
e−AsΣ2(p2(t − s))e−AT sds, t ⩾ 0 (6.11)

and

⟨⟨S⟩⟩ = ∫ +∞

0
e−AsΣ2(⟨⟨p2⟩⟩)e−AT sds. (6.12)

Proof. Formula (6.12) is an obvious consequence of (6.11), so we only prove the
latter. From (6.6) we conclude that

S(t) = e−A(t+ℓθ)E{X′(0)⊗ (X′(0))T}e−AT (t+ℓθ)

+ ∫ t

−ℓθ
e−A(t−s)Σ2(p2(s))e−AT (t−s)ds, t ⩾ −ℓθ.

(6.13)

Letting ℓ→ +∞ and using Proposition 2.1 we obtain

S(t) = ∫ t

−∞
e−A(t−s)Σ2(p2(s))e−AT (t−s)ds, t ∈ R. (6.14)

Changing variables s′ ∶= t − s we conclude (6.11). �
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6.3. Structure of the covariance matrix of the periodic averages. By
(6.12) and partial integration in time, we have

AS(t) = −∫ ∞

0
( d
ds
e−As)Σ2(p2(t − s))e−AT sds

= −∫ ∞

0
e−AsΣ2(p2(t − s))AT e−A

T sds +Σ2(p2(t)) −∫ ∞

0
e−AsΣ2(p2′(t − s))e−AT sds

= −S(t)AT
+Σ2(p2(t)) − S′(t).

(6.15)

Integrating the above relation over the period we conclude that the matrix ⟨⟨S⟩⟩
satisfies the equation

A⟨⟨S⟩⟩ + ⟨⟨S⟩⟩AT
= Σ2(⟨⟨p2⟩⟩). (6.16)

It leads to the following equations on the blocks defined in (6.7) (see (2.3) and
(6.9)):

⟨⟨S(q,p)⟩⟩ = [⟨⟨S(p,q)⟩⟩]T = −⟨⟨S(p,q)⟩⟩,
⟨⟨S(q)⟩⟩(ω2

0 −∆N) + 2γ⟨⟨S(q,p)⟩⟩ − ⟨⟨S(p)⟩⟩ = 0,(ω2
0 −∆N)⟨⟨S(q)⟩⟩ + 2γ⟨⟨S(p,q)⟩⟩ − ⟨⟨S(p)⟩⟩ = 0(ω2
0 −∆N)⟨⟨S(q,p)⟩⟩ − ⟨⟨S(q,p)⟩⟩(ω2

0 −∆N) =D2(⟨⟨p2⟩⟩) − 4γ⟨⟨S(p)⟩⟩.
From here we conclude

⟨⟨S(q,p)⟩⟩ = −⟨⟨S(p,q)⟩⟩,
⟨⟨S(p)⟩⟩ = 1

2
{⟨⟨S(q)⟩⟩(ω2

0 −∆N) + (ω2
0 −∆N)⟨⟨S(q)⟩⟩},

4γ⟨⟨S(q,p)⟩⟩ = (ω2
0 −∆N)⟨⟨S(q)⟩⟩ − ⟨⟨S(q)⟩⟩(ω2

0 −∆N), (6.17)

(ω2
0 −∆N)⟨⟨S(q,p)⟩⟩ − ⟨⟨S(q,p)⟩⟩(ω2

0 −∆N) =D2(⟨⟨p2⟩⟩) − 4γ⟨⟨S(p)⟩⟩.
Denote

S̃
(q,p)
j,j′ =

n∑
x,x′=0

⟨⟨S(q,p)x,x′ ⟩⟩ψj(x)ψj′(x′)
and analogously define S̃

(p)
j,j′ and S̃

(q)
j,j′. The eigenvalues of ω2

0 −∆N are given by

µj = ω
2
0 + λj = ω

2
0 + 4 sin

2 ( πj

2(n + 1)) , j = 0, . . . , n. (6.18)
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Then we have the inverse relations

⟨⟨S(α)x,x′⟩⟩ = n∑
j,j′=0

S̃
(α)
j,j′ψj(x)ψj′(x′). (6.19)

With this notation we can rewrite (6.17) as follows

S̃
(q,p)
j,j′ = −S̃

(p,q)
j,j′ ,

S̃
(p)
j,j′ =

1

2
(µj + µj′)S̃(q)j,j′

4γS̃
(q,p)
j,j′ = S̃

(q)
j,j′(µj − µj′), (6.20)

(µj − µj′)S̃(q,p)j,j′ = 4γF̃j,j′ − 4γS̃
(p)
j,j′ .

where

F̃j,j′ ∶=

n∑
y=0

ψj(y)ψj′(y)⟨⟨p2y⟩⟩ + (T− − ⟨⟨p20⟩⟩)ψj(0)ψj′(0). (6.21)

By eliminating S̃
(q,p)
j,j′ from the above equations we get

S̃
(p)
j,j′ = F̃j,j′ −

(µj − µj′)2(4γ)2 S̃
(q)
j,j′. (6.22)

Thus,

S̃
(q)
j,j′ =

2

µj + µj′
F̃j,j′ −

(µj − µj′)2
8γ2(µj + µj′) S̃(q)j,j′. (6.23)

It follows that

S̃
(p)
j,j′ = Θ(µj, µj′)F̃j,j′, Θ(µj , µj′) = [1 + (µj − µj′)2

8γ2(µj + µj′)]
−1

, (6.24)

and

S̃
(q)
j,j′ =

2Θ(µj, µj′)
µj + µj′

F̃j,j′. (6.25)

7. Energy Bounds

Throughout the remainder of the paper we shall always assume that the as-
sumptions of Theorem 3.1 are in force. From (6.24) and (6.21) we have

⟨⟨S(p)x,x⟩⟩ =∑
j,j′

Θ(µj , µj′)F̃j,j′ψj(x)ψj′(x) =∑
y

Mx,y⟨⟨p2y⟩⟩ + (T− − ⟨⟨p20⟩⟩)Mx,0 (7.1)
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where

Mx,y ∶=

n∑
j,j′=0

Θ(µj, µj′)ψj(x)ψj′(x)ψj(y)ψj′(y). (7.2)

From (6.1) we have

⟨⟨p2x⟩⟩ = ⟨⟨(p′x)2⟩⟩ + ⟨⟨p2x⟩⟩.
We can further write

⟨⟨p2x⟩⟩ − n∑
y=0

Mx,y⟨⟨p2y⟩⟩ = G(n)x , where (7.3)

G
(n)
x ∶= (T− − ⟨⟨p20⟩⟩)M0,x + ⟨⟨p2x⟩⟩.

7.1. A lower bound on matrix [Mx,y]. The main result of the present section
is the following.

Proposition 7.1. There exists c∗ > 0 such that

n∑
x,y=0

(δx,y −Mx,y)fyfx ⩾ c∗ n−1∑
x=0

(∇fx)2, for any (fx) ∈ Rn+1, n = 1,2, . . . . (7.4)

Proof. For any sequence (fx) ∈ Rn+1 we can write

n∑
x,y=0

(δx,y −Mx,y)fyfx = n∑
x,y=0

n∑
j,j′=0

(1 −Θ(µj, µj′))ψj(x)ψj′(x)ψj(y)ψj′(y)fyfx
(7.5)

=

n∑
j,j′=0

(1 −Θ(µj, µj′))( n∑
x=0

ψj(x)fxψj′(x))2 .
An elementary argument (cf (6.24)) shows that there exists C∗ > 0, such that

1 −Θ(µj , µj′) ⩾ C∗(µj − µj′)2 = C∗ (λj − λj′)2 .
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Therefore, see (2.14),

n∑
x,y=0

(δx,y −Mx,y)fyfx ⩾ C∗ n∑
j,j′=0

(λj − λj′)2 ( n∑
x=0

ψj(x)fxψj′(x))2

= C∗

n∑
x,y=0

n∑
j,j′=0

(λj − λj′)2ψj(x)ψj′(x)ψj(y)ψj′(y)fxfy
= 2C∗

n∑
x,y=0

{ n∑
j=0

λ2jψ
2
j (x)δx,y − n∑

j,j′=0

λjλj′ψj(x)ψj′(x)ψj(y)ψj′(y)}fyfx
= 2C∗

n∑
x,y=0

fyfx{δx,y⟨∆2
Nδx, δy⟩ − ⟨∆Nδx, δy⟩2}.

As before, here ∆N is the Neumann laplacian. A careful calculation shows that

δx,y⟨∆2
Nδx, δy⟩ − ⟨∆Nδx, δy⟩2 = ⟨∆Nδx, δy⟩.

Therefore
n∑

x,y=0

(δx,y −Mx,y)fyfx ⩾ 2C∗ n−1∑
x=0

(∇fx)2 (7.6)

and the conclusion of the proposition follows. �

Proposition 7.2. There exists C > 0 such that

sup
x
∣G(n)x ∣ ⩽ C

n
, n = 1,2, . . . . (7.7)

Proof. The result is a straightforward consequence of Corollary 3.3 and Proposi-
tion 4.1. �

From Propositions 7.1 and 7.2 we immediately conclude the following.

Corollary 7.3. There exists C > 0 such that

n−1∑
x=0

[⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩]2 ⩽ C

n + 1

n∑
x=0

⟨⟨p2x⟩⟩, n = 1,2, . . . . (7.8)

Proof. Using (7.4) and then (7.3) we get

n−1∑
x=0

[⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩]2 ⩽ c−1∗ n∑
x,y=0

(δx,y −Mx,y)⟨⟨p2y⟩⟩⟨⟨p2x⟩⟩
=

1

c∗

n∑
x=0

G
(n)
x ⟨⟨p2x⟩⟩ ⩽ C

c∗(n + 1)
n∑

x=0

⟨⟨p2x⟩⟩
(7.9)
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and the conclusion of the corollary follows. �

7.2. Upper bound on energy. The main objective of the present section is the
following.

Theorem 7.4. Under assumptions of Theorem 3.1, there exists C > 0 such that

1

n + 1

n∑
x=0

⟨⟨Ex⟩⟩ ⩽ C, n = 1,2, . . . . (7.10)

Before presenting the proof of Theorem 7.4 in Section 7.3 we show some aux-
iliary results.

Proposition 7.5. As n→ +∞ we have

n∑
x=0

⟨⟨q2x⟩⟩ = (Gω0
(0) + o(1)) n∑

x=0

⟨⟨p2x⟩⟩ +O(1)( n∑
x=0

⟨⟨p2x⟩⟩)1/2 +O(1). (7.11)

Proof. Since ⟨⟨q2y⟩⟩ is of order n2a, see (4.11), and a ⩽ 0 (cf (3.2)) we only need to

prove (5.1) for ∑x⟨⟨S(q)x,x⟩⟩. Using (6.25) and then (6.21) we obtain

∑
x

⟨⟨S(q)x,x⟩⟩ =∑
j

S̃
(q)
j,j =∑

j

1

µj

F̃j,j =∑
y

∑
j

ψj(y)2
µj

⟨⟨p2y⟩⟩ + (T− − ⟨⟨p20⟩⟩)∑
j

ψj(0)2
µj

=∑
y

Gn
ω0
(y, y)⟨⟨p2y⟩⟩ + (T− − ⟨⟨p20⟩⟩)Gn,ω0

(0,0),
(7.12)

where Gn
ω0

is the Green’s function of ω2
0 −∆N, see Section 2.3. The second term

on the utmost right hand side of (7.12) is of order 1
n
. Concerning the first term,

thanks to Lemma B.2, it equals

(Gω0
(0) + o(1)) n∑

y=0

⟨⟨p2y⟩⟩ + n∑
y=0

H̃(n)(y)⟨⟨p2y⟩⟩, (7.13)

where ∣H̃(n)(y)∣ satisfies estimate (B.3). Hence,

∣ n∑
y=0

H̃(n)(y)⟨⟨p2y⟩⟩∣ ⩽ n∑
y=0

∣H̃(n)y ∣ (y−1∑
x=0

∣⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩∣)
+ ⟨⟨p20⟩⟩ n∑

y=0

∣H̃(n)(y)∣. (7.14)
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Thanks to (B.3) we have

H∗ ∶= sup
n⩾1

n∑
y=0

∣H̃(n)(y)∣ < +∞.
Thus, using (3.7) we conclude that the second term on the right hand side of
(7.14) stays bounded, as N → +∞. The first term can be rewritten by changing
order of summation and then estimated using the Cauchy-Schwarz inequality and
bound (7.8)

n∑
x=0

∣⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩∣ ( n∑
y=x+1

∣H̃(n)y ∣)
⩽

⎧⎪⎪⎨⎪⎪⎩
n∑

x=0

( n∑
y=x+1

∣H̃(n)y ∣)2⎫⎪⎪⎬⎪⎪⎭
1/2 { n∑

x=0

[⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩]2}1/2 (7.15)

⩽H∗
√
n{ n∑

x=0

[⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩]2}1/2 ⩽ C ( n∑
y=0

⟨⟨p2y⟩⟩)1/2

and the conclusion of the proposition follows.
�

Similarly we obtain

Proposition 7.6. As n→ +∞ we have

n∑
x=0

⟨⟨qxqx−1⟩⟩ = (Gω0
(1) + o(1)) n∑

x=0

⟨⟨p2x⟩⟩ +O(1)( n∑
x=0

⟨⟨p2x⟩⟩)1/2 +O(1),
n∑

x=0

⟨⟨qxqx+1⟩⟩ = (Gω0
(1) + o(1)) n∑

x=0

⟨⟨p2x⟩⟩ +O(1)( n∑
x=0

⟨⟨p2x⟩⟩)1/2 +O(1),
n∑

x=0

⟨⟨qx+1qx−1⟩⟩ = (Gω0
(2) + o(1)) n∑

x=0

⟨⟨p2x⟩⟩ +O(1)( n∑
x=0

⟨⟨p2x⟩⟩)1/2 +O(1).
(7.16)
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Proof. We only prove the first formula of (7.16). The second and third ones follow
analogously. Using (6.21) and (6.25) we obtain

n∑
x=0

⟨⟨S(q)x,x−1⟩⟩ = n∑
x=0

∑
j,j′
S̃
(q)
j,j′ψj(x)ψj′(x − 1)

=∑
j,j′

2Θ(µj, µj′)Υj,j′(1)
µj + µj′

∑
y

ψj(y)ψj′(y)⟨⟨p2y⟩⟩
+ (T− − ⟨⟨p20⟩⟩)∑

j,j′

2Θ(µj , µj′)Υj,j′(1)ψj(0)ψj′(0)
µj + µj′

.

(7.17)

Here, we have used the convention ⟨⟨S(q)0,−1⟩⟩ = ⟨⟨S(q)0,0 ⟩⟩ and the notation

Υj,j′(1) ∶= 1
2

n∑
x=0

[ψj(x)ψj′(x − 1) +ψj′(x)ψj(x − 1)],
Υj,j′(2) ∶= 1

2

n∑
x=0

[ψj(x − 1)ψj′(x + 1) + ψj′(x + 1)ψj(x − 1)]. (7.18)

A simple application of trigonometric identities leads to the following formulas.

Lemma 7.7. For ℓ = 1,2

Υ0,j′(ℓ) = 0, j′ = 1, . . . , n,

Υj,j′(ℓ) = 1 − (−1)j+j′
n + 1

cos( πj′ℓ

2(n + 1)) cos( πjℓ

2(n + 1)) , j, j′ = 1, . . . , n, j /= j′
(7.19)

Υj,j(ℓ) = cos( πℓj
n + 1

) , j = 0, . . . , n.

This result implies that the second term on the right hand side of (7.17) is of
order O(1/n). The first term equals

∑
j

Υj,j(1)
µj

∑
y

ψ2
j (y)⟨⟨p2y⟩⟩ +Rn, where

Rn ∶=∑
y

ρn(y)⟨⟨p2y⟩⟩ and

ρn(y) ∶= ∑
j/=j′

2Θ(µj, µj′)Υj,j′(1)
µj + µj′

ψj(y)ψj′(y).
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Using formula for ψj(y), see (2.14), and for Υj,j we can rewrite the above expres-
sion in the form

g̃n(1)∑
y

⟨⟨p2y⟩⟩ +Rn + R̃n + o(1)∑
y

⟨⟨p2y⟩⟩, where

g̃n(1) ∶= 1

n + 1
∑
j

1

µj

cos( πj

n + 1
) ,

R̃n ∶=∑
y

ρ̃n(y)⟨⟨p2y⟩⟩ and

ρ̃n(y) ∶= 2

n + 1
∑
j

1

µj

cos( πj

n + 1
) cos(πj(2y + 1)

n + 1
) .

A simple calculation shows that g̃n(1) is the Riemann sum approximation of
order 1/n of the integral defining Gω0

(1), see (2.15). An application of Lemma
B.1 yields that both ∣ρn(y)∣ and ∣ρ̃n(y)∣ satisfy the bound (B.3). Repeating the
estimates done in (7.14) and (7.15) we conclude that

∣Rn∣ + ∣R̃n∣ ⩽ C ( n∑
y=0

⟨⟨p2y⟩⟩)1/2 ,
where the constant C is independent of n. The conclusion of the lemma follows.

�

7.3. Proof of Theorem 7.4. Using (5.1), (7.16) and (5.5) we obtain

n∑
x=0

⟨⟨Fx⟩⟩ = n∑
x=0

[⟨⟨p2x⟩⟩ + ⟨⟨qxqx+1⟩⟩ + ⟨⟨qxqx−1⟩⟩ − ⟨⟨qx−1qx+1⟩⟩ − (1 + ω2
0)⟨⟨q2x⟩⟩]

= (D + o(1)) n∑
x=0

⟨⟨p2x⟩⟩ +O(1)( n∑
x=0

⟨⟨p2x⟩⟩)1/2 +O(1).
(7.20)

On the other hand, from (5.3) and (3.6), we conclude Corr.

n∑
x=0

⟨⟨Fx⟩⟩ = (n + 1)⟨⟨F0⟩⟩ − 2γJnn(n + 1),
+
na

θn
∫ θn

0
F(t/θn) (qn−1(t) − qn(t))dt

⩽ (n + 1)⟨⟨p20⟩⟩ − 2γn2Jn +O(n2a) ⩽ C ′(n + 1)
(7.21)
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that gives the bound

1

n + 1

n∑
x=0

⟨⟨p2x⟩⟩ ⩽ C, n = 1,2, . . . . (7.22)

The conclusion of the theorem then follows from the above estimate and Propo-
sition 7.5. �

7.4. H1 bound on the energy density. As a direct consequence of (7.22) and
Corollary 7.3 we have

Corollary 7.8. There exists C > 0 such that

n−1∑
x=0

[⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩]2 ⩽ C (7.23)

and

sup
x=0,...,n

⟨⟨p2x⟩⟩n ⩽ Cn1/2, n = 1,2, . . . (7.24)

Proof. Estimate (7.23) is obvious in light of (7.8). To prove (7.24) note that

⟨⟨p2x⟩⟩ ⩽ n∑
y=1

∣⟨⟨p2y⟩⟩ − ⟨⟨p2y−1⟩⟩∣ + ⟨⟨p20⟩⟩
⩽
√
n{ n∑

y=1

[⟨⟨p2y⟩⟩ − ⟨⟨p2y−1⟩⟩]2}1/2 + ⟨⟨p20⟩⟩ ⩽ C√n + ⟨⟨p20⟩⟩.
�

The following result stregthens the above estimates.

Proposition 7.9. There exists C > 0 such that

n−1∑
x=0

[⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩]2 ⩽ C

n + 1
, n = 1,2, . . . ,

sup
x=0,...,n

⟨⟨p2x⟩⟩ ⩽ C. (7.25)

26



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Proof. From (7.3) and Propositions 7.1 and 4.1 there exists C > 0 such that

n−1∑
x=0

(⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩)2 ⩽ C ∣ n∑
x=0

G
(n)
x ⟨⟨p2x⟩⟩∣

⩽
C

n + 1
+C

n∑
x=0

⟨⟨px⟩⟩2⟨⟨p2x⟩⟩ (7.26)

⩽
C

n + 1
+C sup

x
⟨⟨p2x⟩⟩ n∑

x=0

⟨⟨px⟩⟩2 ⩽ C

n + 1
+

C

n + 1
sup
x
⟨⟨p2x⟩⟩, (7.27)

Using the Cauchy-Schwarz inequality we conclude

sup
x
⟨⟨p2x⟩⟩ ⩽ ⟨⟨p20⟩⟩ + n−1∑

x=0

∣⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩∣
⩽ ⟨⟨p20⟩⟩ +√n{n−1∑

x=0

(⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩)2}1/2 (7.28)

Denote Dn ∶= ∑n−1
x=0 (⟨⟨p2x⟩⟩ − ⟨⟨p2x+1⟩⟩)2. We can summarize the inequalities ob-

tained as follows: there exists C > 0 such that

Dn ⩽
C

n + 1
+

C

n + 1
sup
x
⟨⟨p2x⟩⟩, (7.29)

sup
x
⟨⟨p2x⟩⟩ ⩽ ⟨⟨p20⟩⟩ +√n + 1D1/2

n ⩽ ⟨⟨p20⟩⟩ +C +C sup
x
⟨⟨p2x⟩⟩1/2,

for all n = 1,2, . . .. Thus the second estimate of (7.25) follows, which in turn
implies the first estimate of (7.25) as well. �

8. Convergence of the energy density

8.1. Identification of the macroscopic energy density limit. Proof of

Theorem 3.4. Let

en(u) ∶= ⟨⟨p2x⟩⟩, u ∈ [ x

n + 1
,
x + 1

n + 1
), x = 0, . . . , n.

By Proposition 7.9 and Corollary 7.4 we have

∫ 1

0
e2n(u)du ⩽ ( sup

x
⟨⟨p2x⟩⟩)( 1

n + 1

n∑
x=0

⟨⟨p2x⟩⟩) ⩽ C.
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Let ẽn(u) be piecewise linear function obtained by the linear interpolation

between the nodal points Px ∶= ( x
n+1 , ⟨⟨p2x⟩⟩), x = 0, . . . , n + 1 (here pn+1 = pn). By

Proposition 7.9

∫ 1

0
[ẽ′n(u)]2du = (n + 1) n∑

x=0

(⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩)2 ⩽ C, n = 1,2, . . . .

Therefore (ẽn(u)) is relatively compact in both L2(0,1) and C[0,1]. Since
∫ 1

0
[ẽn(u) − en(u)]2du ⩽ 1

n + 1

n∑
x=0

(⟨⟨p2x+1⟩⟩ − ⟨⟨p2x⟩⟩)2 ⩽ C(n + 1)2
also (en(u)) is relatively compact in L2(0,1).

For some subsequence n′ → +∞ (which we still denote by n) we have therefore

lim
n→+∞

en(u) = ethm(u), in the L2 sense

and ethm ∈ C[0,1]. In order to show the convergence of 1
n ∑xϕ (xn) ⟨⟨p2x⟩⟩ in (3.8)

it suffices therefore to prove the following.

Theorem 8.1. We have

ethm(u) = T (u), u ∈ [0,1], (8.1)

where T is given by (3.9).

Proof. Since ⟨⟨p20⟩⟩→ T−, compactness of (ẽn(u)) in C[0,1] implies that limu→0 ethm(u) =
T−. It follows that we only have to verify that

Jϕ(1) = D
4γ ∫

1

0
ϕ′′(u)ethm(u)du, (8.2)

for any ϕ ∈ C2[0,1] such that suppϕ ⊂ (0,1] and ϕ′(1) = 0. Here and below, for

abbreviation sake, we let J ∶= J b−1/2,b, Jn ∶= J
b−1/2,b
n (see (1.17) and (3.3)).

The left hand side of (8.2) is given by

lim
n→∞

nJnϕ(1 − 1

n
) = Jϕ(1). (8.3)
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On the other hand, from (5.2), for n sufficiently large so ϕ(1/n) = 0
nJnϕ(1 − 1

n
) = n−2∑

x=1

n [ϕ(x + 1
n
) − ϕ(x

n
)] ⟨⟨jx,x+1⟩⟩

= −
1

4γ

n−2∑
x=1

n [ϕ(x + 1
n
) − ϕ(x

n
)] ⟨⟨∇Fx⟩⟩

=
1

4γ

1

n

n−2∑
x=1

n2 [ϕ(x + 1
n
) + ϕ(x − 1

n
) − 2ϕ(x

n
)] ⟨⟨Fx⟩⟩

=
1

4γ

1

n

n−2∑
x=0

ϕ′′ (x
n
) ⟨⟨Fx⟩⟩ +Rn

(8.4)

with ∣Rn∣ ⩽ C
n2
∑
x

∣⟨⟨Fx⟩⟩∣ Ð→
n→∞

0. (8.5)

following from (7.10).
Then we are left to prove that

lim
n→∞

1

n

n−2∑
x=0

ϕ′′ (x
n
)(⟨⟨Fx⟩⟩ −D⟨⟨p2x⟩⟩) = 0. (8.6)

This will follows directly if we prove the following

Proposition 8.2. For any test function ϕ ∈ C2([0,1]) such that suppϕ ⊂ (0,1]
and ϕ′(1) = 0 we have

lim
n→∞

1

n

n−2∑
x=0

ϕ′′ (x
n
)(⟨⟨qxqx+ℓ⟩⟩ −Gω0

(ℓ)⟨⟨p2x⟩⟩) = 0, ℓ = 0,1,2. (8.7)

Proof. By virtue of (4.11) we have

lim
n→+∞

1

n

n∑
x=0

ϕ(x
n
) ⟨⟨qxqx+ℓ⟩⟩ = 0. (8.8)

It suffices therefore to prove that

lim
n→+∞

1

n

n∑
x=0

ϕ(x
n
)∫ t

0
{⟨⟨q′xq′x+ℓ⟩⟩ −Gω0

(ℓ)⟨⟨p2x⟩⟩}ds = 0. (8.9)

We first prove (8.9) for ℓ = 0. By (6.25) we have

⟨⟨(q′x)2⟩⟩ =∑
j,j′
S̃
(q)
j,j′ψj(x)ψj′(x) =Hn(x) +O(1

n
), (8.10)
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with

Hn(x) = n∑
y=0

∑
j,j′

Φ( j

n + 1
,
j′

n + 1
)ψj(y)ψj′(y)ψj(x)ψj′(x)⟨⟨p2y⟩⟩

=H1
n(x) + 1

n + 1
H2

n(x) + Φ (0,0)(n + 1)2
n∑

y=0

⟨⟨p2y⟩⟩.
(8.11)

Here Φ( j

n+1 ,
j′

n+1
) = 2Θ(µj ,µj′)

µj+µj′
and Hj

n(x) ∶=∑n
y=0K

(n)
j (x, y)⟨⟨p2y⟩⟩, with

K
(n)
1 (x, y) ∶= 1(n + 1)2

n∑
j,j′=0

Φ( j

n + 1
,
j′

n + 1
) [ cos(πj(y − x)

n + 1
) + cos(πj(y + x + 1)

n + 1
) ]

× [ cos(πj′(y − x)
n + 1

) + cos(πj′(y + x + 1)
n + 1

) ],
K
(n)
2 (x, y) ∶= − 1

n + 1

n∑
j=0

Φ( j

n + 1
,0) [ cos(πj(y − x)

n + 1
) + cos(πj(y + x + 1)

n + 1
)].

(8.12)

Using Lemma B.1 we obtain that

∣K(n)j (x, y)∣ ⩽ C ( 1

χ2
n((x − y)/2) +

1

χ2
n((x + y)/2)) , x, y = 0, . . . , n, n = 1,2, . . .

(8.13)

for j = 1,2. In particular the above estimate implies that

Kj,∗ ∶= sup
x,n

n∑
y=0

∣K(n)j (x, y)∣ < +∞, j = 1,2. (8.14)

In consequence, by virtue of (7.25),

∣Hj
n(x)∣ ⩽ n∑

y=0

∣K(n)j (x, y)∣⟨⟨p2y⟩⟩ ⩽Kj,∗ sup
y,n
⟨⟨p2y⟩⟩ =∶ Hj,∗ < +∞ (8.15)

and the term corresponding to H2
n(x) is negligible, as n→ +∞.

Choose δ ∈ (0,1) sufficiently small, so that ϕ(u) = 0, when u ∈ (0, δ). Then,
there exist C > 0 and n0 ⩾ 1 such that

1

n

RRRRRRRRRRR ∑
x∈(0,δn)∪((1−δ)n,n)

ϕ′′ (x
n
) ⟨⟨(q′x)2⟩⟩RRRRRRRRRRR ⩽

1

n
∑

x∈((1−δ)n,n)

∣ϕ′′ (x
n
)∣ (∣Hn(x)∣ +O (1

n
))

⩽ C∥ϕ′′∥∞δ, n = n0 + 1, n0 + 2, . . . .
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For δn ⩽ x ⩽ (1 − δ)n inequality (8.13) implies that there exists C > 0 such that

K
(n)
1 (x, y) =K(n)1 (x, y) +O(1/n2), where

K
(n)

1 (x, y) ∶= 1

4(n + 1)2
n∑

j,j′=−n−1

Φ( j

n + 1
,
j′

n + 1
) cos(πj(y − x)

n + 1
) cos(πj′(y − x)

n + 1
) ,

(8.16)
and, by Lemma B.1, there exists C > 0 such that

∣K(n)1 (x, y)∣ ⩽ C

1 + (x − y)2 , y = 0, . . . , n, x ∈ (δn, (1 − δ)n) (8.17)

for n = 1,2, . . . . To prove (8.7) it suffices therefore to show that for any δ ∈ (0,1/2)
we have

lim
n→∞

1

n
∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
)(H1

n(x) −Gω0
(0)⟨⟨p2x⟩⟩) = 0, (8.18)

where H
1

n(x) ∶= ∑n
y=0K

(n)

1 (x, y)⟨⟨p2y⟩⟩. Using Cauchy-Schwarz inequality, esti-
mates (8.17) and (7.25) we conclude, that

n∑
y=0

∣⟨⟨p2y⟩⟩ − ⟨⟨p2x⟩⟩∣∣K(n)1 (x, y)∣ ⩽ n∑
y=0

∣y − x∣1/2 ∣n−1∑
z=0

(⟨⟨p2z+1⟩⟩ − ⟨⟨p2z⟩⟩)2∣1/2 ∣K(n)1 (x, y)∣
⩽

C

n1/2

n∑
y=0

∣y − x∣1/2∣K(n)1 (x, y)∣ ⩽ C ′

n1/2

(8.19)

Therefore

1

n + 1
∑

δn⩽x⩽(1−δ)n

ϕ′′ ( x

n + 1
) n∑
y=0

⟨⟨p2y⟩⟩K(n)1 (x, y)
=

1

n + 1
∑

δn⩽x⩽(1−δ)n

ϕ′′ ( x

n + 1
) ⟨⟨p2x⟩⟩ n∑

y=0

K
(n)

1 (y, x) +O ( 1√
n
) .

Another application of Lemma B.1 allows us to conclude that

∣ n∑
y=0

K
(n)

1 (y, x) − x+n∑
y=x−n−1

K
(n)

1 (y, x)∣ ⩽ Cn2
, δn ⩽ x ⩽ (1 − δ)n, (8.20)

Using elementary trigonometric identities we conclude that

2
n∑

z=−n−1

cos( πjz
n + 1

) cos( πj′z
n + 1

) = (n + 1)(δj,−j′ + δj,j′).
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Hence, by virtue of Lemma B.2, we get

x+n∑
y=x−n−1

K
(n)

1 (y, x) = 1

n + 1

n∑
j=0

Φ( j

n + 1
,

j

n + 1
)

=
1

n + 1

n∑
j=0

1

µj

= Gω0
(0) + o(1), (8.21)

for δn ⩽ x ⩽ (1 − δ)n. We have shown therefore that

1

n
∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
)H1

n(x) = 1

n
Gω0
(0) ∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
) ⟨⟨p2x⟩⟩ + o(1)

and (8.18) follows. This ends the proof of (8.7) for ℓ = 0.

Proof for ℓ ≠ 0. . The proof is similar to the previously considered case, so we
only sketch it. As before, by (6.25) we have

⟨⟨q′xq′x+ℓ⟩⟩ =∑
j,j′
S̃
(q)
j,j′ψj(x)ψj′(x + ℓ) +O(1/n) = Hn,ℓ(x) +O(1/n), (8.22)

with

Hn,ℓ(x) = n∑
y=0

∑
j,j′

2Θ(µj, µj′)
µj + µj′

ψj(y)ψj′(y)ψj(x)ψj′(x + ℓ)⟨⟨p2y⟩⟩
=

n∑
y=0

K
(n,ℓ)(x, y)⟨⟨p2y⟩⟩ +O (1n) .

(8.23)

Here

K
(n,ℓ)(x, y) ∶= 1

4(n + 1)2
n∑

j,j′=−n−1

Φ( j

n + 1
,
j′

n + 1
) cos(πj(y − x)

n + 1
) cos(πj′(y − x − ℓ)

n + 1
) .

(8.24)
Using Lemma B.1, in a manner similar to what we have done in the argument
leading up to (8.18), we conclude that it suffices to show that for any δ ∈ (0,1/2)
we have

lim
n→∞

1

n
∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
)(Hn,ℓ(x) −Gω0

(ℓ)⟨⟨p2x⟩⟩) = 0, (8.25)
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with Hn,ℓ(x) ∶= ∑n
y=0K

(n,ℓ)(x, y)⟨⟨p2y⟩⟩. Furthermore, thanks to estimates analo-
gous to those leading up to (8.26), we get

∣ n∑
y=0

K
(n,ℓ)(y, x) − x+n∑

y=x−n−1

K
(n,ℓ)(y, x)∣ ⩽ C

n2
, δn ⩽ x ⩽ (1 − δ)n. (8.26)

Using elementary trigonometric identities we conclude that

2
n∑

z=−n−1

cos( πjz
n + 1

) cos (πj′(z − ℓ)
n + 1

) = (n + 1) cos ( jℓ

n + 1
)(δj,−j′ + δj,j′).

Hence,

x+n∑
y=x−n−1

K
(n)

1 (y, x) = 1

n + 1

n∑
j=0

Φ( j

n + 1
,

j

n + 1
) cos( jℓ

n + 1
)

= Gω0
(ℓ) + o(1), (8.27)

for δn ⩽ x ⩽ (1 − δ)n. We have shown therefore that

1

n
∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
)Hn,ℓ(x) = 1

n
Gω0
(ℓ) ∑

δn⩽x⩽(1−δ)n

ϕ′′ (x
n
) ⟨⟨p2x⟩⟩ + o(1)

and (8.25) follows. This ends the proof of (8.7) for ℓ /= 0.
Finally, to finish the proof of Theorem 3.4 we show the following result, that

is a form of the equipartition property of the energy.

Lemma 8.3. Suppose that ϕ ∈ C1[0,1]. Then,

lim
n→+∞

1

n + 1

n∑
x=0

ϕ( x

n + 1
)(⟨⟨p2x⟩⟩ − ⟨⟨r2x⟩⟩ − ω2

0⟨⟨q2x⟩⟩) = 0. (8.28)

Here rx ∶= qx − qx−1, x = 1, . . . , n and r0 ∶= 0.

Proof. After a simple calculation we obtain

⟨⟨p2x⟩⟩ = ⟨⟨ω2
0q

2
x − (∆qx)qx⟩⟩ − δx,nna

θn
∫ θn

0
qx(t)F(t/θ)dt (8.29)

33



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

for x = 0, . . . , n. Therefore, by (3.6) (see also (3.1))

1

n + 1

n∑
x=0

ϕ( x

n + 1
)(⟨⟨p2x⟩⟩ − ⟨⟨r2x⟩⟩ − ω2

0⟨⟨q2x⟩⟩)
=

1

n + 1

n∑
x=0

ϕ( x

n + 1
) ⟨⟨rxqx⟩⟩ − 1

n + 1

n∑
x=1

ϕ(x − 1
n + 1

) ⟨⟨rxqx−1⟩⟩
−

1

n + 1

n∑
x=0

ϕ( x

n + 1
) ⟨⟨r2x⟩⟩ +O ( 1

n1−a
) .

(8.30)

Since r0 = 0 the last expression equals

1

n + 1

n∑
x=1

[ϕ( x

n + 1
) −ϕ(x − 1

n + 1
)]⟨⟨rxqx−1⟩⟩ +O ( 1

n1−a
) = O (1

n
) ,

by virtue of (7.10). This ends the proof of (8.28). �

�

9. Vanishing time variance of the kinetic energy

A natural question is about the time averaging of the energy functional. We
prove that the time variance of the average kinetic energy vanishes as n →∞. We
consider only the case when b = 0 and a−1/2 in the dynamics described by (1.3) –
(1.5).

Theorem 9.1. Under the assumption stated above there exists a constant C > 0
such that

n∑
x=0

1

θ
∫ θ

0
(p2x(t) − ⟨⟨p2x⟩⟩)2 dt ⩽ Cn2

, n = 1,2, . . . . (9.1)

Proof. From (A.14) we get

p2x(t) = T−Mx,0 +

n∑
x′=1
∫ θ

0
gx,x′(s)p2x′(t − s)ds + px2(t), (9.2)

where gx,x′(s) is defined in (A.13). Averaging over the t variable we get

⟨⟨p2x⟩⟩ = T−Mx,0 +

n∑
x′=1
∫ θ

0
gx,x′(s)ds⟨⟨p2x′⟩⟩ + ⟨⟨px2⟩⟩. (9.3)

Then, denoting

Vx(t) ∶= p2x(t) − ⟨⟨p2x⟩⟩,
vx(t) ∶= px2(t) − ⟨⟨px2⟩⟩,
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we can write

Vx(t) = n∑
x′=1
∫ θ

0
gx,x′(s)Vx′(t − s)ds + vx(t). (9.4)

For m ∈ Z define

Mx,y(m) ∶= ∫ θ

0
gx,y(s)e−2πims/θds

= 4γ ∫ +∞

0
e−2πims/θ([e−As]x+n+1,y+n+1)2ds (9.5)

(cf (A.13)) and

Ṽx(m) ∶= 1
θ
∫ θ

0
e−2πimt/θVx(t)dt and ṽx(m) ∶= 1

θ
∫ θ

0
e−2πimt/θvx(t)dt.

Note that obviously Ṽx(0) = 0 and Mx,y(0) =Mx,y, see (A.16). From (9.4) we get

Ṽx(m) = n∑
x′=1

Mx,x′(m)Ṽx′(m) + ṽx(m). (9.6)

Multiplying both sides by Ṽ ⋆x (m) and summing over x we get

n∑
x=0

∣Ṽx(m)∣2 = n∑
x=0

n∑
x′=1

Mx,x′(m)Ṽx′(m)Ṽ ⋆x (m) + n∑
x=0

ṽx(m)Ṽ ⋆x (m). (9.7)

Hence,

n∑
x,x′=0

(δx,x′ −Mx,x′(m))Ṽx′(m)Ṽ ⋆x (m)
= −Ṽ0(m) n∑

x=0

Mx,0(m)Ṽ ⋆x (m) + n∑
x=0

ṽx(m)Ṽ ⋆x (m).
(9.8)

We have the following.

Lemma 9.2. There exists a constant C > 0, such that

∣ n∑
x,y=0

(δx,y −Mx,y(m))f⋆y fx∣ ⩾ C n∑
x=0

∣fx∣2, (f0, . . . , fn) ∈ Cn+1 (9.9)

for m /= 0 and n = 1,2, . . ..

The lemma is shown in Appendix C, where we also prove the following
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Lemma 9.3. We have

M ∶= sup
m
{ n∑
x=0

∣Mx,0(m)∣2}1/2 < +∞. (9.10)

Lemma 9.4. There exists a constant v∗ > 0 such that

{ n∑
x=0

⟨⟨v2x⟩⟩}1/2 ⩽ v∗

n
, n = 1,2, . . . (9.11)

Lemma 9.5. There exists a constant V∗ > 0 such that

⟨⟨V 2
0 ⟩⟩1/2 ⩽ V∗

n1/2
{ n∑
x=0

⟨⟨V 2
x ⟩⟩}1/4 (9.12)

The lemmas are shown in Appendix C.
We show how to apply these to finish the proof of the theorem.
From (9.8), (9.9) and the Cauchy-Schwarz inequality we conclude that

C
n∑

x=0

∣Ṽx(m)∣2 ⩽ ⎡⎢⎢⎢⎢⎣∣Ṽ0(m)∣ {
n∑

x=0

∣Mx,0(m)∣2}1/2 + { n∑
x=0

∣ṽx(m)∣2}1/2⎤⎥⎥⎥⎥⎦{
n∑

x=0

∣Ṽx(m)∣2}1/2 ,
(9.13)

i.e.

C2
n∑

x=0

∣Ṽx(m)∣2 ⩽ ⎡⎢⎢⎢⎢⎣M∣Ṽ0(m)∣ + {
n∑

x=0

∣ṽx(m)∣2}1/2⎤⎥⎥⎥⎥⎦
2

⩽ 2M2∣Ṽ0(m)∣2 + 2 n∑
x=0

∣ṽx(m)∣2.
(9.14)

Summing over m and using (9.12) together with (9.11) we obtain

C2
n∑

x=0

⟨⟨V 2
x ⟩⟩ ⩽ 2M2⟨⟨V 2

0 ⟩⟩ + 2 n∑
x=0

⟨⟨v2x⟩⟩ ⩽ 2(MV∗)2
n

{ n∑
x=0

⟨⟨V 2
x ⟩⟩}1/2 + v2∗

n2

⩽
(MV∗)4
C2n2

+
C2

2

n∑
x=0

⟨⟨V 2
x ⟩⟩ + v2∗

n2
,

(9.15)

and (9.1) follows.
�
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10. Concluding remarks

In this article we studied the energy transport in the periodic state of a pinned
harmonic chain with bulk dynamics perturbed by a random flip of the signs of
the velocities. Work was done on the system by a periodic forcing acting on the
right hand side of the chain and the heat was absorbed by a heat bath coupled
to the system via a Langevin stochastic thermostat at temperature T− on the
left. The asymptotic temperature profile (3.9) should be seen as the stationary
solution of the heat equation:

BtT (t, u) = D
4γ

B
2
uT (t, u) u ∈ (0,1)

T (t,0) = T−, BuT (t,1) = −4γJ
D

, T (0, u) = T0(u),
(10.1)

where J is given by (3.3). In a companion work [9] we prove that, under proper
conditions on the initial distribution, for any compactly supported test function
ϕ ∈ C([0,+∞) × [0,1]),
lim
n→∞

1

n

n∑
x=0
∫ +∞

0
ϕ(t, x

n
)Ex(n2t)dt = ∫ +∞

0
∫ 1

0
ϕ(t, u)T (t, u)dtdu, in probability,

(10.2)
with T (t, u) the solution of (10.1). Notice the diffusive rescaling of space and
time.

The diffusion coefficient appearing in (10.1) (defined in (1.10)) has been com-
puted in a different way in [1, Theorem formula (74)] and [7, Theorem 3.2, formula
(3.21)]. It turns out that it equals to the diffusivity of a phonon performing a
random walk on the integer lattice with random scattering generated by the noise.
As a result

D = 2∫
T

(ω′(k)
2π
)2 dk (10.3)

where ω′(k)/(2π) is a group velocity of a phonon of frequency k belonging to the
one dimensional unit torus T, that is the interval [−1/2,1/2] with identified end-

points. Here ω(k) = √ω2
0 + 4 sin

2(πk) is the dispersion relation of the harmonic
lattice considered in the present paper. In fact, if we consider a more general
type of noise that allows to scatter the phonons of given frequency k, with the
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total scattering kernel R(k) (in the case of the flip noise R(k) ≡ 1) we would have

D = 2∫
T

(ω′(k)
2π
)2 dk

R(k) .

As noted before the velocity reversals introduced in the dynamics serve the
purpose of making the heat conductivity finite. In their absence the harmonic
crystal has an infinite conductivity [16]. The velocity reversals are thus an ideal-
ized substitute for the anharmonicities, impurities and other defects which scatter
phonons and produce a finite conductivity and establishes the validity of Fourier’s
law in real solids.

An alternative way of modeling anharmonicity for achieving a finite conduc-
tivity is the introduction of ”self consistent” reservoirs. This was introduced in
[4, 15] and fully analyzed in [5] for describing the heat flow in a harmonic crys-
tal in contact with two heat reservoirs at different temperatures and no external
force. In that model one introduces, in addition to the external reservoirs, also
”internal” Langevin reservoirs for each particle. Letting Tx be the temperature of
the reservoir at position x = 0, . . . , n, with the same coupling γ as used here, Eq.
(2.2) remains unchanged while Eq. (1.11) will have an extra term, 2γ(Tx−p2x), on
its right hand side. Solving for the periodic first and second moments of the sys-
tem the internal Tx, x = 1, . . . , n−1, are then determined by the requirement that
the time average of the internal heat flux, given by the term in the square bracket
above, vanishes in the stationary state. As a result, there is no contribution to
the average current from these internal reservoirs and the limiting macroscopic
behavior is the same as in a corresponding velocity flip model. This approach can
be modified by considering a periodic, instead of a constant, self-consistent tem-
perature profile. This will make the dynamics of the first and second moments
of the position and momenta variables identical with that of the flip model. An
important property of the self consistent reservoir model is that the periodic mea-
sure is Gaussian, consequently it is determined by the first and second moments
already computed here.

Various possible extension of the present model are presented in the review
article [10]: forcing acting on a particle in the bulk, unpinned dynamics, higher
dimensional lattice, anharmonic interactions.
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Appendix A. The proof of Theorem 1.1

Since the result does not depend on the scaling factor na, standing by the
force F(t), and the period size θn we assume that a = 0 and θn = θ. Given a
Borel probability measure µ on R2(n+1) (see (1.1)) we denote by (qµ(t),pµ(t))
the solution of (1.3)–(1.4)) such that (qµ(0),pµ(0)) is distributed according to

µ. Denote then by (qµ(t),pµ(t)) and Cµ(t) the vector of averages and matrix of
the mixed second moments of the solution, correspondingly. They are defined by
formulas (2.1) and a 2 × 2 block matrix

Cµ(t) = [ C(q)µ (t) C
(q,p)
µ (t)

C
(p,q)
µ (t) C

(p)
µ (t) ]

Each block is an (n + 1) × (n + 1) matrix

C
(q)
µ (t) = [qx(t)qx′(t)]x,x′=0,...,n C

(p)
µ (t) = E[px(t)px′(t)]x,x′=0,...,n,

C
(q,p)
µ (t) = E[qx(t)px′(t)]x,x′=0,...,n

and C
(p,q)
µ (t) = [C(q,p)µ (t)]T , where the initial state is taken to be µ.

By similar calculation as done in (6.15), their evolution is described by the
system of linear differential equations with periodic forcing

d

dt
( qµ(t)
pµ(t) ) = −A( qµ(t)

pµ(t) ) + F(t/θ)ep,n+1,
d

dt
Cµ(t) = −ACµ(t) −Cµ(t)AT

+Σ2(c2,µ(t)) +F(t/θ)F (t),
(A.1)

where

c2,µ(t) = ⎛⎜⎜⎝
C
(p)
0,0,µ(t)
⋮

C
(p)
n,n,µ(t)

⎞⎟⎟⎠ (A.2)

and

F (t) ∶=
⎡⎢⎢⎢⎢⎢⎣

0 qµ(t)⊗ ep,n+1
ep,n+1 ⊗ qµ(t) ep,n+1 ⊗ pµ(t) +pµ(t)⊗ ep,n+1

⎤⎥⎥⎥⎥⎥⎦
(A.3)

Here ep,n+1 and Σ2 are defined in (2.4) and (6.10) respectively. Suppose that we are

given a vector X ∈ R2(n+1) and a symmetric non-negative definite 2(n+1)×2(n+1)
matrix S ⩾ X ⊗X . Then, equations (A.1) describe the evolution of the first two
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moments of the solution of (1.3)–(1.4)) whose initial distribution is a random
vector with the first two moments given by X and S, respectively.

A.1. The existence and uniqueness of the periodic mean and second

moment. In the first step we show the existence of a periodic solution of (A.1)
that corresponds to the mean and covariance of a certain probability evolution.

Proposition A.1. There exists a unique vector Xper = (qper,pper) ∈ R2(n+1) and a

non-negative symmetric matrix Cper ⩾Xper⊗Xper such that the solution of (A.1)
with ((q(0),p(0)),C(0)) = ((qper,pper),Cper)
satisfies

((q(0),p(0)),C(0)) = ((q(θ),p(θ)),C(θ)). (A.4)

In addition, we have

C
(p)
x,x(t) ⩾ T−, x = 0, . . . , n. (A.5)

The remaining part of this section is devoted to the proof of this results.

A.1.1. The existence of the periodic first moment. Let

( q

p
) ∶= ∫ 0

−∞
F(s/θ)eAsep,n+1ds. (A.6)

Thanks to Proposition 2.1 the vector (q,p) is well defined. One can easily check
that the solution of the first equation of (A.1) starting from the vector is given
by

X(t) = ( q(t)
p(t) ) ∶= ∫ t

−∞
F(s/θ)e−A(t−s)ep,n+1ds. (A.7)

and is therefore θ-periodic. In fact, thanks to Proposition 2.1 the periodic solution
has to be unique. Since the coordinates of X(t) satisfy the first equation of (A.1)
we conclude that the matrix X2(t) ∶=X(t)⊗X(t) satisfies

d

dt
X2(t) = −AX2(t) −X2(t)AT

+F(t/θ)F (t),
and it is given by the formula

X2(t) = ∫ t

−∞
F(s/θ)e−A(t−s)F (s)e−AT (t−s)ds, t ∈ R. (A.8)
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A.1.2. The existence of the periodic second moment. Now we are going to estab-
lish the existence of a periodic second moment. Suppose that C(t) is a periodic
solution of the second equation of (A.1). Using the argument made in the proof
of Proposition 6.1 we can conclude that it satisfies the equation

C(t) = ∫ t

−∞
e−A(t−s) (Σ2(c2(s)) +F(s/θ)F (s)) e−AT (t−s)ds

= ∫ t

−∞
e−A(t−s)Σ2(c2(s))e−AT (t−s)ds +X2(t)

= ∫ ∞

0
e−AsΣ2(c2(t − s))e−AT sds +X2(t)

=

∞∑
ℓ=0
∫ θ

0
e−A(s+ℓθ)Σ2(c2(t − s))e−AT (s+ℓθ)ds +X2(t)

, t ∈ R,

(A.9)

where the matrix Σ2 is defined by (6.10), c2(s) relates to C(s) via (A.2) and
F (s) is defined by (A.3), using (q(t),p(t)) instead of (qµ(t),pµ(t)). Conversely,
any periodic symmetric matrix valued function C(t) satisfying (A.9) is a periodic
solution to the second equation of (A.1).

For x,x′, y = 0, . . . , n define

gx,x′,y(s) ∶= +∞∑
ℓ=0

[e−A(s+ℓθ)]
x+n+1,y+n+1

[e−AT (s+ℓθ)]
y+n+1,x′+n+1

. (A.10)

Consider the following linear mapping: L ∶ [C(Tθ)]n+1 → [C(Tθ)]n+1, where Tθ ∶=

θT is the torus of size θ, that assigns to a given vector of θ-periodic functions
T(s) = [T0(s), . . . , Tn(s)] a vector valued function

LT ∶= (G0T, . . . ,GnT), (A.11)

where

GxT(t) = n∑
y=0
∫ θ

0
Gx,y(s)Ty (t − s)ds. (A.12)

Here
Gx,y(s) = 4γgx,x,y(s), y = 0, . . . , n. (A.13)

Obviously, from (A.10), we have Gx,y(s) ⩾ 0. Note also that although gx,x′,y(⋅)
need not be θ-periodic the functions GxT(t), x = 0, . . . , n are θ-periodic. In
addition, if C(t) satisfies (A.9), then

c2(t) = LT (c2)(t) +p2(t), (A.14)
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where for a given TT = (T0, . . . , Tn) ∈ Rn+1

T (T) = ⎛⎜⎜⎜⎝
T−
T1
⋮

Tn

⎞⎟⎟⎟⎠ , p2(t) = ⎛⎜⎝
p20(t)
⋮

p2n(t)
⎞⎟⎠ .

Conversely, by finding a solution c2 of (A.14) one can define then a θ-periodic
function C(t) by the right hand side of (A.9). The entries of the function cor-
responding to Cx,x, x = n + 1, . . . ,2n + 1 coincide with the coordinates of the
vector c2, by virtue of (A.14). Thus, the function C(t) solves equation (A.9). We
have reduced therefore the problem of finding a periodic solution to the second
equation of (A.1) to solving equation (A.14).

A.1.3. Solution of (A.14). Let

C+ ∶= [T = (T0, T1, . . . , Tn) ∶ Tx ∈ C(Tθ)and Tx ⩾ T−, x = 0, . . . , n].
It is a closed subset of (C(Tθ))n+1, equipped with the norm

∣∥T∥∣ ∶=max{∥Tx∥∞, x = 0, . . . , n}.
Consider the mapping

T = (T0, . . . ,Tn) ∶ C+ → (C(Tθ))n+1, where TT ∶= LT (T) + p2. (A.15)

Using the notation of (A.12) and (A.14) we have

Tx(T)(t) ∶= T−∫ θ

0
Gx,0(s)ds+ n∑

x′=1
∫ θ

0
Gx,x′(s)Tx′ (t − s)ds+p2x(t), x = 0, . . . , n.

Comparing (6.12) with (A.9), after time averaging over a period, it is easy to
identify

∫ θ

0
Gx,y(s)ds =Mx,y (A.16)

defined by (7.2). The matrix [Mx,y]nx,y=0 is symmetric, bi-stochastic (as can be
easily seen from (7.2)).. It also follows immediately that

1 =
n∑

y=0
∫ θ

0
Gx,y(s)ds, x = 0,1, . . . , n (A.17)
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and, as a consequence, T(C+) ⊂ C+. Furthermore, we claim that Mx,y > 0 for all
x, y = 0, . . . , n. Indeed, a simple calculation, using (2.3) and (2.5), yields

[(λ +A)−1]
x+n+1,y+n+1

=

n∑
j=0

λψj(x)ψj(y)
λ2 + 2γλ + µj

,

[(λ +A)−1]
x,y+n+1

=

n∑
j=0

ψj(x)ψj(y)
λ2 + 2γλ + µj

, (A.18)

[(λ +A)−1]
x+n+1,y

= −

n∑
j=0

µjψj(x)ψj(y)
λ2 + 2γλ + µj

,

[(λ +A)−1]
x,y+n+1

=

n∑
j=0

ψj(x)ψj(y)
λ2 + 2γλ + µj

.

The poles of the meromorphic functions appearing in (A.18) are given by

λj,± = −(γ ±√γ2 − µj). (A.19)

Suppose that Mx,y = 0 for some x, y. From (A.16) we conclude then that

0 =Mx,y = ∫ θ

0
Gx,y(s)ds = 4γ ∫ +∞

0
[e−As]2

x+n+1,y+n+1
ds, (A.20)

which in turn would implies that [e−As]
x+n+1,y+n+1

≡ 0 for all s ⩾ 0, thus also

0 ≡ [(λ +A)−1]
x+n+1,y+n+1

=

n∑
j=0

λψj(x)ψj(y)
λ2 + 2γλ + µj

.

As a result, we conclude that ψj(x)ψj(y) = 0, for all j = 0, . . . , n, which is impos-
sible.

We shall show that the mapping T has a unique fixed point in C+ by proving that
the mapping is a contraction in the norm ∣∥⋅∥∣. Indeed, forTT

j = [Tj,0, Tj,1, . . . , Tj,n],
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j = 1,2, we have

∣Tx(T1)(t) −Tx(T2)(t)∣ = ∣ n∑
x′=1
∫ θ

0
Gx,x′(s)[T1,x′ (t − s) − T2,x′ (t − s) ]ds∣

⩽

n∑
x′=1
∫ θ

0
Gx,x′(s)∣T1,x′ (t − s) − T2,x′ (t − s) ∣ds

⩽

n∑
x′=1

(∫ θ

0
Gx,x′(s)ds) ∥T1,x′ − T2,x′∥∞

⩽ (1 − ∫ θ

0
Gx,0(s)ds) ∣∥T1 −T2∣∥, x = 0, . . . , n.

Therefore

∣∥T(T1) −T(T2)∥∣ ⩽ ρ∣∥T1 −T2∣∥,
where

ρ ∶=max [1 −∫ θ

0
Gx,0(s)ds, x = 0, . . . , n] < 1.

We have shown that ∥T(T1) − T(T2)∥∞ ⩽ ρ∥T1 − T2∥∞ and the existence of a
unique fixed point follows. This ends the proof of Proposition A.1. �

A.2. The end of the proof of Theorem 1.1. Suppose now that ν is a prob-
ability law whose first and second moments are θ-periodic, e.g. it could be a
Gaussian distribution with the mean and the second moment given by Pper and
Cper, respectively. Denote by

Ps,tF (q,p) = ∫
R2(n+1)

F (q′,p′)Ps,t(q,p; dq′,dp′)
the evolution family of transition probability operators corresponding to the dy-
namics described by (1.3)–(1.4). Consider the event E ∶= [Nx(θ) = 0, x = 1, . . . , n].
We have P[E] > 0. Suppose that the dynamics starts at (q,p). Then, for any
F ⩾ 0 we can write

P0,θF (q,p) ⩾ E[F (q(θ),p(θ), E] = P[E]Q0,θF (q,p), (A.21)

where Qs,t is the evolution family of transition probability operators for the non-
homogeneous Ornstein-Uhlenbeck process V (t) that corresponds to the generatorG(g)t = At + 2γS−, see (1.7) and (1.8). Using the hypoellipticity of the time ho-
mogeneous Ornstein-Uhlenbeck process U(t) that corresponds to the generator

44



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

G(g) ∶= A + 2γS−, where
A = n∑

x=0

pxBqx +

n∑
x=0

(∆Nqx − ω
2
0qx)Bpx ,

see Section A.3 below, we can prove that there exist strictly positive transition
probability density kernels ρs,t corresponding to Qs,t. Suppose that the time
homogeneous Ornstein-Uhlenbeck process U(t;u) satisfies the S.D.E.

dU(t;u) = −AEU(t;u)dt +√4γT−ΣdW (t), U(0;u) = u
where AE and Σ are given by 2×2 block matrices, whose entries are (n+1)×(n+1)
matrices

AE = ( 0 −Idn+1

−∆N + ω
2
0 2γE

) and Σ = ( 0 0
0 E

) , (A.22)

with

E ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0

⋮ ⋮ ⋮ ⋮

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.23)

Here

dW (s) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dw
(q)
0 (s)
⋮

dw
(q)
n (s)

dw
(p)
0 (s)
⋮

dw
(p)
n (s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

is a 2(n+1)-dimensional standard Wiener process. Due to the hypoellipticity, the
probability distribution of U(t;u) have densities that are given by C∞ smooth
Gaussians.

The non-homogeneous Ornstein-Uhlenbeck process V (t;v) that corresponds to
the G(g)t and satisfies V (0;v) = v, can be described by (cf (2.4)) the solution of

dV (t;v) = [ −AEV (t;v) +F(t)ep,n+1]dt +ΣdW (t), V (0;v) = v.
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Hence

V (t;v) = e−AEtv + ∫ t

0
e−AE(t−s)ΣdW (s) + ∫ t

0
e−AE(t−s)F(s)ep,n+1ds

= U(t;v) + ∫ t

0
e−AE(t−s)F(s)ep,n+1ds.

Thus the distribution of V (t;v) has a density that is also given by a C∞ smooth
Gaussian.

Thanks to (A.21) we conclude that

P0,θ(q,p; dq′,dp′) ⩾ c∗ρ0,θ(q,p;q′,p′),q′dp′, (A.24)

where c∗ ∶= P[E]. Then, ν0,t ∶= νP0,t describes the law of (q(t),p(t)) with the
prescribed initial data. Thanks to Proposition A.1 we can see that the total energyH(t) ∶=∑n

x=0 Ex(t) (see (1.2)) is a Lyapunov function for the above system, since
EH(t) is θ-periodic. The above implies that the family of laws {ν0,t, t ⩾ 0} is tight
in R2(n+1). Thus, also the family µN ∶= N−1 ∫ Nθ

0
ν0,sds is tight. Suppose that µ∞

is its limiting measure, i.e. there exists a sequence N ′ → +∞ such that µN ′ → µ∞,
in the topology of weak convergence. Since Ps,t has the Feller property one can
easily conclude that µ∞P0,θ = µ∞. Hence µP

s ∶= µ∞P0,s , s ∈ [0,+∞) is a periodic
stationary state.

Suppose that µ(dq,dp) = f(q,p)dqdp, where f is a C∞ smooth probability
density. One can show, using the regularity theory of stochastic differential equa-
tions, that µP0,θ is absolutely continuous w.r.t. the Lebesgue measure and its
density is also C∞ smooth, see e.g. [6, Corollary III.3.4, p. 303]. This allows us
to conclude further that µP0,θ is absolutely continuous, provided that µ is abso-
lutely continuous. We shall denote by P0,θ the corresponding operator induced on
L1(R2(n+1)). The operator Q0,θ corresponding to the Gaussian dynamics trans-
forms µ∞ into an absolutely continuous measure. Thanks to (A.24) we conclude
that

µ∞(dq′,dp′) = µ∞P0,θ(dq′,dp′) ⩾ c∗µ∞Q0,θ(q′,p′)dq′dp′. (A.25)

Therefore the singular part of µ∞ is of at most mass 1− c∗. Since P0,θ transforms
the space of abolutely continuous measures into itself, both the singular and
absolutely continuous parts of µ∞, after normalization, become invariant underP0,θ. Iterating this procedure we conclude, after m steps, that the singular part
can be of at most mass (1 − c∗)m, which eventually leads to the conclusion that
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the measure µ∞ is absolutely continuous. The respective density is positive, due
to (A.24). This ends the proof of Theorem 1.1. �

A.3. Hypoellipticity of G(g). We show that the operator (G(g))∗−Bt is hypoel-

liptic in R ×R2(n+1). Here

(G(g))∗ − Bt = X0 +X 2
1 + 2γ, (A.26)

where X0 = −Bt −A + 2γp0Bp0 and X1 =

√
2γT−Bz0.

Let X (0)1 ∶= X1 =
√
2γT−Bp0. Since[X0,Bp0] = Bq0 − 2γBp0

the commutator

X (0)2 ∶= [X0,X (0)1 ] =√2γT−[X0,Bp0] =√2γT−{Bq0 − 2γBp0}.
Next, we have [X0,Bq0] = −(1 + ω2

0)Bp0 + Bp1.

Hence,

X (1)1 ∶= [X0,X (0)2 ] =√2γT−{[X0,Bq0] − 2γ[X0,Bp0]}
=

√
2γT−Bp1 + c

(0)
0 Bp0 + d

(0)
0 Bq0

for some constants c
(0)
0 and d

(0)
0 . Note that, [X0,Bp1] = Bq1. Therefore,

X (1)2 ∶= [X0,X (1)1 ] =√2γT−[X0,Bp1] + c(0)0 [X0,Bz0] + d(0)0 [X0,By0]
=

√
2γT−Bq1 + c

(1)
1 Bp1 + c

(1)
0 Bp0 + d

(1)
0 Bq0.

for some constants c
(1)
0 , c

(1)
1 and d

(1)
0 . Continuing calculations along those lines

we get that

X (m)1 ∶= [X0,X (m−1)2 ] =√2γT−Bpm +

m−1∑
j=0

c
(m)
j Bpj +

m−1∑
j=0

d
(m)
j Bqj ,

X (m)2 ∶= [X0,X (m−1)2 ] =√2γT−Bqm + c
(m)
m Bpm +

m−1∑
j=0

c
(m)
j (t)Bzj +

m−1∑
j=0

d
(m)
j Bqj .
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for some constants c
(m)
j , d

(m)
j . In conclusion, we can see that X0, X (m)1 and X (m)2 ,

0 ⩽ m ⩽ n generate the tangent space to R ×R2(n+1) so the operator (G(g))∗ − Bt

is hypoelliptic in R ×R2(n+1) by virtue of the Hörmander theorem.

Appendix B. Green Functions convergence

Recall that Gω0
and Gn

ω0
are the Green’s functions corresponding to ω2

0 −∆
and ω2

0 −∆N, where ∆ is the free lattice laplacian on Z and ∆N is the Neumann
discrete laplacian on {0,1, . . . , n}, see Sections 2.3 and 2.4, respectively.

B.1. Estimates on oscillating sums. Define χn(x) as the n + 1-periodic ex-
tension of χn(x) ∶= (1 + x) ∧ (n + 2 − x), x ∈ [0, n + 1]. Suppose that Φ ∶ R2 → C is
a θ, θ′-periodic function in each variable respectively. Denote

H
(n)
x,x′ =

1(n + 1)2
n∑

j,j′=0

Φ( θj

n + 1
,
θ′j′

n + 1
) exp{2iπjx

n + 1
} exp{2iπj′x′

n + 1
}

for x,x′ ∈ Z.

Lemma B.1. Suppose that Φ is of Ck-class for some k ⩾ 1. Then, there exists
C such that

∣H(n)x,x′∣ ⩽ C

χℓ
n(x)χℓ′

n (x′) , x, x′ ∈ Z, n ⩾ 1, ℓ, ℓ′ ⩾ 0, ℓ + ℓ′ ⩽ k. (B.1)

Proof. To simplify the notation we suppose that θ = θ′ = 1. Summation by parts
yields

H
(n)
x,x′ =

1(n + 1)2
n∑

j,j′=0

Φ( j

n + 1
,
j′

n + 1
) exp {2iπxn+1 } − 1
exp {2iπx

n+1
} − 1 exp{2iπjxn + 1

} exp{2iπj′x′
n + 1

}

=
1(n + 1)2[exp { iπx

n+1
} − 1]

n∑
j,j′=0

[Φ( j − 1
n + 1

,
j′

n + 1
) −Φ( j

n + 1
,
j′

n + 1
) ]

× exp{2iπjx
n + 1

} exp{2iπj′x
n + 1

}
Since Φ is of C1 class

∣Φ( j − 1
n + 1

,
j′

n + 1
) −Φ( j

n + 1
,
j′

n + 1
) ∣ ⩽ C

n + 1
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for some constant C > 0. In addition, there exists c > 0 such that

∣exp{2iπx
n + 1

} − 1∣ ⩾ cχn(x)
n + 1

for x,x′ ∈ Z, n ⩾ 1. Thus, there exists C > 0 such that

∣H(n)x,x′∣ ⩽ C

χn(x) , x, x′ ∈ Z.

Iterating this argument in the regularity degree k of Φ we conclude (B.1). �

B.2. Application. An application concerns the approximation of the Green’s
function Gω0

by Gn
ω0

along the diagonal.

Lemma B.2. We have

Gn
ω0
(y, y) = Gω0

(0) + H̃(n)(y) +O(1
n
), y = 0, . . . , n, n ⩾ 1. (B.2)

Here for some constant C > 0 we have

∣H̃(n)(y)∣ ⩽ C

χ2(y) , y = 0, . . . , n, n ⩾ 1. (B.3)

Proof. Using the definition of the Green’s function (2.13) (with ℓ = 0) and formu-
las (2.14) we obtain

Gn
ω0
(y, y) = 1

n + 1

n∑
j=0

Ξ( j

n + 1
) [1 + cos(πj(2y + 1)

n + 1
)] +O(1

n
),

where

Ξ (u) = {4 sin2 (πu
2
) + ω2

0}−1 .
As a result we write Gn

ω0
(y, y) in the form (B.2), with

H̃
(n)
y =

1

2(n + 1)
n∑

j=−n−1

cos(πj(2y + 1)
n + 1

)Ξ( j

n + 1
) .

Estimate (B.3) is then a consequence of Lemma B.1. �
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Appendix C. Proofs of Lemmas 9.2, 9.3 and 9.5

C.1. Proof of Lemma 9.2. For m ∈ Z and g = (g0, . . . , gn) ∈ Rn+1 define

S(m) ∶= ∫ +∞

0
e−2πims/θe−AsΣ(g)e−AT sds =

⎡⎢⎢⎢⎢⎢⎣
Sq(m) Sqp(m)
Spq(m) Sp(m)

⎤⎥⎥⎥⎥⎥⎦
,

where Σ2 is defined in (6.10). Note that

n∑
y=0

Mx,y(m)gy = Sp
x,x(m). (C.1)

Arguing similarly as in the proof of (6.16) we get

AS(m) + S(m)AT
+
2πim

θ
S(m) = Σ2(g). (C.2)

Denote

S̃
q,p
j,j′(m) = n∑

x,x′=0

S
q,p
x,x′(m)ψj(x)ψj′(x′)

Following the same manipulations as those leading to (6.20) we obtain

S̃
p
j,j′(m) = 1

2
S̃
q
j,j′(m)[µj′ + µj + (2γ + 2πim

θ
)πim
θ
],

S̃
q
j,j′(m)[µj′ − µj −

2πim

θ
(2γ + 2πim

θ
)] + 2(2γ + 2πim

θ
)S̃qp

j,j′(m) = 0, (C.3)

S̃
qp
j,j′(m)(µj − µj′) + 2πim

θ
S̃
q
j,j′(m)µj′ + (4γ + 2πim

θ
)S̃p

j,j′(m) = F̃j,j′

and F̃j,j′ = ∑n
x=0ψj(x)ψj′(x)gx. Determine S̃

qp
j,j′ from the second equation. It

equals

S̃
qp
j,j′ = [2(2γ + 2πimθ )]−1S̃q

j,j′[µj − µj′ +
2πim

θ
(2γ + 2πim

θ
)].

Substituting into the third equation we get

S̃p
j,j′ = (4γ + 2πim

θ
)−1{Fj,j′ − S̃

qp
j,j′(µj − µj′) − 2πim

θ
S̃q
j,j′µj′}

= (4γ + 2πim
θ
)−1{Fj,j′ − S̃

q
j,j′{[2(2γ + 2πimθ )]−1(µj − µj′)2 + πim

θ
(µj + µj′)}
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Hence

S̃
q
j,j′ = {[2(2γ + 2πim

θ
)]−1(µj − µj′)2 + πim

θ
(µj + µj′)}−1Fj,j′ (C.4)

− S̃
p
j,j′(4γ + 2πim

θ
){[2(2γ + 2πim

θ
)]−1(µj − µj′)2 + πim

θ
(µj + µj′)}−1.

On the other hand, from the first equation of (C.3) we conclude that

S̃
q
j,j′ = 2S̃

p
j,j′[µj′ + µj + (2γ + 2πim

θ
)πim
θ
]−1. (C.5)

Therefore, comparing (C.4) with (C.5), we get

2S̃p
j,j′[µj′ + µj + (2γ + 2πim

θ
)πim
θ
]−1

= {[2(2γ + 2πim

θ
)]−1(µj − µj′)2 + πim

θ
(µj + µj′)}−1Fj,j′

− S̃
p
j,j′(4γ + 2πim

θ
){[2(2γ + 2πim

θ
)]−1(µj − µj′)2 + πim

θ
(µj + µj′)}−1

and

2S̃p
j,j′[µj′ + µj + (2γ + 2πim

θ
)πim
θ
]−1

× {[2(2γ + 2πim
θ
)]−1(µj − µj′)2 + πim

θ
(µj + µj′)} + S̃p

j,j′(4γ + 2πimθ ) = Fj,j′

This leads to

S̃
p
j,j′ =∑

y

Θm(µj , µj′)ψj(y)gyψj′(y),
with

Θm(c, c′) ∶= 4γ(4γ + 2πim

θ
)−1⎧⎪⎪⎨⎪⎪⎩2(4γ +

2πim

θ
)−1[c + c′ + (2γ + 2πim

θ
)πim
θ
]−1

× {[2(2γ + 2πim

θ
)]−1(c − c′)2 + πim

θ
(c + c′)} + 1⎫⎪⎪⎬⎪⎪⎭

−1

(C.6)

From (C.1) we conclude that

Mx,y(m) = n∑
j,j′=0

Θm(µj , µj′)ψj(x)ψj′(x)ψj(y)ψj′(y) (C.7)
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Note that Θ0(c, c′) = Θ(c, c′) defined in (6.24). As in (7.5), for any sequence(fx) ∈ Cn+1 we can write

n∑
x,y=0

(δx,y −Mx,y(m))f⋆y fx = n∑
j,j′=0

(1 −Θm(µj , µj′)) ∣ n∑
x=0

ψj(x)fxψj′(x)∣2 .
We have

1 −Θm(c, c′) (C.8)

=

⎧⎪⎪⎨⎪⎪⎩
πim

θ
+ [c + c′ + 2(γ + πim

θ
)πim
θ
]−1[1

4
(γ + πim

θ
)−1(c − c′)2 + πim

θ
(c + c′)]⎫⎪⎪⎬⎪⎪⎭

×

⎧⎪⎪⎨⎪⎪⎩[c + c
′
+ 2(γ + πim

θ
)πim
θ
]−1[1

4
(γ + πim

θ
)−1(c − c′)2 + πim

θ
(c + c′)] + (2γ + πim

θ
)⎫⎪⎪⎬⎪⎪⎭
−1

.

It is easy to see from (C.6) that

lim
m→+∞

(1 −Θm(c, c′)) = 1 (C.9)

uniformly in c, c′ ∈ [0, ω2
0 + 4].

To prove (9.9) it suffices to show that there exists C∗ > 0 such that

∣1 −Θm(c, c′)∣ ⩾ C∗, ∣m∣ ⩾ 1, c, c′ ∈ [0, ω2
0 + 4]. (C.10)

In light of (C.9) to show (C.10) it suffices therefore to prove that

∣1 −Θm(c, c′)∣ /= 0, ∣m∣ ⩾ 1, c, c′ ∈ [0, ω2
0 + 4]. (C.11)

Suppose that m /= 0 and 1 −Θm(c, c′) = 0 for some c, c′ ∈ [0, ω2
0 + 4]. Then, (C.8)

implies that

0 = 2αi[c + c′ + (γ + αi)αi] + (c − c′)2
4(γ + iα) ,

where α = πm/θ. Hence,
0 = 8αi{γ(c + c′) − 2γα2

+ i[α(c + c′) −α3
+ γ2α]} + (c − c′)2.

This leads to

c + c′ = 2α2
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and

0 = −8α2(c + c′ − α2
+ γ2) + (c − c′)2.

The second equation yields

8α2(α2
+ γ2) = (c − c′)2,

which implies that for α /= 0 we have

∣c − c′∣ = 2√2{α2(α2
+ γ2)}1/2 > 2√2α2

=

√
2(c + c′),

which is a contradiction. This ends the proof of (C.11) and therefore the demon-
stration of (9.9). �

C.2. Proof of Lemma 9.3. Using (C.7) we obtain

n∑
x=0

∣Mx,0(m)∣2 = n∑
j1,...,j4=0

Θm(µj1, µj2)Θm(µj3, µj4) 4∏
k=1

ψjk(0) n∑
x=0

4∏
k=1

ψjk(x). (C.12)

Applying elementary trigonometric identities we conclude that

n∑
x=0

4∏
k=1

ψjk(x) = 1(n + 1)2 {
4∏

k=1

(2 − δ0,jk)}
1/2 n∑

x=0

4∏
k=1

cos(πjk(2x + 1)
2(n + 1) )

=
1

25(n + 1) {
4∏

k=1

(2 − δ0,jk)}
1/2 ∑

ι1,...,ι4∈{−1,1}

cos( π

2(n + 1)
4∑

k=1

ιkjk)12(n+1)Z( 4∑
k=1

ιkjk)
Therefore we can write

n∑
x=0

∣Mx,0(m)∣2 = ∑
ι,ι1∈{−1,1}

∑
ι′,ι′

1
∈{−1,1}

∫ 1

0
du∫ 1

0
du′∫ 1

0
du1∫ 1

0
du′1Vm(u,u′)V⋆m(u1, u′1)

(C.13)

× exp{iπ(ιu + ι′u′ + ι1u1 + ι′1u′1)}∑
q∈Z

δq(ιu + ι′u′ + ι1u1 + ι′1u′1) +Om (1
n
) , (C.14)

where Om ( 1n) ⩽ C
n
for some constant C > 0, independent of n and m, and

Vm(u,u′) ∶=Θm(ω2
0 + 4 sin

2 (πu
2
) , ω2

0 + 4 sin
2 (πu′

2
)) cos(πu

2
) cos(πu′

2
) .

We claim that there exists C > 0, independent of n andm, such thatVm(u,u′) ⩽ C
for all u,u′ ∈ [0, ω2

0 + 4]. Indeed, as can be seen directly from (C.6), we have
limm→+∞Θm(c, c′) = 0 uniformly in c, c′ ∈ [0, ω2

0 + 4]. On the other hand the
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function R × [0, ω2
0 + 4]2 ∋ (m,c, c′) → Θm(c, c′) is bounded on compact set. If

otherwise, this would imply that there exist (m,c, c′) ∈ R × [0, ω2
0 + 4]2 such that

0 = [(2γ + πim
θ
)(c + c′ + 2(γ + πim

θ
)πim
θ
)]−1

× [1
4
(γ + πim

θ
)−1(c − c′)2 + πim

θ
(c + c′)] + 1.

An easy calculation gives c + c′ = γ2 − 2α2 and (c − c′)2 = 8(α2 + γ2)2, where
α = πm/θ. This leads to a contradiction, as then ∣c−c′∣ > c+c′ (but both c, c′ > 0).
Thus the conclusion of the lemma follows. �

C.3. Proof of Lemma 9.4. From (A.18) we obtain

[e−At]x+n+1,x′+n+1 = n∑
j=0

Ej(t)ψj(x)ψj(x′),
where (cf (6.18))

Ej(t) ∶= 1

2
√
γ2 − µj

[ − λj,+ exp {λj,+t} + λj,− exp {λj,−t} ], if µj /= γ2.
In the case µj = γ2 (then λj,± = γ, cf (A.19)) we have Ej(t) ∶= (1 − γt)e−γt. Using
(A.6) we obtain therefore

px(t) = 1

n1/2

n∑
j=0
∫ +∞

0
F((t − s)/θ)[e−As]x+n+1,2n+1ds (C.15)

=
1

n1/2

n∑
j=0

ψj(x)ψj(n)∫ +∞

0
F((t − s)/θ)Ej(s)ds.

From (C.15) we conclude that there exists p∗ > 0 such that

sup
t∈R,x=0,...,n

∣px(t)∣ ⩽ p∗

n1/2
, n = 1,2, . . . . (C.16)

Estimate (9.11) is then a straightforward consequence of (C.16) and (4.11). �
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C.4. Proof of Lemma 9.5. Multiplying both sides of (9.4) by Vx(t) and aver-
aging over time we get

⟨⟨V 2
x ⟩⟩ = n∑

x′=1
∫ θ

0
gx,x′(s)⟨⟨Vx(⋅)Vx′(⋅ − s)⟩⟩ds + ⟨⟨Vxvx⟩⟩

⩽

n∑
x′=1

Mx,x′⟨⟨V 2
x ⟩⟩1/2⟨⟨V 2

x′⟩⟩1/2 + ⟨⟨Vxvx⟩⟩.
(C.17)

Summing up over x we obtain

n∑
x,x′=0

(δx,x′ −Mx,x′)⟨⟨V 2
x ⟩⟩1/2⟨⟨V 2

x′⟩⟩1/2 + ⟨⟨V 2
0 ⟩⟩1/2 n∑

x=0

Mx,0⟨⟨V 2
x ⟩⟩1/2

⩽

n∑
x=0

⟨⟨Vxvx⟩⟩.
Using (7.4) and the Cauchy-Schwarz inequality we obtain in particular that

M0,0⟨⟨V 2
0 ⟩⟩ ⩽ { n∑

x=0

⟨⟨V 2
x ⟩⟩}1/2 { n∑

x=0

⟨⟨v2x⟩⟩}1/2 ⩽ Cn {
n∑

x=0

⟨⟨Vx⟩⟩2}1/2
for some C > 0 independent of n. The last estimate follows from (9.11). To finish
the proof note that from (7.2) we have

M0,0 =
4(n + 1)2

n∑
j,j′=0

(1 − δ0,j)(1 − δ0,j′)Θ(µj , µj′) cos2 ( πj

2(n + 1)) cos2 ( πj′

2(n + 1))
≈ 4γ2∫ 1

0
∫ 1

0

[ω2
0 + 2 sin

2(πu/2) + 2 sin2(πu′/2)] cos2(πu/2) cos2(πu′/2)dudu′
γ2(ω2

0 + 2 sin
2(πu/2) + 2 sin2(πu′/2)) + ( sin2(πu/2) − sin2(πu′/2)))2 ,

where the equality holds up to a term of order O(1/n). �

Appendix D. Calculation of Qa,b(ℓ)
Consider the Green’s function of −∆ + ω2

0 given by (2.15). We can write

Gω2

0

(x) = lim
η→0+

1

λ
√
1 + 4/λ

⎧⎪⎪⎨⎪⎪⎩1 +
λ

2
(1 +
√

1 +
4

λ
)⎫⎪⎪⎬⎪⎪⎭
−∣x∣

∣λ=ω2

0
+iη

, x ∈ Z. (D.1)
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Here the square root denotes the branch of the inverse of z ↦ z2 such that
Re
√
λ > 0, when λ ∈ C∖ (−∞,0]. By the analytic continuation we have therefore

Gλ(x) = (−∆ + λ)−1 (x) = ∫ 1

0

cos(2πux)du
4 sin2(πu) + λ

=
1

λ
√
1 + 4/λ

⎧⎪⎪⎨⎪⎪⎩1 +
λ

2
(1 +
√

1 +
4

λ
)⎫⎪⎪⎬⎪⎪⎭
−∣x∣

, x ∈ Z (D.2)

for λ ∈ C ∖ [−4,0].
Recall that Qa,b(ℓ) is given by (3.4) and (3.5) with a + b = 1/2. Let

Q̃−1/2,0(ℓ) = 4γ∣F̃(ℓ)∣2 (2πℓ
θ
)2∫ 1

0
cos2 (πz

2
)⎧⎪⎪⎨⎪⎪⎩[4 sin

2 (πz
2
) + ω2

0 − (2πℓθ )
2]2 + (4γπℓ

θ
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz

(D.3)
and

Q̃b−1/2,b(ℓ) = 4γ∣F̃(ℓ)∣2 (2πℓ
θ
)2∫ 1

0
cos2 (πz

2
) [4 sin2 (πz

2
) + ω2

0]−2 dz, when b > 0.

(D.4)
Let

λ(ω0) ∶= ω2
0 − (2πℓθ )

2

+ i(4γπℓ
θ
) .

We have

Q̃−1/2,0(ℓ) = −2πℓ∣F̃(ℓ)∣2
θ

Im(∫ 1

0

[1 + cos (2πz)]dz
4 sin2 (πz) + λ(ω0))

Using (D.2) we can write

Q̃−1/2,0(ℓ) = −2πℓ∣F̃(ℓ)∣2
θ

Im (Gλ(ω0)(0) +Gλ(ω0)(1))
= −

2πℓ∣F̃(ℓ)∣2
θ

Im
⎛⎝
⎧⎪⎪⎨⎪⎪⎩

2

λ(ω0)√1 + 4/λ(ω0) +
1

2

⎫⎪⎪⎬⎪⎪⎭{1 +
λ(ω0)
2
(1 +√1 +

4

λ(ω0))}
−1⎞⎠
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Next, for b > 0, we have

Q̃b−1/2,b(ℓ) = 4γ∣F̃(ℓ)∣2 (2πℓ
θ
)2∫ 1

0

cos2 (πz)dz
[4 sin2 (πz) + ω2

0]2
= 2γ∣F̃(ℓ)∣2 (2πℓ

θ
)2∫ 1

0

[1 + cos (2πz)]dz[2 + ω2
0 − 2 cos (2πz)]2 = γ∣F̃(ℓ)∣2 (

2πℓ

θ
)2 I ,

where I ∶= 1

2πi ∫C f(ζ)dζ (D.5)

is the integral over the circle C ∶= [∣ζ ∣ = 1], oriented counter-clockwise and

f(ζ) ∶= ( ζ + 1

1 + (2 + ω2
0)ζ − ζ2)

2

The poles of f(ζ) occur at
ζ± ∶=

1

2
[2 + ω2

0 ±

√
ω4
0 + 4ω

2
0 + 8].

We have ∣ζ−∣ < 1 < ζ+ and
f(ζ) ∶= ( A−

ζ − ζ−
+

A+

ζ − ζ+
)2 ,

with

A− ∶=
ζ− + 1

ζ− − ζ+
, A+ ∶=

ζ+ + 1

ζ+ − ζ−
.

Hence, after performing the contour integration, we get

I = 2A−A+ ( 1

2πi ∫C 1

ζ − ζ+
⋅

dζ

ζ − ζ−
) = 2A−A+

ζ− − ζ+
=
2(ζ− + 1)(ζ+ + 1)(ζ+ − ζ−)3

Since

ζ−ζ+ = 1, ζ− + ζ+ = 2 + ω
2
0, ζ+ − ζ− =

√
ω4
0 + 4ω

2
0 + 8

we obtain

I = 2(4 + ω2
0)(ω4

0 + 4ω
2
0 + 8)3/2 .

and

Q̃b−1/2,b(ℓ) = (2πℓ
θ
)2 2γ∣F̃(ℓ)∣2(4 + ω2

0)(ω4
0 + 4ω

2
0 + 8)3/2 .
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